EP2845215B1 - Electromagnetic relay with shorter switching time - Google Patents

Electromagnetic relay with shorter switching time Download PDF

Info

Publication number
EP2845215B1
EP2845215B1 EP12732576.9A EP12732576A EP2845215B1 EP 2845215 B1 EP2845215 B1 EP 2845215B1 EP 12732576 A EP12732576 A EP 12732576A EP 2845215 B1 EP2845215 B1 EP 2845215B1
Authority
EP
European Patent Office
Prior art keywords
relay
voltage
switch
coil
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12732576.9A
Other languages
German (de)
French (fr)
Other versions
EP2845215A1 (en
Inventor
Kevin Clarke
Martin KRUSS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2845215A1 publication Critical patent/EP2845215A1/en
Application granted granted Critical
Publication of EP2845215B1 publication Critical patent/EP2845215B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F2007/1894Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings minimizing impact energy on closure of magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H2047/008Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current with a drop in current upon closure of armature or change of inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H47/043Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current making use of an energy accumulator

Definitions

  • the invention relates to a switching arrangement with an electromagnetic relay, which has a relay coil and switching contacts, with a voltage source connected to the voltage source and with a drive circuit which is adapted to drive the relay coil by means of a voltage provided by the voltage source.
  • Electromagnetic relays In electrical devices, electromagnetic relays are often used to perform controlled switching operations. Electromagnetic relays usually consist of a relay coil and at least one pair of electrical switching contacts. If the relay coil flows through an electric current, a magnetic field is generated around the relay coil, whereby - in so-called self-opening relay - a closing of the relay contacts is effected, so that a current flow through the relay contacts is possible. If the current flowing through the relay coil current is interrupted again, the movable part of the relay contacts, for example by means of a spring device, moved back to its original position, causing an opening of the relay contacts and interrupts the flow of current through them. For self-closing relays, the contacts are closed in the de-energized state of the relay coil and opened in the current-carrying state.
  • Electromagnetic relays are usually used where by means of a comparatively small control current from a drive circuit, a comparatively larger current in a switching circuit should be switched on or off, and / or where between the drive circuit and the switching circuit galvanic isolation is to be achieved.
  • the electromagnetic relay in this case forms the galvanic decoupling of the drive circuit and the switching circuit.
  • Electromagnetic relays are used, for example, in electrical protective devices for monitoring electrical energy supply networks in order to trigger a tripping of an electrical circuit breaker in the event of a fault in the electrical energy supply network by closing the relay contacts of a so-called "command relay", thus interrupting the fault current.
  • Another use of electromagnetic relays in protective devices is given in so-called binary outputs, where by switching on and off of relays binary communication signals with high signal level (binary "1") or low signal level (binary "0”) can be generated.
  • the requirement is placed on an electromagnetic relay, that in the case of a current flow through the relay coil has the shortest possible response time, so very quickly a switching action of the switching contacts of the relay is triggered.
  • a fast turn-off can also be important.
  • these requirements are placed on relays used for binary outputs of electrical protection or control devices because such binary outputs are used to communicate information to other devices, e.g. additional protection or control devices are used, and the signal propagation time should be kept as short as possible. Therefore, the time from the activation of an electromagnetic relay to the final closing of its switching contacts must be as short as possible.
  • Typical switch-on and switch-off times of electromagnetic relays are currently between about 5 and 15 milliseconds.
  • in order to realize a short switching time of e.g. 7 to 8 milliseconds to relatively expensive relays with high-quality components are used.
  • a switching arrangement for switching an inductive load with movable parts, with an inductive load (2) having a coil with a voltage source connected to the coil and with a drive circuit (3, 4) for driving the coil by means of a Voltage source provided voltage is set up; wherein the drive circuit (3, 4) is adapted to apply an excessive turn-on voltage (Um) to the coil to turn on the inductive load (2), the turn-on voltage being greater than the nominal voltage (Un) of the inductive load; wherein the drive circuit (3, 4) is set up to apply a lower normal voltage (Uh) to the coil during the switch-on process of the inductive load instead of the switch-on voltage, compared to the switch-on voltage (Um), wherein to determine a switchover time, to which the switching to the normal voltage takes place, a coil current flowing through the coil is used; wherein in the current path of the coil, a current detecting means (1) is provided which is adapted to detect a coil current flowing through the coil and for outputting
  • the invention has for its object to provide a way with which a switching arrangement of the type mentioned in structurally simple structure with a shortest possible switching time can be operated.
  • the particular advantage of the invention is that a significantly shorter turn-on time can be achieved with the drive circuit described.
  • the Erdfindung makes use of the knowledge that the magnetic field of the relay coil is built much faster than by applying the bare nominal voltage by the application of a significantly excessive turn-on - and an associated faster rising coil current.
  • the switching contacts as a result of Relative armature moving moving magnetic field, not to damage by a too hard impact on its end position, the application of the turn-on voltage is limited in time.
  • a switching time is provided, to which instead of the increased turn-on voltage, the normal voltage is applied to the relay coil, which is determined by using the coil current.
  • the value of the normal voltage is chosen such that a proper operation of the relay can be ensured without destroying components of the relay or wear above average.
  • the normal voltage may correspond, for example, to the nominal voltage of the relay or be based thereon.
  • the coil current flowing through the relay coil is determined by measurement.
  • the drive circuit evaluates the current signal and can make depending on the current signal in a simple manner, the control of the relay coil with either the excessive turn-on voltage or a normal voltage. Since for the inventive switching arrangement except a voltage source with the ability to provide multiple output voltages, a simple current measurement and the appropriately designed drive circuit no structural elements must be provided, the switching arrangement is correspondingly easy to implement.
  • Another advantage of this embodiment is that with a suitable definition of a maximum coil current damage to the relay coil can be excluded by a too high coil current.
  • a further advantageous embodiment of the second embodiment of the switching arrangement according to the invention is given by the fact that the drive circuit is adapted to apply after the switching time a voltage pulse with respect to the normal voltage reverse polarity to the relay coil and after the end of this voltage pulse, the application of the normal voltage to the relay coil continue.
  • the drive circuit is adapted to reduce after switching on the relay, the current flowing through the coil coil current to a minimum value, which is adapted to the relay contacts in the keep switched on position.
  • the power consumption of the relay can be reduced during the holding phase.
  • the reduced coil current is to be chosen so that a reliable hold in the closed position can be ensured.
  • a further advantageous embodiment of the second embodiment of the switching arrangement according to the invention also provides that the drive circuit is adapted to apply a counter voltage provided by the voltage source to the relay coil to turn off the relay, the reverse voltage with respect to the normal voltage in reverse Polarity is present and in terms of their amount is greater than the rated voltage of the relay.
  • the drive circuit is set up to terminate the application of the counter voltage after a predetermined switch-off period has elapsed, before the switch-off process has been completed.
  • the relay armature is not moved too violently in its rest position in the case of a polarity-reversed relay or unintentional reclosing is prevented in an unpoled relay.
  • An advantageous embodiment of the method according to the invention provides that the switching time selected in such a way is that a maximum coil current is not exceeded.
  • a counter-voltage is applied to the relay coil, wherein the counter-voltage relative to the normal voltage is in reverse polarity and greater in terms of their amount as the rated voltage of the relay.
  • FIG. 1 shows a diagram with measured waveforms of currents and voltages in unaccelerated switching on a relay over time t.
  • the voltage waveform 11a indicates the coil voltage applied to the relay coil
  • the current waveform 11b indicates the coil current flowing through the coil
  • the voltage waveform 11c indicates the load voltage applied to a load connected through the relay.
  • a coil voltage of the magnitude of a normal voltage U N which is oriented, for example, at the value of the nominal voltage indicated for the relay, is applied to the relay coil (coil voltage profile 11a).
  • This causes an increase of the coil current (current waveform 11b) during a first period T 1 , until after expiration of T 1, a maximum of the coil current is reached and the relay armature of the relay begins to move.
  • the movement of the relay armature during a second period T 2 leads to a closing of the relay contacts.
  • the movement process of the relay armature is completed; the relay armature is in its end position and the relay contacts in its closed position.
  • the switching arrangement 20 comprises an electromagnetic relay 21 having a relay coil 21a, a relay armature 21b and schematically indicated relay contacts 21c for closing and interrupting a switching current path 22, not further described below, to which any electrical load can be connected.
  • the switching arrangement further comprises a drive circuit 23, consisting of an energy storage device, which in the embodiment of the FIG. 2 only by way of example in the form of a capacitor device 24, as well as a switching device 25 comprising three individual switches 25a, 25b and 25c-in the present exemplary embodiment.
  • the drive device 23 is designed to supply to the relay coil 21a either one by one in FIG. 2 not explicitly shown voltage source provided normal voltage U N or a comparatively higher turn-on voltage U E apply.
  • FIG. 3 is a graph showing measured waveforms of currents and voltages when in accordance with the switching arrangement 20.
  • FIG FIG. 2 accelerated turning on a relay over time t. Specifically, the voltage waveform 31a indicates the coil voltage applied to the relay coil, the current waveform 31b indicates the coil current flowing through the coil, and the voltage waveform 31c indicates the load voltage applied to a load connected through the relay.
  • the switching device 25 is excited to switch to an active state.
  • the switch 25a is opened while the switches 25b and 25c are closed.
  • the starting voltage U E prevailing in the capacitor device 24 is applied to the relay coil 21 a.
  • Due to the higher in comparison to the normal voltage U N turn-on voltage U E a higher coil current is driven through the relay coil 21a in a relatively short time when it is at unaccelerated power (see. FIG. 1 ).
  • a faster structure of the magnetic field is effected, so that after a significantly shorter period of time T 1 already uses a movement of the coil armature 21b.
  • the switch-on is completed and the relay contacts 21c are in their closed position.
  • FIG. 4 is a schematic representation of a second embodiment of a switching arrangement 40 is shown.
  • the switching arrangement 40 comprises an electromagnetic relay 41 with a relay coil 41a, a relay armature 41b and schematically indicated relay contacts 41c for closing and interrupting a switching-current path 42, not further described in the following, to which any electrical load can be connected.
  • the switching arrangement 40 has a voltage source 43, which is set up to provide various voltages on the output side, a drive circuit 44, which is set up to drive the relay coil 41a with different voltages provided by the voltage source 43, and a current measuring device 45, which is intended for detection of the coil current flowing through the relay coil 11a and for supplying a corresponding current signal to the drive circuit.
  • the switching arrangement may also have a current limiting device 46 connected to the drive circuit 44, for example a controlled constant current source, in the current path of the relay coil 41a.
  • the drive circuit 44 is designed to ensure a comparatively fast switching on and off of the relay 41.
  • the drive circuit 44 is applied to the relay coil 41a when switching briefly with an excessive turn-on voltage U E and when turned off briefly with a reversed reverse voltage U G.
  • a lower normal voltage U N is otherwise used.
  • the normal voltage U N , the turn-on voltage U E and the reverse voltage U G are provided on the output side by the voltage source 43.
  • the drive circuit 44 can switch between the individual voltages U N , U E and U G by means of a changeover switch 47, which is indicated only by way of example.
  • FIG. 5 a diagram in which voltage or current waveforms over the time t are shown schematically.
  • the voltage waveform 51a indicates the coil voltage applied to the relay coil 41a
  • the current waveform 51b indicates the coil current flowing through the coil
  • the voltage waveform 51c indicates the load voltage applied to a load connected through the relay 41.
  • the drive circuit 44 is supplied with a switch-on command;
  • a switch-on command may, for example, have been generated by a control device of an electrical protective device comprising the switching arrangement 40 for monitoring power supply networks, in order to cause the relay 41 to drive a circuit breaker connected to the protective device.
  • the turn-on voltage U E is an excessive voltage compared to the rated voltage for which the relay 41 is designed by the manufacturer.
  • the rated voltage is 5V; the value of the turn-on voltage U E is set to 20V in this embodiment.
  • the comparatively high turn-on voltage U E applied to the relay coil 41a drives a high inrush current through the coil 41a, so that the magnetic field of the relay coil 41a is faster than when the nominal voltage is applied builds.
  • the relatively rapidly increasing coil current can be recognized from the current profile 51b within a time period T 1 in which the field charging of the magnetic field takes place.
  • the relay armature 41b does not move, the switching contacts 41c remain in the open position.
  • the time period T 1 can be compared with the un-accelerated switch-on (cf. FIG. 1 ), because the charging of the magnetic field by the corresponding higher coil current takes place faster.
  • the relay armature 41 b moves during a subsequent period T 2 and actuates the switching contacts 41 c of the relay 41.
  • the excessive turn-on voltage U E must be taken back in time and the value of a normal voltage U N , their value, for example may correspond to the rated voltage of the relay or at least oriented to be reduced.
  • the switching time t U at which the switchover from the switch-on voltage U E to the normal voltage U N is to take place, is derived from the current profile 51b of the coil current.
  • the coil current with the current measuring device 45 for example a current sensor, is measured and a current signal is generated, which is supplied to the drive circuit 44 and evaluated by the latter for determining the switchover time t U.
  • the height of the current signal indicating the coil current can be selected.
  • the switching time t U is set as the time at which the current signal exceeds a specified threshold.
  • FIG. 5 it can be seen that when reaching of the maximum permissible current I max the switching time t U is set.
  • - can be selected as a criterion for determining the switching time t U and the value of the slope of the coil current indicating current signal.
  • the slope of the current profile 51b decreases continuously with greater formation of the magnetic field and finally reaches the value zero at maximum saturation; the relay armature now starts to move. Therefore, it can be set as the criterion that the switching time t U is set as the time at which the slope of the current signal falls below a predetermined threshold. This threshold should be set to detect the changeover timing in good time before reaching zero current slope.
  • the current signal can be stored repeatedly and the slope calculated from two successive values of the current signal.
  • the magnetic field is maintained by the normal voltage U N.
  • the drive circuit in the holding phase of the relay the current limiting device 46 corresponding to the reduction of the coil current (not in the diagram in FIG. 5 shown).
  • the reduced coil current must be selected so that a safe hold of the relay is ensured in the on state.
  • the time of power reduction must be sufficiently long after the start of the switch-on, so that the switching on of the relay 41 is not hindered.
  • the drive circuit for example, after expiry of a waiting time that is significantly longer than the usual switch-on, cause the current limiting device 46 to reduce power.
  • the waiting time can be selected, for example, at a value of about 50ms.
  • FIG. 6 shows a diagram in which voltage or current waveforms over the time t are shown schematically. Specifically, the voltage waveform 61a indicates the coil voltage applied to the relay coil 41a, the current waveform 61b indicates the coil current flowing through the coil, and the voltage waveform 61c indicates the load voltage applied to a load connected through the relay 41.
  • the negative voltage pulse 62 is delivered with. Time and magnitude of the negative voltage pulse must be chosen so that the movement of the relay armature 41b is not interrupted in order not to hinder the switch-on.
  • a counter voltage U G provided by the voltage source can be used for the voltage pulse.
  • the normal voltage U N is again applied to the relay coil 41a.
  • the switching contacts 41c of the relay 41 touch for the first time and briefly spring back, which is referred to as so-called "contact bounce".
  • the load voltage on the switching side of the relay 41 is constructed, which can be seen in the voltage curve 61c. Due to the contact bounce, on the one hand, the wear of the relay is increased and, on the other hand, the period T 2 is extended until the final closing of the switching contacts 41c. Therefore, the effect of contact bounce should be minimized.
  • This also contributes to the negative voltage pulse 62, as this is the relay armature 41b and thus also the switching contacts 41c targeted the momentum of their movement is taken.
  • the voltage waveform 71a indicates the coil voltage applied to the relay coil 41a
  • the current waveform 71b indicates the coil current flowing through the coil
  • the voltage waveform 71c indicates the load voltage applied to the load connected through the relay 41.
  • a switch-off command is transmitted to the drive circuit 44.
  • the drive circuit 44 causes, instead of the normal voltage U N, a countervoltage U G provided by the voltage source to be applied to the relay coil 41 a.
  • This counter voltage accelerates the degradation of the magnetic field and thus reduces the time period T 4 used for this purpose.
  • the counter voltage can be selected in the present embodiment (rated voltage of the relay: 5V), for example, at a value of -12V.
  • the relay armature 41b can no longer be held in its switched-on position and begins to move in the direction of the rest position.
  • the period of movement of the relay armature 41b to its final OFF position is in FIG. 7 indicated as T 5 .
  • T 5 breaks through the opening of the switching contacts 41c and the load voltage, which can be seen on the voltage curve 71c.
  • a coil current is again induced in the relay coil, which degrades gradually again after reaching the rest position at the end of the period T 5 .
  • both the coil voltage and the load voltage are at a value of zero, the relay is in its off position.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Relay Circuits (AREA)

Description

Die Erfindung betrifft eine Schaltanordnung mit einem elektromagnetischen Relais, das eine Relaisspule und Schaltkontakte aufweist, mit einer mit der Relaisspule verbundenen Spannungsquelle und mit einer Ansteuerschaltung, die zur Ansteuerung der Relaisspule mittels einer durch die Spannungsquelle bereitgestellten Spannung eingerichtet ist.The invention relates to a switching arrangement with an electromagnetic relay, which has a relay coil and switching contacts, with a voltage source connected to the voltage source and with a drive circuit which is adapted to drive the relay coil by means of a voltage provided by the voltage source.

In elektrischen Geräten werden zur Durchführung von gesteuerten Schalthandlungen häufig elektromagnetische Relais eingesetzt. Elektromagnetische Relais bestehen üblicherweise aus einer Relaisspule und zumindest einem Paar elektrischer Schaltkontakte. Wird die Relaisspule von einem elektrischen Strom durchflossen, so wird um die Relaisspule ein Magnetfeld erzeugt, wodurch - bei sogenannten selbstöffnenden Relais - ein Schließen der Relaiskontakte bewirkt wird, so dass ein Stromfluss über die Relaiskontakte möglich ist. Wird der durch die Relaisspule fließende Strom wieder unterbrochen, so wird der bewegliche Teil der Relaiskontakte, beispielsweise mittels einer Federeinrichtung, in seine Ausgangslage zurückbewegt, was ein Öffnen der Relaiskontakte bewirkt und den Stromfluss über diese unterbricht. Bei selbstschließenden Relais sind die Kontakte im stromlosen Zustand der Relaisspule geschlossen und im stromdurchflossenen Zustand geöffnet.In electrical devices, electromagnetic relays are often used to perform controlled switching operations. Electromagnetic relays usually consist of a relay coil and at least one pair of electrical switching contacts. If the relay coil flows through an electric current, a magnetic field is generated around the relay coil, whereby - in so-called self-opening relay - a closing of the relay contacts is effected, so that a current flow through the relay contacts is possible. If the current flowing through the relay coil current is interrupted again, the movable part of the relay contacts, for example by means of a spring device, moved back to its original position, causing an opening of the relay contacts and interrupts the flow of current through them. For self-closing relays, the contacts are closed in the de-energized state of the relay coil and opened in the current-carrying state.

Elektromagnetische Relais werden üblicherweise dort eingesetzt, wo mittels eines vergleichsweise geringen Steuerstromes aus einem Ansteuerstromkreis ein vergleichsweise größerer Strom in einem Schaltstromkreis ein- oder ausgeschaltet werden soll, und/oder dort, wo zwischen dem Ansteuerstromkreis und dem Schaltstromkreis eine galvanische Trennung erreicht werden soll. Das elektromagnetische Relais bildet in diesem Fall die galvanische Entkopplung des Ansteuerstromkreises und des Schaltstromkreises.Electromagnetic relays are usually used where by means of a comparatively small control current from a drive circuit, a comparatively larger current in a switching circuit should be switched on or off, and / or where between the drive circuit and the switching circuit galvanic isolation is to be achieved. The electromagnetic relay in this case forms the galvanic decoupling of the drive circuit and the switching circuit.

Elektromagnetische Relais werden beispielsweise in elektrischen Schutzgeräten zur Überwachung elektrischer Energieversorgungsnetze eingesetzt, um im Falle eines Fehlers (z.B. eines Kurzschlusses) in dem elektrischen Energieversorgungsnetz durch Schließen der Relaiskontakte eines sogenannten "Kommandorelais" eine Auslösung eines elektrischen Leistungsschalters zu veranlassen und so den Fehlerstrom zu unterbrechen. Eine weitere Verwendungsmöglichkeit elektromagnetischer Relais in Schutzgeräten ist bei sogenannten Binärausgängen gegeben, wo durch Ein- bzw. Ausschalten von Relais binäre Kommunikationssignale mit hohem Signalpegel (binäre "1") oder niedrigem Signalpegel (binäre "0") erzeugt werden können.Electromagnetic relays are used, for example, in electrical protective devices for monitoring electrical energy supply networks in order to trigger a tripping of an electrical circuit breaker in the event of a fault in the electrical energy supply network by closing the relay contacts of a so-called "command relay", thus interrupting the fault current. Another use of electromagnetic relays in protective devices is given in so-called binary outputs, where by switching on and off of relays binary communication signals with high signal level (binary "1") or low signal level (binary "0") can be generated.

Bei einigen Anwendungsfällen wird an ein elektromagnetisches Relais die Anforderung gestellt, dass es im Falle eines Stromflusses durch die Relaisspule eine möglichst kurze Ansprechzeit aufweist, also sehr schnell eine Schalthandlung der Schaltkontakte des Relais ausgelöst wird. Neben einer möglichst kurzen Einschaltzeit kann auch ein schnelles Ausschalten von Bedeutung sein. Diese Anforderungen werden beispielsweise an solche Relais gestellt, die für Binärausgänge von elektrischen Schutz- oder Steuergeräten eingesetzt werden, weil solche Binärausgänge zur Übermittlung von Informationen an andere Geräte, z.B. weitere Schutz- oder Steuergeräte, eingesetzt werden und die Signallaufzeit hierbei möglichst kurz gehalten werden soll. Daher muss die Zeitdauer von der Ansteuerung eines elektromagnetischen Relais bis zum endgültigen Schließen seiner Schaltkontakte möglichst kurz sein. Typische Einschalt- und Ausschaltzeiten von elektromagnetischen Relais liegen bisher zwischen etwa 5 und 15 Millisekunden. Bisher musste zur Realisierung einer kurzen Schaltzeit von z.B. 7 bis 8 Millisekunden auf vergleichsweise teure Relais mit hochwertigen Bauteilen zurückgegriffen werden.In some applications, the requirement is placed on an electromagnetic relay, that in the case of a current flow through the relay coil has the shortest possible response time, so very quickly a switching action of the switching contacts of the relay is triggered. In addition to the shortest possible turn-on time, a fast turn-off can also be important. For example, these requirements are placed on relays used for binary outputs of electrical protection or control devices because such binary outputs are used to communicate information to other devices, e.g. additional protection or control devices are used, and the signal propagation time should be kept as short as possible. Therefore, the time from the activation of an electromagnetic relay to the final closing of its switching contacts must be as short as possible. Typical switch-on and switch-off times of electromagnetic relays are currently between about 5 and 15 milliseconds. Heretofore, in order to realize a short switching time of e.g. 7 to 8 milliseconds to relatively expensive relays with high-quality components are used.

Zur Realisierung eines elektromagnetischen Relais mit einer möglichst kurzen Ansprechzeit ist es außerdem beispielsweise aus der deutschen Offenlegungsschrift DE 102 03 682 A1 bekannt, parallel zu den Schaltkontakten des elektromagnetischen Relais einen Halbleiterschalter einzusetzen, der aufgrund des Fehlens mechanisch bewegter Teile eine sehr schnelle Ansprechzeit aufweist und bis zum endgültigen Schließen der Schaltkontakte des elektromagnetischen Relais die Herstellung eines Stromflusses gewährleisten kann. Ein solcher Halbleiterschalter muss in diesem Fall dazu ausgebildet sein, einen vergleichsweise hohen Strom führen zu können, da der gesamte Strom des Schaltstromkreises bis zum Schließen der Schaltkontakte des Relais über den Halbleiterschalter fließen muss.For the realization of an electromagnetic relay with the shortest possible response time, it is also for example from the German patent application DE 102 03 682 A1 known, parallel to the switching contacts of the electromagnetic Relay to use a semiconductor switch, which has a very fast response time due to the lack of mechanical moving parts and can ensure the production of a current flow until the final closing of the switching contacts of the electromagnetic relay. Such a semiconductor switch must be designed in this case to be able to carry a comparatively high current, since the entire current of the switching circuit must flow until the closing of the switching contacts of the relay via the semiconductor switch.

Ferner offenbart DE 100 03 531 A1 eine Schaltanordnung zum Schalten einer induktiven Last mit bewegbaren Teilen, mit einer induktiven Last (2), die eine Spule aufweist, mit einer mit der Spule verbundenen Spannungsquelle und mit einer Ansteuerschaltung (3, 4), die zur Ansteuerung der Spule mittels einer durch die Spannungsquelle bereitgestellten Spannung eingerichtet ist; wobei die Ansteuerschaltung (3, 4) dazu eingerichtet ist, zum Einschalten der induktiven Last (2) eine überhöhte Einschaltspannung (Um) an die Spule anzulegen, wobei die Einschaltspannung größer ist als die Nennspannung (Un) der induktiven Last ist; wobei die Ansteuerschaltung (3, 4) dazu eingerichtet ist, während des Einschaltvorgangs der induktiven Last anstelle der Einschaltspannung eine von der Spannungsquelle bereitgestellte, im Vergleich zur Einschaltspannung (Um) geringere Normalspannung (Uh) an die Spule anzulegen, wobei zur Bestimmung eines Umschaltzeitpunktes, zu dem die Umschaltung auf die Normalspannung erfolgt, ein durch die Spule fließender Spulenstrom herangezogen wird; wobei im Strompfad der Spule eine Stromerfassungseinrichtung (1) vorgesehen ist, die zur Erfassung eines durch die Spule fließenden Spulenstroms und zur Abgabe eines den Spulenstrom angebenden Stromsignals (6) an die Ansteuerschaltung (3, 4) eingerichtet ist; und wobei die Ansteuerschaltung (3, 4) zur Bestimmung des Umschaltzeitpunktes (T1), zu dem die Umschaltung von der Einschaltspannung (Um) auf die Normalspannung (Uh) erfolgt, das Stromsignal (6) heranzieht.Further disclosed DE 100 03 531 A1 a switching arrangement for switching an inductive load with movable parts, with an inductive load (2) having a coil with a voltage source connected to the coil and with a drive circuit (3, 4) for driving the coil by means of a Voltage source provided voltage is set up; wherein the drive circuit (3, 4) is adapted to apply an excessive turn-on voltage (Um) to the coil to turn on the inductive load (2), the turn-on voltage being greater than the nominal voltage (Un) of the inductive load; wherein the drive circuit (3, 4) is set up to apply a lower normal voltage (Uh) to the coil during the switch-on process of the inductive load instead of the switch-on voltage, compared to the switch-on voltage (Um), wherein to determine a switchover time, to which the switching to the normal voltage takes place, a coil current flowing through the coil is used; wherein in the current path of the coil, a current detecting means (1) is provided which is adapted to detect a coil current flowing through the coil and for outputting a coil current indicating current signal (6) to the drive circuit (3, 4); and wherein the drive circuit (3, 4) for determining the switching time (T1), at which the switching from the turn-on voltage (Um) to the normal voltage (Uh) takes place, the current signal (6).

Der Erfindung liegt die Aufgabe zugrunde, eine Möglichkeit anzugeben, mit der eine Schaltanordnung der eingangs genannten Art bei konstruktiv einfachem Aufbau mit einer möglichst kurzen Schaltzeit betrieben werden kann.The invention has for its object to provide a way with which a switching arrangement of the type mentioned in structurally simple structure with a shortest possible switching time can be operated.

Diese Aufgabe wird erfindungsgemäß durch eine Schaltanordnung gemäß Anspruch 1 gelöst.This object is achieved by a switching arrangement according to claim 1.

Der besondere Vorteil der Erfindung liegt darin, dass mit der beschriebenen Ansteuerschaltung eine deutlich kürzere Einschaltzeit erreicht werden kann. Hierzu macht sich die Erdfindung die Erkenntnis zunutze, dass durch das Anlegen einer deutlich überhöhten Einschaltspannung - und einem damit verbundenen schneller ansteigenden Spulenstrom - das Magnetfeld der Relaisspule wesentlich schneller aufgebaut wird als es bei einem Anlegen der bloßen Nennspannung der Fall wäre. Um das Relais, insbesondere den die Schaltkontakte in Folge des einwirkenden Magnetfeldes bewegenden Relaisanker, nicht durch einen zu harten Aufprall auf seine Endlage zu beschädigen, wird das Anlegen der Einschaltspannung zeitlich begrenzt. Hierzu wird ein Umschaltzeitpunkt vorgesehen, zu dem anstelle der erhöhten Einschaltspannung die Normalspannung an die Relaisspule angelegt wird, der unter Heranziehung des Spulenstroms bestimmt wird.The particular advantage of the invention is that a significantly shorter turn-on time can be achieved with the drive circuit described. For this purpose, the Erdfindung makes use of the knowledge that the magnetic field of the relay coil is built much faster than by applying the bare nominal voltage by the application of a significantly excessive turn-on - and an associated faster rising coil current. To the relay, in particular the switching contacts as a result of Relative armature moving moving magnetic field, not to damage by a too hard impact on its end position, the application of the turn-on voltage is limited in time. For this purpose, a switching time is provided, to which instead of the increased turn-on voltage, the normal voltage is applied to the relay coil, which is determined by using the coil current.

Der Wert der Normalspannung ist dabei derart gewählt, dass ein ordnungsgemäßer Betrieb des Relais gewährleistet werden kann, ohne Bauteile des Relais zu zerstören oder überdurchschnittlich zu verschleißen. Die Normalspannung kann beispielsweise der Nennspannung des Relais entsprechen oder sich daran orientieren.The value of the normal voltage is chosen such that a proper operation of the relay can be ensured without destroying components of the relay or wear above average. The normal voltage may correspond, for example, to the nominal voltage of the relay or be based thereon.

Bei der erfindungsgemäßen Schaltanordnung ist vorgesehen, dass im Strompfad der Relaisspule eine Stromerfassungseinrichtung vorgesehen ist, die zur Erfassung eines durch die Relaisspule fließenden Spulenstroms und zur Abgabe eines den Spulenstrom angebenden Stromsignals an die Ansteuereinrichtung eingerichtet ist, und die Ansteuerschaltung zur Bestimmung des Umschaltzeitpunktes, zu dem die Umschaltung von der Einschaltspannung auf die Normalspannung erfolgt, das Stromsignal heranzieht.In the case of the switching arrangement according to the invention, it is provided that a current detection device is provided in the current path of the relay coil, which is set up for detecting a coil current flowing through the relay coil and for outputting a current signal indicating the coil current to the control device, and the drive circuit for determining the changeover time the switchover from the switch-on voltage to the normal voltage takes place, which uses the current signal.

Bei der erfindungsgemäßen Schaltanordnung wird der durch die Relaisspule fließende Spulenstrom durch Messung bestimmt. Die Ansteuerschaltung wertet das Stromsignal aus und kann abhängig vom Stromsignal in einfacher Weise die Ansteuerung der Relaisspule mit entweder der überhöhten Einschaltspannung oder einer Normalspannung vornehmen. Da für die erfindungsgemäße Schaltanordnung außer einer Spannungsquelle mit der Möglichkeit, mehrere Ausgangsspannungen bereitzustellen, einer einfachen Strommessung und der entsprechend ausgestalteten Ansteuerschaltung keine konstruktiven Elemente vorgesehen sein müssen, ist die Schaltanordnung entsprechend einfach zu realisieren.In the switching arrangement according to the invention, the coil current flowing through the relay coil is determined by measurement. The drive circuit evaluates the current signal and can make depending on the current signal in a simple manner, the control of the relay coil with either the excessive turn-on voltage or a normal voltage. Since for the inventive switching arrangement except a voltage source with the ability to provide multiple output voltages, a simple current measurement and the appropriately designed drive circuit no structural elements must be provided, the switching arrangement is correspondingly easy to implement.

Bei der erfindungsgemäßen Schaltanordnung ist vorgesehen, dass die Ansteuerschaltung dazu eingerichtet ist, zur Bestimmung des Umschaltzeitpunktes den Wert des Spulenstroms heranzuziehen und den Umschaltzeitpunkt auf denjenigen Zeitpunkt festzulegen, zu dem der Wert des Spulenstromes einen ersten Stromschwellenwert überschreitet.In the case of the switching arrangement according to the invention, it is provided that the drive circuit is set up to use the value of the coil current to determine the switchover time and to set the switchover time to the point in time at which the value of the coil current exceeds a first current threshold value.

Hierdurch kann unter Verwendung eines relativ einfach zu überwachenden Kriteriums, nämlich dem Wert des Spulenstromes im Vergleich zu einem ersten Schwellenwert, eine Festlegung des Umschaltzeitpunktes durchgeführt werden. Ein weiterer Vorteil dieser Ausführungsform besteht darin, dass bei geeigneter Festlegung eines maximalen Spulenstromes eine Beschädigung der Relaisspule durch einen zu hohen Spulenstrom ausgeschlossen werden kann.This can be done using a relatively easy to monitoring criterion, namely the value of the coil current compared to a first threshold, a determination of the switching time are performed. Another advantage of this embodiment is that with a suitable definition of a maximum coil current damage to the relay coil can be excluded by a too high coil current.

Eine weitere vorteilhafte Ausführungsform der zweiten Ausführungsform der erfindungsgemäßen Schaltanordnung ist dadurch gegeben, dass die Ansteuerschaltung dazu eingerichtet ist, nach dem Umschaltzeitpunkt einen Spannungsimpuls mit bezogen auf die Normalspannung umgekehrter Polung an die Relaisspule anzulegen und nach dem Ende dieses Spannungsimpulses das Anlegen der Normalspannung an die Relaisspule fortzusetzen. Durch diese Maßnahme kann erreicht werden, dass zum Einschalten des Relais ein höherer Einschaltstrom gewählt werden kann, ohne dass der Relaisanker zu heftig gegen seine Endlage bewegt wird, weil durch den negativen Spannungsimpuls ein gezielter Abbau des Magnetfeldes stattfinden kann und damit ein Ende der Beschleunigung oder - im Falle eines gepolten Relais - sogar ein Abbremsen des Relaisankers bewirkt werden kann. Durch die Wahl einer höheren Einschaltspannung kann die Bewegungsphase des Relaisankers verkürzt werden, da hierdurch insgesamt ein stärkeres Magnetfeld durch die Relaisspule erzeugt wird, das den Relaisanker antreibt. Zusätzlich kann durch die gezielte Abgabe des negativen Spannungsimpulses auch eine Verringerung des Kontaktprellens der Relaiskontakte erreicht werden, da die Kontakte sanfter aufeinandertreffen.A further advantageous embodiment of the second embodiment of the switching arrangement according to the invention is given by the fact that the drive circuit is adapted to apply after the switching time a voltage pulse with respect to the normal voltage reverse polarity to the relay coil and after the end of this voltage pulse, the application of the normal voltage to the relay coil continue. By this measure can be achieved that for switching on the relay, a higher inrush current can be selected without the relay armature is moved too violent against its final position, because by the negative voltage pulse targeted degradation of the magnetic field can take place and thus an end to the acceleration or - in the case of a polarized relay - Even a deceleration of the relay armature can be effected. By choosing a higher turn-on voltage, the movement phase of the relay armature can be shortened, as a result of this a stronger overall magnetic field is generated by the relay coil, which drives the relay armature. In addition, by the targeted delivery of the negative voltage pulse and a reduction of the contact bounce of the relay contacts can be achieved because the contacts meet gentler.

Gemäß einer weiteren vorteilhaften Ausführungsform der zweiten Ausführungsform der erfindungsgemäßen Schaltanordnung ist zudem vorgesehen, dass die Ansteuerschaltung dazu eingerichtet ist, nach dem Einschalten des Relais, den durch die Relaisspule fließenden Spulenstrom auf einen minimalen Wert zu reduzieren, der dazu geeignet ist, die Relaiskontakte in der eingeschalteten Stellung zu halten.According to a further advantageous embodiment of the second embodiment of the switching arrangement according to the invention is also provided that the drive circuit is adapted to reduce after switching on the relay, the current flowing through the coil coil current to a minimum value, which is adapted to the relay contacts in the keep switched on position.

Hierdurch kann die Leistungsaufnahme des Relais während der Haltephase verringert werden. Der reduzierte Spulenstrom ist hierbei so zu wählen, dass ein zuverlässiges Halten in der Einschaltstellung gewährleistet werden kann.As a result, the power consumption of the relay can be reduced during the holding phase. The reduced coil current is to be chosen so that a reliable hold in the closed position can be ensured.

Konkret kann in diesem Zusammenhang vorgesehen sein, dass die Ansteuerschaltung dazu eingerichtet ist, die Reduzierung des Spulenstroms nach Ablauf einer vorgegebenen Wartezeit nach dem Beginn des Einschaltens des Relais vorzunehmen.Specifically, it can be provided in this context that the drive circuit is adapted to make the reduction of the coil current after a predetermined waiting time after the start of switching on the relay.

Durch die Vorgabe der Wartezeit soll gewährleistet werden, dass der Einschaltvorgang auf jeden Fall abgeschlossen ist, bevor der Spulenstrom zur Leistungsverringerung reduziert wird. Die Wartezeit kann z.B. bei etwa 50 ms gewählt werden.By specifying the waiting time, it is intended to ensure that the switch-on process is completed in any case before the coil current is reduced for power reduction. The waiting time may e.g. be chosen at about 50 ms.

Eine weitere vorteilhafte Ausführungsform der zweiten Ausführungsform der erfindungsgemäßen Schaltanordnung sieht zudem vor, dass die Ansteuerschaltung dazu eingerichtet ist, zum Ausschalten des Relais eine von der Spannungsquelle bereitgestellte Gegenspannung an die Relaisspule anzulegen, wobei die Gegenspannung bezogen auf die Normalspannung in umgekehrter Polung vorliegt und hinsichtlich ihres Betrags größer ist als die Nennspannung des Relais.A further advantageous embodiment of the second embodiment of the switching arrangement according to the invention also provides that the drive circuit is adapted to apply a counter voltage provided by the voltage source to the relay coil to turn off the relay, the reverse voltage with respect to the normal voltage in reverse Polarity is present and in terms of their amount is greater than the rated voltage of the relay.

Durch das Anlegen der Gegenspannung kann ein schnellerer Abbau des Magnetfeldes erreicht werden, so dass der Relaisanker in seine Ruhelage zurückgeführt werden kann. Als besonders vorteilhaft wird die Kombination des Anlegens der Gegenspannung mit einem reduzierten Spulenstrom in der Haltephase angesehen, da durch den reduzierten Spulenstrom, das Magnetfeld bereits vor dem eigentlichen Ausschaltvorgang schwächer ausgebildet ist, als es bei einem hohen fließenden Spulenstrom wäre.By applying the counter voltage, a faster degradation of the magnetic field can be achieved, so that the relay armature can be returned to its rest position. Particularly advantageous is the combination of the application of the counter voltage with a reduced coil current in the holding phase is considered because the reduced magnetic field, the magnetic field is already weaker before the actual turn-off, as it would be at a high-current coil current.

In diesem Zusammenhang kann konkret vorgesehen sein, dass die Ansteuerschaltung dazu eingerichtet ist, nach Ablauf einer vorgegebenen Ausschaltzeitdauer das Anlegen der Gegenspannung zu beenden, bevor der Ausschaltvorgang abgeschlossen ist. Hierdurch kann wiederum erreicht werden, dass der Relaisanker im Falle eines gepolten Relais nicht zu heftig in seine Ruhelage bewegt wird bzw. bei einem ungepolten Relais ein ungewolltes Wiedereinschalten verhindert wird.In this context, it can be concretely provided that the drive circuit is set up to terminate the application of the counter voltage after a predetermined switch-off period has elapsed, before the switch-off process has been completed. In this way, in turn, it can be achieved that the relay armature is not moved too violently in its rest position in the case of a polarity-reversed relay or unintentional reclosing is prevented in an unpoled relay.

Die oben genannte Aufgabe wird auch durch ein Verfahren gemäß Anspruch 7 gelöst.The above object is also achieved by a method according to claim 7.

Eine vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens sieht vor, dass der Umschaltzeitpunkt derart gewählt wird, dass ein maximaler Spulenstrom nicht überschritten wird.An advantageous embodiment of the method according to the invention provides that the switching time selected in such a way is that a maximum coil current is not exceeded.

Um auch ein beschleunigtes Ausschalten erreichen zu können, wird gemäß einer weiteren vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens vorgeschlagen, dass zum Ausschalten des Relais eine Gegenspannung an die Relaisspule angelegt wird, wobei die Gegenspannung bezogen auf die Normalspannung in umgekehrter Polung vorliegt und hinsichtlich ihres Betrags größer ist als die Nennspannung des Relais.In order to be able to achieve an accelerated switch-off, it is proposed according to a further advantageous embodiment of the method according to the invention that for switching off the relay a counter-voltage is applied to the relay coil, wherein the counter-voltage relative to the normal voltage is in reverse polarity and greater in terms of their amount as the rated voltage of the relay.

In diesem Zusammenhang kann zudem vorgesehen sein, dass nach Ablauf einer vorgegebenen Ausschaltzeitdauer das Anlegen der Gegenspannung beendet wird, bevor der Ausschaltvorgang abgeschlossen ist.In this context, it can also be provided that, after a predetermined switch-off time has elapsed, the application of the countervoltage is terminated before the switch-off process has been completed.

Hinsichtlich der Vorteile des erfindungsgemäßen Verfahrens und seiner Ausführungsformen wird auf die obigen Erläuterungen bzgl. der erfindungsgemäßen Schaltanordnung verwiesen.With regard to the advantages of the method according to the invention and its embodiments, reference is made to the above explanations regarding the circuit arrangement according to the invention.

Die Erfindung wird im Folgenden anhand zweier Ausführungsbeispiele näher erläutert. Hierzu zeigen

Figur 1
ein Diagramm zur Erläuterung der Verläufe von Strömen und Spannungen während des nicht beschleunigten Einschaltens eines Relais;
Figur 2
ein schematisches Blockschaltbild einer ersten Ausführungsform einer Schaltanordnung mit einem elektromagnetischen Relais;
Figur 3
ein Diagramm zur Erläuterung der Verläufe von Strömen und Spannungen während des beschleunigten Einschaltens des Relais gemäß der ersten Ausführungsform der Schaltanordnung;
Figur 4
ein schematisches Blockschaltbild einer zweiten Ausführungsform einer Schaltanordnung mit einem elektromagnetischen Relais;
Figur 5
ein erstes Diagramm zur Erläuterung der Verläufe von Strömen und Spannungen während des Einschaltens des Relais gemäß der zweiten Ausführungsform der Schaltanordnung;
Figur 6
ein zweites Diagramm zur Erläuterung der Verläufe von Strömen und Spannungen während des Einschaltens des Relais gemäß der zweiten Ausführungsform der Schaltanordnung; und
Figur 7
ein Diagramm zur Erläuterung der Verläufe von Strömen und Spannungen während des Ausschaltens des Relais gemäß der zweiten Ausführungsform der Schaltanordnung.
The invention will be explained in more detail below with reference to two exemplary embodiments. Show this
FIG. 1
a diagram illustrating the waveforms of currents and voltages during the non-accelerated switching on a relay;
FIG. 2
a schematic block diagram of a first embodiment of a switching arrangement with an electromagnetic relay;
FIG. 3
a diagram illustrating the waveforms of currents and voltages during the accelerated switching on of the relay according to the first embodiment of the switching arrangement;
FIG. 4
a schematic block diagram of a second embodiment of a switching arrangement with an electromagnetic relay;
FIG. 5
a first diagram for explaining the waveforms of currents and voltages during the switching of the relay according to the second embodiment of the switching arrangement;
FIG. 6
a second diagram for explaining the courses of currents and voltages during switching on of the relay according to the second embodiment of the switching arrangement; and
FIG. 7
a diagram for explaining the waveforms of currents and voltages during the switching off of the relay according to the second embodiment of the switching arrangement.

Figur 1 zeigt ein Diagramm mit gemessenen Verläufen von Strömen und Spannungen beim unbeschleunigten Einschalten eines Relais über der Zeit t. Konkret gibt der Spannungsverlauf 11a die an die Relaisspule angelegte Spulenspannung, der Stromverlauf 11b den durch die Spule fließenden Spulenstrom und der Spannungsverlauf 11c die an einer durch das Relais geschalteten Last anliegende Lastspannung an. FIG. 1 shows a diagram with measured waveforms of currents and voltages in unaccelerated switching on a relay over time t. Specifically, the voltage waveform 11a indicates the coil voltage applied to the relay coil, the current waveform 11b indicates the coil current flowing through the coil, and the voltage waveform 11c indicates the load voltage applied to a load connected through the relay.

Die folgenden Ausführungen werden lediglich beispielhaft für ein Relais des Typs "Schließer" gemacht, also einem Relais, das bei Anregung der Relaisspule ausgangsseitig seine Kontakte schließt. Die beschriebene Vorgehensweise kann ohne weiteres auch auf Relais des Typs "Öffner" oder Umschaltrelais angewandt werden.The following explanations are only examples of a relay of the type "NO" made, so a relay that closes its contacts on excitation of the relay coil on the output side. The described procedure can also be applied without problem to relays of the type "normally closed" or change-over relay.

Zum Zeitpunkt t=0 wird eine Spulenspannung von der Größe einer Normalspannung UN, die sich z.B. am Wert der für das Relais angegebenen Nennspannung orientiert, an die Relaisspule angelegt (Spulenspannungsverlauf 11a). Dies bewirkt einen Anstieg des Spulenstromes (Stromverlauf 11b) während eines ersten Zeitraums T1, bis nach Ablauf von T1 ein Maximum des Spulenstromes erreicht ist und der Relaisanker des Relais sich zu bewegen beginnt. Die während eines zweiten Zeitraums T2 erfolgende Bewegung des Relaisankers führt, wie am Spannungsverlauf 11c der Lastspannung ersichtlich ist, zu einem Schließen der Relaiskontakte. Schließlich ist nach Ablauf des Zeitraums T2 der Bewegungsvorgang des Relaisankers abgeschlossen; der Relaisanker befindet sich in seiner Endlage und die Relaiskontakte in ihrer geschlossenen Stellung.At time t = 0, a coil voltage of the magnitude of a normal voltage U N , which is oriented, for example, at the value of the nominal voltage indicated for the relay, is applied to the relay coil (coil voltage profile 11a). This causes an increase of the coil current (current waveform 11b) during a first period T 1 , until after expiration of T 1, a maximum of the coil current is reached and the relay armature of the relay begins to move. The movement of the relay armature during a second period T 2 , as can be seen from the voltage curve 11 c of the load voltage, leads to a closing of the relay contacts. Finally, after the expiration of the period T 2, the movement process of the relay armature is completed; the relay armature is in its end position and the relay contacts in its closed position.

Um den die gesamte Zeitdauer T1+T2 benötigenden Einschaltvorgang des Relais zu beschleunigen, wird nunmehr zum Einschalten anstelle der Normalspannung eine vergleichsweise höhere Einschaltspannung an die Relaisspule angelegt. Um das Relais dabei nicht zu beschädigen oder eine erhöhte Abnutzung zu bewirken, wird zu einem Umschaltzeitpunkt anstelle der überhöhten Einschaltspannung wieder die Normalspannung an die Relaisspule angelegt.In order to accelerate the switch-on operation of the relay which requires the entire time duration T 1 + T 2 , a comparatively higher switch-on voltage is now applied to the relay coil for switching on instead of the normal voltage. In order not to damage the relay or cause increased wear, the normal voltage is applied to the relay coil at a switching time instead of the excessive turn-on.

Im Folgenden sollen zwei beispielhafte Ausführungsformen erläutert werden, mit denen ein beschleunigter Schaltvorgang eines Relais erreicht werden kann.In the following two exemplary embodiments will be explained, with which an accelerated switching operation of a relay can be achieved.

Hierzu ist in Figur 2 in höchstschematischer Darstellung ein erstes Ausführungsbeispiel einer Schaltanordnung 20 gezeigt. Die Schaltanordnung 20 umfasst ein elektromagnetisches Relais 21 mit einer Relaisspule 21a, einem Relaisanker 21b und schematisch angedeuteten Relaiskontakten 21c zum Schließen und Unterbrechen eines im Weiteren nicht näher dargestellten Schaltstrompfades 22, an den eine beliebige elektrische Last angeschlossen sein kann. Die Schaltanordnung umfasst außerdem eine Ansteuerschaltung 23, bestehend aus einer Energiespeichereinrichtung, die im Ausführungsbeispiel der Figur 2 lediglich beispielhaft in Form einer Kondensatoreinrichtung 24 ausgeführt ist, sowie einer - im vorliegenden Ausführungsbeispiel lediglich beispielhaft - drei einzelne Schalter 25a, 25b und 25c umfassenden Schalteinrichtung 25. Die Ansteuereinrichtung 23 ist dazu eingerichtet, an die Relaisspule 21a entweder eine durch eine in Figur 2 nicht explizit gezeigte Spannungsquelle bereitgestellte Normalspannung UN oder eine vergleichsweise höhere Einschaltspannung UE anzulegen.This is in FIG. 2 in highly schematic representation, a first embodiment of a switching arrangement 20 is shown. The switching arrangement 20 comprises an electromagnetic relay 21 having a relay coil 21a, a relay armature 21b and schematically indicated relay contacts 21c for closing and interrupting a switching current path 22, not further described below, to which any electrical load can be connected. The switching arrangement further comprises a drive circuit 23, consisting of an energy storage device, which in the embodiment of the FIG. 2 only by way of example in the form of a capacitor device 24, as well as a switching device 25 comprising three individual switches 25a, 25b and 25c-in the present exemplary embodiment. The drive device 23 is designed to supply to the relay coil 21a either one by one in FIG. 2 not explicitly shown voltage source provided normal voltage U N or a comparatively higher turn-on voltage U E apply.

Die Funktionsweise der in Figur 2 gezeigten Schaltanordnung 20 beim Einschalten des Relais 21 soll anhand von Figur 3 näher erläutert werden. Figur 3 zeigt ein Diagramm mit gemessenen Verläufen von Strömen und Spannungen beim mit der Schaltanordnung 20 gemäß Figur 2 beschleunigten Einschalten eines Relais über der Zeit t. Konkret gibt der Spannungsverlauf 31a die an die Relaisspule angelegte Spulenspannung, der Stromverlauf 31b den durch die Spule fließenden Spulenstrom und der Spannungsverlauf 31c die an einer durch das Relais geschalteten Last anliegende Lastspannung an.The functioning of in FIG. 2 shown switching arrangement 20 when switching on the relay 21 is based on FIG. 3 be explained in more detail. FIG. 3 FIG. 12 is a graph showing measured waveforms of currents and voltages when in accordance with the switching arrangement 20. FIG FIG. 2 accelerated turning on a relay over time t. Specifically, the voltage waveform 31a indicates the coil voltage applied to the relay coil, the current waveform 31b indicates the coil current flowing through the coil, and the voltage waveform 31c indicates the load voltage applied to a load connected through the relay.

Vor dem Einschalten des Relais zum Zeitpunkt t=0 befindet sich die Schalteinrichtung 25 in einer Ruhestellung, bei der der Schalter 25a geschlossen ist, während die Schalter 25b und 25c geöffnet sind. Durch den Schalter 25a wird die Kondensatoreinrichtung 24 mit der überhöhten Einschaltspannung UE aufgeladen. Da die Schalter 25b und 25c geöffnet sind, liegt an der Relaisspule 21 keine Spannung an, so dass kein Spulenstrom fließt und das Relais in seiner geöffneten Stellung verharrt.Before switching on the relay at the time t = 0, the switching device 25 is in a rest position, in which the switch 25a is closed, while the switches 25b and 25c are opened. By the switch 25a, the capacitor device 24 is charged with the excessive turn-on voltage U E. Since the switches 25b and 25c are opened, no voltage is applied to the relay coil 21, so that no coil current flows and the relay remains in its open position.

Zum Zeitpunkt t=0 wird die Schalteinrichtung 25 zur Umschaltung in einen Aktivzustand angeregt. Hierbei wird der Schalter 25a geöffnet, während die Schalter 25b und 25c geschlossen werden. Hierdurch wird an die Relaisspule 21a die in der Kondensatoreinrichtung 24 vorherrschende Einschaltspannung UE angelegt. Aufgrund der im Vergleich zur Normalspannung UN höheren Einschaltspannung UE wird in vergleichsweise kurzer Zeit ein höherer Spulenstrom durch die Relaisspule 21a getrieben als es beim unbeschleunigten Einschalten (vgl. Figur 1) erfolgte. Hierdurch wird ein schnellerer Aufbau des Magnetfeldes bewirkt, so dass nach einem deutlich kürzeren Zeitraum T1 bereits eine Bewegung des Spulenankers 21b einsetzt. Nach Ablauf des Zeitraums T2 ist der Einschaltvorgang abgeschlossen und die Relaiskontakte 21c befinden sich in ihrer geschlossenen Stellung.At the time t = 0, the switching device 25 is excited to switch to an active state. At this time, the switch 25a is opened while the switches 25b and 25c are closed. As a result, the starting voltage U E prevailing in the capacitor device 24 is applied to the relay coil 21 a. Due to the higher in comparison to the normal voltage U N turn-on voltage U E a higher coil current is driven through the relay coil 21a in a relatively short time when it is at unaccelerated power (see. FIG. 1 ). As a result, a faster structure of the magnetic field is effected, so that after a significantly shorter period of time T 1 already uses a movement of the coil armature 21b. After the expiration of the period T 2 , the switch-on is completed and the relay contacts 21c are in their closed position.

Da sich die Kondensatoreinrichtung 24 während des Zeitraums T1 über die Relaisspule 21a entlädt und dabei einen vergleichsweise hohen Einschaltstrom bewirkt, nimmt die Spulenspannung wie am Spannungsverlauf 31a zu erkennen kontinuierlich ab, bis zum Umschaltzeitpunkt t=tU anstelle der Einschaltspannung UE schließlich die durch den Schalter 25c an die Relaisspule 21a angelegte Normalspannung UN zum Tragen kommt.Since the capacitor device 24 discharges during the period T 1 via the relay coil 21a and thereby causes a comparatively high inrush current, the coil voltage continuously decreases as seen at the voltage waveform 31a, until the switching time t = t U instead of the turn-on voltage U E finally through the switch 25c applied to the relay coil 21a normal voltage U N comes into play.

Bei der Schaltanordnung gemäß diesem ersten Ausführungsbeispiel kann allein durch eine geeignete Wahl der Werte für die Einschaltspannung UE und die Kapazität der Kondensatoreinrichtung 24 ein Verlauf des Spulenstroms beim Einschalten erreicht werden, der einen maximal erlaubten Wert nicht überschreitet. Durch Bestimmung der während des unbeschleunigten Einschaltvorgangs über die Relaisspule 21a fließenden Ladungsmenge, die während des beschleunigten Einschaltens von der Kondensatoreinrichtung 24 zur Verfügung gestellt werden muss, lassen sich unter der Randbedingung des gegebenen maximalen Spulenstroms, der beispielsweise vom Relaishersteller im Datenblatt des Relais 21 angegeben wird, die gesuchten Werte für Einschaltspannung UE und Kapazität der Kondensatoreinrichtung berechnen. Die Schaltanordnung 20 gemäß Figur 2 besitzt folglich den Vorteil, dass allein durch ihre Auslegung unter Berücksichtigung des maximal erlaubten Spulenstroms ein beschleunigtes Einschalten des Relais 21 ermöglicht wird. Beispielsweise kann für ein Relais mit einer Nennspannung von 5V durch Wahl einer Einschaltspannung von etwa 24,5 V und einer Kapazität der Kondensatoreinrichtung 24 von etwa 2,2µF eine deutliche Reduzierung der benötigten Schaltzeit erreicht werden.In the case of the switching arrangement according to this first exemplary embodiment, by means of a suitable selection of the values for the turn-on voltage U E and the capacitance of the capacitor device 24, a course of the coil current during switching on which does not exceed a maximum permitted value can be achieved. By determining the amount of charge flowing through the relay coil 21a during the un-accelerated turn-on, which must be provided by the capacitor means 24 during the accelerated turn-on, can be given the boundary condition of the given maximum coil current, for example, by the relay manufacturer in the data sheet of the relay 21 , calculate the sought values for turn-on voltage U E and capacitance of the capacitor device. The switching arrangement 20 according to FIG. 2 Consequently, it has the advantage that an accelerated switching on of the relay 21 is made possible solely by its design taking into account the maximum permitted coil current. For example, for a relay with a rated voltage of 5V, by choosing a turn-on voltage of about 24.5V and a capacitance of capacitor device 24 of about 2.2μF a significant reduction of the required switching time can be achieved.

In Figur 4 ist in schematischer Darstellung ein zweites Ausführungsbeispiel einer Schaltanordnung 40 gezeigt. Die Schaltanordnung 40 umfasst ein elektromagnetisches Relais 41 mit einer Relaisspule 41a, einem Relaisanker 41b und schematisch angedeuteten Relaiskontakten 41c zum Schließen und Unterbrechen eines im Weiteren nicht näher dargestellten Schaltstrompfades 42, an den eine beliebige elektrische Last angeschlossen sein kann. Außerdem weist die Schaltanordnung 40 eine Spannungsquelle 43, die dazu eingerichtet ist, ausgangsseitig verschiedene Spannungen bereitzustellen, eine Ansteuerschaltung 44, die zur Ansteuerung der Relaisspule 41a mit unterschiedlichen, durch die Spannungsquelle 43 bereitgestellten Spannungen eingerichtet ist, und eine Strommesseinrichtung 45 auf, die zur Erfassung des durch die Relaisspule 11a fließenden Spulenstromes und zur Abgabe eines entsprechenden Stromsignals an die Ansteuerschaltung eingerichtet ist. Optional kann die Schaltanordnung auch eine mit der Ansteuerschaltung 44 verbundene Strombegrenzungseinrichtung 46, z.B. eine gesteuerte Konstantstromquelle, im Strompfad der Relaisspule 41a, aufweisen.In FIG. 4 is a schematic representation of a second embodiment of a switching arrangement 40 is shown. The switching arrangement 40 comprises an electromagnetic relay 41 with a relay coil 41a, a relay armature 41b and schematically indicated relay contacts 41c for closing and interrupting a switching-current path 42, not further described in the following, to which any electrical load can be connected. In addition, the switching arrangement 40 has a voltage source 43, which is set up to provide various voltages on the output side, a drive circuit 44, which is set up to drive the relay coil 41a with different voltages provided by the voltage source 43, and a current measuring device 45, which is intended for detection of the coil current flowing through the relay coil 11a and for supplying a corresponding current signal to the drive circuit. Optionally, the switching arrangement may also have a current limiting device 46 connected to the drive circuit 44, for example a controlled constant current source, in the current path of the relay coil 41a.

Die Ansteuerschaltung 44 ist dazu ausgebildet, ein vergleichsweise schnelles Ein- und Ausschalten des Relais 41 zu gewährleisten. Hierzu beaufschlagt die Ansteuerschaltung 44 die Relaisspule 41a beim Einschalten kurzzeitig mit einer überhöhten Einschaltspannung UE und beim Ausschalten kurzzeitig mit einer umgepolten Gegenspannung UG. Zum Halten des Relais 41 wird ansonsten eine geringere Normalspannung UN verwendet. Die Normalspannung UN, die Einschaltspannung UE und die Gegenspannung UG werden ausgangsseitig von der Spannungsquelle 43 bereitgestellt. Die Ansteuerschaltung 44 kann mittels eines lediglich beispielhaft angedeuteten Umschalters 47 zwischen den einzelnen Spannungen UN, UE und UG umschalten.The drive circuit 44 is designed to ensure a comparatively fast switching on and off of the relay 41. For this purpose, the drive circuit 44 is applied to the relay coil 41a when switching briefly with an excessive turn-on voltage U E and when turned off briefly with a reversed reverse voltage U G. For holding the relay 41, a lower normal voltage U N is otherwise used. The normal voltage U N , the turn-on voltage U E and the reverse voltage U G are provided on the output side by the voltage source 43. The drive circuit 44 can switch between the individual voltages U N , U E and U G by means of a changeover switch 47, which is indicated only by way of example.

Die Funktionsweise der Schaltanordnung 40 gemäß der zweiten Ausführungsform soll im Folgenden unter Hinzunahme von Figuren 5 und 6 für den Einschaltvorgang und Figur 7 für den Ausschaltvorgang näher erläutert werden.The operation of the switching arrangement 40 according to the second embodiment will be explained below with the addition of FIGS. 5 and 6 for the switch-on and FIG. 7 be explained in more detail for the switch-off.

Hierzu zeigt Figur 5 ein Diagramm, in dem schematisch Spannungs- bzw. Stromverläufe über der Zeit t dargestellt sind. Konkret gibt der Spannungsverlauf 51a die an die Relaisspule 41a angelegte Spulenspannung, der Stromverlauf 51b den durch die Spule fließenden Spulenstrom und der Spannungsverlauf 51c die an einer durch das Relais 41 geschalteten Last anliegende Lastspannung an.This shows FIG. 5 a diagram in which voltage or current waveforms over the time t are shown schematically. Specifically, the voltage waveform 51a indicates the coil voltage applied to the relay coil 41a, the current waveform 51b indicates the coil current flowing through the coil, and the voltage waveform 51c indicates the load voltage applied to a load connected through the relay 41.

Das Relais 41 befindet sich bis zum Zeitpunkt t=0 in einem ausgeschalteten Zustand; Spulenstrom und Spulenspannung besitzen den Wert Null, die Last auf der Kontaktseite des Relais 41 ist spannungslos.The relay 41 is in an off state until time t = 0; Coil current and coil voltage have the value zero, the load on the contact side of the relay 41 is de-energized.

Zum Zeitpunkt t=0 wird der Ansteuerschaltung 44 ein Einschaltbefehl zugeführt; ein solcher Einschaltbefehl kann beispielsweise von einer Steuereinrichtung eines die Schaltanordnung 40 umfassenden elektrischen Schutzgerätes zur Überwachung von Energieversorgungsnetzen erzeugt worden sein, um das Relais 41 zum Ansteuern eines an das Schutzgerät angeschlossenen Leistungsschalters zu veranlassen. Bei vorliegendem Einschaltbefehl legt die Ansteuerschaltung 44 die seitens der Spannungsquelle 43 bereitgestellte Einschaltspannung UE als Spulenspannung an die Relaisspule 41a an; der Spannungsverlauf 51a zeigt einen entsprechenden Sprung von 0 auf UE bei t=0. Die Einschaltspannung UE ist eine im Vergleich zur Nennspannung, für die das Relais 41 herstellerseitig ausgelegt ist, überhöhte Spannung. In einem möglichen Ausführungsbeispiel betrage die Nennspannung 5V; der Wert der Einschaltspannung UE sei in diesem Ausführungsbeispiel auf 20V festgelegt. Die vergleichsweise hohe an die Relaisspule 41a angelegte Einschaltspannung UE treibt einen hohen Einschaltstrom durch die Spule 41a, so dass sich das Magnetfeld der Relaisspule 41a schneller auf als bei Anliegen der bloßen Nennspannung aufbaut. Der relativ schnell ansteigende Spulenstrom ist aus dem Stromverlauf 51b innerhalb eines Zeitraums T1, in dem die Feldaufladung des Magnetfeldes stattfindet, erkennbar. Während der Feldaufladung bewegt sich der Relaisanker 41b noch nicht, die Schaltkontakte 41c verharren in der geöffneten Stellung. Durch das Anlegen der überhöhten Einschaltspannung kann der Zeitraum T1 im Vergleich zum unbeschleunigten Einschalten (vgl. Figur 1) verkürzt werden, da die Aufladung des Magnetfeldes durch den entsprechend höheren Spulenstrom schneller stattfindet.At the time t = 0, the drive circuit 44 is supplied with a switch-on command; Such a switch-on command may, for example, have been generated by a control device of an electrical protective device comprising the switching arrangement 40 for monitoring power supply networks, in order to cause the relay 41 to drive a circuit breaker connected to the protective device. In the case of the present switch-on command, the drive circuit 44 applies the switch-on voltage U E provided as a coil voltage to the relay coil 41 a on the side of the voltage source 43; the voltage curve 51a shows a corresponding jump from 0 to U E at t = 0. The turn-on voltage U E is an excessive voltage compared to the rated voltage for which the relay 41 is designed by the manufacturer. In one possible embodiment, the rated voltage is 5V; the value of the turn-on voltage U E is set to 20V in this embodiment. The comparatively high turn-on voltage U E applied to the relay coil 41a drives a high inrush current through the coil 41a, so that the magnetic field of the relay coil 41a is faster than when the nominal voltage is applied builds. The relatively rapidly increasing coil current can be recognized from the current profile 51b within a time period T 1 in which the field charging of the magnetic field takes place. During field charging, the relay armature 41b does not move, the switching contacts 41c remain in the open position. By applying the excessive turn-on voltage, the time period T 1 can be compared with the un-accelerated switch-on (cf. FIG. 1 ), because the charging of the magnetic field by the corresponding higher coil current takes place faster.

Ist das Magnetfeld zum Ende des Zeitraums T1 schließlich ausreichend stark ausgebildet, bewegt sich während eines folgenden Zeitraums T2 der Relaisanker 41b und steuert die Schaltkontakte 41c des Relais 41 an. Um Relaisanker 41b und Schaltkontakte 41c nicht zu schnell in ihre Endlage zu bewegen und einen aufgrund des damit verbundenen heftigen Aufpralls erhöhten Verschleiß des Relais 41 zu vermeiden, muss die überhöhte Einschaltspannung UE rechtzeitig zurückgenommen und auf den Wert einer Normalspannung UN, deren Wert beispielsweise der Nennspannung des Relais entsprechen kann oder sich zumindest daran orientiert, reduziert werden.Finally, if the magnetic field is sufficiently strong at the end of the period T 1 , the relay armature 41 b moves during a subsequent period T 2 and actuates the switching contacts 41 c of the relay 41. To relay relay 41b and switch contacts 41c not too fast to move to their final position and avoid due to the associated heavy impact increased wear of the relay 41, the excessive turn-on voltage U E must be taken back in time and the value of a normal voltage U N , their value, for example may correspond to the rated voltage of the relay or at least oriented to be reduced.

Der Umschaltzeitpunkt tU, zu dem die Umschaltung von der Einschaltspannung UE auf die Normalspannung UN stattfinden soll, wird aus dem Stromverlauf 51b des Spulenstroms abgeleitet. Hierzu wird der Spulenstrom mit der Strommesseinrichtung 45, z.B. einem Stromsensor, gemessen und ein Stromsignal erzeugt, das der Ansteuerschaltung 44 zugeführt und von dieser zur Bestimmung des Umschaltzeitpunktes tU ausgewertet wird.The switching time t U , at which the switchover from the switch-on voltage U E to the normal voltage U N is to take place, is derived from the current profile 51b of the coil current. For this purpose, the coil current with the current measuring device 45, for example a current sensor, is measured and a current signal is generated, which is supplied to the drive circuit 44 and evaluated by the latter for determining the switchover time t U.

Als mögliches Kriterium zur Bestimmung des Umschaltzeitpunktes tU kann die Höhe des den Spulenstrom angebenden Stromsignals gewählt werden. Hierbei kann festgelegt sein, dass der Umschaltzeitpunkt tU als derjenige Zeitpunkt festgelegt wird, an dem das Stromsignal einen festgelegten Schwellenwert überschreitet. Aus Figur 5 ist ersichtlich, dass bei Erreichen des maximal zulässigen Stromes Imax der Umschaltzeitpunkt tU festgelegt wird.As a possible criterion for determining the switching time t U , the height of the current signal indicating the coil current can be selected. In this case, it can be determined that the switching time t U is set as the time at which the current signal exceeds a specified threshold. Out FIG. 5 it can be seen that when reaching of the maximum permissible current I max the switching time t U is set.

Alternativ - in Figur 5 jedoch nicht dargestellt - kann als Kriterium zur Bestimmung des Umschaltzeitpunktes tU auch der Wert der Steigung des den Spulenstrom angebenden Stromsignals gewählt werden. Wie auch aus dem Stromverlauf 51b in Figur 2 erkennbar ist, nimmt die Steigung des Stromverlaufs 51b mit stärkerer Ausbildung des Magnetfeldes kontinuierlich ab und erreicht schließlich bei maximaler Sättigung den Wert Null; der Relaisanker beginnt nun, sich zu bewegen. Daher kann als Kriterium festgelegt sein, dass der Umschaltzeitpunkt tU als derjenige Zeitpunkt festgelegt wird, an dem die Steigung des Stromsignals einen vorgegebenen Schwellenwert unterschreitet. Dieser Schwellenwert sollte so festgelegt sein, dass rechtzeitig vor Erreichen des Strommaximums mit einer Steigung von Null der Umschaltzeitpunkt erkannt wird. Zur Bestimmung der Steigung kann während des Einschaltvorgangs das Stromsignal wiederholt gespeichert werden und die Steigung aus zwei aufeinanderfolgenden Werten des Stromsignals berechnet werden.Alternatively - in FIG. 5 However, not shown - can be selected as a criterion for determining the switching time t U and the value of the slope of the coil current indicating current signal. As well as from the current 51b in FIG. 2 is recognizable, the slope of the current profile 51b decreases continuously with greater formation of the magnetic field and finally reaches the value zero at maximum saturation; the relay armature now starts to move. Therefore, it can be set as the criterion that the switching time t U is set as the time at which the slope of the current signal falls below a predetermined threshold. This threshold should be set to detect the changeover timing in good time before reaching zero current slope. In order to determine the slope, during the switch-on process the current signal can be stored repeatedly and the slope calculated from two successive values of the current signal.

Die während des Zeitraums T2 ablaufende Bewegung des Relaisankers 41b und der Schaltkontakte 41c findet umso schneller statt, desto stärker das Magnetfeld zum Umschaltzeitpunkt tU aufgeladen war. Eine höhere Einschaltspannung UE - und damit ein höherer Spulenstrom - bewirkt eine stärkere Aufladung und damit folglich eine schnellere Bewegung des Relaisankers 41b.The running during the period T 2 movement of the relay armature 41b and the switching contacts 41c takes place all the faster, the more the magnetic field was charged at the switching time t U. A higher turn-on voltage U E - and thus a higher coil current - causes a stronger charge and thus consequently a faster movement of the relay armature 41b.

Nachdem die Schaltkontakte nach Ablauf des Zeitraums T2 schließlich geschlossen sind, wird das Magnetfeld durch die Normalspannung UN aufrecht erhalten. Um die Relaisspule 41a möglichst leistungsarm geschlossen zu halten, kann die Ansteuerschaltung in der Haltephase des Relais die Strombegrenzungseinrichtung 46 entsprechend zur Reduzierung des Spulenstroms (nicht im Diagramm in Figur 5 gezeigt) ansteuern. Der reduzierte Spulenstrom muss so gewählt werden, dass ein sicheres Halten des Relais im Einschaltzustand gewährleistet ist. Der Zeitpunkt der Stromreduzierung muss ausreichend lang nach dem Beginn des Einschaltvorgangs liegen, damit das Einschalten des Relais 41 nicht behindert wird. Hierzu kann die Ansteuerschaltung beispielsweise nach Ablauf einer Wartezeit, die deutlich länger als der übliche Einschaltvorgang ist, die Strombegrenzungseinrichtung 46 zur Stromreduzierung veranlassen. Die Wartezeit kann beispielsweise bei einem Wert von ca. 50ms gewählt werden.After the switch contacts are finally closed after expiration of the period T 2 , the magnetic field is maintained by the normal voltage U N. In order to keep the relay coil 41a closed as low as possible, the drive circuit in the holding phase of the relay, the current limiting device 46 corresponding to the reduction of the coil current (not in the diagram in FIG. 5 shown). The reduced coil current must be selected so that a safe hold of the relay is ensured in the on state. The time of power reduction must be sufficiently long after the start of the switch-on, so that the switching on of the relay 41 is not hindered. For this purpose, the drive circuit, for example, after expiry of a waiting time that is significantly longer than the usual switch-on, cause the current limiting device 46 to reduce power. The waiting time can be selected, for example, at a value of about 50ms.

Um den Wert der Einschaltspannung UE - und damit des Spulenstroms beim Einschalten - möglichst hoch wählen zu können, ohne Relaisanker 41b und Schaltkontakte 41c durch einen zu heftigen Aufprall auf ihre Endlage zu beschädigen, kann während des Zeitraums T2 ein kurzer negativer Spannungsimpuls eingesetzt werden, um das Magnetfeld schneller zu entladen oder (im Falle eines gepolten Relais) die Bewegung des Relaisankers 41b gezielt abzubremsen. Dies ist beispielhaft in Figur 6 dargestellt. Figur 6 zeigt ein Diagramm, in dem schematisch Spannungs- bzw. Stromverläufe über der Zeit t dargestellt sind. Konkret gibt der Spannungsverlauf 61a die an die Relaisspule 41a angelegte Spulenspannung, der Stromverlauf 61b den durch die Spule fließenden Spulenstrom und der Spannungsverlauf 61c die an einer durch das Relais 41 geschalteten Last anliegende Lastspannung an.In order to be able to select the value of the turn-on voltage U E - and thus of the coil current when switching on - as high as possible without damaging the relay armature 41b and switching contacts 41c by an excessive impact on their end position, a short negative voltage pulse can be used during the period T 2 in order to discharge the magnetic field more quickly or (in the case of a polarized relay) to purposefully decelerate the movement of the relay armature 41b. This is exemplary in FIG. 6 shown. FIG. 6 shows a diagram in which voltage or current waveforms over the time t are shown schematically. Specifically, the voltage waveform 61a indicates the coil voltage applied to the relay coil 41a, the current waveform 61b indicates the coil current flowing through the coil, and the voltage waveform 61c indicates the load voltage applied to a load connected through the relay 41.

Innerhalb des Zeitraums T2 wird der negative Spannungsimpuls 62 mit abgegeben. Zeitpunkt und Betrag des negativen Spannungsimpulses müssen dabei so gewählt werden, dass die Bewegung des Relaisankers 41b nicht unterbrochen wird, um den Einschaltvorgang nicht zu behindern. Beispielsweise kann eine von der Spannungsquelle bereitgestellte Gegenspannung UG für den Spannungsimpuls verwendet werden. Nach dem Ende des Spannungsimpulses 62 wird erneut die Normalspannung UN an die Relaisspule 41a angelegt.Within the period T 2 , the negative voltage pulse 62 is delivered with. Time and magnitude of the negative voltage pulse must be chosen so that the movement of the relay armature 41b is not interrupted in order not to hinder the switch-on. For example, a counter voltage U G provided by the voltage source can be used for the voltage pulse. After the end of the voltage pulse 62, the normal voltage U N is again applied to the relay coil 41a.

Während eines innerhalb des Zeitraums T2 liegenden weiteren Zeitraums T3 berühren sich die Schaltkontakte 41c des Relais 41 erstmalig und federn kurzzeitig zurück, was als sogenanntes "Kontaktprellen" bezeichnet wird. Innerhalb des Zeitraums T3 wird erstmalig die Lastspannung auf der Schaltseite des Relais 41 aufgebaut, was am Spannungsverlauf 61c erkennbar ist. Durch das Kontaktprellen wird einerseits der Verschleiß des Relais erhöht und andererseits der Zeitraum T2 bis zum endgültigen Schließen der Schaltkontakte 41c verlängert. Daher sollte der Effekt des Kontaktprellens möglichst gering gehalten werden. Hierzu trägt ebenfalls der negative Spannungsimpuls 62 bei, da hierdurch dem Relaisanker 41b und damit auch den Schaltkontakten 41c gezielt der Schwung ihrer Bewegung genommen wird.During a further time period T 3 lying within the period T 2 , the switching contacts 41c of the relay 41 touch for the first time and briefly spring back, which is referred to as so-called "contact bounce". Within the period T 3 is the first time the load voltage on the switching side of the relay 41 is constructed, which can be seen in the voltage curve 61c. Due to the contact bounce, on the one hand, the wear of the relay is increased and, on the other hand, the period T 2 is extended until the final closing of the switching contacts 41c. Therefore, the effect of contact bounce should be minimized. This also contributes to the negative voltage pulse 62, as this is the relay armature 41b and thus also the switching contacts 41c targeted the momentum of their movement is taken.

Strom- und Spannungsverläufe während des Ausschaltvorgangs des Relais 41 sind schließlich in Figur 7 dargestellt. Konkret gibt der Spannungsverlauf 71a die an die Relaisspule 41a angelegte Spulenspannung, der Stromverlauf 71b den durch die Spule fließenden Spulenstrom und der Spannungsverlauf 71c die an der durch das Relais 41 geschalteten Last anliegende Lastspannung an. Vor dem Zeitpunkt t=0 in Figur 7 wird das Relais 41 durch Anlegen der Normalspannung UN in seiner eingeschalteten Stellung gehalten; der Stromfluss durch die Relaisspule ist konstant und an der Last liegt die Lastspannung an.Currents and voltage curves during the switch-off process of the relay 41 are finally in FIG. 7 shown. Specifically, the voltage waveform 71a indicates the coil voltage applied to the relay coil 41a, the current waveform 71b indicates the coil current flowing through the coil, and the voltage waveform 71c indicates the load voltage applied to the load connected through the relay 41. Before the time t = 0 in FIG. 7 the relay 41 is held in its on position by applying the normal voltage U N ; the current flow through the relay coil is constant and the load voltage is applied to the load.

Zum Zeitpunkt t=0 wird an die Ansteuerschaltung 44 ein Ausschaltbefehl übermittelt. Daraufhin bewirkt die Ansteuerschaltung 44, dass anstelle der Normalspannung UN nunmehr eine von der Spannungsquelle bereitgestellte Gegenspannung UG an die Relaisspule 41a angelegt wird. Diese Gegenspannung beschleunigt den Abbau des Magnetfeldes und reduziert damit den dafür verwendeten Zeitraum T4. Die Gegenspannung kann im vorliegenden Ausführungsbeispiel (Nennspannung des Relais: 5V) beispielsweise bei einem Wert von -12V gewählt werden.At the time t = 0, a switch-off command is transmitted to the drive circuit 44. Thereupon, the drive circuit 44 causes, instead of the normal voltage U N, a countervoltage U G provided by the voltage source to be applied to the relay coil 41 a. This counter voltage accelerates the degradation of the magnetic field and thus reduces the time period T 4 used for this purpose. The counter voltage can be selected in the present embodiment (rated voltage of the relay: 5V), for example, at a value of -12V.

Analog zur Einschaltspannung beim Einschaltvorgang ist auch die Dauer des Anlegens der Gegenspannung UG zeitlich zu begrenzen, um ein zu schnelles Bewegen des Relaisankers in seine Ruhelage zu vermeiden. Daher wird das Anlegen der Gegenspannung UG nach einer festgelegten Ausschaltzeitdauer, die beispielsweise bei etwa 1ms liegen kann, beendet und keine Spannung mehr an die Spule angelegt. Das Ende der Ausschaltzeitdauer ist in Figur 7 mit t=tA angegeben. Vorteilhaft für einen schnellen und sanften Ausschaltvorgang ist es zudem, wenn während der Haltephase des Relais 41 bereits - wie oben erläutert - ein reduzierter Spulenstrom eingesetzt wird, da in diesem Fall die Magnetfeldstärke bereits entsprechend reduziert ist und sich schneller abbauen kann.Analogous to the switch-on voltage during the switch-on process, the duration of the application of the countervoltage U G must also be limited in time in order to prevent the relay anchor from moving too quickly into its rest position. Therefore, the application of the back voltage U G after a fixed off period, the for example, may be about 1ms, terminated and no voltage applied to the coil. The end of the off period is in FIG. 7 indicated with t = t A. It is also advantageous for a fast and gentle switch-off process if during the holding phase of the relay 41 - as explained above - a reduced coil current is used, since in this case the magnetic field strength is already correspondingly reduced and can be reduced more rapidly.

Erreicht das Magnetfeld der Relaisspule 41a daraufhin einen minimalen Wert, so kann der Relaisanker 41b nicht mehr in seiner eingeschalteten Stellung gehalten werden und beginnt, sich in Richtung der Ruhelage zu bewegen. Der Zeitraum der Bewegung des Relaisankers 41b bis zu seiner endgültigen Ausschaltstellung ist in Figur 7 als T5 angegeben. Während des Zeitraums T5 bricht durch das Öffnen der Schaltkontakte 41c auch die Lastspannung ein, was am Spannungsverlauf 71c erkennbar ist. Durch die Bewegung des Relaisankers 41b wird erneut ein Spulenstrom in der Relaisspule induziert, der sich erst nach Erreichen der Ruhelage am Ende des Zeitraums T5 allmählich wieder abbaut. Nach Ende des Zeitraums T5 befinden sich sowohl die Spulenspannung als auch die Lastspannung bei einem Wert von Null, das Relais befindet sich in seiner ausgeschalteten Stellung.If the magnetic field of the relay coil 41a then reaches a minimum value, the relay armature 41b can no longer be held in its switched-on position and begins to move in the direction of the rest position. The period of movement of the relay armature 41b to its final OFF position is in FIG. 7 indicated as T 5 . During the period T 5 breaks through the opening of the switching contacts 41c and the load voltage, which can be seen on the voltage curve 71c. By the movement of the relay armature 41b, a coil current is again induced in the relay coil, which degrades gradually again after reaching the rest position at the end of the period T 5 . After the end of the period T 5 , both the coil voltage and the load voltage are at a value of zero, the relay is in its off position.

Claims (10)

  1. Switching arrangement (20, 40) having an electromagnetic relay (21, 41) which has a relay coil (21a, 41a) and switching contacts (21c, 41c), having a voltage source (43) which is connected to the relay coil (21a, 41a) and having a control circuit (23, 44) which is configured to control the relay coil (21a, 41a) by means of a voltage which is made available by the voltage source (43); wherein
    - the control circuit (23, 44) is configured to apply an elevated switch-on voltage to the relay coil (21a, 41a) in order to switch on the relay (21, 41), wherein the switch-on voltage is higher than the rated voltage of the relay (21, 41); and
    - the control circuit (23, 44) is configured to apply, instead of the switch-on voltage, a normal voltage to the relay coil (21a, 41a) during the switch-on process of the relay (21, 41), said normal voltage being made available by the voltage source (43) and being lower compared to the switch-on voltage, wherein in order to determine a switch-over time at which the switching over to the normal voltage takes place, a coil current which flows through the relay coil (21a, 41a) is used; and wherein
    - in the current path of the relay coil (41a) a current-detection device (45) is provided which is configured to detect a coil current flowing through the relay coil (41a) and to output a current signal, indicating the coil current, to the control circuit (44); and
    - the control circuit (44) uses the current signal to determine the switch-over time at which the switching over from the switch-on voltage to the normal voltage takes place, wherein
    - the control circuit (44) is configured to use the value of the coil current to determine the switch-over time and to define the switch-over time as that time at which the value of the coil current exceeds a first current threshold value.
  2. Switching arrangement (40) according to Claim 1, characterized in that
    - the control circuit (44) is configured to apply, after the switch-over time, a voltage pulse with a reversed polarity in relation to the normal voltage to the relay coil (41a), and to continue the application of the normal voltage to the relay coil (41a) after the end of this voltage pulse.
  3. Switching arrangement (40) according to Claim 1 or 2,
    characterized in that
    - the control circuit (44) is configured to reduce, after the switching on of the relay (41), the coil current flowing through the relay coil (41a) to a minimum value which is suitable for keeping the switching contacts (41c) in the switched-on position.
  4. Switching arrangement (40) according to Claim 3, characterized in that
    - the control circuit (44) is configured to reduce the coil current after the expiry of a predefined waiting time after the beginning of the switching on of the relay (41).
  5. Switching arrangement (40) according to one of Claims 1 to 4,
    characterized in that
    - the control circuit (44) is configured to apply, in order to switch off the relay (41), an opposing voltage, made available by the voltage source (43), to the relay coil (41a), wherein the opposing voltage is present with a reversed polarity in relation to the normal voltage and is higher, in terms of its absolute value, than the rated voltage of the relay (41).
  6. Switching arrangement (40) according to Claim 5,
    characterized in that
    - the control circuit (44) is configured to end the application of the opposing voltage after the expiry of a predefined switch-off time period, before the switch-off process is terminated.
  7. Method for controlling an electromagnetic relay (21, 41) using a switching arrangement according to Claim 1, which electromagnetic relay (21, 41) has a relay coil (21a, 41a) and switching contacts (21c, 41c), wherein the following steps are carried out in the method:
    - in order to switch on the relay (21, 41) a switch-on voltage is applied to the relay coil (21a, 41a), wherein the switch-on voltage is higher than the rated voltage of the relay (21, 41);
    - during the switch-on process of the relay (21, 41), instead of the switch-on voltage a normal voltage which is lower compared to the switch-on voltage is applied to the relay coil (21a, 41a), wherein a coil current flowing through the relay coil (21a, 41a) is used to determine the switch-over time at which the normal voltage is applied to the relay coil (21a, 41a); and wherein
    - the coil current flowing through the relay coil is detected and a current signal which indicates the coil current is output; and
    - the current signal is used to determine the switch-over time;
    characterized in that
    - the value of the coil current is used to determine the switch-over time, and the switch-over time is defined as that time at which the value of the coil current exceeds a first current threshold value.
  8. Method according to Claim 7,
    characterized in that
    - the switch-over time is selected in such a way that a maximum coil current is not exceeded.
  9. Method according to Claim 7 or 8,
    characterized in that
    - an opposing voltage is applied to the relay coil (21a, 41a) in order to switch off the relay (21, 41), wherein the opposing voltage is present with a reversed polarity in relation to the normal voltage and is higher, in terms of its absolute value, than the rated voltage of the relay (21, 41).
  10. Method according to Claim 9,
    characterized in that
    - after the expiry of a predefined switch-off time period the application of the opposing voltage is ended before the switch-off process is terminated.
EP12732576.9A 2012-06-19 2012-06-19 Electromagnetic relay with shorter switching time Active EP2845215B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/061648 WO2013189517A1 (en) 2012-06-19 2012-06-19 Electromagnetic relay having shortened switching duration

Publications (2)

Publication Number Publication Date
EP2845215A1 EP2845215A1 (en) 2015-03-11
EP2845215B1 true EP2845215B1 (en) 2016-08-03

Family

ID=46458458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12732576.9A Active EP2845215B1 (en) 2012-06-19 2012-06-19 Electromagnetic relay with shorter switching time

Country Status (2)

Country Link
EP (1) EP2845215B1 (en)
WO (1) WO2013189517A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229093A3 (en) * 2018-05-31 2020-01-09 Fas Medic S.A. Method and apparatus for energising a solenoid of a valve assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210108254A (en) * 2020-02-25 2021-09-02 엘지전자 주식회사 Motor driving apparatus and air conditioner including the same
LU502542B1 (en) * 2022-07-21 2024-01-22 Phoenix Contact Gmbh & Co Method for switching an electromechanical switching element with reduced bounce

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3681326D1 (en) * 1985-04-19 1991-10-17 Siemens Ag CONTROL CIRCUIT FOR AN ELECTROMAGNETIC RELAY FOR SWITCHING AN AC VOLTAGE LOAD CIRCUIT.
US5631801A (en) * 1994-12-28 1997-05-20 General Electric Company Fast relay control circuit with reduced bounce and low power consumption
JPH08279414A (en) * 1995-04-06 1996-10-22 Yazaki Corp Relay drive circuit
DE19947105C2 (en) * 1999-09-30 2002-01-24 Siemens Ag Method and associated arrangements for switching electrical load circuits
DE10003531A1 (en) * 1999-12-16 2001-07-05 Siemens Ag Load switching involves holding switching voltage constant until switch-off time if load current falls or remains constant during first time interval, reducing if load current increases
DE10203682C2 (en) 2002-01-24 2003-11-27 Siemens Ag Electrical switching arrangement with an electromagnetic relay and a switching device arranged parallel to a contact of the electromagnetic relay
DE102005042110A1 (en) * 2005-09-05 2007-03-08 Siemens Ag Device for driving electromagnetic actuator, e.g. for combustion engine injection valve, passes reverse current through solenoid during magnetic flux decay

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229093A3 (en) * 2018-05-31 2020-01-09 Fas Medic S.A. Method and apparatus for energising a solenoid of a valve assembly
US11867314B2 (en) 2018-05-31 2024-01-09 Fas Medic S.A. Method and apparatus for energising a solenoid of a valve assembly

Also Published As

Publication number Publication date
WO2013189517A1 (en) 2013-12-27
EP2845215A1 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
EP1185773B1 (en) Method and device for the control of a fuel injection valve
EP1527470B1 (en) Control circuit for an electromagnetic drive
EP2208215B1 (en) Switching arrangement and method for controlling an electromagnetic relay
EP1829068A1 (en) Method and device for the safe operation of a switching device
EP2845215B1 (en) Electromagnetic relay with shorter switching time
WO2008064694A1 (en) Method for detecting the operability of an electric relay and device for performing said method
EP1089308B1 (en) Device for switching-on and switching-off of a power circuit
DE19728221A1 (en) High speed operation method of electromagnetic load
EP2845211B1 (en) Monitoring sytem of an electromagnetic relay
EP0534250B1 (en) Method and device to protect an AC circuit
DE102005016279B4 (en) Circuit arrangement and method for actuating an up and dischargeable, electromechanical actuator
WO2005017933A1 (en) Device and method for controlling electric switching devices
EP3147737B1 (en) Method for controlling a gripping or clamping device and associated gripping or clamping device
WO2015185371A1 (en) Relay
DE19606503C2 (en) Methods and circuit arrangements for achieving phase-synchronous switching in the vicinity of the zero voltage crossings of contacts located in AC voltage systems
EP2747287A1 (en) Circuit arrangement for braking a moving mass by switching off an electromechanical switching device with an inductive load
DE102020215711B4 (en) Tripping device for a circuit breaker
DE69400172T2 (en) Operating control device of a contactor
DE707124C (en) Device for the rapid de-energization of the field winding of large machines
DE654655C (en) Railway signaling device
DE29715900U1 (en) Tripping device for an electrical circuit breaker
AT164732B (en) Monitoring arrangement for contactor controls of AC traction vehicles with interlocking protection
DE624418C (en) Circuit arrangement for triggering switching processes through weak, brief current surges
DE10220349B4 (en) Method and device for connecting a DC supply voltage to a load and for disconnecting the DC supply voltage from the load
DE691779C (en) Circuit arrangement for telecommunication, especially telephone systems with dialer operation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012007838

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01H0047000000

Ipc: H01H0047220000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 47/00 20060101ALI20151202BHEP

Ipc: H01F 7/18 20060101ALI20151202BHEP

Ipc: H01H 47/22 20060101AFI20151202BHEP

Ipc: H01H 47/04 20060101ALI20151202BHEP

INTG Intention to grant announced

Effective date: 20160104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 817834

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012007838

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160803

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012007838

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20170504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170619

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170619

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 817834

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230619

Year of fee payment: 12

Ref country code: DE

Payment date: 20220630

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230608

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230710

Year of fee payment: 12