EP2841869B1 - Method for providing a cooling medium in a secondary circuit - Google Patents

Method for providing a cooling medium in a secondary circuit Download PDF

Info

Publication number
EP2841869B1
EP2841869B1 EP13720299.0A EP13720299A EP2841869B1 EP 2841869 B1 EP2841869 B1 EP 2841869B1 EP 13720299 A EP13720299 A EP 13720299A EP 2841869 B1 EP2841869 B1 EP 2841869B1
Authority
EP
European Patent Office
Prior art keywords
primary
heat exchangers
primary heat
temperature
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13720299.0A
Other languages
German (de)
French (fr)
Other versions
EP2841869A1 (en
Inventor
Raymund KOMPA
Markus FÖRSTER
Andreas Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP13720299.0A priority Critical patent/EP2841869B1/en
Publication of EP2841869A1 publication Critical patent/EP2841869A1/en
Application granted granted Critical
Publication of EP2841869B1 publication Critical patent/EP2841869B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid
    • F28B9/06Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid with provision for re-cooling the cooling water or other cooling liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Definitions

  • the present invention relates to a method for providing a cooling medium with controlled flow temperature in a secondary circuit, wherein the cooling medium absorbs heat in the secondary circuit of one or more process coolers and then gives off heat to primary water in a primary circuit before it flows back to the process coolers. Furthermore, the invention relates to a device for carrying out the method according to the invention, wherein the device comprises one or more process coolers in the secondary circuit and at least one temperature sensor in the flow to the process coolers.
  • WO 2011/149487 discloses a device having the features in the preamble of claim 7.
  • a common cooling medium is water, other examples are glycol water mixtures or methanol.
  • the cooling medium in the secondary circuit flows with a certain flow temperature into one or more process coolers and absorbs heat from the process, where it heats up. In order to bring the cooling medium back to the desired flow temperature, it is fed to one or more heat exchangers, in which it is cooled by primary water.
  • the cycle of primary water such as recooling water, river water or seawater, is referred to as the primary cycle. Accordingly, the heat exchangers in which the cooling medium is cooled by the primary water, called the primary heat exchanger.
  • a bypass line for bypassing the primary heat exchanger branches off in the secondary circuit.
  • the bypass line opens into the Conduction of the secondary circuit from the primary heat exchangers to the process coolers.
  • the “flow temperature” is understood here and below to mean the temperature in the secondary circuit in the flow to the process coolers.
  • flow to the process coolers refers to the section of the secondary circuit which is located between the entry of the bypass line into the secondary circuit and the first process heat exchanger.
  • “Overrun” is the section of the secondary circuit which is located between the exit from the at least one process heat exchanger and the branch of the bypass line. In the case of multiple process heat exchangers, the term “after-run” refers to the section of the secondary circuit which is located between the confluence of the outlet lines from the process heat exchangers and the branch line of the bypass line.
  • a temperature sensor is in the flow to the process coolers, and the bypass line is provided with an actuator, by means of which the flow temperature to the process coolers in the secondary circuit can be controlled. It is also possible to provide a plurality of temperature sensors in the flow to the process coolers, for example to realize a redundant measurement. Suitable temperature sensors, for example thermocouples, detect the temperature of the flowing cooling medium and provide a value for forwarding to a control device.
  • a temperature sensor or are several temperature sensors in the wake of the secondary circuit there is a temperature sensor or are several temperature sensors in the wake of the secondary circuit, and the bypass line is provided with an actuator by means of which the flow temperature to the process coolers in the secondary circuit can be controlled.
  • Suitable actuators make it possible to set the flow through the bypass line between a minimum value and a maximum value.
  • the minimum value is zero, which means a completely closed bypass line.
  • the maximum value preferably corresponds to a completely open bypass line. Any values for the flow can be set between the extreme values, preferably steplessly continuously.
  • Suitable actuators are known to the person skilled in the art, e.g. Flaps, ball valves or three-way valves.
  • a control device which has a setpoint for the flow temperature. From a comparison of the setpoint with the detected by the temperature sensor flow temperature, the control device generates an output signal for forwarding to the actuator.
  • the temperature of the cooling medium flowing through the bypass line is higher than the temperature of the cooling medium flowing from the primary heat exchangers to the process coolers.
  • the regulation therefore provides for the current through the bypass line to be reduced in the event of a flow temperature that is too high in comparison with the setpoint value and accordingly to increase the flow through the bypass line when the flow temperature is too low compared to the setpoint value.
  • a control device which has a setpoint for the follow-up temperature. From a comparison of the setpoint with the detected by the temperature sensor follow-up temperature, the control device generates an output signal for forwarding to the actuator. In this embodiment, too, the control provides for the current through the bypass line to be reduced when the overrun temperature is too high compared to the setpoint value, and the current through the bypass line to be increased accordingly when the setpoint temperature is too low compared to the setpoint value.
  • the flow of the cooling medium through the bypass line can also be influenced by the fact that actuators are present in the cooling medium lines to the primary heat exchangers or from the primary heat exchangers and adjusted in their degrees of opening.
  • actuators are present in the cooling medium lines to the primary heat exchangers or from the primary heat exchangers and adjusted in their degrees of opening.
  • a regulation of the bypass current by influencing an actuator in the bypass line is easier to implement and is therefore preferred.
  • control device may be an independent device, such as a compact controller, which is connected in terms of information technology with the temperature sensor and the actuator.
  • the control device can also be realized in combination with the actuator, for example in the form of a control valve.
  • the control device can also be integrated in a higher-level system for process control, for example in a process control system.
  • the primary heat exchangers are designed with regard to number and dimensioning to a high load case.
  • the cooling capacity of the primary circuit is adjusted by switching off one or more of the primary heat exchangers, with at least one primary heat exchanger remaining in operation.
  • high load case and low load case are understood to mean operating states as defined above.
  • the primary heat exchangers are designed such that in a reduced load, a heat exchanger is sufficient to cool the cooling medium to the desired flow temperature by utilizing a maximum allowable temperature difference between primary water inlet and outlet.
  • a heat exchanger is provided, which are preferably also individually designed for the maximum permissible temperature difference between primary water inlet and outlet, and are in total suitable for the minimum temperature difference in the high load case.
  • the maximum permissible temperature difference between primary water inlet and outlet is often prescribed by the authorities, for example to a value of 15 K.
  • the bypass line is preferably designed in terms of their capacity such that the control range of the bypass line is sufficient to control the flow temperature in the secondary circuit bumplessly when switching off and the connection of a primary heat exchanger.
  • the flow is not actively regulated, but results from the pressure difference between the primary water side inlet and the outlet of the primary heat exchanger. Variations in this pressure difference also result in fluctuations in the flow rate. If the temperature of the primary water drops or the amount of heat to be removed from the cooling medium decreases, e.g. by reducing the flow rate of cooling medium through a primary heat exchanger or by reducing the cooling medium temperature when exiting the process coolers, the cooling medium temperature drops at the outlet of this primary heat exchanger. Accordingly, the outlet temperature of the cooling medium increases with a temperature increase of the primary water and / or an increase in the amount of heat to be removed from the cooling medium.
  • the capacity adjustment is made by switching on or off of primary heat exchangers such that the pressure drop of the primary water when flowing through the primary heat exchanger in operation is at least 300 mbar, more preferably at least 800 mbar. This significantly reduces the likelihood of deposits forming on the primary water side.
  • the at least two primary heat exchangers can be interconnected in different ways.
  • the primary heat exchangers are preferably connected in parallel both on the side of the primary circuit and on the side of the secondary circuit.
  • All heat exchangers known to the person skilled in the art for this purpose can be used as the primary heat exchanger, preferably plate heat exchangers or tube bundle heat exchangers are used, particularly preferably sealed or welded plate heat exchangers.
  • the most preferred plate heat exchangers are usually designed for a high pressure loss. This is advantageous if the bypass is to be realized without additional conveying devices such as pumps.
  • the primary water is recooling water, river water, sea water or brackish water.
  • recooling water is meant water, which has been cooled by a device such as a cooling tower or a recooling plant in process plants.
  • the invention offers several advantages.
  • the provision of at least two primary heat exchangers working together in the High load case provide the required cooling capacity, but in partial load can be partially shut down, makes it possible to operate the individual primary heat exchanger with almost constant flow on the primary water side, which prevents premature fouling.
  • this offers the possibility, in the case of reduced load, the primary heat exchanger alternately on and off, which allows easy inspection and possibly maintenance or cleaning.
  • the minimum amount of primary water required to provide the cooling capacity is significantly reduced.
  • Another advantage is the fact that a control of the flow temperature by means of the bypass flow is much easier, faster and more robust to accomplish than a regulation on the flow rate of primary water, as practiced in the prior art.
  • Fig. 1 shows a cooling system according to the prior art in which flows in a secondary circuit 20, a cooling medium to process coolers 22, receives heat there and in a primary heat exchanger 12 heat to primary water in a primary circuit 10 before it flows back to the process coolers 22.
  • the process coolers can be of different types, for example plate, tube bundle, spiral heat exchangers or casings of pipes or containers for their cooling.
  • the flow temperature of the cooling medium before the process coolers 22 is detected by means of a temperature sensor and regulated by a control device 24 to a specific setpoint.
  • the amount of primary water in the primary circuit 10 acts as a control variable for the control.
  • Fig. 2 a first preferred embodiment of the method according to the invention is shown.
  • the cooling medium leaving the process cooler 22 is passed through two primary heat exchangers 12, 14, where it gives off heat to primary water in a primary circuit 10.
  • the primary heat exchangers are connected in parallel both on the side of the primary circuit and on the side of the secondary circuit.
  • a bypass line 26 which opens after the exit of the cooling medium from the primary heat exchangers back into the secondary circuit 20.
  • the control 24 of the flow temperature the cooling medium to the process coolers 22 via the adjustment of the current in the bypass line.
  • both primary heat exchangers 12 and 14 are in operation, while in the low load case, the capacity of a primary heat exchanger is sufficient to sufficiently cool the cooling medium in the secondary circuit 20. In this case, one of the primary heat exchangers is switched off by closing the corresponding valves in the secondary circuit.
  • Fig. 3 a further preferred embodiment of the method according to the invention is shown.
  • the primary heat exchangers 12 and 14 are connected in parallel by the primary circuit and in series by the secondary circuit.
  • bypasses are provided in the secondary circuit, which can be switched on and off via valves.
  • Fig. 4 shows a further preferred embodiment of the method according to the invention, in which the primary heat exchanger 12, 14 are connected in parallel on the secondary side.
  • the interconnection On the side of the primary circuit, the interconnection is kept flexible.
  • the valves 12, 14 can be switched off alternately by closing the corresponding valves in the secondary circuit.
  • the number of heat exchangers shown in the figures is merely exemplary and not limited thereto. It is advantageous if more than two primary heat exchangers are present. The more primary heat exchangers are available, the more flexible it is possible to switch on and off individual primary heat exchangers in order to optimally match the currently available load case. On the other hand, this also increases the investment costs. Preferably, two to three primary heat exchangers are provided.
  • a selection criterion for the number of primary heat exchangers can be derived from the temperature gradients of the primary water.
  • the optimum number of primary heat exchangers is estimated by the quotient of the maximum permissible temperature difference and the typical temperature difference in the high load case.
  • the maximum allowable temperature difference between primary water entry and exit is 15 K when using river water as primary water.
  • the water returned to the river must not exceed 33 ° C.
  • Fig. 5 schematically shows the time course of the primary water temperature T (dashed curve) and the number of operating in primary heat exchangers N (solid lines, right scale) over a period of 12 months.
  • the primary water used is river water, which has the lowest temperature in the winter months of December and January, eg 4 ° C. The maximum permissible temperature difference can be fully exploited, so that a primary heat exchanger is sufficient to sufficiently cool the cooling medium in the secondary circuit.
  • the method according to the invention causes flexible cooling capacities to be made available adapted to the current needs.
  • Example shown are a primary heat exchanger for a period of five and a half months, three primary heat exchangers for a period of three and a half months and three primary heat exchangers for a period of three months. Compared to a pure design for the high load case can be drastically reduced by the inventive method, the required amount of primary water.
  • each primary heat exchanger flows through a substantially constant amount of water, which prevents soiling and fouling. Except in the summer months, the heat exchangers that are currently not in operation can be easily maintained and cleaned without affecting the operation of the systems in the secondary circuit. Assuming that in systems according to the state of the art, in which only a primary heat exchanger designed for high load cases is used, in which the amount of primary water is reduced in the case of reduced load, once a year a pollution-related shutdown of about 3 days is required, can be through the inventive Method increase the plant capacity by approx. 1%. For more frequent or longer shutdown times, the economic advantage increases accordingly.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Bereitstellung eines Kühlmediums mit geregelter Vorlauftemperatur in einem Sekundärkreis, wobei das Kühlmedium im Sekundärkreis von einem oder mehreren Prozesskühlern Wärme aufnimmt und anschließend Wärme an Primärwasser in einem Primärkreis abgibt, bevor es wieder den Prozesskühlern zufließt. Weiterhin betrifft die Erfindung eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens, wobei die Vorrichtung einen oder mehrere Prozesskühler im Sekundärkreis sowie mindestens einen Temperatursensor im Vorlauf zu den Prozesskühlern umfasst. WO 2011/149487 offenbart eine Vorrichtung mit den Merkmalen im Oberbegriff des Patentanspruchs 7.The present invention relates to a method for providing a cooling medium with controlled flow temperature in a secondary circuit, wherein the cooling medium absorbs heat in the secondary circuit of one or more process coolers and then gives off heat to primary water in a primary circuit before it flows back to the process coolers. Furthermore, the invention relates to a device for carrying out the method according to the invention, wherein the device comprises one or more process coolers in the secondary circuit and at least one temperature sensor in the flow to the process coolers. WO 2011/149487 discloses a device having the features in the preamble of claim 7.

In vielen verfahrenstechnischen Prozessen ist es erforderlich, Wärme aus Apparaten oder Anlagenteilen abzuführen. Dazu wird häufig Primärwasser eingesetzt, das insbesondere bei großtechnischen Prozessen als Rückkühlwasser, Flusswasser oder Meerwasser zur Verfügung steht. Aus Sicht der Prozessführung ist es wünschenswert, dass die Kühlung der Apparate oder Anlagenteile bei einer möglichst konstanten Temperatur erfolgt. Aus Sicht der Sicherheit und des Umweltschutzes soll verhindert werden, dass bei Leckagen beispielsweise gegebenenfalls schädliche Substanzen in die natürlichen Gewässer gelangen. Diese Anforderungen können erfüllt werden, indem das Primärwasser nicht direkt mit den zu kühlenden Apparaten in Kontakt gebracht wird, sondern ein Kühlmedium in einem geschlossenen Zwischenkreis, auch Sekundärkreis genannt, verwendet wird. Das Kühlmedium wird den jeweiligen Bedürfnissen entsprechend ausgewählt. Ein gebräuchliches Kühlmedium ist Wasser, weitere Beispiele sind GlykolWasser-Gemische oder Methanol.
Das Kühlmedium in dem Sekundärkreis strömt mit einer bestimmten Vorlauftemperatur in einen oder mehrere Prozesskühler und nimmt dort Wärme aus dem Prozess auf, wobei es sich erwärmt. Um das Kühlmedium wieder auf die gewünschte Vorlauftemperatur zu bringen, wird es einem oder mehreren Wärmetauschern zugeführt, in denen es durch Primärwasser abgekühlt wird. Der Kreislauf des Primärwassers, beispielsweise Rückkühlwasser, Flusswasser oder Meerwasser, wird als Primärkreislauf bezeichnet. Entsprechend werden die Wärmetauscher, in denen das Kühlmedium durch das Primärwasser abgekühlt wird, als Primärwärmetauscher bezeichnet.
Die Aufteilung der Kühlung in einen von Primärwasser durchflossenen Primärkreis und einen von einem Kühlmedium durchflossenen Sekundärkreis ist eine etablierte Technik und bietet mehrere Vorteile. Im Fall einer Leckage an einem Apparat oder einem Prozesskühler können gegebenenfalls schädliche Substanzen zwar in das Kühlmedium gelangen, das Primärwasser im Primärkreislauf bleibt von einer Kontamination jedoch verschont. Dadurch, dass der Sekundärkreis geschlossenen ist, verschmutzen andererseits die Prozesskühler in der Anlage weniger als bei einer direkten Kühlung mit Flusswasser beispielsweise.
Diese Vorgehensweise ermöglicht es auch, unabhängig von tages- und jahreszeitlich bedingten Schwankungen im Primärwasser die Vorlauftemperatur zu den Prozesskühlern auf einen gewünschten Wert einzustellen. Üblicherweise werden die Primärwärmetauscher hinsichtlich Anzahl und Dimensionierung derart ausgelegt, dass sie im Hochlastfall dem Kühlmedium genügend Wärme entziehen können. Zur Definition des Hochlastfalles wird ein Zustand angenommen, bei dem die Temperaturdifferenz zwischen dem in den Wärmetauscher eintretenden Kühlmedium und dem eintretenden Primärwasser einen bestimmten minimal zulässigen Wert aufweist. Bei einem gegebenen Wert für das eintretende Kühlmedium ergibt sich daraus ein maximal zulässiger Wert für das eintretende Primärwasser. In Mitteleuropa ist der Hochlastfall daher in der Regel in den Sommermonaten gegeben, in denen Flusswasser beispielsweise Temperaturen von 28°C oder mehr erreichen kann.
Demgegenüber wird von einem Minderlastfall gesprochen, wenn die Temperaturdifferenz zwischen in die Primärwärmetauscher eintretendem Kühlmedium und eintretendem Primärwasser große Werte annimmt. In Mitteleuropa tritt dieser Fall üblicherweise in den Wintermonaten ein, wenn die Temperatur von Flusswasser beispielsweise auf Werte von 4°C oder darunter absinken kann. Weiterhin wird von einem Minderlastfall gesprochen, wenn nur wenig Wärme von dem Kühlmedium im Sekundärkreis auf das Primärwasser übertragen werden muss, beispielsweise wenn eine Anlage nicht mit maximaler Kapazität betrieben wird oder ganz abgestellt wird, sodass in den Primärkühlern weniger Wärme von dem Kühlmedium auf das Primärwasser übertragen wird. Um in diesen Fällen die Vorlauftemperatur des Kühlmediums zu den Prozesskühlern auf dem gleichen Wert zu halten wie im Hochlastfall, ist weniger Primärwasser erforderlich, sodass üblicherweise der Mengenstrom an Primärwasser zu den Primärwärmetauschern reduziert wird.
Diese Vorgehensweise ist insofern nachteilig, als im Minderlastfall aufgrund der geringen Strömungsgeschwindigkeiten die Primärwärmetauscher auf der Primärwasserseite zur Verschmutzung neigen, dem sogenannten Fouling. Darüber hinaus ist eine Regelung der Vorlauftemperatur zu den Prozesskühlern über den Primärwasserzustrom zu den Primärwärmetauschern träge. Es stellte sich die Aufgabe, ein gattungsgemäßes Verfahren zur Kühlung bereitzustellen, bei dem Verschmutzungen der Primärwärmetauscher verringert werden und die Vorlauftemperatur zu den Prozesskühlern schnell und robust geregelt werden kann.
Diese Aufgabe wird gelöst durch ein erfindungsgemäßes Verfahren gemäß Anspruch 1 sowie durch eine erfindungsgemäße Vorrichtung gemäß Anspruch 7. Vorteilhafte Ausgestaltungen der Erfindung sind in den jeweils abhängigen Ansprüchen 2 bis 6. Bei dem erfindungsgemäßen Verfahren zur Bereitstellung eines Kühlmediums mit geregelter Vorlauftemperatur in einem Sekundärkreis nimmt das Kühlmedium im Sekundärkreis von einem oder mehreren Prozesskühlern Wärme auf und gibt anschließend Wärme an Primärwasser in einem Primärkreis ab, bevor es wieder den Prozesskühlern zufließt. Es sind mindestens zwei Primärwärmetauscher zur Kühlung des Kühlmediums vorhanden. Nach dem Austritt aus den Prozesskühlern und vor dem Eintritt in die Primärwärmetauscher zweigt im Sekundärkreis eine Bypassleitung zur Umgehung der Primärwärmetauscher ab. Die Bypassleitung mündet in die Leitung des Sekundärkreises von den Primärwärmetauschern zu den Prozesskühlern. Erfindungsgemäß erfolgt die Regelung der Vorlauftemperatur zu den Prozesskühlern im Sekundärkreis über die Einstellung des Bypassstromes. Unter der "Vorlauftemperatur" wird hier und im Folgenden die Temperatur im Sekundärkreis im Vorlauf zu den Prozesskühlern verstanden. Als "Vorlauf zu den Prozesskühlern" wird der Abschnitt des Sekundärkreises bezeichnet, der sich zwischen dem Eintritt der Bypassleitung in den Sekundärkreis und dem ersten Prozesswärmetauscher befindet. Als "Nachlauf" wird der Abschnitt des Sekundärkreises bezeichnet, der sich zwischen dem Austritt aus dem mindestens einen Prozesswärmetauscher und der Abzweigung der Bypassleitung befindet. Bei mehreren Prozesswärmetauschern wird als "Nachlauf" der Abschnitt des Sekundärkreises bezeichnet, der sich zwischen dem Zusammenfluss der Austrittsleitungen aus den Prozesswärmetauschern und der Abzweigung der Bypassleitung befindet.
In many process engineering processes, it is necessary to dissipate heat from equipment or plant components. For this purpose, primary water is often used, which is available in particular for large-scale processes as recooling water, river water or seawater. From the point of view of process management, it is desirable that the cooling of the apparatuses or parts of the plant takes place at a temperature which is as constant as possible. From the point of view of safety and environmental protection, it should be prevented that, for example, potentially harmful substances enter the natural waters during leakages. These requirements can be met by the primary water is not brought directly into contact with the devices to be cooled, but a cooling medium in a closed intermediate circuit, also called secondary circuit, is used. The cooling medium is selected according to the respective needs. A common cooling medium is water, other examples are glycol water mixtures or methanol.
The cooling medium in the secondary circuit flows with a certain flow temperature into one or more process coolers and absorbs heat from the process, where it heats up. In order to bring the cooling medium back to the desired flow temperature, it is fed to one or more heat exchangers, in which it is cooled by primary water. The cycle of primary water, such as recooling water, river water or seawater, is referred to as the primary cycle. Accordingly, the heat exchangers in which the cooling medium is cooled by the primary water, called the primary heat exchanger.
The division of the cooling into a primary circuit through which a primary water flows and a secondary circuit through which a cooling medium flows is an established technique and offers several advantages. In the case of a leak on an apparatus or a process cooler, harmful substances may possibly enter the cooling medium, but the primary water in the primary circuit is spared from contamination. On the other hand, because the secondary circuit is closed, the process coolers in the system pollute less than, for example, direct cooling with river water.
This procedure also makes it possible, independent of daily and seasonal fluctuations in the primary water, the flow temperature to the process coolers to a desired Value to set. The primary heat exchangers are usually designed with regard to number and dimensioning in such a way that they can extract enough heat from the cooling medium in the event of high load. To define the high load case, a state is assumed in which the temperature difference between the entering into the heat exchanger cooling medium and the incoming primary water has a certain minimum allowable value. For a given value for the incoming cooling medium, this results in a maximum permissible value for the incoming primary water. In Central Europe, the high load case is therefore usually given in the summer months, in which river water can reach, for example, temperatures of 28 ° C or more.
On the other hand, it is referred to a reduced load case when the temperature difference between cooling medium entering the primary heat exchangers and entering primary water assumes large values. In Central Europe, this occurs usually in the winter months, when the temperature of river water can drop to levels of 4 ° C or below, for example. Furthermore, it is spoken of a reduced load case, when only little heat from the cooling medium in the secondary circuit must be transferred to the primary water, for example, when a system is not operated at maximum capacity or is completely turned off, so that less heat from the cooling medium to the primary water in the primary cooler is transmitted. In these cases, to keep the flow temperature of the cooling medium to the process coolers at the same value as in high load case, less primary water is required, so usually the flow rate of primary water is reduced to the primary heat exchangers.
This approach is disadvantageous in that in the case of low load due to the low flow rates, the primary heat exchanger on the primary water side tend to pollution, the so-called fouling. In addition, regulation of the flow temperature to the process coolers via the primary water feed to the primary heat exchangers is sluggish. It set itself the task of providing a generic method for cooling, in which contamination of the primary heat exchanger can be reduced and the flow temperature to the process coolers can be controlled quickly and robust.
This object is achieved by an inventive method according to claim 1 and by an inventive device according to claim 7. Advantageous embodiments of the invention are in the respective dependent claims 2 to 6. In the inventive method for providing a cooling medium with controlled flow temperature in a secondary circuit that takes Cooling medium in the secondary circuit of one or more process coolers heat and then gives off heat to primary water in a primary circuit before it flows back to the process coolers. There are at least two primary heat exchangers for cooling the cooling medium. After exiting the process coolers and before entering the primary heat exchanger, a bypass line for bypassing the primary heat exchanger branches off in the secondary circuit. The bypass line opens into the Conduction of the secondary circuit from the primary heat exchangers to the process coolers. According to the invention, the regulation of the flow temperature to the process coolers in the secondary circuit via the adjustment of the bypass current. The "flow temperature" is understood here and below to mean the temperature in the secondary circuit in the flow to the process coolers. The term "flow to the process coolers" refers to the section of the secondary circuit which is located between the entry of the bypass line into the secondary circuit and the first process heat exchanger. "Overrun" is the section of the secondary circuit which is located between the exit from the at least one process heat exchanger and the branch of the bypass line. In the case of multiple process heat exchangers, the term "after-run" refers to the section of the secondary circuit which is located between the confluence of the outlet lines from the process heat exchangers and the branch line of the bypass line.

In einer bevorzugten Ausgestaltung der Erfindung befindet sich ein Temperatursensor im Vorlauf zu den Prozesskühlern, und die Bypassleitung ist mit einem Stellorgan versehen, mit Hilfe dessen die Vorlauftemperatur zu den Prozesskühlern im Sekundärkreis regelbar ist. Es können auch mehrere Temperatursensoren im Vorlauf zu den Prozesskühlern vorgesehen sein, beispielsweise um eine redundante Messung zu realisieren. Geeignete Temperatursensoren, beispielsweise Thermoelemente, erfassen die Temperatur des strömenden Kühlmediums und stellen einen Wert zur Weiterleitung an eine Regeleinrichtung zur Verfügung.In a preferred embodiment of the invention, a temperature sensor is in the flow to the process coolers, and the bypass line is provided with an actuator, by means of which the flow temperature to the process coolers in the secondary circuit can be controlled. It is also possible to provide a plurality of temperature sensors in the flow to the process coolers, for example to realize a redundant measurement. Suitable temperature sensors, for example thermocouples, detect the temperature of the flowing cooling medium and provide a value for forwarding to a control device.

In einer weiteren erfindungsgemäßen Ausgestaltung befindet sich ein Temperatursensor oder befinden sich mehrere Temperatursensoren im Nachlauf des Sekundärkreises, und die Bypassleitung ist mit einem Stellorgan versehen, mit Hilfe dessen die Vorlauftemperatur zu den Prozesskühlern im Sekundärkreis regelbar ist.In a further embodiment of the invention, there is a temperature sensor or are several temperature sensors in the wake of the secondary circuit, and the bypass line is provided with an actuator by means of which the flow temperature to the process coolers in the secondary circuit can be controlled.

Geeignete Stellorgane erlauben es, die Strömung durch die Bypassleitung zwischen einem Minimalwert und einem Maximalwert einzustellen. Bevorzugt ist der Minimalwert gleich null, was eine vollständig geschlossene Bypassleitung bedeutet. Der Maximalwert entspricht vorzugsweise einer vollständig geöffneten Bypassleitung. Zwischen den Extremwerten lassen sich beliebige Werte für die Strömung einstellen, bevorzugt stufenlos kontinuierlich. Geeignete Stellorgane sind dem Fachmann bekannt, z.B. Klappen, Kugelventile oder Dreiwegeventile.Suitable actuators make it possible to set the flow through the bypass line between a minimum value and a maximum value. Preferably, the minimum value is zero, which means a completely closed bypass line. The maximum value preferably corresponds to a completely open bypass line. Any values for the flow can be set between the extreme values, preferably steplessly continuously. Suitable actuators are known to the person skilled in the art, e.g. Flaps, ball valves or three-way valves.

In einer bevorzugten Ausführungsform ist eine Regeleinrichtung vorhanden, die über einen Sollwert für die Vorlauftemperatur verfügt. Aus einem Vergleich des Sollwerts mit der durch den Temperatursensor erfassten Vorlauftemperatur erzeugt die Regeleinrichtung ein Ausgangssignal zur Weiterleitung an das Stellorgan. Die Temperatur des Kühlmediums, das durch die Bypassleitung strömt, ist höher als die Temperatur des Kühlmediums, das aus den Primärwärmetauschern zu den Prozesskühlern strömt. Die Regelung sieht daher vor, bei einer im Vergleich zum Sollwert zu hohen Vorlauftemperatur den Strom durch die Bypassleitung zu reduzieren, und entsprechend bei einer im Vergleich zum Sollwert zu niedrigen Vorlauftemperatur den Strom durch die Bypassleitung zu erhöhen.In a preferred embodiment, a control device is provided which has a setpoint for the flow temperature. From a comparison of the setpoint with the detected by the temperature sensor flow temperature, the control device generates an output signal for forwarding to the actuator. The temperature of the cooling medium flowing through the bypass line is higher than the temperature of the cooling medium flowing from the primary heat exchangers to the process coolers. The regulation therefore provides for the current through the bypass line to be reduced in the event of a flow temperature that is too high in comparison with the setpoint value and accordingly to increase the flow through the bypass line when the flow temperature is too low compared to the setpoint value.

In einer weiteren erfindungsgemäßen Ausführungsform ist eine Regeleinrichtung vorhanden, die über einen Sollwert für die Nachlauftemperatur verfügt. Aus einem Vergleich des Sollwerts mit der durch den Temperatursensor erfassten Nachlauftemperatur erzeugt die Regeleinrichtung ein Ausgangssignal zur Weiterleitung an das Stellorgan. Auch in dieser Ausgestaltung sieht die Regelung vor, bei einer im Vergleich zum Sollwert zu hohen Nachlauftemperatur den Strom durch die Bypassleitung zu reduzieren, und entsprechend bei einer im Vergleich zum Sollwert zu niedrigen Nachlauftemperatur den Strom durch die Bypassleitung zu erhöhen.In a further embodiment of the invention, a control device is provided which has a setpoint for the follow-up temperature. From a comparison of the setpoint with the detected by the temperature sensor follow-up temperature, the control device generates an output signal for forwarding to the actuator. In this embodiment, too, the control provides for the current through the bypass line to be reduced when the overrun temperature is too high compared to the setpoint value, and the current through the bypass line to be increased accordingly when the setpoint temperature is too low compared to the setpoint value.

Der Strom des Kühlmediums durch die Bypassleitung kann auch dadurch beeinflusst werden, dass Stellorgane in den Kühlmedium-Leitungen zu den Primärwärmetauschern oder aus den Primärwärmetauschern vorhanden sind und in ihren Öffnungsgraden entsprechend eingestellt werden. Eine Regelung des Bypassstromes durch Beeinflussung eines Stellorgans in der Bypassleitung ist jedoch einfacher zu realisieren und ist daher bevorzugt.The flow of the cooling medium through the bypass line can also be influenced by the fact that actuators are present in the cooling medium lines to the primary heat exchangers or from the primary heat exchangers and adjusted in their degrees of opening. However, a regulation of the bypass current by influencing an actuator in the bypass line is easier to implement and is therefore preferred.

Bei der Regeleinrichtung kann es sich um ein eigenständiges Gerät handeln, beispielsweise einen Kompaktregler, das informationstechnisch mit dem Temperatursensor und dem Stellorgan verbunden ist. Die Regeleinrichtung kann auch in Kombination mit dem Stellorgan realisiert sein, beispielsweise in Form eines Stellventils. Alternativ kann die Regeleinrichtung auch in einem übergeordneten System zur Prozessführung integriert sein, beispielsweise in einem Prozessleitsystem.In the control device may be an independent device, such as a compact controller, which is connected in terms of information technology with the temperature sensor and the actuator. The control device can also be realized in combination with the actuator, for example in the form of a control valve. Alternatively, the control device can also be integrated in a higher-level system for process control, for example in a process control system.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens sind die Primärwärmetauscher im Hinblick auf Anzahl und Dimensionierung auf einen Hochlastfall ausgelegt. Im Minderlastfall wird die Kühlkapazität des Primärkreises durch Abschalten eines oder mehrerer der Primärwärmetauscher angepasst, wobei mindestens ein Primärwärmetauscher in Betrieb bleibt. Unter den Begriffen "Hochlastfall" und "Minderlastfall" werden Betriebszustände verstanden, wie sie oben definiert sind.In a preferred embodiment of the method according to the invention, the primary heat exchangers are designed with regard to number and dimensioning to a high load case. In the case of reduced load, the cooling capacity of the primary circuit is adjusted by switching off one or more of the primary heat exchangers, with at least one primary heat exchanger remaining in operation. The terms "high load case" and "low load case" are understood to mean operating states as defined above.

In einer weiterhin bevorzugten Variante werden die Primärwärmetauscher derart ausgelegt, dass im Minderlastfall ein Wärmetauscher ausreicht, um unter Ausnutzung eines maximal zulässigen Temperaturunterschieds zwischen Primärwassereintritt und -austritt das Kühlmedium auf die gewünschte Vorlauftemperatur zu kühlen. Für den Hochlastfall werden entsprechend mehr Wärmetauscher vorgesehen, die bevorzugt einzeln ebenfalls auf den maximal zulässigen Temperaturunterschied zwischen Primärwassereintritt und -austritt ausgelegt werden, und in Summe für die minimale Temperaturdifferenz im Hochlastfall geeignet sind. Der maximal zulässige Temperaturunterschied zwischen Primärwassereintritt und -austritt ist häufig behördlich vorgegeben, beispielsweise auf einen Wert von 15 K. Durch diese Maßnahme kann über den gesamten jahreszeitlich veränderlichen Lastbereich das Primärwasser effizient genutzt und die erforderliche Mindestmenge an Primärwasser deutlich reduziert werden.In a further preferred variant, the primary heat exchangers are designed such that in a reduced load, a heat exchanger is sufficient to cool the cooling medium to the desired flow temperature by utilizing a maximum allowable temperature difference between primary water inlet and outlet. For the high load case, correspondingly more heat exchangers are provided, which are preferably also individually designed for the maximum permissible temperature difference between primary water inlet and outlet, and are in total suitable for the minimum temperature difference in the high load case. The maximum permissible temperature difference between primary water inlet and outlet is often prescribed by the authorities, for example to a value of 15 K. Through this measure, the primary water can be efficiently used over the entire seasonal load range and the required minimum amount of primary water can be significantly reduced.

Die Bypassleitung wird hinsichtlich ihrer Kapazität bevorzugt derart ausgelegt, dass der Regelbereich der Bypassleitung ausreicht, um bei der Abschaltung und der Zuschaltung eines Primärwärmetauschers die Vorlauftemperatur im Sekundärkreis stoßfrei zu regeln.The bypass line is preferably designed in terms of their capacity such that the control range of the bypass line is sufficient to control the flow temperature in the secondary circuit bumplessly when switching off and the connection of a primary heat exchanger.

Bei der Auslegung der Bypassleitung wird weiterhin bevorzugt berücksichtigt, dass tageszeitliche Schwankungen der Primärwassertemperatur allein durch die Regelung des Stroms durch die Bypassleitung kompensiert werden können. Eine Zu- oder Abschaltung von Primärwärmetauschern ist für diesen Fall nicht vorgesehen.In the design of the bypass line is further preferably considered that Tageszeitliche fluctuations in the primary water temperature can be compensated solely by regulating the flow through the bypass line. A connection or disconnection of primary heat exchangers is not provided for this case.

Besonders bevorzugt wird der Durchfluss an Primärwasser durch den oder die Primärwärmetauscher im Wesentlichen konstant gehalten. Der Durchfluss wird hierbei nicht aktiv geregelt, sondern ergibt sich aus der Druckdifferenz zwischen primärwasserseitigem Einlass und Auslass der Primärwärmetauscher. Bei Schwankungen dieser Druckdifferenz ergeben sich auch Schwankungen in der Durchflussmenge. Sinkt die Temperatur des Primärwassers, oder verringert sich die dem Kühlmedium zu entziehende Wärmemenge, z.B. durch eine Verringerung der Durchflussmenge an Kühlmedium durch einen Primärwärmetauscher oder durch eine Verringerung der Kühlmediumtemperatur beim Austritt aus den Prozesskühlern, so sinkt die Kühlmediumtemperatur am Austritt aus diesem Primärwärmetauscher. Entsprechend erhöht sich die Austrittstemperatur des Kühlmediums bei einer Temperaturerhöhung des Primärwassers und/oder einer Steigerung der dem Kühlmedium zu entziehenden Wärmemenge.Particularly preferably, the flow of primary water through the primary heat exchanger or is kept substantially constant. The flow is not actively regulated, but results from the pressure difference between the primary water side inlet and the outlet of the primary heat exchanger. Variations in this pressure difference also result in fluctuations in the flow rate. If the temperature of the primary water drops or the amount of heat to be removed from the cooling medium decreases, e.g. by reducing the flow rate of cooling medium through a primary heat exchanger or by reducing the cooling medium temperature when exiting the process coolers, the cooling medium temperature drops at the outlet of this primary heat exchanger. Accordingly, the outlet temperature of the cooling medium increases with a temperature increase of the primary water and / or an increase in the amount of heat to be removed from the cooling medium.

In einer weiterhin bevorzugten Ausgestaltung der Erfindung wird die Kapazitätsanpassung durch Zu- oder Abschalten von Primärwärmetauschern derart vorgenommen, dass der Druckverlust des Primärwassers beim Durchströmen der in Betrieb befindlichen Primärwärmetauscher jeweils mindestens 300 mbar, besonders bevorzugt mindestens 800 mbar beträgt. Dadurch wird die Wahrscheinlichkeit, dass sich Ablagerungen auf der Primärwasserseite bilden, deutlich reduziert.In a further preferred embodiment of the invention, the capacity adjustment is made by switching on or off of primary heat exchangers such that the pressure drop of the primary water when flowing through the primary heat exchanger in operation is at least 300 mbar, more preferably at least 800 mbar. This significantly reduces the likelihood of deposits forming on the primary water side.

Die mindestens zwei Primärwärmetauscher können auf unterschiedliche Arten verschaltet sein. Bevorzugt sind die Primärwärmetauscher sowohl auf Seiten des Primärkreises als auch auf Seiten des Sekundärkreises parallel geschaltet.The at least two primary heat exchangers can be interconnected in different ways. The primary heat exchangers are preferably connected in parallel both on the side of the primary circuit and on the side of the secondary circuit.

Als Primärwärmetauscher können sämtliche, dem Fachmann für diesen Zweck bekannte Wärmetauscher verwendet werden, vorzugsweise werden Plattenwärmetauscher oder Rohrbündelwärmetauscher eingesetzt, besonders bevorzugt gedichtete oder geschweißte Plattenwärmetauscher. Die besonders bevorzugten Plattenwärmetauscher werden üblicherweise auf einen hohen Druckverlust hin ausgelegt. Dies ist von Vorteil, wenn der Bypass ohne zusätzliche Fördereinrichtungen wie Pumpen realisiert werden soll.All heat exchangers known to the person skilled in the art for this purpose can be used as the primary heat exchanger, preferably plate heat exchangers or tube bundle heat exchangers are used, particularly preferably sealed or welded plate heat exchangers. The most preferred plate heat exchangers are usually designed for a high pressure loss. This is advantageous if the bypass is to be realized without additional conveying devices such as pumps.

In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens handelt es sich bei dem Primärwasser um Rückkühlwasser, Flusswasser, Meerwasser oder Brackwasser. Unter "Rückkühlwasser" wird dabei Wasser verstanden, das durch eine Einrichtung wie einen Kühlturm oder ein Rückkühlwerk in verfahrenstechnischen Anlagen gekühlt wurde.In a preferred embodiment of the method according to the invention, the primary water is recooling water, river water, sea water or brackish water. By "recooling water" is meant water, which has been cooled by a device such as a cooling tower or a recooling plant in process plants.

Gegenüber dem aus dem Stand der Technik bekannten Verfahren bietet die Erfindung mehrere Vorteile. Die Bereitstellung von mindestens zwei Primärwärmetauschern, die gemeinsam im Hochlastfall die erforderliche Kühlkapazität stellen, im Minderlastfall aber teilweise abgeschaltet werden können, ermöglicht es, die einzelnen Primärwärmetauscher mit nahezu konstanter Durchströmung auf der Primärwasserseite zu betreiben, was einem vorzeitigen Fouling vorbeugt. Ferner bietet sich dadurch die Möglichkeit, im Minderlastfall die Primärwärmetauscher abwechselnd zu- und abzuschalten, was eine einfache Inspektion und gegebenenfalls Wartung oder Reinigung ermöglicht. Weiterhin wird die zur Bereitstellung der Kühlkapazität erforderliche Mindestmenge an Primärwasser deutlich reduziert. Ein weiterer Vorteil ist darin zu sehen, dass eine Regelung der Vorlauftemperatur mit Hilfe des Bypassstromes wesentlich einfacher, schneller und robuster zu bewerkstelligen ist als eine Regelung über die Durchflussmenge an Primärwasser, wie sie im Stand der Technik praktiziert wird.Compared with the method known from the prior art, the invention offers several advantages. The provision of at least two primary heat exchangers working together in the High load case provide the required cooling capacity, but in partial load can be partially shut down, makes it possible to operate the individual primary heat exchanger with almost constant flow on the primary water side, which prevents premature fouling. Furthermore, this offers the possibility, in the case of reduced load, the primary heat exchanger alternately on and off, which allows easy inspection and possibly maintenance or cleaning. Furthermore, the minimum amount of primary water required to provide the cooling capacity is significantly reduced. Another advantage is the fact that a control of the flow temperature by means of the bypass flow is much easier, faster and more robust to accomplish than a regulation on the flow rate of primary water, as practiced in the prior art.

Anhand der Zeichnungen wird im Folgenden die Erfindung weiter erläutert, wobei die Zeichnungen als Prinzipdarstellungen zu verstehen sind. Sie stellen keine Beschränkung der Erfindung, beispielsweise im Hinblick auf die Anzahl, Art und Verschaltung von Wärmetauschern, dar. Es zeigen:

Fig. 1:
Prinzipskizze eines Kühlsystems gemäß dem Stand der Technik
Fig. 2:
Prinzipskizze eines erfindungsgemäßen Kühlsystems
Fig. 3:
Prinzipskizze eines erfindungsgemäßen Kühlsystems mit sekundärseitiger Reihenschaltung der Primärwärmetauscher
Fig. 4:
Prinzipskizze eines erfindungsgemäßen Kühlsystems mit primärseitig flexibler Verschaltung der Primärwärmetauscher
Fig. 5:
Zeitlicher Verlauf der Primärwassertemperatur und der Anzahl an in Betrieb befindlichen Primärwärmetauschern
With reference to the drawings, the invention will be further explained in the following, the drawings being to be understood as schematic representations. They represent no limitation of the invention, for example, in terms of the number, type and interconnection of heat exchangers, dar. It shows:
Fig. 1:
Schematic diagram of a cooling system according to the prior art
Fig. 2:
Schematic diagram of a cooling system according to the invention
3:
Schematic diagram of a cooling system according to the invention with secondary side series connection of the primary heat exchanger
4:
Schematic diagram of a cooling system according to the invention with primary side flexible interconnection of the primary heat exchanger
Fig. 5:
Time history of the primary water temperature and the number of primary heat exchangers in operation

Fig. 1 zeigt ein Kühlsystem gemäß dem Stand der Technik, bei dem in einem Sekundärkreis 20 ein Kühlmedium zu Prozesskühlern 22 strömt, dort Wärme aufnimmt und in einem Primärwärmetauscher 12 Wärme an Primärwasser in einem Primärkreis 10 abgibt, bevor es zu den Prozesskühlern 22 zurückströmt. Die Prozesskühler können von unterschiedlicher Bauart sein, beispielsweise Platten-, Rohrbündel-, Spiralwärmetauscher oder Ummantelungen von Rohren oder Behältern zu deren Kühlung. Die Vorlauftemperatur des Kühlmediums vor den Prozesskühlern 22 wird mit Hilfe eines Temperatursensors erfasst und durch eine Regeleinrichtung 24 auf einen bestimmten Sollwert geregelt. Als Stellgröße für die Regelung fungiert die Menge an Primärwasser im Primärkreis 10. Fig. 1 shows a cooling system according to the prior art in which flows in a secondary circuit 20, a cooling medium to process coolers 22, receives heat there and in a primary heat exchanger 12 heat to primary water in a primary circuit 10 before it flows back to the process coolers 22. The process coolers can be of different types, for example plate, tube bundle, spiral heat exchangers or casings of pipes or containers for their cooling. The flow temperature of the cooling medium before the process coolers 22 is detected by means of a temperature sensor and regulated by a control device 24 to a specific setpoint. The amount of primary water in the primary circuit 10 acts as a control variable for the control.

In Fig. 2 ist eine erste bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens dargestellt. Das Kühlmedium, das die Prozesskühler 22 verlässt, wird durch zwei Primärwärmetauscher 12, 14 geleitet, wo es Wärme an Primärwasser in einem Primärkreis 10 abgibt. In dem dargestellten, bevorzugten Fall sind die Primärwärmetauscher sowohl auf Seiten des Primärkreises als auch auf Seiten des Sekundärkreises parallel geschaltet. Zwischen dem Austritt des Kühlmediums aus den Prozesskühlern 22 und seinem Eintritt in die Primärwärmetauscher 12, 14 zweigt eine Bypassleitung 26 ab, die nach dem Austritt des Kühlmediums aus den Primärwärmetauschern wieder in den Sekundärkreis 20 mündet. Die Regelung 24 der Vorlauftemperatur des Kühlmediums zu den Prozesskühlern 22 erfolgt über die Einstellung des Stromes in der Bypassleitung. Im Hochlastfall sind beide Primärwärmetauscher 12 und 14 in Betrieb, während im Minderlastfall die Kapazität eines Primärwärmetauschers ausreicht, um das Kühlmedium im Sekundärkreis 20 hinreichend zu kühlen. In diesem Fall wird durch das Schließen der entsprechenden Ventile im Sekundärkreis einer der Primärwärmetauscher abgeschaltet.In Fig. 2 a first preferred embodiment of the method according to the invention is shown. The cooling medium leaving the process cooler 22 is passed through two primary heat exchangers 12, 14, where it gives off heat to primary water in a primary circuit 10. In the illustrated, preferred case, the primary heat exchangers are connected in parallel both on the side of the primary circuit and on the side of the secondary circuit. Between the outlet of the cooling medium from the process coolers 22 and its entry into the primary heat exchanger 12, 14 branches off a bypass line 26, which opens after the exit of the cooling medium from the primary heat exchangers back into the secondary circuit 20. The control 24 of the flow temperature the cooling medium to the process coolers 22 via the adjustment of the current in the bypass line. In case of high load, both primary heat exchangers 12 and 14 are in operation, while in the low load case, the capacity of a primary heat exchanger is sufficient to sufficiently cool the cooling medium in the secondary circuit 20. In this case, one of the primary heat exchangers is switched off by closing the corresponding valves in the secondary circuit.

In Fig. 3 ist eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens dargestellt. In diesem Beispiel sind die Primärwärmetauscher 12 und 14 seitens des Primärkreises parallel und seitens des Sekundärkreises in Reihe verschaltet. Um im Minderlastfall den Primärwärmetauscher 12 oder 14 abschalten zu können, sind im Sekundärkreis Umgänge vorgesehen, die über Ventile zu- und abgeschaltet werden können.In Fig. 3 a further preferred embodiment of the method according to the invention is shown. In this example, the primary heat exchangers 12 and 14 are connected in parallel by the primary circuit and in series by the secondary circuit. In order to switch off the primary heat exchanger 12 or 14 in the case of reduced load, bypasses are provided in the secondary circuit, which can be switched on and off via valves.

Fig. 4 zeigt eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens, bei der die Primärwärmetauscher 12, 14 sekundärseitig parallel geschaltet sind. Auf Seiten des Primärkreises ist die Verschaltung flexibel gehalten. Durch entsprechendes Öffnen und Schließen der beispielhaft dargestellten Ventile lässt sich primärseitig eine Reihenschaltung oder eine Parallelschaltung realisieren. Außerdem können die Primärwärmetauscher 12, 14 wechselseitig durch Schließen der entsprechenden Ventile im Sekundärkreis abgeschaltet werden. Fig. 4 shows a further preferred embodiment of the method according to the invention, in which the primary heat exchanger 12, 14 are connected in parallel on the secondary side. On the side of the primary circuit, the interconnection is kept flexible. By appropriately opening and closing the valves shown as examples, a series connection or a parallel connection can be realized on the primary side. In addition, the primary heat exchangers 12, 14 can be switched off alternately by closing the corresponding valves in the secondary circuit.

Die Abbildungen dienen lediglich der Illustration. Von den Darstellungen abweichende Konfigurationen und Verschaltungen sind selbstverständlich ebenfalls unter die Erfindung fallend aufzufassen, solange die Regelung der Vorlauftemperatur im Sekundärkreis durch Einstellung des Bypassstromes erfolgt.The illustrations are for illustration only. Of the representations deviating configurations and interconnections are of course also fall under the invention fall, as long as the regulation of the flow temperature in the secondary circuit is done by adjusting the bypass current.

Insbesondere ist die Anzahl der in den Abbildungen dargestellten Wärmetauscher lediglich beispielhaft und nicht darauf begrenzt. Es ist von Vorteil, wenn mehr als zwei Primärwärmetauscher vorhanden sind. Je mehr Primärwärmetauscher zur Verfügung stehen, umso flexibler lassen sich Zu- und Abschaltungen von einzelnen Primärwärmetauschern vornehmen, um eine optimale Abstimmung auf den aktuell vorliegenden Lastfall vorzunehmen. Andererseits steigen damit auch die Investitionskosten. Vorzugsweise werden zwei bis drei Primärwärmetauscher vorgesehen.In particular, the number of heat exchangers shown in the figures is merely exemplary and not limited thereto. It is advantageous if more than two primary heat exchangers are present. The more primary heat exchangers are available, the more flexible it is possible to switch on and off individual primary heat exchangers in order to optimally match the currently available load case. On the other hand, this also increases the investment costs. Preferably, two to three primary heat exchangers are provided.

Ein Auswahlkriterium für die Anzahl an Primärwärmetauschern lässt sich aus den Temperaturgradienten des Primärwassers ableiten. Vorzugsweise wird die optimale Anzahl an Primärwärmetauschern durch den Quotient aus der maximal zulässigen Temperaturdifferenz und der typischen Temperaturdifferenz im Hochlastfall abgeschätzt. Für den Standort Ludwigshafen am Rhein, Deutschland, beispielsweise beträgt der behördlich maximal zulässige Temperaturunterschied zwischen Primärwassereintritt und -austritt 15 K bei der Verwendung von Flusswasser als Primärwasser. Außerdem darf das in den Fluss zurückgeleitete Wasser einen Wert von 33°C nicht übersteigen. Im Hochlastfall in den Sommermonaten, in denen das Flusswasser Temperaturen von 28°C erreichen kann, sind daher Temperaturunterschiede zwischen Primärwassereintritt und -austritt von 5 K üblich. Somit ergibt sich ein Quotient von 15 K / 5 K = 3. Es werden daher vorteilhaft drei Primärwärmetauscher vorgesehen, die so ausgelegt sind, dass jeder der drei Wärmetauscher alleine dem Kühlmedium im Sekundärkreis die erforderliche Wärmemenge entziehen kann, wenn der maximal zulässige Temperaturunterschied von 15 K ausgeschöpft wird.A selection criterion for the number of primary heat exchangers can be derived from the temperature gradients of the primary water. Preferably, the optimum number of primary heat exchangers is estimated by the quotient of the maximum permissible temperature difference and the typical temperature difference in the high load case. For example, for the location Ludwigshafen am Rhein, Germany, the maximum allowable temperature difference between primary water entry and exit is 15 K when using river water as primary water. In addition, the water returned to the river must not exceed 33 ° C. In the high load case in the summer months, in which the river water can reach temperatures of 28 ° C, temperature differences between primary water entry and exit of 5 K are therefore common. This results in a quotient of 15 K / 5 K = 3. It is therefore advantageous to provide three primary heat exchangers which are designed such that each of the three heat exchangers alone can extract the required amount of heat from the cooling medium in the secondary circuit when the maximum permissible temperature difference of 15 K is exhausted.

In Fig. 5 ist schematisch der zeitliche Verlauf der Primärwassertemperatur T (gestrichelte Kurve) und der Anzahl an in Betrieb befindlichen Primärwärmetauschern N (durchgezogene Linien, rechte Skala) über einen Zeitraum von 12 Monaten dargestellt. In dieser beispielhaften Darstellung wird davon ausgegangen, dass die aus dem Sekundärkreis abzuführende Wärmemenge über den betrachteten Zeitraum konstant bleibt. Als Primärwasser wird Flusswasser verwendet, das in den Wintermonaten Dezember und Januar die niedrigste Temperatur aufweist, z.B. 4°C. Die maximal zulässige Temperaturdifferenz kann voll ausgeschöpft werden, sodass ein Primärwärmetauscher ausreicht, um das Kühlmedium im Sekundärkreis hinreichend zu kühlen. Sobald das Flusswasser über einen Wert ansteigt, ab dem unter Berücksichtigung einer gewissen Schwankungsbreite der maximal zulässige Temperaturunterschied nicht mehr gewährleistet werden kann, wird ein weiterer Primärwärmetauscher in Betrieb genommen. Bei einer angenommenen Schwankungsbreite von 3 K und einem Maximalwert von 33°C für das in den Fluss abgegebene Wasser ergibt sich ein Wert von 15°C, ab dem der zweite Primärwärmetauscher in Betrieb genommen wird. Im Beispiel gemäß Fig. 5 ist dies Mitte April der Fall. Anfang Juni steigt die Temperatur des Flusswassers auf einen Wert an, ab dem der dritte Primärwärmetauscher erforderlich wird, um zuverlässig einerseits die erforderliche Wärmemenge abzuführen und andererseits den Maximalwert von 33°C nicht zu überschreiten. Über die Sommermonate Juni, Juli und August sind drei Primärwärmetauscher in Betrieb, bis die Flusswassertemperatur wieder soweit abgesunken ist, dass zwei Primärwärmetauscher ausreichen, im Beispiel Anfang September. Ende Oktober ist die Flusswassertemperatur noch weiter abgesungen, z.B. unter 15°C, sodass wieder ein Primärwärmetauscher ausreicht.In Fig. 5 schematically shows the time course of the primary water temperature T (dashed curve) and the number of operating in primary heat exchangers N (solid lines, right scale) over a period of 12 months. In this exemplary representation, it is assumed that the amount of heat to be dissipated from the secondary circuit remains constant over the considered period of time. The primary water used is river water, which has the lowest temperature in the winter months of December and January, eg 4 ° C. The maximum permissible temperature difference can be fully exploited, so that a primary heat exchanger is sufficient to sufficiently cool the cooling medium in the secondary circuit. As soon as the river water rises above a value above which, taking into account a certain fluctuation range, the maximum permissible temperature difference can no longer be guaranteed, a further primary heat exchanger is put into operation. Assuming a fluctuation range of 3 K and a maximum value of 33 ° C for the water discharged into the flow, this results in a value of 15 ° C, from which the second primary heat exchanger is put into operation. In the example according to Fig. 5 this is the case in mid-April. At the beginning of June, the temperature of the river water rises to a level above which the third primary heat exchanger becomes necessary in order reliably to dissipate the required amount of heat and not to exceed the maximum value of 33 ° C. During the summer months of June, July and August, three primary heat exchangers are in operation until the river water temperature has fallen again enough that two primary heat exchangers are sufficient, in the example at the beginning of September. At the end of October, the river water temperature has dropped even further, eg below 15 ° C, so that once again a primary heat exchanger is sufficient.

Das erfindungsgemäße Verfahren bewirkt, dass sich angepasst an die aktuellen Bedürfnisse flexibel Kühlkapazitäten zur Verfügung stellen lassen. In dem in Fig. 5 dargestellten Beispiel sind für eine Dauer von fünfeinhalb Monaten ein Primärwärmetauscher, für eine Dauer von dreieinhalb Monaten zwei Primärwärmetauscher und für eine Dauer von drei Monaten drei Primärwärmetauscher in Betrieb. Im Vergleich zu einer reinen Auslegung auf den Hochlastfall lässt sich durch das erfindungsgemäße Verfahren die benötigte Primärwassermenge drastisch reduzieren.The method according to the invention causes flexible cooling capacities to be made available adapted to the current needs. In the in Fig. 5 Example shown are a primary heat exchanger for a period of five and a half months, three primary heat exchangers for a period of three and a half months and three primary heat exchangers for a period of three months. Compared to a pure design for the high load case can be drastically reduced by the inventive method, the required amount of primary water.

Primärwasserseitig wird jeder Primärwärmetauscher mit einer im Wesentlichen konstanten Wassermenge durchströmt, was einem Verschmutzen und Fouling vorbeugt. Außer in den Sommermonaten können die gerade nicht in Betrieb befindlichen Wärmetauscher problemlos gewartet und gereinigt werden, ohne den Betrieb der Anlagen im Sekundärkreis zu beeinträchtigen. Unter der Annahme, dass bei Anlagen gemäß dem Stand der Technik, bei denen lediglich ein auf den Hochlastfall ausgelegter Primärwärmetauscher vorhanden ist, bei dem im Minderlastfall die Menge an Primärwasser reduziert wird, einmal jährlich eine verschmutzungsbedingte Anlagenabstellung von ca. 3 Tagen Dauer erforderlich ist, lässt sich durch das erfindungsgemäße Verfahren die Anlagenkapazität um ca. 1% erhöhen. Bei häufigeren oder längeren Abstellzeiten vergrößert sich der wirtschaftliche Vorteil entsprechend.On the primary water side, each primary heat exchanger flows through a substantially constant amount of water, which prevents soiling and fouling. Except in the summer months, the heat exchangers that are currently not in operation can be easily maintained and cleaned without affecting the operation of the systems in the secondary circuit. Assuming that in systems according to the state of the art, in which only a primary heat exchanger designed for high load cases is used, in which the amount of primary water is reduced in the case of reduced load, once a year a pollution-related shutdown of about 3 days is required, can be through the inventive Method increase the plant capacity by approx. 1%. For more frequent or longer shutdown times, the economic advantage increases accordingly.

Claims (7)

  1. A method for providing a refrigerant medium having a controlled flow temperature in a secondary cycle (20), wherein the refrigerant medium in the secondary cycle (20) takes up heat from one or more process coolers (22) and then gives off heat to primary water in a primary cycle (10) before it flows back to the process coolers (22), wherein at least two primary heat exchangers (12, 14) are present for cooling the refrigerant medium, in addition a bypass line (26) in the secondary cycle (20) branches off after exit from the process coolers (22) for bypassing the primary heat exchangers (12, 14), and the temperature in the secondary cycle (20) in the flow to the process coolers (22) is controlled via the setting of the bypass stream.
  2. The method according to claim 1, wherein number and dimensioning of the primary heat exchangers (12, 14) are designed for a high load case, and in a low load case the refrigeration capacity of the primary cycle (10) is adapted by shutting off one or more of the primary heat exchangers (12, 14), wherein at least one primary heat exchanger remains in operation.
  3. The method according to claim 2, wherein the capacity is adapted in such a manner that the pressure drop of the primary water across the primary heat exchangers (12, 14) in operation is in each case at least 300 mbar, preferably at least 800 mbar.
  4. The method according to any one of claims 1 to 3, wherein the primary heat exchangers (12, 14) are designed for a maximally permissible temperature difference between primary water intake and primary water outlet.
  5. The method according to any one of claims 1 to 4, wherein the primary heat exchangers (12, 14) are connected in parallel both on the part of the primary cycle (10) and also on the part of the secondary cycle (20).
  6. The method according to any one of claims 1 to 5, wherein the primary heat exchangers (12, 14) are plate heat exchangers or tube-bundle heat exchangers, in particular sealed or welded plate heat exchangers.
  7. Apparatus for carrying out the method according to at least one of claims 1 to 6, comprising one or more process coolers (22) in the secondary cycle (20) and also at least one temperature sensor in the flow to the process coolers (22), wherein at least two primary heat exchangers (12, 14) are present in which the refrigerant medium of the secondary cycle (20) can release heat to the primary water of the primary cycle (10), and wherein, in addition, a bypass line (26) is present which, in the secondary cycle (20), branches off after exit from the process coolers (22) for bypassing the primary heat exchangers (12, 14) and is provided with an actuator, using which the temperature in the secondary cycle (20) is controllable in the flow to the process coolers (22), wherein the primary heat exchangers (12, 14) are connected in parallel not only on sides of the primary cycle (10) but also on sides of the secondary cycle (20).
EP13720299.0A 2012-04-25 2013-04-23 Method for providing a cooling medium in a secondary circuit Active EP2841869B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13720299.0A EP2841869B1 (en) 2012-04-25 2013-04-23 Method for providing a cooling medium in a secondary circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12165458 2012-04-25
EP13720299.0A EP2841869B1 (en) 2012-04-25 2013-04-23 Method for providing a cooling medium in a secondary circuit
PCT/EP2013/058377 WO2013160293A1 (en) 2012-04-25 2013-04-23 Method for providing a cooling medium in a secondary circuit

Publications (2)

Publication Number Publication Date
EP2841869A1 EP2841869A1 (en) 2015-03-04
EP2841869B1 true EP2841869B1 (en) 2018-10-10

Family

ID=48289087

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13720299.0A Active EP2841869B1 (en) 2012-04-25 2013-04-23 Method for providing a cooling medium in a secondary circuit

Country Status (7)

Country Link
EP (1) EP2841869B1 (en)
JP (1) JP2015514957A (en)
KR (1) KR20150003848A (en)
CN (1) CN104246418A (en)
ES (1) ES2704988T3 (en)
IN (1) IN2014DN08409A (en)
WO (1) WO2013160293A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015016330A1 (en) * 2015-12-17 2017-06-22 Eisenmann Se Zuluftanlage
EP3388775A1 (en) * 2017-04-10 2018-10-17 Linde Aktiengesellschaft Method for operating a heat exchanger and suitable heat exchanger
FR3077350B1 (en) 2018-01-31 2020-01-17 Valeo Embrayages CLUTCH ACTUATOR
FR3077351B1 (en) 2018-01-31 2020-09-04 Valeo Embrayages CLUTCH ACTUATOR
CN114109607B (en) * 2021-10-27 2023-02-28 合肥通用机械研究院有限公司 Heat load self-adaptive gas turbine cooling air waste heat recovery system and control method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714265B2 (en) * 1986-05-16 1995-02-15 株式会社日立製作所 Power plant cooling water system
JPH0820156B2 (en) * 1987-03-24 1996-03-04 石川島播磨重工業株式会社 Cooling system
JP2001289548A (en) * 2000-04-07 2001-10-19 Ushio Inc Cooling device for optical mechanism
JP2003106782A (en) * 2001-09-28 2003-04-09 Hisaka Works Ltd Welded plate type heat exchanger
JP2003287328A (en) * 2002-03-27 2003-10-10 Takenaka Komuten Co Ltd Cooling system for electric appliance
CN100338983C (en) * 2003-12-03 2007-09-19 国际商业机器公司 Cooling system and method employing for ensuring cooling of multiple electronics subsystems
EP1801363A1 (en) * 2005-12-20 2007-06-27 Siemens Aktiengesellschaft Power plant
JP2008292121A (en) * 2007-05-28 2008-12-04 Chugoku Electric Power Co Inc:The Water temperature management system
DE102007050107B4 (en) * 2007-10-19 2009-10-22 Envi Con & Plant Engineering Gmbh Cooling water system for power plants and industrial plants
JP5291396B2 (en) * 2008-06-23 2013-09-18 株式会社九電工 Control method of air conditioner and air conditioner
KR102035103B1 (en) * 2010-05-27 2019-10-22 존슨 컨트롤스 테크놀러지 컴퍼니 Thermosyphon coolers for cooling systems with cooling towers
EP2439468A1 (en) * 2010-10-07 2012-04-11 Basf Se Method for integrating heat using a cooling assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2841869A1 (en) 2015-03-04
CN104246418A (en) 2014-12-24
ES2704988T3 (en) 2019-03-21
JP2015514957A (en) 2015-05-21
KR20150003848A (en) 2015-01-09
WO2013160293A1 (en) 2013-10-31
IN2014DN08409A (en) 2015-05-08

Similar Documents

Publication Publication Date Title
EP2841869B1 (en) Method for providing a cooling medium in a secondary circuit
EP2359058B1 (en) Method of operating a waste heat steam generator
DE3149772A1 (en) "HEATING STEAM COOLING CONTROL ARRANGEMENT"
DE2853919A1 (en) POWER PLANT WITH AT LEAST ONE STEAM TURBINE, A GAS TURBINE AND A HEAT RECOVERY STEAM GENERATOR
EP3615713B1 (en) Method for operating a water electrolysis device
EP3374100B1 (en) Device and method for cleaning of a plant part of a beverage filling plant
DE102011011123B4 (en) Steam plant and process for configuring the steam plant
EP3431889A1 (en) Supply circuit for a heat exchange medium for a consumer, industrial plant and method for operating same
EP3554727B1 (en) Cooling system for cooling rolling stock
DE2837540C2 (en)
EP1920826A2 (en) Cooling assembly and method for cooling autoclaves
EP3173161A1 (en) Mobile high pressure cleaning device with switchable gear drive
EP3827209B1 (en) Method and device for cooling a tool
DE102014105779B4 (en) Heat transfer device and method for operating a heat transfer device
DE102016102014A1 (en) Thermal disinfection of heat exchangers as drinking water preheaters
DE102012004246A1 (en) Apparatus for the thermal utilization of a primary fluid and apparatus for treating objects with such
EP3955084B1 (en) Safety device for a converter
DE10025525A1 (en) Heat transfer circuit has main pipe system with secondary system also having pump and radiator integrated with it
EP3647667B1 (en) Continuous flow drinking water heater, drinking water heating system and method for operating a continuous flow drinking water heater
AT524819B1 (en) Heat coupling device for a fuel cell system
EP2339247A2 (en) Method for heating service water
EP2878887B1 (en) Method for operating a gas oxidisation system
WO2023186783A1 (en) Method for controlling a heating system, heating system, and control device
WO2014146845A2 (en) Method for starting up a solar thermal power plant
EP3173160A1 (en) Mobile high-pressure cleaning device with heat exchangers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170518

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180709

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1051742

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013011286

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2704988

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190111

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013011286

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

26N No opposition filed

Effective date: 20190711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190423

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1051742

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230424

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230421

Year of fee payment: 11

Ref country code: FR

Payment date: 20230421

Year of fee payment: 11

Ref country code: ES

Payment date: 20230515

Year of fee payment: 11

Ref country code: DE

Payment date: 20230427

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230424

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230418

Year of fee payment: 11