EP1185773B1 - Method and device for the control of a fuel injection valve - Google Patents

Method and device for the control of a fuel injection valve Download PDF

Info

Publication number
EP1185773B1
EP1185773B1 EP01915007A EP01915007A EP1185773B1 EP 1185773 B1 EP1185773 B1 EP 1185773B1 EP 01915007 A EP01915007 A EP 01915007A EP 01915007 A EP01915007 A EP 01915007A EP 1185773 B1 EP1185773 B1 EP 1185773B1
Authority
EP
European Patent Office
Prior art keywords
phase
booster
solenoid
valve
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01915007A
Other languages
German (de)
French (fr)
Other versions
EP1185773A1 (en
Inventor
Rolf Reischl
Andreas Eichendorf
Ulf Pischke
Juergen Eckhardt
Klaus Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1185773A1 publication Critical patent/EP1185773A1/en
Application granted granted Critical
Publication of EP1185773B1 publication Critical patent/EP1185773B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2013Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost voltage source

Definitions

  • the invention relates to a method and a device for controlling a solenoid valve, in particular for Fuel injection in an internal combustion engine, wherein the activation phase of the solenoid valve in a tightening phase, while a valve needle of the solenoid valve by a first current flowing through a solenoid of the same is brought to open and in a holding phase is divided, while the valve needle in the open Condition by a second, lower by the magnetic coil flowing current is maintained and wherein at least once at the beginning of the suit phase, a booster phase is activated, in which a pulse-shaped booster current a booster capacitor charged to a high voltage or another power source through the Magnetic coil flows.
  • US 4,479,161 shows a circuit arrangement and a method for driving one or more solenoid valves. It is between a holding and a suit phase distinguished. During the tightening phase, the solenoid valve is boosted Voltage generator subjected to an increased voltage. During the suit phase a current control, which determines the times at which the solenoid valve with the booster voltage is applied.
  • the current reaches a starting current level I A , through which the valve needle of the solenoid valve can attract.
  • the booster voltage U BOOST which is connected to the solenoid valve during the booster phase B 1 , is much greater than the battery voltage U 1 .
  • the starting current level I A is regulated by switching the battery voltage U BATT on the solenoid several times.
  • the tightening phase T A follows first a short freewheeling phase or a quick extinction during which the current through the solenoid of the injector decreases rapidly, and reaches a holding current level I H , which during the holding phase T H by repeated pulse-shaped connection of the battery voltage U BATT to a desired level is regulated.
  • a freewheeling phase or quick extinguishing at the end of the current through the solenoid is completely reduced.
  • FIG. 2 shows the case where the valve needle can not attract ⁇ U BATT (FIG. 1) during the tightening phase T A because of too low a battery voltage U BATT2 (FIG. 2).
  • ⁇ U BATT FIG. 1
  • U BATT2 FIG. 2
  • Figure 2 shows that the current I falls very quickly through the solenoid and the control range of the attraction current control is not achieved and thus a safe opening of the solenoid valve is no longer guaranteed.
  • the level of the current through the injection valve should remain as high as possible during the entire opening movement of the valve needle in the starting phase T A.
  • this high current level producible long booster phase over the entire tightening phase is not useful because of the high energy extraction from the internal booster capacitor.
  • the booster phase serves to achieve a high current level as quickly as possible, with a large proportion of the booster energy being converted into eddy currents at the beginning of the starting phase T A.
  • the booster phase B 1 is stopped in the prior art under certain operating conditions, the valve current is driven out of the battery and decreases. This means that during the actual flight phase, that is the phase during which the valve needle is moving, the magnetic force has already dropped again from its maximum value. This means poor dynamics of the solenoid valve.
  • a control of a solenoid valve is known in which as follows is proceeded.
  • the current flow is closed by closing a switch released by the consumer. This causes a current increase to a so-called Starting current.
  • the current is applied to this starting current adjusted.
  • the solenoid valve reaches its new end position, the current is reduced to a so-called Holding current lowered.
  • the electricity will turn by opening and Closing the switch regulated.
  • the consumer is only with a supply voltage connected. The current by opening and closing the switching means to different current values regulated.
  • first booster impulse after the Beginning of the suit phase activated first booster impulse further booster impulse at the end or immediately after Flight phase of the valve needle to be activated.
  • the structure of the Magnetic force can be varied freely in time. This leads to a reduction of eddy current formation, and the Boosterenergie can depending on temporal needs of the solenoid valve be supplied. This can cause the tearing of the Valve needle of the solenoid valve from the lower attachment point assisted, the needle flight accelerates and stop bounce be suppressed at the top stop of the valve needle.
  • the graph of Figure 3A shows a first embodiment of the method according to the invention, in which at a relatively low battery voltage U BATT takes place Zweufachboosterung .
  • a further booster pulse B 21 is activated, which, as a comparison with the deflection X of the valve needle representing FIG. 3B immediately makes clear, during the flight phase f of Valve needle takes place.
  • the broken line in FIG. 3A of the current through the magnet coil is avoided, so that the control range of the tightening current control is achieved despite the low battery voltage U BATT and a reliable opening of the valve is ensured. So can be held high by the two-time boosting even at low battery voltage U BATT the current level during the tightening phase T A, thereby safely opening the valve.
  • Figure 3C shows a second embodiment of the driving method according to the invention, in which immediately after the flight phase after the second booster pulse B 21, a third booster pulse B 22 is activated, which suppresses PrelLen p the valve needle at the top stop.
  • a further booster pulse or more booster pulses during the holding phase T H can be activated if due to a high ohmic resistance in the circuit itself, the holding current I H can no longer be applied from the battery.
  • the driving method shown in the figure becomes preferably by a device for controlling a Solenoid valve for fuel injection into an internal combustion engine, the driving phase of the solenoid valve in a tightening phase, during which a valve needle of Solenoid valve through a first by a magnetic coil the same flowing current is opened and divided into a holding phase during which the Valve needle in the open state by a second, lower current flowing through the solenoid current is held, and at least once at the beginning of Suit phase a booster phase activated and thereby one pulsed booster current from one to one high Voltage charged booster capacitor or from one other source of current flows through the solenoid, carried out the means of activating several Booster impulses at selectable times within the Driving phase of the solenoid valve has.
  • These activating means may be connected to measuring means for measuring at least the starting current intensity I A , the holding current intensity I H , the battery voltage U BATT of the supply battery, the booster voltage U BOOST and the booster current intensity I BOOST .
  • the inventive method allows except the Ensuring the operation of a high-pressure injection valve at low battery voltage by activating several Booster impulses and thereby raising the current level, allowing a secure opening of the high pressure injector is guaranteed, a more economical and variable use of the boost energy by adding through the Multiple booster reduces the eddy current and Boosterenergie depending on temporal need available is provided. This allows the tearing of the Support valve needle from its lower stop point the needle flight speed up and stop bounce at the top Suppress stop of valve needle.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Ansteuerung eines Magnetventils, insbesondere zur Kraftstoffeinspritzung in eine Brennkraftmaschine, wobei die Ansteuerphase des Magnetventils in eine Anzugsphase, während der eine Ventilnadel des Magnetventils durch eine erste durch eine Magnetspule desselben fließende Stromstärke zum Öffnen gebracht wird und in eine Haltephase unterteilt ist, während der die Ventilnadel im geöffneten Zustand durch eine zweite, geringere durch die Magnetspule fließende Stromstärke gehalten wird und wobei wenigstens einmal zu Beginn der Anzugsphase eine Boosterphase aktiviert wird, bei der ein impulsförmiger Boosterstrom aus einem auf eine hohe Spannung aufgeladenen Boosterkondensator bzw. einer sonstigen Stromquelle durch die Magnetspule fließt.The invention relates to a method and a device for controlling a solenoid valve, in particular for Fuel injection in an internal combustion engine, wherein the activation phase of the solenoid valve in a tightening phase, while a valve needle of the solenoid valve by a first current flowing through a solenoid of the same is brought to open and in a holding phase is divided, while the valve needle in the open Condition by a second, lower by the magnetic coil flowing current is maintained and wherein at least once at the beginning of the suit phase, a booster phase is activated, in which a pulse-shaped booster current a booster capacitor charged to a high voltage or another power source through the Magnetic coil flows.

Ein derartiges Verfahren und eine derartige Vorrichtung ist aus der DE 197 46 980 A1 der Robert Bosch GmbH bekannt.Such a method and apparatus is known from DE 197 46 980 A1 of Robert Bosch GmbH.

Die US 4,479,161 zeigt eine Schaltungsanordnung und ein Verfahren zur Ansteuerung eines oder mehrerer Magnetventile. Dabei wird zwischen einer Halte- und einer Anzugsphase unterschieden. Während der Anzugsphase wird das Magnetventil über einen Boost Voltage Generator mit einer erhöhten Spannung beaufschlagt. Während der Anzugsphase erfolgt eine Stromregelung, die die Zeitpunkte bestimmt, bei denen das Magnetventil mit den Boosterspannung beaufschlagt wird.US 4,479,161 shows a circuit arrangement and a method for driving one or more solenoid valves. It is between a holding and a suit phase distinguished. During the tightening phase, the solenoid valve is boosted Voltage generator subjected to an increased voltage. During the suit phase a current control, which determines the times at which the solenoid valve with the booster voltage is applied.

Die beiliegenden Figuren 1 und 2 zeigen in Form von Signaldiagrammen den Verlauf der Spannung und des Stroms an einer bzw. durch eine Magnetspule eines Einspritzventils während einer Ansteuerphase, die sich aus einer Anzugsphase TA und einer Haltephase TH zusammensetzt und zwar Figur 1 für den Fall, dass die Versorgungsbatterie normales Spannungsniveau, z. B. UBATT = 14 V hat, und Figur 2 für den Fall, dass die Versorgungsbatterie ein zu niedriges Spannungsniveau kleiner als z. B. 14 V aufweist.The attached Figures 1 and 2 show in the form of signal diagrams the course of the voltage and the current at or through a magnetic coil of an injection valve during a Ansteuerphase, which is composed of a Tightening phase T A and a holding phase T H , namely Figure 1 for the Case that the supply battery normal voltage level, z. B. U BATT = 14 V, and Figure 2 in the event that the supply battery is too low a voltage level less than z. B. 14 V has.

Gemäß Figur 1 erreicht der Strom nach dem anfänglichen durch eine erste Boosterphase B1 mit großer Boosterspannung UBOOST bewirkten Strommaximum IBOOST ein Anzugsstromniveau IA, durch das die Ventilnadel des Magnetventils anziehen kann. Es ist deutlich, dass die Boosterspannung UBOOST, die während der Boosterphase B1 dem Magnetventil aufgeschaltet wird, viel größer ist als die Batteriespannung U1. Während der Anzugsphase TA wird das Anzugsstromniveau IA durch mehrmaliges Aufschalten der Batteriespannung UBATT auf die Magnetspule geregelt. Der Anzugsphase TA folgt zunächst eine kurze Freilaufphase oder eine Schnelllöschung, während der der Strom durch die Magnetspule des Einspritzventils sehr schnell abnimmt, und ein Haltestromniveau IH erreicht, welches während der Haltephase TH durch wiederholtes impulsförmiges Aufschalten der Batteriespannung UBATT auf ein Sollniveau geregelt wird. Am Ende folgt der Haltephase TH wieder eine Freilaufphase oder Schnelllöschung, an deren Ende der Strom durch die Magnetspule komplett abgebaut wird.According to FIG. 1, after the initial maximum current I BOOST caused by a first booster phase B 1 with a high booster voltage U BOOST , the current reaches a starting current level I A , through which the valve needle of the solenoid valve can attract. It is clear that the booster voltage U BOOST , which is connected to the solenoid valve during the booster phase B 1 , is much greater than the battery voltage U 1 . During the tightening phase T A , the starting current level I A is regulated by switching the battery voltage U BATT on the solenoid several times. The tightening phase T A follows first a short freewheeling phase or a quick extinction during which the current through the solenoid of the injector decreases rapidly, and reaches a holding current level I H , which during the holding phase T H by repeated pulse-shaped connection of the battery voltage U BATT to a desired level is regulated. At the end of the holding phase T H follows again a freewheeling phase or quick extinguishing, at the end of the current through the solenoid is completely reduced.

Figur 2 zeigt nun den Fall, dass die Ventilnadel während der Anzugsphase TA wegen einer zu geringen Batteriespannung UBATT2 (Fig. 2) < UBATT (Figur 1) nicht anziehen kann. Somit kann insbesondere bei niedriger Batteriespannung bei gegebenem Ohmschem Widerstand im Stromkreis kein ausreichender Anzugsstrom für das Einspritzmagnetventil aufgebaut werden. D. h., (I < IA) Figur 2 zeigt, dass der Strom I durch die Magnetspule sehr schnell abfällt und der Regelbereich der Anzugsstromregelung nicht erreicht wird und damit eine sichere Öffnung des Magnetventils nicht mehr gewährleistet ist.FIG. 2 shows the case where the valve needle can not attract <U BATT (FIG. 1) during the tightening phase T A because of too low a battery voltage U BATT2 (FIG. 2). Thus, especially at low battery voltage at a given ohmic resistance in the circuit no sufficient starting current for the injection solenoid valve can be established. D. h., (I <I A ) Figure 2 shows that the current I falls very quickly through the solenoid and the control range of the attraction current control is not achieved and thus a safe opening of the solenoid valve is no longer guaranteed.

Um eine gute Dynamik des Ventils zu erreichen, sollte das Niveau des Stroms durch das Einspritzventil möglichst während der gesamten Öffnungsbewegung der Ventilnadel in der Anzugsphase TA auf hohem Niveau verharren. Eine theoretisch vorstellbare, dieses hohe Stromniveau herstellbare lange Boosterphase über die gesamte Anzugsphase ist wegen der hohen Energieentnahme aus dem internen Boosterkondensator nicht sinnvoll. Bei realistischen Anwendungen dient die Boosterphase dazu, möglichst rasch ein hohes Stromniveau zu erreichen, wobei ein großer Anteil der Boosterenergie zu Anfang der Anzugsphase TA in Wirbelströmen umgesetzt wird. Noch bevor die Ventilnadel vollständig geöffnet ist, wird im Stand der Technik unter bestimmten Betriebsbedingungen die Boosterphase B1 abgebrochen, der Ventilstrom wird aus der Batterie getrieben und sinkt ab. D. h., dass während der eigentlichen Flugphase, das ist die Phase, während der sich die Ventilnadel bewegt, die Magnetkraft schon wieder von ihrem Maximalwert abgesunken ist. Dies bedeutet eine schlechte Dynamik des Magnetventils.In order to achieve a good dynamics of the valve, the level of the current through the injection valve should remain as high as possible during the entire opening movement of the valve needle in the starting phase T A. A theoretically conceivable, this high current level producible long booster phase over the entire tightening phase is not useful because of the high energy extraction from the internal booster capacitor. In realistic applications, the booster phase serves to achieve a high current level as quickly as possible, with a large proportion of the booster energy being converted into eddy currents at the beginning of the starting phase T A. Even before the valve needle is fully opened, the booster phase B 1 is stopped in the prior art under certain operating conditions, the valve current is driven out of the battery and decreases. This means that during the actual flight phase, that is the phase during which the valve needle is moving, the magnetic force has already dropped again from its maximum value. This means poor dynamics of the solenoid valve.

Aus der DE 2828678 A ist eine Ansteuerung eines Magnetventils bekannt, bei der wie folgt vorgegangen wird. Mit Beginn der Ansteuerung wird durch Schließen eines Schalters der Stromfluss durch den Verbraucher freigegeben. Dieser bewirkt einen Stromanstieg auf einen sogenannten Anzugsstrom. Durch Öffnen und Schließen des Schalters wird der Strom auf diesen Anzugsstrom eingeregelt. Erreicht das Magnetventil seine neue Endlage, so wird der Strom auf ein sogenanntes Haltestromniveau abgesenkt. Auf dieses Niveau wird der Strom wiederum durch Öffnen und Schließen des Schalters geregelt. Der Verbraucher ist lediglich mit einer Versorgungsspannung verbunden. Der Strom durch Öffnen und Schließen des Schaltmittels auf unterschiedliche Stromwerte geregelt.From DE 2828678 A a control of a solenoid valve is known in which as follows is proceeded. When the control starts, the current flow is closed by closing a switch released by the consumer. This causes a current increase to a so-called Starting current. By opening and closing the switch, the current is applied to this starting current adjusted. If the solenoid valve reaches its new end position, the current is reduced to a so-called Holding current lowered. At this level, the electricity will turn by opening and Closing the switch regulated. The consumer is only with a supply voltage connected. The current by opening and closing the switching means to different current values regulated.

Aufgabe und Vorteile der ErfindungPurpose and advantages of the invention

Angesichts der oben geschilderten Nachteile des Standes der Technik ist es allgemein Aufgabe der Erfindung, die Boosterenergie ökonomisch zu nutzen und außerdem das Einschaltverhalten des Ventils auch bei kleiner Batteriespannung zu verbessern. Dies Aufgabe wird gelöst mit den Merkmalen gemäß den unabhängigen Ansprüchen. Gemäß einem wesentlichen Aspekt der Erfindung wird diese Aufgabe dadurch gelöst, dass während der Ansteuerphase des Magnetventils mehrere Boosterimpulse nacheinander aktiviert werden. Grundsätzlich ist deren zeitliche Lage innerhalb der Ansteuerphase frei wählbar.In view of the above-mentioned disadvantages of the prior art It is generally the object of the invention to provide the technology To use booster energy economically and moreover that Switch-on behavior of the valve even at low battery voltage to improve. This task is solved with the features according to the independent claims. According to an essential aspect of the invention, this becomes Problem solved in that during the Ansteuerphase the Solenoid valve several booster pulses activated sequentially become. Basically, their timing is within the drive phase freely selectable.

Somit kann bei einem ersten Ausführungsbeispiel der Erfindung nach dem ersten zu Beginn der Anzugsphase aktivierten Boosterimpuls ein weiterer Boosterimpuls noch vor oder während der Flugphase der Ventilnadel aktiviert werden.Thus, in a first embodiment of the Invention after the first at the beginning of the suit phase activated booster pulse yet another booster pulse activated before or during the flight phase of the valve needle become.

Gemäß einem zweiten Ausführungsbeispiel kann nach dem zu Beginn der Anzugsphase aktivierten ersten Boosterimpuls ein weiterer Boosterimpuls am Ende oder unmittelbar nach der Flugphase der Ventilnadel aktiviert werden.According to a second embodiment, after the Beginning of the suit phase activated first booster impulse further booster impulse at the end or immediately after Flight phase of the valve needle to be activated.

Schließlich kann bzw. können gemäß einem dritten Ausführungsbeispiel ein weiterer Boosterimpuls oder mehrere weitere Boosterimpulse während der Haltephase des Magnetventils aktiviert werden, wenn in dieser Haltephase die Spannung der Versorgungsbatterie unter einer bestimmten Schwellenspannung liegt.Finally, or can according to a third Embodiment another booster pulse or more further booster pulses during the holding phase of the Solenoid valve activated when in this holding phase the voltage of the supply battery under a certain Threshold voltage is.

Die oben geschilderten Ausführungsbeispiele der Erfindung können auch miteinander kombiniert werden.The above-described embodiments of the invention can also be combined with each other.

Durch die mehrfache Boosterung kann die Energie bzw. der maximale Strom der einzelnen Boosterimpulse im Vergleich zu einer langen Einzelboosterung mit sehr hoher Stromstärke verringert werden. Eine verringerte Spitzenstromstärke bringt eine geringere Belastung der Bondierungsinseln für integrierte Schaltkreise, der Hybridbaugruppen und eine kleinere Speicherkapazität des Boosterkondensators.Due to the multiple boosting the energy or the maximum current of each booster pulses compared to a long single booster with very high amperage be reduced. A reduced peak current brings a lower load on the bonding islands for integrated circuits, the hybrid assemblies and a smaller storage capacity of the booster capacitor.

Durch geeignete Wahl der Zeitpunkte des zweiten und gegebenenfalls dritten Boosterimpulses kann der Aufbau der Magnetkraft zeitlich frei variiert werden. Dies führt zu einer Verringerung der Wirbelstrombildung, und die Boosterenergie kann je nach zeitlichem Bedarf des Magnetventils zugeführt werden. Dadurch können das Losreißen der Ventilnadel des Magnetventils vom unteren Anschlagpunkt unterstützt, der Nadelflug beschleunigt und Anschlagpreller am oberen Anschlag der Ventilnadel unterdrückt werden.By suitable choice of the times of the second and optionally third booster pulse, the structure of the Magnetic force can be varied freely in time. this leads to a reduction of eddy current formation, and the Boosterenergie can depending on temporal needs of the solenoid valve be supplied. This can cause the tearing of the Valve needle of the solenoid valve from the lower attachment point assisted, the needle flight accelerates and stop bounce be suppressed at the top stop of the valve needle.

Ferner lässt sich bei einer zu geringen Batteriespannung, die nicht ausreicht, um einen genügend hohen Strom durch das Hochdruckeinspritzventil zu treiben, dennoch durch die Mehrfachboosterung das Stromniveau anheben und damit ein sicherer Betrieb des Hochdruckeinspritzmagnetventils gewährleisten.Furthermore, if the battery voltage is too low, which is not enough to pass a high enough current to drive the high pressure injector, yet through the Multiple boosters raise the current level and thus one safe operation of the Hochdruckeinspritzmagnetventils guarantee.

Zeichnungdrawing

Nachstehend werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert.

Figur 1
zeigt graphisch in Form eines Signal-Zeitdiagramms den bereits beschriebenen gewöhnlichen Verlauf des Stroms und der Spannung durch eine bzw. an einer Magnetspule eines Einspritzventils bei Einfachboosterung.
Figur 2
zeigt graphisch den ebenfalls bereits beschriebenen Fall, wenn beim bekannten Verfahren mit Einfachboosterung die Batteriespannung zu klein wird.
Figur 3A
zeigt graphisch in Form eines Signal-Zeitdiagramms den Stromverlauf durch eine Magnetspule gemäß einem ersten Ausführungsbeispiel des erfindungsgemäßen Verfahrens mit Zweifachboosterung.
Figur 3B
zeigt graphisch die Auslenkung einer Ventilnadel während der Ansteuerphase eines Hochdruckeinspritzmagnetventils, und
Figur 3C
zeigt graphisch den Strom- und Spannungsverlauf über der Zeit eines zweiten Ausführungsbeispiels der Erfindung mit Dreifachboosterung.
Embodiments of the invention will be explained in more detail with reference to the drawing.
FIG. 1
shows graphically in the form of a signal-time diagram, the already described usual course of the current and the voltage through or on a solenoid of a single-injection injector.
FIG. 2
shows graphically the case already described, when the battery voltage is too small in the known method with single booster.
FIG. 3A
shows graphically in the form of a signal-time diagram, the current flow through a magnetic coil according to a first embodiment of the method according to the invention with Zweibachboosterung.
FIG. 3B
shows graphically the deflection of a valve needle during the drive phase of a high-pressure injection solenoid valve, and
FIG. 3C
Graphically shows the current and voltage over time of a second embodiment of the invention with triple booster.

Ausführungsbeispieleembodiments

Die graphische Darstellung der Figur 3A zeigt ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens, bei dem bei relativ niedriger Batteriespannung UBATT eine Zweifachboosterung stattfindet. D. h., nach dem ersten zu Beginn der Anzugsphase TA aktivierten Boosterimpuls B1 wird ein weiterer Boosterimpuls B21 aktiviert, der, wie ein Vergleich mit der die Auslenkung X der Ventilnadel darstellenden Figur 3B unmittelbar deutlich macht, während der Flugphase f der Ventilnadel erfolgt. Dadurch wird das in Figur 3A gestrichelt eingezeichnete Absinken des Stroms durch die Magnetspule vermieden, so dass der Regelbereich der Anzugstromregelung trotz der niedrigen Batteriespannung UBATT erreicht wird und eine sichere Öffnung des Ventils gewährleistet ist. So kann durch die zweifache Boosterung auch bei niedriger Batteriespannung UBATT das Stromniveau während der Anzugsphase TA hochgehalten und dadurch das Ventil sicher geöffnet werden.The graph of Figure 3A shows a first embodiment of the method according to the invention, in which at a relatively low battery voltage U BATT takes place Zweufachboosterung . In other words, after the first booster pulse B 1 activated at the beginning of the starting phase T A , a further booster pulse B 21 is activated, which, as a comparison with the deflection X of the valve needle representing FIG. 3B immediately makes clear, during the flight phase f of Valve needle takes place. As a result, the broken line in FIG. 3A of the current through the magnet coil is avoided, so that the control range of the tightening current control is achieved despite the low battery voltage U BATT and a reliable opening of the valve is ensured. So can be held high by the two-time boosting even at low battery voltage U BATT the current level during the tightening phase T A, thereby safely opening the valve.

Figur 3C zeigt ein zweites Ausführungsbeispiel des erfindungsgemäßen Ansteuerverfahrens, bei dem unmittelbar nach der Flugphase nach dem zweiten Boosterimpuls B21 ein dritter Boosterimpuls B22 aktiviert wird, der das PrelLen p der Ventilnadel am oberen Anschlag unterdrückt. Figure 3C shows a second embodiment of the driving method according to the invention, in which immediately after the flight phase after the second booster pulse B 21, a third booster pulse B 22 is activated, which suppresses PrelLen p the valve needle at the top stop.

Gemäß einem weiteren in der Figur nicht dargestellten Ausführungsbeispiel kann bzw. können ein weiterer Boosterimpuls oder mehrere weitere Boosterimpulse während der Haltephase TH aktiviert werden, falls aufgrund eines hohen ohmschen Widerstands im Stromkreis selbst der Haltestrom IH nicht mehr aus der Batterie aufgebracht werden kann.According to another embodiment, not shown in the figure, a further booster pulse or more booster pulses during the holding phase T H can be activated if due to a high ohmic resistance in the circuit itself, the holding current I H can no longer be applied from the battery.

Das in der Figur dargestellte Ansteuerverfahren wird bevorzugt durch eine Vorrichtung zur Ansteuerung eines Magnetventils zur Kraftstoffeinspritzung in eine Brennkraftmaschine, die die Ansteuerungsphase des Magnetventils in eine Anzugsphase, während der eine Ventilnadel des Magnetventils durch eine erste durch eine Magnetspule desselben fließende Stromstärke zum Öffnen gebracht wird und in eine Haltephase unterteilt, während der die Ventilnadel im geöffneten Zustand durch eine zweite, geringere durch die Magnetspule fließende Stromstärke gehalten wird, und die wenigstens einmal zu Beginn der Anzugsphase eine Boosterphase aktiviert und dabei einen impulsförmigen Boosterstrom aus einem auf eine hohe Spannung aufgeladenen Boosterkondensator oder aus einer sonstigen Stromquelle durch die Magnetspule fließen lässt, durchgeführt, die Mittel zur Aktivierung mehrerer Boosterimpulse zu wählbaren Zeitpunkten innerhalb der Ansteuerphase des Magnetventils aufweist.The driving method shown in the figure becomes preferably by a device for controlling a Solenoid valve for fuel injection into an internal combustion engine, the driving phase of the solenoid valve in a tightening phase, during which a valve needle of Solenoid valve through a first by a magnetic coil the same flowing current is opened and divided into a holding phase during which the Valve needle in the open state by a second, lower current flowing through the solenoid current is held, and at least once at the beginning of Suit phase a booster phase activated and thereby one pulsed booster current from one to one high Voltage charged booster capacitor or from one other source of current flows through the solenoid, carried out the means of activating several Booster impulses at selectable times within the Driving phase of the solenoid valve has.

Diese Aktivierungsmittel können mit Messmitteln verbunden sein zur Messung wenigstens der Anzugsstromstärke IA, der Haltestromstärke IH, der Batteriespannung UBATT der Versorgungsbatterie, der Boosterspannung UBOOST und der Boosterstromstärke IBOOST.These activating means may be connected to measuring means for measuring at least the starting current intensity I A , the holding current intensity I H , the battery voltage U BATT of the supply battery, the booster voltage U BOOST and the booster current intensity I BOOST .

Somit ermöglicht das erfindungsgemäße Verfahren außer der Sicherung des Betriebs eines Hochdruckeinspritzventils bei geringer Batteriespannung durch die Aktivierung mehrerer Boosterimpulse und dadurch die Anhebung des Stromniveaus, so dass ein sicheres Öffnen bzw. Geöffnethalten des Hochdruckeinspritzventils gewährleistet ist, eine ökonomischere und variable Nutzung der Boosterenergie, indem durch die Mehrfachboosterung die Wirbelstrombildung verringert und Boosterenergie je nach zeitlichem Bedarf zur Verfügung gestellt wird. Dadurch lässt sich das Losreißen der Ventilnadel von ihrem unteren Anschlagpunkt unterstützen, der Nadelflug beschleunigen und Anschlagpreller am oberen Anschlag der Ventilnadel unterdrücken.Thus, the inventive method allows except the Ensuring the operation of a high-pressure injection valve at low battery voltage by activating several Booster impulses and thereby raising the current level, allowing a secure opening of the high pressure injector is guaranteed, a more economical and variable use of the boost energy by adding through the Multiple booster reduces the eddy current and Boosterenergie depending on temporal need available is provided. This allows the tearing of the Support valve needle from its lower stop point the needle flight speed up and stop bounce at the top Suppress stop of valve needle.

Durch die mehrfache Boosterung kann die Energie bzw. der maximale Strom des einzelnen Boosterimpulses, wie ein Vergleich der die herkömmliche Einzelboosterung veranschaulichenden Figuren 1 und 2 zeigt, verringert werden. Dadurch lässt sich die Spitzenbelastung der Bondierungsinseln für die integrierten Schaltungen und der Hybridbaugruppen und die Speicherkapazität des Boosterkondensators verringern.Due to the multiple boosting the energy or the maximum current of each booster pulse, like one Comparison of the conventional single booster illustrative Figures 1 and 2 shows reduced. This allows the peak load of the bonding islands for the integrated circuits and hybrid assemblies and the storage capacity of the booster capacitor reduce.

Claims (6)

  1. Method for actuating a solenoid valve, in particular for injecting fuel into an internal combustion engine, wherein the actuation phase of the solenoid valve is divided into an attraction phase (TA) during which a valve needle of the solenoid valve is made to open by a first current strength (IA) which flows through a solenoid of said valve, and into a holding phase (TH) during which the valve needle is held in the open state by a second, lower current strength (IH) flowing through the solenoid, and wherein a booster phase (B1) is actuated at least once at the start of the attraction phase (TA), during which booster phase a pulse-shaped booster current (Iboost) from a booster capacitor, charged to a high voltage (Uboost) which is higher than a battery voltage (U1), flows through the solenoid, characterized in that a further booster pulse or a plurality of booster pulses (B1, B21, B22) is/are activated during the holding phase (TH) of the solenoid valve if the voltage (UBATT) of the supply voltage lies below a specific threshold voltage in this phase.
  2. Actuation method according to Claim 1, characterized in that after the first booster pulse (B1) which is activated at the start of the attraction phase (TA) a further booster pulse (B21) is activated before the start or during the flight phase of the valve needle.
  3. Actuation method according to Claim 1 or 2, characterized in that after the first booster pulse (B1) which is activated at the start of the attraction phase (TA) a further booster pulse (B22) is activated at the end, or directly after the flight phase, of the valve needle.
  4. Device for actuating a solenoid valve, in particular for injecting fuel into an internal combustion engine, which divides the actuation phase of the solenoid valve into an attraction phase (TA) during which a valve needle of the solenoid is made to open by a first current strength (IA) flowing through a solenoid of said valve, and into a holding phase (TH) during which the valve needle is held in the opened state by a second lower current strength (IH) flowing through the solenoid, and which activates a booster phase (B1) at least once at the start of the attraction phase (TH), and in the process allows a pulse-shaped booster current (Iboost) from a booster capacitor, charged to a high voltage which is higher than a battery voltage (U1), to flow through the solenoid, characterized in that the device has means which activate a further booster pulse or a plurality of booster pulses during the holding phase (TH) of the solenoid valve if the voltage (UBATT) of the supply voltage lies below a specific threshold voltage in this phase.
  5. Device according to Claim 4, characterized in that the activation means are connected to measuring means at least for measuring
    the attraction current strength (IA)
    the holding current strength (ICH)
    the battery voltage (Ubat) of a supply battery,
    the booster voltage (Uboost) and the booster current strength (Iboost).
  6. Use of the method according to one of Claims 1 to 3 for a high-pressure injection solenoid valve for the direct injection of petrol.
EP01915007A 2000-03-22 2001-02-09 Method and device for the control of a fuel injection valve Expired - Lifetime EP1185773B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10014228 2000-03-22
DE10014228A DE10014228A1 (en) 2000-03-22 2000-03-22 Method of controlling a fuel-injection solenoid valve, involves activating a further booster pulse, after the first booster pulse is activated at the commencement of the pick-up phase, before of during movement or the valve needle
PCT/DE2001/000499 WO2001071174A1 (en) 2000-03-22 2001-02-09 Method and device for the control of a fuel injection valve

Publications (2)

Publication Number Publication Date
EP1185773A1 EP1185773A1 (en) 2002-03-13
EP1185773B1 true EP1185773B1 (en) 2005-08-31

Family

ID=7635912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01915007A Expired - Lifetime EP1185773B1 (en) 2000-03-22 2001-02-09 Method and device for the control of a fuel injection valve

Country Status (8)

Country Link
US (1) US6785112B2 (en)
EP (1) EP1185773B1 (en)
JP (1) JP4418616B2 (en)
KR (1) KR100757565B1 (en)
BR (1) BR0105317A (en)
DE (2) DE10014228A1 (en)
ES (1) ES2245352T3 (en)
WO (1) WO2001071174A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU771141B2 (en) * 2000-02-16 2004-03-11 Robert Bosch Gmbh Method and circuit arrangement for operating a solenoid valve
JP2002237410A (en) * 2001-02-08 2002-08-23 Denso Corp Solenoid valve driving circuit
FR2826200B1 (en) * 2001-06-15 2004-09-17 Sagem METHOD FOR SUPPLYING ELECTRICAL EQUIPMENT
JP2004129376A (en) * 2002-10-02 2004-04-22 Tokyo Weld Co Ltd Operation control method for electromagnetic drive mechanism
WO2005093239A1 (en) * 2004-03-29 2005-10-06 Mitron Oy Method and device for controlling the fuel supply in a motor
DE102004063079A1 (en) * 2004-12-28 2006-07-06 Robert Bosch Gmbh Method for operating an internal combustion engine
US7013876B1 (en) 2005-03-31 2006-03-21 Caterpillar Inc. Fuel injector control system
DE102006016892A1 (en) * 2006-04-11 2007-10-25 Robert Bosch Gmbh Method for controlling at least one solenoid valve
EP1903201B1 (en) * 2006-09-20 2017-04-12 Delphi International Operations Luxembourg S.à r.l. Valve control strategy and controller
DE102007023898A1 (en) * 2007-05-23 2008-11-27 Robert Bosch Gmbh Method for controlling an injection valve
GB2450523A (en) * 2007-06-28 2008-12-31 Woodward Governor Co Method and means of controlling a solenoid operated valve
JP4359855B2 (en) * 2007-07-09 2009-11-11 Smc株式会社 Solenoid valve drive circuit and solenoid valve
DE102007045513B4 (en) * 2007-09-24 2015-03-19 Continental Automotive Gmbh Method and device for metering a fluid
JP5053868B2 (en) * 2008-01-07 2012-10-24 日立オートモティブシステムズ株式会社 Fuel injection control device
JP4815502B2 (en) * 2009-03-26 2011-11-16 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
JP5198496B2 (en) * 2010-03-09 2013-05-15 日立オートモティブシステムズ株式会社 Engine control unit for internal combustion engines
DE102010027989A1 (en) * 2010-04-20 2011-10-20 Robert Bosch Gmbh A method of operating an internal combustion engine, wherein a solenoid valve is actuated for injecting fuel
JP5698938B2 (en) * 2010-08-31 2015-04-08 日立オートモティブシステムズ株式会社 Drive device for fuel injection device and fuel injection system
JP5880296B2 (en) * 2012-06-06 2016-03-08 株式会社デンソー Drive device for fuel injection valve
DE102013201410B4 (en) * 2013-01-29 2018-10-11 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine and corresponding internal combustion engine
JP5975899B2 (en) * 2013-02-08 2016-08-23 日立オートモティブシステムズ株式会社 Drive device for fuel injection device
DE102014002261A1 (en) * 2014-02-20 2015-08-20 Man Diesel & Turbo Se Control unit of an internal combustion engine
DE102015217955A1 (en) * 2014-10-21 2016-04-21 Robert Bosch Gmbh Device for controlling at least one switchable valve
GB2534172A (en) * 2015-01-15 2016-07-20 Gm Global Tech Operations Llc Method of energizing a solenoidal fuel injector for an internal combustion engine
DE102015211402B3 (en) * 2015-06-22 2016-08-04 Continental Automotive Gmbh A method for generating a drive signal for a final drive device for injection valves
DE102016219375B3 (en) * 2016-10-06 2017-10-05 Continental Automotive Gmbh Operating a fuel injector with hydraulic stop at reduced fuel pressure
DE102016219881B3 (en) * 2016-10-12 2017-11-23 Continental Automotive Gmbh Operating a fuel injector with hydraulic stop
DE102016219888B3 (en) 2016-10-12 2017-11-23 Continental Automotive Gmbh Operating a fuel injector with hydraulic stop
JP6717176B2 (en) * 2016-12-07 2020-07-01 株式会社デンソー Injection control device
DE102016224682A1 (en) * 2016-12-12 2018-06-14 Robert Bosch Gmbh Method for heating a gas valve, in particular a fuel injector
JP7006204B2 (en) 2017-12-05 2022-01-24 株式会社デンソー Injection control device
CN108979874B (en) * 2018-07-24 2020-09-29 潍柴动力股份有限公司 Control method and control device of electromagnetic valve and gas engine
EP3656244B1 (en) 2018-10-03 2023-02-01 Crossfor Co., Ltd. Fastener for ornament
KR102068137B1 (en) * 2019-06-28 2020-01-21 대한민국(국방부 해군참모총장) Portable injector inspector of mtu engine for naval ship
DE102020200679A1 (en) * 2020-01-22 2021-07-22 Robert Bosch Gesellschaft mit beschränkter Haftung Method for opening a valve assembly for a fuel tank
DE102020200682A1 (en) * 2020-01-22 2021-07-22 Robert Bosch Gesellschaft mit beschränkter Haftung Method for operating an electromagnetically controllable tank valve, computer program and control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2828678A1 (en) * 1978-06-30 1980-04-17 Bosch Gmbh Robert METHOD AND DEVICE FOR OPERATING AN ELECTROMAGNETIC CONSUMER, IN PARTICULAR AN INJECTION VALVE IN INTERNAL COMBUSTION ENGINES
US4479161A (en) * 1982-09-27 1984-10-23 The Bendix Corporation Switching type driver circuit for fuel injector
US4604675A (en) * 1985-07-16 1986-08-05 Caterpillar Tractor Co. Fuel injection solenoid driver circuit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327693A (en) * 1980-02-01 1982-05-04 The Bendix Corporation Solenoid driver using single boost circuit
US4486703A (en) * 1982-09-27 1984-12-04 The Bendix Corporation Boost voltage generator
US4729056A (en) * 1986-10-02 1988-03-01 Motorola, Inc. Solenoid driver control circuit with initial boost voltage
DE19746980A1 (en) 1997-10-24 1999-04-29 Bosch Gmbh Robert Method of driving electromagnetic load, esp. a fuel injection valve for an internal combustion engine
US6031707A (en) * 1998-02-23 2000-02-29 Cummins Engine Company, Inc. Method and apparatus for control of current rise time during multiple fuel injection events
DE19808780A1 (en) * 1998-03-03 1999-09-09 Bosch Gmbh Robert Method of driving load, especially magnetic valve for controlling fuel delivery in IC engine
DE19833830A1 (en) * 1998-07-28 2000-02-03 Bosch Gmbh Robert System for energizing magnetic valves controlling fuel injection in IC engine, using increased starting voltage and engine operating characteristic(s)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2828678A1 (en) * 1978-06-30 1980-04-17 Bosch Gmbh Robert METHOD AND DEVICE FOR OPERATING AN ELECTROMAGNETIC CONSUMER, IN PARTICULAR AN INJECTION VALVE IN INTERNAL COMBUSTION ENGINES
US4479161A (en) * 1982-09-27 1984-10-23 The Bendix Corporation Switching type driver circuit for fuel injector
US4604675A (en) * 1985-07-16 1986-08-05 Caterpillar Tractor Co. Fuel injection solenoid driver circuit

Also Published As

Publication number Publication date
DE50107260D1 (en) 2005-10-06
KR100757565B1 (en) 2007-09-10
US20030010325A1 (en) 2003-01-16
ES2245352T3 (en) 2006-01-01
WO2001071174A1 (en) 2001-09-27
EP1185773A1 (en) 2002-03-13
US6785112B2 (en) 2004-08-31
KR20020005047A (en) 2002-01-16
BR0105317A (en) 2002-02-19
JP2003528251A (en) 2003-09-24
JP4418616B2 (en) 2010-02-17
DE10014228A1 (en) 2001-09-27

Similar Documents

Publication Publication Date Title
EP1185773B1 (en) Method and device for the control of a fuel injection valve
DE19907505B4 (en) Method and apparatus for controlling a current rise time during multiple fuel injection events
DE102012213883B4 (en) Equalization of the current flow through a fuel injector for different partial injection processes of a multiple injection
DE102005044886B4 (en) Apparatus and method for detecting an end of movement of a valve piston in a valve
EP1979598B1 (en) Device for switching inductive fuel injection valves
DE19539071A1 (en) Device for controlling at least one electromagnetic consumer
DE4322199C2 (en) Method and device for controlling an electromagnetic consumer
DE102013203130A1 (en) Method for controlling an injection process of a magnet injector
WO1998043305A1 (en) Device and method for controlling a piezoregulated fuel injection valve
DE102010040123A1 (en) Fuel injection-control device for e.g. controlling four unit injection nozzles to supply fuel to cylinders of four-cylinder diesel engine of vehicle, has compensation section extending excitation time interval adjusted by adjusting section
DE3515039A1 (en) METHOD AND CIRCUIT FOR OPERATING A GAS EXCHANGE VALVE
WO1996027198A1 (en) Device for controlling at least one electromagnetic consumer
EP0225444A1 (en) Process for the control of an electromagnet
WO2009095125A1 (en) Method for controlling solenoid valves
WO2012059304A1 (en) Method for operating a switching element
WO2009077254A1 (en) Method for operating an injection device
DE102007045575A1 (en) Injection valve operation method for injecting e.g. gasoline into combustion chamber in internal-combustion engine of motor vehicle, involves removing of energy from magnetic circuit with reverse flow cancellation before injection process
DE4018320C2 (en) Control circuit for an electromagnetic consumer
WO2008090047A1 (en) Device and method for controlling an electromagnetic valve
DE102011007579B4 (en) Method for operating an injection valve
DE102014200184A1 (en) Method and circuit arrangement for controlling injection valves, in particular a spark-ignited internal combustion engine
DE102005016279B4 (en) Circuit arrangement and method for actuating an up and dischargeable, electromechanical actuator
WO2016188726A1 (en) Method for controlling a fuel injector
EP0945610A2 (en) Method and apparatus for switching an inductor
DE102006025360B3 (en) Method for enhanced response inductive fuel injectors for IC engines by generating currents to counteract the residual currents due to magnetic remanence at the end of the injector pulse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20020327

17Q First examination report despatched

Effective date: 20040115

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50107260

Country of ref document: DE

Date of ref document: 20051006

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2245352

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051214

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140218

Year of fee payment: 14

Ref country code: IT

Payment date: 20140224

Year of fee payment: 14

Ref country code: ES

Payment date: 20140220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140417

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107260

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150209

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150210