EP2846003B1 - Gas turbine, corresponding assembly and disassembly methods of a rotor of a gas turbine - Google Patents
Gas turbine, corresponding assembly and disassembly methods of a rotor of a gas turbine Download PDFInfo
- Publication number
- EP2846003B1 EP2846003B1 EP14150518.0A EP14150518A EP2846003B1 EP 2846003 B1 EP2846003 B1 EP 2846003B1 EP 14150518 A EP14150518 A EP 14150518A EP 2846003 B1 EP2846003 B1 EP 2846003B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sealing ring
- housing
- sealing
- flow direction
- gas turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 7
- 238000007789 sealing Methods 0.000 claims description 218
- 239000000725 suspension Substances 0.000 description 15
- 238000006073 displacement reaction Methods 0.000 description 11
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000004323 axial length Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/122—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
- F01D25/246—Fastening of diaphragms or stator-rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/28—Supporting or mounting arrangements, e.g. for turbine casing
- F01D25/285—Temporary support structures, e.g. for testing, assembling, installing, repairing; Assembly methods using such structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/127—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2200/00—Mathematical features
- F05D2200/10—Basic functions
- F05D2200/11—Sum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
- F05D2220/321—Application in turbines in gas turbines for a special turbine stage
- F05D2220/3212—Application in turbines in gas turbines for a special turbine stage the first stage of a turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/60—Assembly methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/60—Assembly methods
- F05D2230/68—Assembly methods using auxiliary equipment for lifting or holding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/70—Disassembly methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/11—Shroud seal segments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/30—Retaining components in desired mutual position
- F05D2260/36—Retaining components in desired mutual position by a form fit connection, e.g. by interlocking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/30—Retaining components in desired mutual position
- F05D2260/37—Retaining components in desired mutual position by a press fit connection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49229—Prime mover or fluid pump making
- Y10T29/49231—I.C. [internal combustion] engine making
- Y10T29/49233—Repairing, converting, servicing or salvaging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/49318—Repairing or disassembling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/4932—Turbomachine making
- Y10T29/49321—Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/53983—Work-supported apparatus
Definitions
- the present invention relates to a gas turbine, in particular an aircraft engine gas turbine, with a housing, a playpens and a segmented outer sealing ring for sealing this play screen, which is frictionally fastened by a clamping means to the housing, and a method for assembling and / or disassembling the play screen in the case.
- Playpen first all subsequent playpens are dismantled.
- the first playpens in the direction of flow must be serviced frequently and, for this purpose, dismantled or (re) mounted in the housing.
- An object of an embodiment of the present invention is to improve the assembly and / or disassembly of a first, in particular in the flow direction, runway of a gas turbine.
- Claims 7 and 9 provide a method for disassembly or assembly of a running grid of a corresponding gas turbine under protection.
- Advantageous embodiments of the invention are the subject of the dependent claims.
- a gas turbine in particular an aircraft engine gas turbine, a single- or multi-part housing having a, in particular at least substantially circular, flow channel inlet and a downstream flow channel outlet on.
- a flow channel diverges between flow channel inlet and outlet, in particular due to an increasing relaxation of the working medium when flowing through the flow channel.
- the flow channel outlet has a larger inner diameter than the flow channel inlet.
- At least one playpens in particular axially fixed, can be arranged, in particular arranged, which is preferably set up for converting flow energy into mechanical work.
- a plurality of axially spaced apart playpens, in particular axially fixed can be arranged, in particular arranged, whose outer diameters preferably increase in the direction of flow in the flow channel.
- the or the playpens can be releasably or permanently connected to a rotor of the gas turbine.
- playpen Radially between the housing and at least one of these playpens, in particular a first or foremost in the flow direction, playpen, which is arranged, in particular axially fixed, arranged in the housing, in particular, an outer sealing ring for sealing this play screen can be arranged, in particular arranged.
- the outer sealing ring is frictionally secured by a one-piece or multi-part clamping means to the housing, in particular fastened, and has a plurality of ring segments, in particular it may consist of the plurality of ring segments or be composed.
- the clamping means in one embodiment has a cross section with a first leg which is supported on the housing, and a second leg, which is supported on the outer sealing ring and biases under elastic deformation of the clamping means radially against the housing and so frictionally secured thereto , In one embodiment, the clamping means on one or more C or U-clips on.
- a position of the outer sealing ring, when this is fixed by the clamping means to the housing is referred to herein as the operating position.
- an operating position refers in particular to a position of components when the gas turbine is ready for operation, in particular is operated.
- the clamping means or the frictional attachment is first released by the clamping means for disassembly of the playpen. If the clamping means is designed in several parts, one or more, in particular all parts, in particular C or U-clips, can be released.
- the sealing ring segments of the outer sealing ring are carried out of the housing counter to the direction of flow through the flow channel inlet, before the play cage is subsequently guided out of the housing against the direction of flow through the flow channel inlet.
- all sealing ring segments of the outer sealing ring are carried out together from the housing, in another embodiment in groups or singly or sequentially.
- a playpens first in particular in the direction of flow, are advantageously dismantled, in particular without preceding removal of downstream playpens.
- a maximum outer diameter and / or an outer contour of the running grid is preferably at most as large as a minimum inner diameter or an inner contour of the flow channel inlet.
- the maximum outer diameter and / or circumference of the outer sealing ring frictionally secured to the housing or the maximum outer diameter and / or circumference of the outer sealing ring, when frictionally secured to the housing, is greater than the minimum inner diameter or circumference the flow channel entrance.
- such an outer sealing ring opposite to the direction of flow through the flow passage from the housing is carried out, preferably in still in an operating position axially fixed playpen or without prior axial displacement of the play grid in the flow direction.
- one or more sealing ring segments are displaced radially inward after loosening the clamping means until their maximum outer diameter is at most as large as the minimum inner diameter of the flow channel inlet.
- (maximum) outer diameter in the present case, in particular a (maximum) radial distance of a radially outer contour from a rotational axis of the gas turbine is understood. Accordingly, a displacement of a sealing ring segment radially inward or on the axis of rotation to the (maximum) outer diameter of this sealing ring segment, a displacement of the sealing ring segments of the outer sealing ring radially inward according to the (maximum) outer diameter or circumference of the outer sealing ring.
- a quotient of a sum of the gap between the frictionally secured in the operating position on the housing sealing ring segments or a Spaltjansumme the frictionally engaged in the Operating position on the housing attached outer sealing ring and the circle number ⁇ at least as large as a difference between a maximum outer diameter of the frictionally secured in the operating position on the housing outer sealing ring and a minimum inner diameter of the flow channel inlet: ⁇ i 1 n u i ⁇ ⁇ D 20 - d 16 With: n: number of sealing ring segments of the outer sealing ring; u i : gap between i.
- the gaps between the sealing ring segments of the outer sealing ring fastened to the housing in the operating position are at least large enough to allow the sealing ring segments to slide radially together until the radially compressed outer sealing ring has a sufficiently small outside diameter to carry it out of the flow channel entrance.
- one or more sealing ring segments after release the clamping means initially moved axially against the flow direction in order to provide sufficient radial play for such a radial displacement or compression, preferably without prior axial displacement of the play screen in the flow direction or arranged in the operating position playpen, according to one aspect of the present invention, one or more sealing ring segments after release the clamping means initially moved axially against the flow direction.
- the sealing ring segments on a free axial path length against the flow direction.
- a free axial path length of a sealing ring segment opposite to the direction of flow in the present case in particular that Axialweg understood by which the sealing ring segment can be moved from its operating position after loosening the clamping means purely axially against the flow direction until it contacts the housing form-fitting or this another purely axial Displacement against the flow direction positively prevented.
- the gas turbine has an anti-rotation locking device between the outer sealing ring and the housing, which is non-conforming to the throughflow direction.
- one or more, in particular all sealing ring segments after loosening the clamping means initially, in particular successively, in groups or together, axially against the direction of flow at least be moved until this rotation between outer seal and housing is disengaged or is.
- the free axial path length of one or more, in particular all sealing ring segments opposite to the flow direction at least as large as an axial engagement of the rotation.
- form gleichEF rotation is understood in the present case in particular that Axialweg understood by the sealing ring segment from its operating position after loosening the clamping means purely axially against the flow direction must be moved until the rotation also comes out of engagement in the circumferential direction or is.
- the anti-rotation comprises a groove arrangement with one or more circumferentially distributed axial grooves in the housing, which are open against the flow direction and in each of which a radial flange of the outer sealing ring in the circumferential direction positively engages when it frictionally secured in the operating position on the housing is.
- the free axial path length of one or more, in particular all sealing ring segments opposite to the flow direction at least as large as a maximum groove length of this groove arrangement. Since the maximum groove length limits the maximum axial engagement, so can advantageously be ensured regardless of an axial cross-section of the radial flanges sufficient free axial path length to bring them out of engagement.
- the gas turbine has a radial suspension of the outer sealing ring on or in the housing.
- the radial suspension on an inner surface of the outer sealing ring which engages over an outer surface of the housing from radially outside axially when it is frictionally secured in the operating position on the housing.
- the outer sealing ring may have an axial flange which engages axially over or radially behind a corresponding radial groove in the housing, in particular a subsequent guide grid, when the outer sealing ring is frictionally secured to the housing in the operating position.
- the axial length on which the outer sealing ring engages over the housing axially or radially behind is referred to herein as the axial overhang of the radial suspension.
- the free axial path length of one or more, in particular all sealing ring segments opposite to the flow direction at least as large as an axial overhang of the radial suspension of the outer sealing ring. Especially In this way, a sufficient free axial path length can be ensured in order to disengage the radial suspension of the outer sealing ring and thus to radially compress the outer sealing ring.
- the playpen has one or more sealing fins or, preferably, ring-like, radial flanges, which protrude radially outwards from an outer cover strip of the playpens and are radially opposite sealing surfaces of the sealing ring segment.
- sealing fins In the operating position, such sealing fins can be offset axially relative to a downstream edge of a sealing surface for sealing this sealing fin against the direction of flow.
- the sealing fin may be arranged in the operating position upstream of the downstream edge of the sealing surface, so that the sealing fin can prevent radial compression of the outer sealing ring.
- the free axial path length of one or more, in particular all sealing ring segments opposite to the flow direction at least as large as an axial offset of a sealing fin of the outer sealing ring against the flow direction, in particular its upstream, radially outer edge, opposite a downstream edge a sealing surface of the sealing ring segment for sealing this sealing fin.
- the sealing surface merges in the downstream edge in a, preferably at least substantially radial, end face, so that in one embodiment, the free axial path length of one or more, in particular all sealing ring segments against the flow direction at least as large as an axial offset of a sealing fin the outer sealing ring against the direction of flow, in particular its upstream, radially outer edge, opposite a downstream end side, which adjoins a sealing surface for sealing this Dichtfinne and preferably, at least substantially, extends radially.
- the stepped outer sealing ring has a first sealing surface for sealing the first sealing fin and a second sealing surface for sealing the second sealing fin axially and radially spaced from the first sealing surface is, in one embodiment, the free axial path length of one or more, in particular all sealing ring segments opposite to the flow direction at least as large as an axial offset of the first sealing fin, in particular its radial outer upstream edge, opposite a downstream edge of the first sealing surface and / or an adjoining, in particular at least substantially radial end side, and additionally at least as large as an axial offset of the second sealing fin, in particular its radially outer upstream edge opposite a downstream edge of the second Sealing surface and / or an adjoining, in particular at least substantially radial end face.
- the above-described axial and radial displacements can, at least in sections, be carried out in succession.
- the sealing ring segments of the outer sealing ring can be displaced successively, in groups or all together initially, at least substantially, purely axially against the direction of flow, until in particular an anti-twist device and / or a radial suspension are disengaged and / or sealing fins are arranged downstream behind their sealing surfaces, then, at least substantially, are moved purely radially inward until their maximum outer diameter is at most as large as the minimum inner diameter of the flow channel inlet, and then, at least substantially, purely axially against the direction of flow through this are displaced from the housing.
- the above-described axial and radial displacements, at least in sections, can be executed in parallel or superimposed.
- the sealing ring segments of the outer sealing ring can be displaced in succession, in groups or all together radially inwards and at the same time axially against the direction of flow.
- one or more, in particular all sealing ring segments at least substantially, tilt-free axially and / or radially displaced and / or executed from the flow channel inlet.
- This is understood in the present case in particular that in this disassembly an upstream edge of a sealing ring segment, at least substantially, not further moved radially inward or outward than a downstream edge of this sealing ring segment. As a result, the handling can be facilitated in particular.
- the playpen can be introduced in the flow direction through the flow channel inlet into the housing and preferably axially fixed in the operating position. Subsequently, the sealing ring segments of the outer sealing ring are all introduced together, in the flow direction through the flow channel inlet into the housing, before subsequently the outer sealing ring is frictionally secured by the clamping means or this on the housing.
- the sealing ring segments of the outer sealing ring preferably individually, in groups or all together, moved before attaching the clamping means, in particular tilt-free, radially outward to their operating position in which their maximum outer diameter is greater than the minimum inner diameter of the flow channel inlet, and at least in sections parallel thereto or successively axially displaced in the flow direction until the rotation and / or radial suspension is engaged and / or one or more, in particular all sealing fins are offset from the downstream edge of the respective sealing surface against the flow direction.
- Fig. 1 shows in Fig. 2 the abovementioned US 2007/0231132 A1 Similarly, a portion of a gas turbine according to an embodiment of the present invention in an axial section along a horizontal axis of rotation.
- US 2007/0231132 A1 reference is additionally made, in particular, mutually corresponding elements are denoted by identical reference numerals, so that in the following, particular attention is given to differences.
- the gas turbine has a housing 16 with a circular flow channel inlet, whose minimum inner diameter is denoted by d 16 .
- first playpen 18 is arranged. Radial between the housing and playpen an outer sealing ring for sealing this play screen is arranged, which is frictionally secured by a clamping means in the form of several C-clips 80 to the housing and a plurality of ring segments 20 i , 20 i + 1 , ..., which in the circumferential direction by gap dimensions u i , ... are spaced from each other (see. Fig. 2 ).
- the sealing ring segments have opposite the direction of flow on a free axial path length a f , in Fig. 1 indicated by an arrow. After loosening the C-clip, the sealing ring segments can be moved purely axially against the flow direction by a f until the housing limits a further purely axial displacement against the direction of flow.
- the anti-rotation device has a groove arrangement with several counter to the direction of flow (to the left in FIG Fig. 1 ) open axial grooves 12 in the housing, in each of which a radial flange 11 of the frictionally secured to the housing outer sealing ring engages in a form-fitting manner in the circumferential direction.
- the maximum groove length a 1 of the groove arrangement may correspond, at least substantially, to the axial engagement of the anti-twist device.
- the free axial path length a f is at the same time greater than an axial overhang a 2 of a radial suspension 23 of the outer sealing ring.
- the axial overhang a 2 is defined by the axial length a 2 , on which an axial flange 22 of the outer sealing ring has a radial groove 21 of the housing in the axial direction (horizontal in FIG Fig. 1 ) overlaps or in the radial direction (vertically in Fig. 1 ) engages behind.
- the radial groove of the housing is represented by a guide grid, which in Fig. 1 hinted at.
- the playpens has a first sealing fin 31 and a second sealing fin 41, which is axially spaced from the first sealing fin.
- the thus stepped outer sealing ring has a first, kinked sealing surface for sealing the first sealing fin and a second, straight sealing surface for sealing the second sealing fin, which is axially and radially spaced from the first sealing surface.
- the free axial path a f is also greater than an axial offset a 3 of the first sealing fin with respect to a downstream edge 32 of the first sealing surface and greater than an axial offset a 4 of the second sealing fin opposite a downstream edge 42 of the second sealing surface.
- one or more, preferably all C-clips 80 are first released.
- sealing ring segments 20 i , 20 i + 1 ,... Of the outer sealing ring are executed individually, in groups or all together against the direction of flow through the flow channel inlet from the housing 16.
- the sealing ring segments after release of the clamping means 80 are tilt-free axially displaced against the flow direction until the rotation 10 and the radial suspension 23 are disengaged and the sealing fins 31, 41 downstream of the edges 32 and 42 of the associated sealing surfaces are arranged (right in Fig. 1 ).
- the sealing ring segments 20 i , 20 i + 1 , ... of the outer sealing ring are moved individually, in groups or all together radially inward until their maximum outer diameter is as large as or smaller than the minimum inner diameter d 16 of the flow channel inlet. This is possible due to the clearance total.
- the sealing ring segments 20 i , 20 i + 1 , ... of the outer sealing ring individually, in groups or all together axially displaced further against the flow direction and are carried out through the flow channel inlet from the housing 16.
- the playpen 18 is carried out against the direction of flow through the flow channel inlet from the housing.
- the assembly is carried out in an analogous manner in the reverse order: first, the playpen is inserted in the flow direction through the flow channel inlet into the housing and fixed axially in the operating position. Then, the sealing ring segments of the outer sealing ring are introduced in the flow direction through the flow channel inlet into the housing.
- the sealing ring segments of the radially compressed outer sealing ring individually, in groups or all together are displaced or introduced axially in the flow direction through the flow channel inlet into the housing 16.
- the sealing ring segments 20i, 20 i + 1 , ... of the outer sealing ring individually, in groups or all moved together radially outward until they rest radially on the housing. Then they are moved further in the direction of flow in the operating position in which the rotation 10 and the radial suspension 23 are engaged and the sealing fins 31, 41 upstream of the edges 32 and 42 of the associated sealing surfaces are arranged.
- the clamping means 80 and thereby the outer sealing ring is frictionally secured to the housing.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Gasket Seals (AREA)
Description
Die vorliegende Erfindung betrifft eine Gasturbine, insbesondere eine Flugtriebwerk-Gasturbine, mit einem Gehäuse, einem Laufgitter und einem segmentierten Außendichtring zum Abdichten dieses Laufgitters, der durch ein Klemmmittel reibschlüssig an dem Gehäuse befestigbar ist, sowie ein Verfahren zur Montage und/oder Demontage des Laufgitters in dem Gehäuse.The present invention relates to a gas turbine, in particular an aircraft engine gas turbine, with a housing, a playpens and a segmented outer sealing ring for sealing this play screen, which is frictionally fastened by a clamping means to the housing, and a method for assembling and / or disassembling the play screen in the case.
Aus der
Aus der
Üblicherweise werden solche Laufgitter bei der Montage aufgrund des in Durchströmungsrichtung divergierenden Strömungskanals und ihrer entsprechend zunehmenden Durchmesser entgegen der Durchströmungsrichtung bzw. von hinten in den Strömungskanal eingeführt und in diesem befestigt. Entsprechend müssen zur Demontage des in Durchströmungsrichtung erstenUsually such playpens are introduced during assembly due to the diverging in the flow direction flow channel and its correspondingly increasing diameter against the flow direction or from behind into the flow channel and secured in this. Accordingly, for disassembly of the first in the flow direction
Laufgitters zunächst alle nachfolgenden Laufgitter demontiert werden. Auf der anderen Seite müssen in Durchströmungsrichtung erste Laufgitter aufgrund der thermomechanischen Beanspruchungen besonderes häufig gewartet und hierzu demontiert bzw. (wieder) in dem Gehäuse montiert werden.Playpen first all subsequent playpens are dismantled. On the other hand, because of the thermo-mechanical stresses, the first playpens in the direction of flow must be serviced frequently and, for this purpose, dismantled or (re) mounted in the housing.
Eine Aufgabe einer Ausführung der vorliegenden Erfindung ist es, die Montage und/oder Demontage eines, insbesondere in Durchströmungsrichtung ersten, Laufgitters einer Gasturbine zu verbessern.An object of an embodiment of the present invention is to improve the assembly and / or disassembly of a first, in particular in the flow direction, runway of a gas turbine.
Diese Aufgabe wird durch eine Gasturbine mit den Merkmalen des Anspruchs 1 gelöst. Die Ansprüche 7 und 9 stellen ein Verfahren zur Demontage bzw. Montage eines Laufgitters einer entsprechenden Gasturbine unter Schutz. Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.This object is achieved by a gas turbine with the features of
Nach einem Aspekt der vorliegenden Erfindung weist eine Gasturbine, insbesondere eine Flugtriebwerk-Gasturbine, ein ein- oder mehrteiliges Gehäuse mit einem, insbesondere wenigstens im Wesentlichen kreisförmigen, Strömungskanaleintritt und einem stromabwärtigen Strömungskanalaustritt auf. In einer Ausführung divergiert ein Strömungskanal zwischen Strömungskanalein- und -austritt, insbesondere aufgrund einer zunehmenden Entspannung des Arbeitsmediums beim Durchströmen des Strömungskanals. Entsprechend weist in einer Ausführung der Strömungskanalaustritt einen größeren Innendurchmesser auf als der Strömungskanaleintritt.According to one aspect of the present invention, a gas turbine, in particular an aircraft engine gas turbine, a single- or multi-part housing having a, in particular at least substantially circular, flow channel inlet and a downstream flow channel outlet on. In one embodiment, a flow channel diverges between flow channel inlet and outlet, in particular due to an increasing relaxation of the working medium when flowing through the flow channel. Accordingly, in one embodiment, the flow channel outlet has a larger inner diameter than the flow channel inlet.
In dem Strömungskanal ist wenigstens ein Laufgitter, insbesondere axialfest, anordenbar, insbesondere angeordnet, das vorzugsweise zum Umsetzen von Strömungsenergie in mechanische Arbeit eingerichtet ist. In einer Ausführung sind in dem Strömungskanal mehrere axial voneinander beabstandete Laufgitter, insbesondere axialfest, anordenbar, insbesondere angeordnet, deren Außendurchmesser vorzugsweise in Durchströmungsrichtung zunehmen. Das bzw. die Laufgitter können lösbar oder dauerhaft mit einem Rotor der Gasturbine verbunden sein.In the flow channel at least one playpens, in particular axially fixed, can be arranged, in particular arranged, which is preferably set up for converting flow energy into mechanical work. In one embodiment, a plurality of axially spaced apart playpens, in particular axially fixed, can be arranged, in particular arranged, whose outer diameters preferably increase in the direction of flow in the flow channel. The or the playpens can be releasably or permanently connected to a rotor of the gas turbine.
Radial zwischen dem Gehäuse und wenigstens einem dieser Laufgitter, insbesondere einem in Durchströmungsrichtung ersten bzw. vordersten, Laufgitter, das, insbesondere axialfest, in dem Gehäuse anordenbar, insbesondere angeordnet ist, ist ein Außendichtring zum Abdichten dieses Laufgitters anordenbar, insbesondere angeordnet.Radially between the housing and at least one of these playpens, in particular a first or foremost in the flow direction, playpen, which is arranged, in particular axially fixed, arranged in the housing, in particular, an outer sealing ring for sealing this play screen can be arranged, in particular arranged.
Der Außendichtring ist durch ein ein- oder mehrteiliges Klemmmittel reibschlüssig an dem Gehäuse befestigbar, insbesondere befestigt, und weist eine Mehrzahl von Ringsegmenten auf, insbesondere kann er aus der Mehrzahl von Ringsegmenten bestehen bzw. zusammengesetzt sein. Das Klemmmittel weist in einer Ausführung einen Querschnitt mit einem ersten Schenkel, der sich an dem Gehäuse abstützt, und einem zweiten Schenkel auf, der sich an dem Außendichtring abstützt und diesen unter elastischer Deformation des Klemmmittels radial gegen das Gehäuse spannt und so reibschlüssig an diesem befestigt. In einer Ausführung weist das Klemmmittel ein oder mehrere C- oder U-Clipse auf. Insbesondere eine Lage des Außendichtrings, wenn dieses durch das Klemmmittel an dem Gehäuse befestigt ist, wird vorliegend als Betriebslage bezeichnet. Allgemein bezeichnet eine Betriebslage insbesondere eine Lage von Bauteilen, wenn die Gasturbine betriebsbereit ist, insbesondere betrieben wird.The outer sealing ring is frictionally secured by a one-piece or multi-part clamping means to the housing, in particular fastened, and has a plurality of ring segments, in particular it may consist of the plurality of ring segments or be composed. The clamping means in one embodiment has a cross section with a first leg which is supported on the housing, and a second leg, which is supported on the outer sealing ring and biases under elastic deformation of the clamping means radially against the housing and so frictionally secured thereto , In one embodiment, the clamping means on one or more C or U-clips on. In particular, a position of the outer sealing ring, when this is fixed by the clamping means to the housing, is referred to herein as the operating position. In general, an operating position refers in particular to a position of components when the gas turbine is ready for operation, in particular is operated.
Nach einem Aspekt der vorliegenden Erfindung wird zur Demontage des Laufgitters zunächst das Klemmmittel bzw. die reibschlüssige Befestigung durch das Klemmmittel gelöst. Ist das Klemmmittel mehrteilig ausgebildet, können ein oder mehrere, insbesondere alle Teile, insbesondere C- bzw. U-Clipse, gelöst werden.According to one aspect of the present invention, the clamping means or the frictional attachment is first released by the clamping means for disassembly of the playpen. If the clamping means is designed in several parts, one or more, in particular all parts, in particular C or U-clips, can be released.
Anschließend werden, insbesondere bei weiterhin in Betriebslage axialfestem Laufgitter, die Dichtringsegmente des Außendichtrings entgegen der Durchströmungsrichtung durch den Strömungskanaleintritt aus dem Gehäuse ausgeführt, bevor anschließend das Laufgitter entgegen der Durchströmungsrichtung durch den Strömungskanaleintritt aus dem Gehäuse ausgeführt wird. Erfindungsgemäß werden, Anspruch 7 nach, alle Dichtringsegmente des Außendichtrings gemeinsam aus dem Gehäuse ausgeführt, in einer anderen Ausführung gruppenweise oder vereinzelt bzw. nacheinander.Then, in particular in the case of an axially fixed play rack, the sealing ring segments of the outer sealing ring are carried out of the housing counter to the direction of flow through the flow channel inlet, before the play cage is subsequently guided out of the housing against the direction of flow through the flow channel inlet. According to claim 7, all sealing ring segments of the outer sealing ring are carried out together from the housing, in another embodiment in groups or singly or sequentially.
Hierdurch kann nach einem Aspekt der vorliegenden Erfindung ein, insbesondere in Durchströmungsrichtung erstes, Laufgitter vorteilhaft, insbesondere ohne vorhergehenden Ausbau stromabwärtiger Laufgitter, demontiert werden. Vorzugsweise ist hierzu ein maximaler Außendurchmesser und/oder eine Außenkontur des Laufgitters höchstens so groß wie ein minimaler Innendurchmesser bzw. eine Innenkontur des Strömungskanaleintritts.In this way, according to one aspect of the present invention, a playpens first, in particular in the direction of flow, are advantageously dismantled, in particular without preceding removal of downstream playpens. For this purpose, a maximum outer diameter and / or an outer contour of the running grid is preferably at most as large as a minimum inner diameter or an inner contour of the flow channel inlet.
In einer Ausführung ist der maximale Außendurchmesser und/oder -umfang des reibschlüssig an dem Gehäuse befestigten Außendichtrings bzw. der maximale Außendurchmesser und/oder - umfang des Außendichtrings, wenn dieser reibschlüssig an dem Gehäuse befestigt ist, größer als der minimale Innendurchmesser bzw. -umfang des Strömungskanaleintritts. Nach einem Aspekt der vorliegenden Erfindung wird auch ein solcher Außendichtring entgegen der Durchströmungsrichtung durch den Strömungskanaleintritt aus dem Gehäuse ausgeführt, vorzugsweise bei weiterhin in einer Betriebslage axialfestem Laufgitter bzw. ohne vorherige axiale Verschiebung des Laufgitters in Durchströmungsrichtung.In one embodiment, the maximum outer diameter and / or circumference of the outer sealing ring frictionally secured to the housing or the maximum outer diameter and / or circumference of the outer sealing ring, when frictionally secured to the housing, is greater than the minimum inner diameter or circumference the flow channel entrance. According to one aspect of the present invention, such an outer sealing ring opposite to the direction of flow through the flow passage from the housing is carried out, preferably in still in an operating position axially fixed playpen or without prior axial displacement of the play grid in the flow direction.
Hierzu werden nach einem Aspekt der vorliegenden Erfindung ein oder mehrere Dichtringsegmente nach dem Lösen des Klemmmittels radial nach innen verschoben, bis ihr maximaler Außendurchmesser höchstens so groß ist wie der minimale Innendurchmesser des Strömungskanaleintritts. Als (maximaler) Außendurchmesser wird vorliegend insbesondere ein (maximaler) radialer Abstand einer radial äußeren Außenkontur von einer Drehachse der Gasturbine verstanden. Entsprechend reduziert eine Verschiebung eines Dichtringsegments nach radial innen bzw. auf die Drehachse zu den (maximalen) Außendurchmesser dieses Dichtringsegments, eine Verschiebung der Dichtringsegmente des Außendichtrings nach radial innen entsprechend den (maximalen) Außendurchmesser bzw. -umfang des Außendichtrings.For this purpose, according to one aspect of the present invention, one or more sealing ring segments are displaced radially inward after loosening the clamping means until their maximum outer diameter is at most as large as the minimum inner diameter of the flow channel inlet. As (maximum) outer diameter, in the present case, in particular a (maximum) radial distance of a radially outer contour from a rotational axis of the gas turbine is understood. Accordingly, a displacement of a sealing ring segment radially inward or on the axis of rotation to the (maximum) outer diameter of this sealing ring segment, a displacement of the sealing ring segments of the outer sealing ring radially inward according to the (maximum) outer diameter or circumference of the outer sealing ring.
Insbesondere, um eine solche radiale Verschiebung von Dichtringsegmenten bzw. eine solche radiale Kompression des Außendichtrings zu ermöglichen, ist erfindungsgemäß nach Anspruch 1 ein Quotient einer Summe der Spaltmaße zwischen den reibschlüssig in der Betriebslage an dem Gehäuse befestigten Dichtringsegmente bzw. einer Spaltmaßsumme des reibschlüssig in der Betriebslage an dem Gehäuse befestigten Außendichtrings und der Kreiszahl π wenigstens so groß wie eine Differenz zwischen einem maximalen Außendurchmesser des reibschlüssig in der Betriebslage an dem Gehäuse befestigten Außendichtrings und einem minimalen Innendurchmesser des Strömungskanaleintritts:
n: Anzahl der Dichtringsegmente des Außendichtrings;
ui: Spaltmaß zwischen i. Dichtringsegment und in Umfangsrichtung benachbartem Dichtringsegment in Betriebslage bzw. bei reibschlüssig durch das Klemmmittel an dem Gehäuse befestigtem Außendichtring;
D 20 · π : maximaler Außendurchmesser des reibschlüssig an dem Gehäuse befestigten Außendichtrings;
d 16 · π : minimaler Innendurchmesser des Strömungskanaleintritts.In particular, in order to enable such a radial displacement of sealing ring segments or such a radial compression of the outer sealing ring, according to the invention according to
n: number of sealing ring segments of the outer sealing ring;
u i : gap between i. Sealing ring segment and circumferentially adjacent sealing ring segment in the operating position or at frictionally secured by the clamping means on the housing outer sealing ring;
D 20 · π : maximum outer diameter of the outer sealing ring frictionally secured to the housing;
d 16 · π : minimum inner diameter of the flow channel inlet.
Mit anderen Worten sind die Spalte zwischen den Dichtringsegmenten des in der Betriebslage an dem Gehäuse befestigten Außendichtrings wenigstens so groß, dass sie ein radiales Zusammenschieben der Dichtringsegmente gestatten, bis der solcherart radial komprimierte Außendichtring einen ausreichend kleinen Außendurchmesser aufweist, um ihn aus dem Strömungskanaleintritt auszuführen.In other words, the gaps between the sealing ring segments of the outer sealing ring fastened to the housing in the operating position are at least large enough to allow the sealing ring segments to slide radially together until the radially compressed outer sealing ring has a sufficiently small outside diameter to carry it out of the flow channel entrance.
Insbesondere, um ausreichend Radialspiel für eine solche radiale Verschiebung bzw. Kompression zur Verfügung zu stellen, vorzugsweise ohne vorherige axiale Verschiebung des Laufgitters in Durchströmungsrichtung bzw. bei in der Betriebslage angeordnetem Laufgitter, werden nach einem Aspekt der vorliegenden Erfindung ein oder mehrere Dichtringsegmente nach dem Lösen des Klemmmittels zunächst axial entgegen der Durchströmungsrichtung verschoben.In particular, in order to provide sufficient radial play for such a radial displacement or compression, preferably without prior axial displacement of the play screen in the flow direction or arranged in the operating position playpen, according to one aspect of the present invention, one or more sealing ring segments after release the clamping means initially moved axially against the flow direction.
Insbesondere hierzu weisen die Dichtringsegmente eine freie axiale Weglänge entgegen der Durchströmungsrichtung auf. Unter einer freien axialen Weglänge eines Dichtringsegments entgegen der Durchströmungsrichtung wird vorliegend insbesondere derjenige Axialweg verstanden, um den das Dichtringsegment aus seiner Betriebslage nach Lösen des Klemmmittels rein axial entgegen der Durchströmungsrichtung verschoben werden kann, bis es das Gehäuse formschlüssig kontaktiert bzw. dieses ein weiteres rein axiales Verschieben entgegen der Durchströmungsrichtung formschlüssig verhindert. Mit anderen Worten entspricht eine freie axiale Weglänge eines Dichtringsegments entgegen der Durchströmungsrichtung einem Axialspiel des Dichtringsegments nach Lösen des Klemmmittels entgegen der Durchströmungsrichtung bzw. einem Axialspalt in der Betriebslage zwischen einer Kontaktlinie des Gehäuses und einer Kontaktlinie des Dichtringsegments, längs der Dichtringsegment und Gehäuse einander kontaktieren, wenn das Dichtringsegment nach Lösen des Klemmmittels aus der Betriebslage rein axial entgegen der Durchströmungsrichtung verschoben wird.In particular, for this purpose, the sealing ring segments on a free axial path length against the flow direction. Under a free axial path length of a sealing ring segment opposite to the direction of flow in the present case in particular that Axialweg understood by which the sealing ring segment can be moved from its operating position after loosening the clamping means purely axially against the flow direction until it contacts the housing form-fitting or this another purely axial Displacement against the flow direction positively prevented. In other words, corresponds to a free axial path length of a sealing ring segment opposite to the flow direction an axial clearance of the sealing ring segment after loosening the clamping means against the flow direction or an axial gap in the operating position between a contact line of the housing and a contact line of the sealing ring segment, along the sealing ring segment and housing contact each other, when the sealing ring segment is moved purely axially against the flow direction after loosening the clamping means from the operating position.
Nach einem Aspekt der vorliegenden Erfindung weist die Gasturbine eine entgegen der Durchströmungsrichtung formschlussfreie Verdrehsicherung zwischen Außendichtring und Gehäuse auf. Insbesondere dann können ein oder mehrere, insbesondere alle Dichtringsegmente nach dem Lösen des Klemmmittels zunächst, insbesondere nacheinander, gruppenweise oder gemeinsam, axial entgegen der Durchströmungsrichtung wenigstens soweit verschoben werden, bis diese Verdrehsicherung zwischen Außendichtring und Gehäuse außer Eingriff gelangt bzw. ist.In accordance with one aspect of the present invention, the gas turbine has an anti-rotation locking device between the outer sealing ring and the housing, which is non-conforming to the throughflow direction. In particular, one or more, in particular all sealing ring segments after loosening the clamping means initially, in particular successively, in groups or together, axially against the direction of flow at least be moved until this rotation between outer seal and housing is disengaged or is.
Insbesondere hierzu ist nach einem Aspekt der vorliegenden Erfindung die freie axiale Weglänge eines oder mehrerer, insbesondere aller Dichtringsegmente entgegen der Durchströmungsrichtung wenigstens so groß wie ein axialer Eingriff der Verdrehsicherung. Unter einem axialen Eingriff einer entgegen der Durchströmungsrichtung formschlussfreien Verdrehsicherung wird vorliegend insbesondere derjenige Axialweg verstanden, um den das Dichtringsegment aus seiner Betriebslage nach Lösen des Klemmmittels rein axial entgegen der Durchströmungsrichtung verschoben werden muss, bis die Verdrehsicherung auch in Umfangsrichtung außer Eingriff gelangt bzw. ist.In particular, according to one aspect of the present invention, the free axial path length of one or more, in particular all sealing ring segments opposite to the flow direction at least as large as an axial engagement of the rotation. Under axial engagement a contrary to the flow direction formschlussfreien rotation is understood in the present case in particular that Axialweg understood by the sealing ring segment from its operating position after loosening the clamping means purely axially against the flow direction must be moved until the rotation also comes out of engagement in the circumferential direction or is.
In einer Ausführung weist die Verdrehsicherung eine Nutanordnung mit einer oder mehreren über den Umfang verteilten Axialnuten in dem Gehäuse auf, die entgegen der Durchströmungsrichtung offen sind und in die jeweils ein Radialflansch des Außendichtrings in Umfangsrichtung formschlüssig eingreift, wenn dieser in Betriebslage reibschlüssig an dem Gehäuse befestigt ist. Dann ist vorzugsweise die freie axiale Weglänge eines oder mehrerer, insbesondere aller Dichtringsegmente entgegen der Durchströmungsrichtung wenigstens so groß wie eine maximale Nutlänge dieser Nutanordnung. Da die maximale Nutlänge den maximalen axialen Eingriff limitiert, kann so vorteilhafterweise unabhängig von einem axialen Querschnitt der Radialflansche eine ausreichende freie axiale Weglänge sichergestellt werden, um diese außer Eingriff zu bringen.In one embodiment, the anti-rotation comprises a groove arrangement with one or more circumferentially distributed axial grooves in the housing, which are open against the flow direction and in each of which a radial flange of the outer sealing ring in the circumferential direction positively engages when it frictionally secured in the operating position on the housing is. Then preferably the free axial path length of one or more, in particular all sealing ring segments opposite to the flow direction at least as large as a maximum groove length of this groove arrangement. Since the maximum groove length limits the maximum axial engagement, so can advantageously be ensured regardless of an axial cross-section of the radial flanges sufficient free axial path length to bring them out of engagement.
Nach einem Aspekt der vorliegenden Erfindung weist die Gasturbine eine radiale Aufhängung des Außendichtrings an bzw. in dem Gehäuse auf. Insbesondere dann können ein oder mehrere, insbesondere alle Dichtringsegmente nach dem Lösen des Klemmmittels, insbesondere nacheinander, gruppenweise oder gemeinsam, zunächst axial entgegen der Durchströmungsrichtung wenigstens soweit verschoben werden, bis diese radiale Aufhängung außer Eingriff gelangt bzw. ist.According to one aspect of the present invention, the gas turbine has a radial suspension of the outer sealing ring on or in the housing. In particular, one or more, in particular all sealing ring segments after loosening the clamping means, in particular successively, in groups or together, initially at least axially against the flow direction at least until this radial suspension is disengaged or is.
In einer Ausführung weist die radiale Aufhängung eine Innenfläche des Außendichtrings auf, die eine Außenfläche des Gehäuses von radial außen axial übergreift, wenn dieser in Betriebslage reibschlüssig an dem Gehäuse befestigt ist. Insbesondere kann der Außendichtring einen Axialflansch aufweisen, der eine entsprechende Radialnut im Gehäuse, insbesondere einem nachfolgenden Leitgitter, axial über- bzw. radial hintergreift, wenn der Außendichtring in Betriebslage reibschlüssig an dem Gehäuse befestigt ist. Die axiale Länge, auf der der Außendichtring das Gehäuse axial über- bzw. radial hintergreift, wird vorliegend als axialer Überhang der radialen Aufhängung bezeichnet. Entsprechend ist in einer Ausführung die freie axiale Weglänge eines oder mehrerer, insbesondere aller Dichtringsegmente entgegen der Durchströmungsrichtung wenigstens so groß wie ein axialer Überhang der radialen Aufhängung des Außendichtrings. Insbesondere auf diese Weise kann eine ausreichende freie axiale Weglänge sichergestellt werden, um die radial Aufhängung des Außendichtrings außer Eingriff zu bringen und so den Außendichtring radial zu komprimieren.In one embodiment, the radial suspension on an inner surface of the outer sealing ring, which engages over an outer surface of the housing from radially outside axially when it is frictionally secured in the operating position on the housing. In particular, the outer sealing ring may have an axial flange which engages axially over or radially behind a corresponding radial groove in the housing, in particular a subsequent guide grid, when the outer sealing ring is frictionally secured to the housing in the operating position. The axial length on which the outer sealing ring engages over the housing axially or radially behind, is referred to herein as the axial overhang of the radial suspension. Accordingly, in one embodiment, the free axial path length of one or more, in particular all sealing ring segments opposite to the flow direction at least as large as an axial overhang of the radial suspension of the outer sealing ring. Especially In this way, a sufficient free axial path length can be ensured in order to disengage the radial suspension of the outer sealing ring and thus to radially compress the outer sealing ring.
Nach einem Aspekt der vorliegenden Erfindung weist das Laufgitter eine oder mehrere Dichtfinnen bzw., vorzugsweise ringartige, Radialflansche auf, die von einem Außendeckband des Laufgitters nach radial außen hervorstehen und Dichtflächen des Dichtringsegments radial gegenüberliegen. In der Betriebslage können solche Dichtfinnen gegenüber einer stromabwärtigen Kante einer Dichtfläche zum Abdichten dieser Dichtfinne entgegen der Durchströmungsrichtung axial versetzt sein. Mit anderen Worten kann die Dichtfinne in der Betriebslage stromaufwärts vor der stromabwärtigen Kante der Dichtfläche angeordnet sein, so dass die Dichtfinne einer radialen Kompression des Außendichtrings entgegenstehen kann.According to one aspect of the present invention, the playpen has one or more sealing fins or, preferably, ring-like, radial flanges, which protrude radially outwards from an outer cover strip of the playpens and are radially opposite sealing surfaces of the sealing ring segment. In the operating position, such sealing fins can be offset axially relative to a downstream edge of a sealing surface for sealing this sealing fin against the direction of flow. In other words, the sealing fin may be arranged in the operating position upstream of the downstream edge of the sealing surface, so that the sealing fin can prevent radial compression of the outer sealing ring.
Insbesondere daher ist nach einem Aspekt der vorliegenden Erfindung die freie axiale Weglänge eines oder mehrerer, insbesondere aller Dichtringsegmente entgegen der Durchströmungsrichtung wenigstens so groß wie ein axialer Versatz einer Dichtfinne des Außendichtrings entgegen der Durchströmungsrichtung, insbesondere ihrer stromaufwärtigen, radial äußeren Kante, gegenüber einer stromabwärtigen Kante einer Dichtfläche des Dichtringsegments zum Abdichten dieser Dichtfinne. In einer Ausführung geht die Dichtfläche in der stromabwärtigen Kante in eine, vorzugsweise wenigstens im Wesentlichen radiale, Stirnseite über, so dass in einer Ausführung die freie axiale Weglänge eines oder mehrerer, insbesondere aller Dichtringsegmente entgegen der Durchströmungsrichtung wenigstens so groß wie ein axialer Versatz einer Dichtfinne des Außendichtrings entgegen der Durchströmungsrichtung, insbesondere ihrer stromaufwärtigen, radial äußeren Kante, gegenüber einer stromabwärtigen Stirnseite, die an eine Dichtfläche zum Abdichten dieser Dichtfinne anschließt und sich vorzugsweise, wenigstens im Wesentlichen, radial erstreckt.In particular, therefore, according to one aspect of the present invention, the free axial path length of one or more, in particular all sealing ring segments opposite to the flow direction at least as large as an axial offset of a sealing fin of the outer sealing ring against the flow direction, in particular its upstream, radially outer edge, opposite a downstream edge a sealing surface of the sealing ring segment for sealing this sealing fin. In one embodiment, the sealing surface merges in the downstream edge in a, preferably at least substantially radial, end face, so that in one embodiment, the free axial path length of one or more, in particular all sealing ring segments against the flow direction at least as large as an axial offset of a sealing fin the outer sealing ring against the direction of flow, in particular its upstream, radially outer edge, opposite a downstream end side, which adjoins a sealing surface for sealing this Dichtfinne and preferably, at least substantially, extends radially.
Weist das Laufgitter eine erste und eine zweite Dichtfinne auf, die von der ersten Dichtfinne axial beabstandet ist, der gestufte Außendichtring eine erste Dichtfläche zum Abdichten der ersten Dichtfinne und eine zweite Dichtfläche zum Abdichten der zweiten Dichtfinne, die von der ersten Dichtfläche axial und radial beabstandet ist, so ist in einer Ausführung die freie axiale Weglänge eines oder mehrerer, insbesondere aller Dichtringsegmente entgegen der Durchströmungsrichtung wenigstens so groß wie ein axialer Versatz der ersten Dichtfinne, insbesondere ihrer radial äußeren stromaufwärtigen Kante, gegenüber einer stromabwärtigen Kante der ersten Dichtfläche und/oder einer daran anschließenden, insbesondere wenigstens im Wesentlichen radialen Stirnseite, und zusätzlich wenigstens so groß wie ein axialer Versatz der zweiten Dichtfinne, insbesondere ihrer radial äußeren stromaufwärtigen Kante gegenüber einer stromabwärtigen Kante der zweiten Dichtfläche und/oder einer daran anschließenden, insbesondere wenigstens im Wesentlichen radialen Stirnseite.If the playpen has a first and a second sealing fin axially spaced from the first sealing fin, the stepped outer sealing ring has a first sealing surface for sealing the first sealing fin and a second sealing surface for sealing the second sealing fin axially and radially spaced from the first sealing surface is, in one embodiment, the free axial path length of one or more, in particular all sealing ring segments opposite to the flow direction at least as large as an axial offset of the first sealing fin, in particular its radial outer upstream edge, opposite a downstream edge of the first sealing surface and / or an adjoining, in particular at least substantially radial end side, and additionally at least as large as an axial offset of the second sealing fin, in particular its radially outer upstream edge opposite a downstream edge of the second Sealing surface and / or an adjoining, in particular at least substantially radial end face.
Insbesondere hierdurch können ein oder mehrere, insbesondere alle Dichtringsegmente nach dem Lösen des Klemmmittels, insbesondere nacheinander, gruppenweise oder gemeinsam, zunächst axial entgegen der Durchströmungsrichtung wenigstens soweit verschoben werden, bis die Dichtfinne(n) stromabwärts hinter bzw. nach der stromabwärtigen Kante der jeweiligen Dichtfläche angeordnet ist bzw. sind, der die Dichtfinne in Betriebslage radial gegenüberliegt. Auf diese Weise kann ausreichend Radialspiel für eine radiale Verschiebung bzw. Kompression zur Verfügung gestellt werden, um den radial komprimierten Außendichtring mit radial nach innen verschobenen Dichtringsegmenten entgegen der Durchströmungsrichtung aus dem Strömungskanaleintritt auszuführen.In particular, thereby one or more, in particular all sealing ring segments after loosening the clamping means, in particular successively, in groups or together, initially at least axially against the flow direction are shifted until the sealing fin (s) downstream or behind the downstream edge of the respective sealing surface is arranged or are radially opposite the sealing fin in the operating position. In this way, sufficient radial clearance for a radial displacement or compression can be made available to perform the radially compressed outer sealing ring with radially inwardly displaced sealing ring segments against the direction of flow from the flow channel inlet.
Die vorstehend erläuterten axialen und radialen Verschiebungen können, wenigstens abschnittsweise, nacheinander ausgeführt werden. Insbesondere können die Dichtringsegmente des Außendichtrings nacheinander, gruppenweise oder alle gemeinsam zunächst, wenigstens im Wesentlichen, rein axial entgegen der Durchströmungsrichtung verschoben werden, bis insbesondere eine Verdrehsicherung und/oder eine radiale Aufhängung außer Eingriff gelangen und/oder Dichtfinnen stromabwärts hinter ihren Dichtflächen angeordnet sind, anschließend, wenigstens im Wesentlichen, rein radial nach innen verschoben werden, bis ihr maximaler Außendurchmesser höchstens noch so groß ist wie der minimale Innendurchmesser des Strömungskanaleintritts, und anschließend, wenigstens im Wesentlichen, rein axial entgegen der Durchströmungsrichtung durch diesen aus dem Gehäuse verschoben werden.The above-described axial and radial displacements can, at least in sections, be carried out in succession. In particular, the sealing ring segments of the outer sealing ring can be displaced successively, in groups or all together initially, at least substantially, purely axially against the direction of flow, until in particular an anti-twist device and / or a radial suspension are disengaged and / or sealing fins are arranged downstream behind their sealing surfaces, then, at least substantially, are moved purely radially inward until their maximum outer diameter is at most as large as the minimum inner diameter of the flow channel inlet, and then, at least substantially, purely axially against the direction of flow through this are displaced from the housing.
Gleichermaßen können die vorstehend erläuterten axialen und radialen Verschiebungen, wenigstens abschnittsweise, parallel ausgeführt bzw. überlagert werden. Insbesondere können die Dichtringsegmente des Außendichtrings nacheinander, gruppenweise oder alle gemeinsam radial nach innen und zugleich axial entgegen der Durchströmungsrichtung verschoben werden.Similarly, the above-described axial and radial displacements, at least in sections, can be executed in parallel or superimposed. In particular, the sealing ring segments of the outer sealing ring can be displaced in succession, in groups or all together radially inwards and at the same time axially against the direction of flow.
In einer Ausführung werden ein oder mehrere, insbesondere alle Dichtringsegmente, wenigstens im Wesentlichen, kippfrei axial und/oder radial verschoben und/oder aus dem Strömungskanaleintritt ausgeführt. Hierunter wird vorliegend insbesondere verstanden, dass bei dieser Demontage eine stromaufwärtige Kante eines Dichtringsegmentes, wenigstens im Wesentlichen, nicht weiter nach radial innen oder außen bewegt wird als eine stromabwärtige Kante dieses Dichtringsegmentes. Hierdurch kann insbesondere das Handling erleichtert werden.In one embodiment, one or more, in particular all sealing ring segments, at least substantially, tilt-free axially and / or radially displaced and / or executed from the flow channel inlet. This is understood in the present case in particular that in this disassembly an upstream edge of a sealing ring segment, at least substantially, not further moved radially inward or outward than a downstream edge of this sealing ring segment. As a result, the handling can be facilitated in particular.
Eine Montage des Laufgitters erfolgt, erfindungsgemäß nach Anspruch 9, wenigstens im Wesentlichen, analog in umgekehrter Reihenfolge. Zunächst kann das Laufgitter in Durchströmungsrichtung durch den Strömungskanaleintritt in das Gehäuse eingeführt und vorzugsweise in Betriebslage axial festgelegt werden. Anschließend werden die Dichtringsegmente des Außendichtrings alle gemeinsam, in Durchströmungsrichtung durch den Strömungskanaleintritt in das Gehäuse eingeführt, bevor anschließend der Außendichtring durch das Klemmmittel bzw. dieses an dem Gehäuse reibschlüssig befestigt wird.An assembly of the playpen takes place according to the invention according to claim 9, at least substantially, analogously in the reverse order. First, the playpen can be introduced in the flow direction through the flow channel inlet into the housing and preferably axially fixed in the operating position. Subsequently, the sealing ring segments of the outer sealing ring are all introduced together, in the flow direction through the flow channel inlet into the housing, before subsequently the outer sealing ring is frictionally secured by the clamping means or this on the housing.
In einer Ausführung werden die Dichtringsegmente des Außendichtrings, vorzugsweise einzeln, gruppenweise oder alle gemeinsam, vor dem Befestigen des Klemmmittels, insbesondere kippfrei, radial nach außen in ihre Betriebslage verschoben, in der ihr maximaler Außendurchmesser größer ist als der minimale Innendurchmesser des Strömungskanaleintritts, und wenigstens abschnittsweise parallel hierzu oder nacheinander axial in Durchströmungsrichtung verschoben, bis die Verdrehsicherung und/oder radiale Aufhängung in Eingriff ist und/oder eine oder mehrere, insbesondere alle Dichtfinnen gegenüber der stromabwärtigen Kante der jeweiligen Dichtfläche entgegen der Durchströmungsrichtung versetzt sind.In one embodiment, the sealing ring segments of the outer sealing ring, preferably individually, in groups or all together, moved before attaching the clamping means, in particular tilt-free, radially outward to their operating position in which their maximum outer diameter is greater than the minimum inner diameter of the flow channel inlet, and at least in sections parallel thereto or successively axially displaced in the flow direction until the rotation and / or radial suspension is engaged and / or one or more, in particular all sealing fins are offset from the downstream edge of the respective sealing surface against the flow direction.
Weitere vorteilhafte Weiterbildungen der vorliegenden Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung bevorzugter Ausführungen. Hierzu zeigt, teilweise schematisiert:
- Fig. 1
- einen Teil einer Gasturbine nach einer Ausführung der vorliegenden Erfindung in einem Axialschnitt längs einer Drehachse; und
- Fig. 2
- einen Teil der Gasturbine der
Fig. 1 in einer inFig. 1 mit II angedeuteten Draufsicht.
- Fig. 1
- a portion of a gas turbine according to an embodiment of the present invention in an axial section along an axis of rotation; and
- Fig. 2
- a part of the gas turbine of
Fig. 1 in an inFig. 1 with II indicated top view.
Die Gasturbine weist ein Gehäuse 16 mit einem kreisförmigen Strömungskanaleintritt auf, dessen minimaler Innendurchmesser mit d16 bezeichnet ist.The gas turbine has a
In einer in
Die Dichtringsegmente weisen entgegen der Durchströmungsrichtung eine freie axiale Weglänge af auf, die in
Diese freie axiale Weglänge af ist größer als ein axialer Eingriff a1 einer entgegen der Durchströmungsrichtung formschlussfreien Verdrehsicherung 10 des Außendichtrings. Die Verdrehsicherung weist eine Nutanordnung mit mehreren entgegen der Durchströmungsrichtung (nach links in
Die freie axiale Weglänge af ist zugleich größer als ein axialer Überhang a2 einer radialen Aufhängung 23 des Außendichtrings. Der axiale Überhang a2 ist definiert durch die axiale Länge a2, auf der ein Axialflansch 22 des Außendichtrings eine Radialnut 21 des Gehäuses in axialer Richtung (horizontal in
Das Laufgitter weist eine erste Dichtfinne 31 und eine zweite Dichtfinne 41 auf, die von der ersten Dichtfinne axial beabstandet ist. Der insofern gestufte Außendichtring weist eine erste, abgeknickte Dichtfläche zum Abdichten der ersten Dichtfinne und eine zweite, gerade Dichtfläche zum Abdichten der zweiten Dichtfinne auf, die von der ersten Dichtfläche axial und radial beabstandet ist.The playpens has a
Die freie axiale Weglänge af ist auch größer als ein axialer Versatz a3 der ersten Dichtfinne gegenüber einer stromabwärtigen Kante 32 der ersten Dichtfläche und größer als ein axialer Versatz a4 der zweiten Dichtfinne gegenüber einer stromabwärtigen Kante 42 der zweiten Dichtfläche.The free axial path a f is also greater than an axial offset a 3 of the first sealing fin with respect to a
Ein Quotient einer Spaltmaßsumme des in der Betriebslage reibschlüssig an dem Gehäuse befestigten Außendichtrings und der Kreiszahl π ist größer oder gleich einer Differenz zwischen dem maximalen Außendurchmesser D 20 des in der Betriebslage reibschlüssig an dem Gehäuse befestigten Außendichtrings und dem minimalen Innendurchmesser d16 des Strömungskanaleintritts:
Zur Demontage des Laufgitters werden zunächst eine oder mehrere, vorzugsweise alle C-Clipse 80 gelöst.To disassemble the playgrid, one or more, preferably all C-
Anschließend werden die Dichtringsegmente 20i, 20i+1,... des Außendichtrings einzeln, gruppenweise oder alle gemeinsam entgegen der Durchströmungsrichtung durch den Strömungskanaleintritt aus dem Gehäuse 16 ausgeführt.Subsequently, the sealing ring segments 20 i , 20 i + 1 ,... Of the outer sealing ring are executed individually, in groups or all together against the direction of flow through the flow channel inlet from the
Hierzu werden die Dichtringsegmente nach dem Lösen des Klemmmittels 80 kippfrei axial entgegen der Durchströmungsrichtung verschoben, bis die Verdrehsicherung 10 und die radiale Aufhängung 23 außer Eingriff sind und die Dichtfinnen 31, 41 stromabwärts nach den Kanten 32 bzw. 42 der zugehörigen Dichtflächen angeordnet sind (rechts in
Anschließend werden die Dichtringsegmente 20i, 20i+1,... des Außendichtrings einzeln, gruppenweise oder alle gemeinsam radial nach innen verschoben, bis ihr maximaler Außendurchmesser so groß wie oder kleiner als der minimale Innendurchmesser d16 des Strömungskanaleintritts ist. Dies ist aufgrund der Spaltmaßsumme möglich. Bezeichnet D'20 den maximalen Außendurchmesser des radial komprimierten Außendichtrings mit radial nach innen verschobenen Dichtringsegmenten, so dass diese in Umfangsrichtung aneinander anliegen bzw. ihre Spaltmaßsumme gleich Null ist, so gilt:
Anschließend wird das Laufgitter 18 entgegen der Durchströmungsrichtung durch den Strömungskanaleintritt aus dem Gehäuse ausgeführt.Subsequently, the
Die Montage erfolgt in analoger Weise in umgekehrter Reihenfolge: zunächst wird das Laufgitter in Durchströmungsrichtung durch den Strömungskanaleintritt in das Gehäuse eingeführt und in der Betriebslage axial befestigt. Dann werden die Dichtringsegmente des Außendichtrings in Durchströmungsrichtung durch den Strömungskanaleintritt in das Gehäuse eingeführt.The assembly is carried out in an analogous manner in the reverse order: first, the playpen is inserted in the flow direction through the flow channel inlet into the housing and fixed axially in the operating position. Then, the sealing ring segments of the outer sealing ring are introduced in the flow direction through the flow channel inlet into the housing.
Hierzu werden die Dichtringsegmente des radial komprimierten Außendichtrings einzeln, gruppenweise oder alle gemeinsam axial in Durchströmungsrichtung durch den Strömungskanaleintritt in das Gehäuse 16 verschoben bzw. eingeführt. Anschließend werden die Dichtringsegmente 20i, 20i+1,... des Außendichtrings einzeln, gruppenweise oder alle gemeinsam radial nach außen verschoben, bis sie radial an dem Gehäuse anliegen. Dann werden sie weiter in Durchströmungsrichtung in die Betriebslage verschoben, in der die Verdrehsicherung 10 und die radiale Aufhängung 23 in Eingriff sind und die Dichtfinnen 31, 41 stromaufwärts vor den Kanten 32 bzw. 42 der zugehörigen Dichtflächen angeordnet sind. Schließlich wird das Klemmmittel 80 und hierdurch der Außendichtring reibschlüssig an dem Gehäuse befestigt.For this purpose, the sealing ring segments of the radially compressed outer sealing ring individually, in groups or all together are displaced or introduced axially in the flow direction through the flow channel inlet into the
Obwohl in der vorhergehenden Beschreibung exemplarische Ausführungen erläutert wurden, sei darauf hingewiesen, dass eine Vielzahl von Abwandlungen möglich ist. Außerdem sei darauf hingewiesen, dass es sich bei den exemplarischen Ausführungen lediglich um Beispiele handelt, die den Schutzbereich, die Anwendungen und den Aufbau in keiner Weise einschränken sollen. Vielmehr wird dem Fachmann durch die vorausgehende Beschreibung ein Leitfaden für die Umsetzung von mindestens einer exemplarischen Ausführung gegeben, wobei diverse Änderungen, insbesondere in Hinblick auf die Funktion und Anordnung der beschriebenen Bestandteile, vorgenommen werden können, ohne den Schutzbereich zu verlassen, wie er sich aus den Ansprüchen ergibt.Although exemplary embodiments have been explained in the foregoing description, it should be understood that a variety of modifications are possible. It should also be noted that the exemplary embodiments are merely examples that are not intended to limit the scope, applications and construction in any way. Rather, the expert is given by the preceding description, a guide for the implementation of at least one exemplary embodiment, with various changes, in particular with regard to the function and arrangement of the components described, can be made without departing from the scope, as it turns out the claims.
- 1010
- Verdrehsicherungtwist
- 1111
- Radialflansch (Verdrehsicherung)Radial flange (rotation lock)
- 1212
- Axialnut (Verdrehsicherung)Axial groove (rotation lock)
- 1616
- Gehäusecasing
- 1818
- Laufgitterpen
- 20i, 20i+1 20 i , 20 i + 1
- AußendichtringsegmentOuter sealing ring segment
- 2121
- Radialnut des Gehäuses (radiale Aufhängung)Radial groove of the housing (radial suspension)
- 2222
- Axialflansch des Außendichtrings (radiale Aufhängung)Axial flange of outer seal (radial suspension)
- 2323
- radiale Aufhängungradial suspension
- 31/4131/41
- erste/zweite Dichtfinnefirst / second sealing fin
- 32/4232/42
- stromabwärtige Kante der Dichtfläche der ersten/zweiten Dichtfinnedownstream edge of the sealing surface of the first / second sealing fin
- 8080
- Klemmmittel (C-Clipse)Clamping means (C-clips)
- af a f
- freie axiale Weglängefree axial path length
- a1 a 1
- axialer Eingriff der Verdrehsicherung; maximale Nutlängeaxial engagement of the anti-rotation device; maximum groove length
- a2 a 2
- axialer Überhang der radialen Aufhängungaxial overhang of the radial suspension
- a3/a4 a 3 / a 4
- axialer Versatz der ersten/zweiten Dichtfinneaxial offset of the first / second sealing fin
- d16 16
- minimaler Innendurchmesser des Strömungskanaleintrittsminimum inner diameter of the flow channel inlet
- DD 2020
- maximaler Außendurchmesser des Außendichtrings in Betriebslagemaximum outer diameter of the outer sealing ring in operating position
- ui u i
- Spaltmaß zwischen Dichtsegmenten 20i, 20i+1 Gap between sealing segments 20 i , 20 i + 1
Claims (10)
- Gas turbine, in particular an aircraft engine gas turbine, comprising: a housing (16) having a flow channel inlet; a rotating cascade (18), which is a first rotating cascade in particular in the flow direction, which can be arranged in the housing; and an outer sealing ring for sealing said rotating cascade, which ring can be frictionally fastened to the housing by a clamping means (80) and has a plurality of ring segments (20i, 20i+1);
characterized in that a quotient of a clearance sum - Gas turbine according to claim 1, characterized in that a free axial path length (af) of a sealing ring segment counter to the flow direction is at least as large as:- an axial engagement (a1) of an anti-torsion mechanism (10) of the outer sealing ring (af ≥ a1), which mechanism does not have a form-fit counter to the flow direction, and/or- an axial overhang (a2) of a radial mounting (23) of the outer sealing ring (af ≥ a2) and/or- an axial offset (a3, a4) of a sealing fin (31, 41) of the outer sealing ring counter to the flow direction with respect to a downstream edge (32, 42) of a sealing surface of the sealing ring segment for sealing said sealing fin (af ≥ a3, a4).
- Gas turbine according to claim 2, characterized in that the anti-torsion mechanism has a groove arrangement comprising at least one axial groove (12) in the housing, which groove is open counter to the flow direction and into which a radial flange (11) of the outer sealing ring frictionally fastened to the housing form-fittingly engages in the circumferential direction, the free axial path length of the sealing ring segment counter to the flow direction being at least as large as a maximum groove length (a1) of the groove arrangement (af ≥ a1).
- Gas turbine according to either claim 2 or claim 3, characterized in that the rotating cascade has a first and a second sealing fin (31, 41) that is axially spaced apart from the first sealing fin, the stepped outer sealing ring having a first sealing surface for sealing the first sealing fin and a second sealing surface for sealing the second sealing fin, which second sealing surface is axially and radially spaced apart from the first sealing surface, and the free axial path length of the sealing ring segment counter to the flow direction is at least as large as an axial offset (a3) of the first sealing fin with respect to a downstream edge (32) of the first sealing surface and at least as large as an axial offset (a4) of the second sealing fin with respect to a downstream edge (42) of the second sealing surface.
- Gas turbine according to any of the preceding claims, characterized in that the maximum outer diameter of the outer sealing ring frictionally fastened to the housing is greater than the minimum inner diameter of the flow channel inlet.
- Gas turbine according to any of the preceding claims, characterized in that the rotating cascade is designed to convert flow energy into mechanical work and/or a flow channel outlet of the housing has a larger inner diameter than the flow channel inlet of the housing.
- Method for disassembling the rotating cascade of a gas turbine according to any of the preceding claims, characterized by the following steps:releasing the clamping means;jointly guiding all of the sealing ring segments of the outer sealing ring counter to the flow direction through the flow channel inlet and out of the housing; andguiding the rotating cascade counter to the flow direction through the flow channel inlet and out of the housing.
- Method according to the preceding claim, characterized in that, after the clamping means is released, sealing ring segments are axially displaced, in particular without tilting and/or jointly, counter to the flow direction until the anti-torsion mechanism and/or radial mounting is disengaged and/or the sealing fin is arranged downstream of the edge; and/or are displaced radially inwards until their maximum outer diameter is at most as large as the minimum inner diameter of the flow channel inlet.
- Method for assembling the rotating cascade of a gas turbine according to any of the preceding claims, characterized by the following steps:inserting the rotating cascade in the flow direction through the flow channel inlet and into the housing;jointly inserting all the sealing ring segments of the outer sealing ring in the flow direction through the flow channel inlet and into the housing; andfastening the clamping means.
- Method according to the preceding claim, characterized in that, before the clamping means is fastened, sealing ring segments are axially displaced, in particular without tilting and/or jointly, in the flow direction until the anti-torsion mechanism and/or radial mounting is engaged and/or the sealing fin is offset with respect to the edge counter to the flow direction; and/or are displaced radially outwards until their maximum outer diameter is larger than the minimum inner diameter of the flow channel inlet.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14150518.0A EP2846003B1 (en) | 2013-09-06 | 2014-01-09 | Gas turbine, corresponding assembly and disassembly methods of a rotor of a gas turbine |
US14/584,867 US9822657B2 (en) | 2013-09-06 | 2014-12-29 | Gas turbine |
US16/191,706 USRE48320E1 (en) | 2013-09-06 | 2018-11-15 | Gas turbine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13183274.3A EP2846001B1 (en) | 2013-09-06 | 2013-09-06 | Assembly and disassembly methods of a rotor of a gas turbine and corresponding tool |
EP14150518.0A EP2846003B1 (en) | 2013-09-06 | 2014-01-09 | Gas turbine, corresponding assembly and disassembly methods of a rotor of a gas turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2846003A1 EP2846003A1 (en) | 2015-03-11 |
EP2846003B1 true EP2846003B1 (en) | 2019-10-16 |
Family
ID=49123719
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13183274.3A Active EP2846001B1 (en) | 2013-09-06 | 2013-09-06 | Assembly and disassembly methods of a rotor of a gas turbine and corresponding tool |
EP14150518.0A Active EP2846003B1 (en) | 2013-09-06 | 2014-01-09 | Gas turbine, corresponding assembly and disassembly methods of a rotor of a gas turbine |
EP14150517.2A Active EP2846002B1 (en) | 2013-09-06 | 2014-01-09 | Gas turbine |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13183274.3A Active EP2846001B1 (en) | 2013-09-06 | 2013-09-06 | Assembly and disassembly methods of a rotor of a gas turbine and corresponding tool |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14150517.2A Active EP2846002B1 (en) | 2013-09-06 | 2014-01-09 | Gas turbine |
Country Status (3)
Country | Link |
---|---|
US (5) | US10125627B2 (en) |
EP (3) | EP2846001B1 (en) |
ES (3) | ES2935815T3 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2935815T3 (en) * | 2013-09-06 | 2023-03-10 | MTU Aero Engines AG | (Dis)assembly of a gas turbine rotor, in particular front |
DE102013224199A1 (en) * | 2013-11-27 | 2015-05-28 | MTU Aero Engines AG | Gas turbine blade |
US20170089213A1 (en) | 2015-09-28 | 2017-03-30 | United Technologies Corporation | Duct with additive manufactured seal |
US10370996B2 (en) | 2016-08-23 | 2019-08-06 | United Technologies Corporation | Floating, non-contact seal with offset build clearance for load imbalance |
US10385715B2 (en) | 2016-08-29 | 2019-08-20 | United Technologies Corporation | Floating, non-contact seal with angled beams |
US10550708B2 (en) | 2016-08-31 | 2020-02-04 | United Technologies Corporation | Floating, non-contact seal with at least three beams |
DE102016222608A1 (en) | 2016-11-17 | 2018-05-17 | MTU Aero Engines AG | Sealing arrangement for a guide vane arrangement of a gas turbine |
JP6684698B2 (en) * | 2016-12-12 | 2020-04-22 | 三菱重工エンジン&ターボチャージャ株式会社 | Turbocharger |
US20190218928A1 (en) * | 2018-01-17 | 2019-07-18 | United Technologies Corporation | Blade outer air seal for gas turbine engine |
CN108533333B (en) * | 2018-05-05 | 2023-10-13 | 宁波天生密封件有限公司 | Steam turbine cannula sealing device and use method thereof |
DE102018210601A1 (en) * | 2018-06-28 | 2020-01-02 | MTU Aero Engines AG | SEGMENT RING FOR ASSEMBLY IN A FLOWING MACHINE |
DE102018210600A1 (en) * | 2018-06-28 | 2020-01-02 | MTU Aero Engines AG | COAT RING ARRANGEMENT FOR A FLOWING MACHINE |
FR3083563B1 (en) * | 2018-07-03 | 2020-07-24 | Safran Aircraft Engines | AIRCRAFT TURBOMACHINE SEALING MODULE |
FR3092861B1 (en) * | 2019-02-18 | 2023-02-10 | Safran Aircraft Engines | TURBOMACHINE ASSEMBLY INCLUDING A CLEAT ON A SEALING RING |
IT201900014736A1 (en) * | 2019-08-13 | 2021-02-13 | Ge Avio Srl | Integral sealing elements for blades held in a rotatable annular outer drum rotor in a turbomachinery. |
CN113814915B (en) * | 2020-06-18 | 2022-11-04 | 中国航发商用航空发动机有限责任公司 | Fixing clamp, assembly component and assembly method |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2916874A (en) * | 1957-01-31 | 1959-12-15 | United Aircraft Corp | Engine construction |
US4053254A (en) | 1976-03-26 | 1977-10-11 | United Technologies Corporation | Turbine case cooling system |
US4650394A (en) | 1984-11-13 | 1987-03-17 | United Technologies Corporation | Coolable seal assembly for a gas turbine engine |
US5267397A (en) * | 1991-06-27 | 1993-12-07 | Allied-Signal Inc. | Gas turbine engine module assembly |
US5593277A (en) * | 1995-06-06 | 1997-01-14 | General Electric Company | Smart turbine shroud |
US5639211A (en) * | 1995-11-30 | 1997-06-17 | United Technology Corporation | Brush seal for stator of a gas turbine engine case |
EP0844369B1 (en) * | 1996-11-23 | 2002-01-30 | ROLLS-ROYCE plc | A bladed rotor and surround assembly |
FR2780443B1 (en) * | 1998-06-25 | 2000-08-04 | Snecma | HIGH PRESSURE TURBINE STATOR RING OF A TURBOMACHINE |
US6435820B1 (en) * | 1999-08-25 | 2002-08-20 | General Electric Company | Shroud assembly having C-clip retainer |
FR2800797B1 (en) * | 1999-11-10 | 2001-12-07 | Snecma | ASSEMBLY OF A RING BORDING A TURBINE TO THE TURBINE STRUCTURE |
FR2815668B1 (en) * | 2000-10-19 | 2003-01-10 | Snecma Moteurs | ARRANGEMENT FOR CONNECTING A TURBINE STATOR RING TO A SUPPORT SPACER |
US7186078B2 (en) | 2003-07-04 | 2007-03-06 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Turbine shroud segment |
US6942445B2 (en) * | 2003-12-04 | 2005-09-13 | Honeywell International Inc. | Gas turbine cooled shroud assembly with hot gas ingestion suppression |
US7147436B2 (en) * | 2004-04-15 | 2006-12-12 | United Technologies Corporation | Turbine engine rotor retainer |
FR2869944B1 (en) * | 2004-05-04 | 2006-08-11 | Snecma Moteurs Sa | COOLING DEVICE FOR FIXED RING OF GAS TURBINE |
FR2885168A1 (en) * | 2005-04-27 | 2006-11-03 | Snecma Moteurs Sa | SEALING DEVICE FOR A TURBOMACHINE ENCLOSURE, AND AIRCRAFT ENGINE EQUIPPED WITH SAME |
DE102006027237A1 (en) * | 2005-06-14 | 2006-12-28 | Alstom Technology Ltd. | Steam turbine for a power plant has guide blade rows that are arranged on a single blade ring which is in turn arranged in the inner casing |
US7438520B2 (en) * | 2005-08-06 | 2008-10-21 | General Electric Company | Thermally compliant turbine shroud mounting assembly |
FR2891583B1 (en) * | 2005-09-30 | 2010-06-18 | Snecma | TURBINE HAVING DISMANTLING SECTORS BY UPSTREAM |
FR2899274B1 (en) | 2006-03-30 | 2012-08-17 | Snecma | DEVICE FOR FASTENING RING SECTIONS AROUND A TURBINE WHEEL OF A TURBOMACHINE |
FR2899275A1 (en) * | 2006-03-30 | 2007-10-05 | Snecma Sa | Ring sector fixing device for e.g. turboprop of aircraft, has cylindrical rims engaged on casing rail, where each cylindrical rim comprises annular collar axially clamped on casing rail using annular locking unit |
FR2899281B1 (en) | 2006-03-30 | 2012-08-10 | Snecma | DEVICE FOR COOLING A TURBINE HOUSING OF A TURBOMACHINE |
US7819622B2 (en) * | 2006-12-19 | 2010-10-26 | United Technologies Corporation | Method for securing a stator assembly |
FR2921410B1 (en) * | 2007-09-24 | 2010-03-12 | Snecma | RING SECTOR INTERLOCKING DEVICE ON A TURBOMACHINE HOUSING, COMPRISING MEANS FOR ITS PRETENSION |
FR2922589B1 (en) * | 2007-10-22 | 2009-12-04 | Snecma | CONTROL OF THE AUBES SET IN A HIGH-PRESSURE TURBINE TURBINE |
FR2923528B1 (en) * | 2007-11-13 | 2009-12-11 | Snecma | TURBINE OR COMPRESSOR STAGE OF A TURBOREACTOR |
FR2923526B1 (en) * | 2007-11-13 | 2013-12-13 | Snecma | TURBINE OR TURBOMACHINE COMPRESSOR STAGE |
FR2923527B1 (en) * | 2007-11-13 | 2013-12-27 | Snecma | STAGE OF TURBINE OR COMPRESSOR, IN PARTICULAR TURBOMACHINE |
FR2923525B1 (en) * | 2007-11-13 | 2009-12-18 | Snecma | SEALING A ROTOR RING IN A TURBINE FLOOR |
FR2931196B1 (en) * | 2008-05-16 | 2010-06-18 | Snecma | RING SECTOR INTERLOCKING DEVICE ON A TURBOMACHINE CASE, COMPRISING RADIAL PASSAGES FOR ITS PRETENSION |
FR2931195B1 (en) * | 2008-05-16 | 2014-05-30 | Snecma | DISSYMMETRICAL MEMBER FOR LOCKING RING SECTIONS ON A TURBOMACHINE HOUSING |
EP2406466B1 (en) * | 2009-03-09 | 2012-11-07 | Snecma | Turbine ring assembly |
FR2954400B1 (en) * | 2009-12-18 | 2012-03-09 | Snecma | TURBINE STAGE IN A TURBOMACHINE |
US20110243725A1 (en) * | 2010-03-31 | 2011-10-06 | General Electric Company | Turbine shroud mounting apparatus with anti-rotation feature |
US8926270B2 (en) * | 2010-12-17 | 2015-01-06 | General Electric Company | Low-ductility turbine shroud flowpath and mounting arrangement therefor |
FR2978197B1 (en) * | 2011-07-22 | 2015-12-25 | Snecma | TURBINE AND TURBINE TURBINE TURBINE DISPENSER HAVING SUCH A DISPENSER |
ES2935815T3 (en) * | 2013-09-06 | 2023-03-10 | MTU Aero Engines AG | (Dis)assembly of a gas turbine rotor, in particular front |
-
2013
- 2013-09-06 ES ES13183274T patent/ES2935815T3/en active Active
- 2013-09-06 EP EP13183274.3A patent/EP2846001B1/en active Active
-
2014
- 2014-01-09 ES ES14150518T patent/ES2752555T3/en active Active
- 2014-01-09 ES ES14150517T patent/ES2762511T3/en active Active
- 2014-01-09 EP EP14150518.0A patent/EP2846003B1/en active Active
- 2014-01-09 EP EP14150517.2A patent/EP2846002B1/en active Active
- 2014-09-04 US US14/477,492 patent/US10125627B2/en active Active
- 2014-12-29 US US14/584,811 patent/US9416676B2/en active Active
- 2014-12-29 US US14/584,867 patent/US9822657B2/en not_active Ceased
-
2018
- 2018-08-08 US US16/058,535 patent/US11268398B2/en active Active
- 2018-11-15 US US16/191,706 patent/USRE48320E1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2846002B1 (en) | 2019-11-20 |
EP2846003A1 (en) | 2015-03-11 |
EP2846001B1 (en) | 2023-01-11 |
EP2846001A1 (en) | 2015-03-11 |
US20150071769A1 (en) | 2015-03-12 |
US20150192026A1 (en) | 2015-07-09 |
US20180347388A1 (en) | 2018-12-06 |
EP2846002A1 (en) | 2015-03-11 |
US9822657B2 (en) | 2017-11-21 |
US9416676B2 (en) | 2016-08-16 |
US20150192028A1 (en) | 2015-07-09 |
USRE48320E1 (en) | 2020-11-24 |
ES2762511T3 (en) | 2020-05-25 |
US11268398B2 (en) | 2022-03-08 |
ES2752555T3 (en) | 2020-04-06 |
US10125627B2 (en) | 2018-11-13 |
ES2935815T3 (en) | 2023-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2846003B1 (en) | Gas turbine, corresponding assembly and disassembly methods of a rotor of a gas turbine | |
DE10210866C5 (en) | Guide vane mounting in a flow channel of an aircraft gas turbine | |
DE3148984C2 (en) | ||
DE3310529C2 (en) | Device for cooling the rotor of a gas turbine | |
EP2123860B1 (en) | Combined vortex reducer | |
DE102007031712A1 (en) | Device and method for clamping bladed rotor disks of a jet engine | |
DE3006099A1 (en) | GASKET ARRANGEMENT BETWEEN CIRCULATING, BUT RADIAL, MOVING PARTS OF THE MACHINE | |
DE102011102458A1 (en) | Deicing device of an aircraft gas turbine engine | |
EP2799776A1 (en) | Burner seal for gas turbine combustion chamber head and heat shield | |
DE102012106789B4 (en) | Adjustable diffuser for a turbine, turbine for an exhaust gas turbocharger and exhaust gas turbocharger | |
DE102015116935A1 (en) | Safety device for axially securing a blade and rotor device with such a securing device | |
DE102011014972A1 (en) | Combustor head with brackets for seals on burners in gas turbines | |
DE102010007724A1 (en) | Screwless intermediate stage seal of a gas turbine | |
DE602004012934T2 (en) | Piston ring type seal for the compressor of a gas turbine | |
EP2871325A1 (en) | Inner ring of a turbine engine and vane cluster | |
EP2696035A1 (en) | Retention device for rotor blades of a fluid flow engine and corresponding assembly process | |
EP2405104A1 (en) | Compressor and corresponding gas turbine engine | |
WO2019011463A1 (en) | Connection device for an exhaust turbocharger and exhaust turbocharger | |
DE1286333B (en) | Ring-shaped guide device for gas turbine engines with axial flow | |
DE112017001487B4 (en) | Turbine support structure | |
EP2881545B1 (en) | Sealing element, sealing device and gas turbine engine | |
EP3315733B1 (en) | Intermediate turbine housing for a gas turbine | |
EP3613952A1 (en) | Adjustable guide blade assembly, guide blade, seal carrier, and turbomachine | |
EP3406860B1 (en) | Turbofan engine | |
EP2725202A1 (en) | Inner ring seal support arrangement for an adjustable stator blade assembly of a turbomachine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20140109 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150813 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190507 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014012857 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1191443 Country of ref document: AT Kind code of ref document: T Effective date: 20191115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191016 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2752555 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200117 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200116 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200116 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200217 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014012857 Country of ref document: DE |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200216 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20200717 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200109 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1191443 Country of ref document: AT Kind code of ref document: T Effective date: 20200109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240216 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 11 Ref country code: GB Payment date: 20240124 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240124 Year of fee payment: 11 |