JPH0714265B2 - Power plant cooling water system - Google Patents

Power plant cooling water system

Info

Publication number
JPH0714265B2
JPH0714265B2 JP11060186A JP11060186A JPH0714265B2 JP H0714265 B2 JPH0714265 B2 JP H0714265B2 JP 11060186 A JP11060186 A JP 11060186A JP 11060186 A JP11060186 A JP 11060186A JP H0714265 B2 JPH0714265 B2 JP H0714265B2
Authority
JP
Japan
Prior art keywords
cooling water
temperature
cooler
generator
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11060186A
Other languages
Japanese (ja)
Other versions
JPS62268976A (en
Inventor
哲三 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11060186A priority Critical patent/JPH0714265B2/en
Publication of JPS62268976A publication Critical patent/JPS62268976A/en
Publication of JPH0714265B2 publication Critical patent/JPH0714265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発電プラントの発電機水素冷却器と固定子冷
却器とタービン油冷却器およびポンプ類の軸受を冷却す
る冷却装置に係り、特に電力消費のピーク時発電機を定
格出力以上の過負荷出力運転する発電プラントに好適な
所内冷却装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a cooling device for cooling a generator hydrogen cooler, a stator cooler, a turbine oil cooler, and bearings of pumps of a power plant, and more particularly to a cooling device. The present invention relates to a center cooling device suitable for a power plant that operates a generator at peak power consumption overload with a rated output or higher.

〔従来技術〕[Prior art]

この種の発電プラント用所内冷却装置に関する従来の装
置は、特開昭48-13935号に記載のようにタービン運転状
態(ターニング外れ等)によタービン給油冷却水系統と
所内冷却水系統の温度調節器の温度設定値を調節するよ
うにしていた。しかし発電機水素温度および固定子冷却
水温度については、発電機出力および力率に関係なく一
定に調節するようにしており、過負荷出力運転時にこの
温度調節器の温度設定値を調節する点については配慮さ
れていなかつた。
As described in Japanese Patent Laid-Open No. 48-13935, a conventional device relating to the cooling facility for a power plant of this type is designed to control the temperature of the turbine oil cooling water system and the facility cooling water system depending on the turbine operating state (turning off, etc.). I was trying to adjust the temperature setting of the vessel. However, the generator hydrogen temperature and the stator cooling water temperature are adjusted to be constant regardless of the generator output and power factor, and the point where the temperature set value of this temperature controller is adjusted during overload output operation He was not considered.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

発電機を定格出力以上の過負荷出力で運転する場合、力
率を改善すれば可能であることが知られている。しかし
ながら、電力網が大容量で発達している地域では、無効
電力を少なくして力率を改善することが可能であるが、
電力網が小容量で未発達の地域では、工場等での電動機
負荷が多く無効電力が大量に消費される昼間の重負荷時
間帯には力率を改善した運転をすることができない。こ
の為、これらの地域では発電機容量決定時、定格力率を
80%〜85%と低く設定し、かつこの定格力率にて過負荷
出力が得られるよう発電機容量を大きくしている。本発
明の目的は、発電機の容量が冷却媒体温度によつて変る
という特性を利用し、電力網が小容量で未発達な地域で
も発電機の容量を大きくすることなく過負荷出力運転可
能とする装置を提供することにある。また力率改善運転
は発電機端子電圧低下(無効電力減少)となるため、他
の発電設備と協調して運転する必要があるが、本発明の
目的は、各々の発電設備にて単独に過負荷出力運転を可
能ならしめ得る装置を提供することにある。
It is known that it is possible to improve the power factor when operating the generator with an overload output that is higher than the rated output. However, in areas where the power grid is large and well developed, it is possible to reduce reactive power and improve power factor.
In areas where the power grid is small and underdeveloped, it is not possible to operate with improved power factor during heavy load hours during the day when the electric motor load in factories is large and a large amount of reactive power is consumed. Therefore, in these areas, when determining the generator capacity, set the rated power factor.
It is set as low as 80% to 85%, and the generator capacity is increased so that overload output can be obtained at this rated power factor. An object of the present invention is to utilize the characteristic that the capacity of the generator changes depending on the cooling medium temperature, and enable overload output operation without increasing the capacity of the generator even in an undeveloped area where the power grid has a small capacity. To provide a device. In addition, since the power factor correction operation decreases the generator terminal voltage (reduction of reactive power), it is necessary to operate in cooperation with other power generation equipment.However, the purpose of the present invention is to operate independently in each power generation equipment. An object is to provide a device capable of performing load output operation.

〔問題点を解決するための手段〕 上記目的は、夏場以外の冷却水冷却器冷却水温度(海水
温度)が低い場合、発電機を過負荷出力運転する時、発
電機水素温度および固定子冷却水温度を下げることによ
り達成できる。
[Means for Solving Problems] The above object is to provide a cooling water cooler other than in the summer, when the cooling water temperature (seawater temperature) is low, when the generator is operated with overload output, the generator hydrogen temperature and the stator cooling This can be achieved by lowering the water temperature.

冷却水冷却器は、海水温度が夏場における最高水温時に
も水素冷却器,固定子冷却器,タービン油冷却器等が定
格負荷状態において必要とする水温の冷却水を供給でき
るよう設計されており、所内冷却水温度調節器、水素冷
却器水素温度調節器、固定子冷却水温度調節器の温度設
定も海水温度が最高水温時の状態で得られる温度で一定
に調節できるように設定されている。したがつて夏場以
外(海水温度が低い時)は、温度調節器の設定温度を低
くすることができ、これにより、水素冷却器,固定子冷
却水への冷却水温度および水素温度を下げることができ
る。
The cooling water cooler is designed so that the hydrogen cooler, the stator cooler, the turbine oil cooler, etc. can supply the cooling water of the required water temperature in the rated load state even when the seawater temperature is the highest in the summer. The temperature settings of the on-site cooling water temperature controller, hydrogen cooler hydrogen temperature controller, and stator cooling water temperature controller are also set so that the seawater temperature can be adjusted to a constant value at the maximum water temperature. Therefore, except during summer (when the seawater temperature is low), the set temperature of the temperature controller can be lowered, which can lower the cooling water temperature and hydrogen temperature for the hydrogen cooler and the stator cooling water. it can.

〔作用〕[Action]

第3図に発電機水素冷却器冷却水温度と発電機容量との
関係線図の1例を示す。固定子冷却器の場合も同様の特
性となる。
FIG. 3 shows an example of the relationship diagram between the generator hydrogen cooler cooling water temperature and the generator capacity. The same characteristics are obtained in the case of the stator cooler.

第4図は、発電機定格出力350MW,定格力率0.85,水素冷
却器設計冷却水温度33℃の条件で設計された発電機の最
大可能出力と冷却水温との関係を示す。
Fig. 4 shows the relationship between the maximum output power and the cooling water temperature of the generator designed under the conditions of generator rated output 350 MW, rated power factor 0.85, hydrogen cooler design cooling water temperature 33 ° C.

発電機容量は、 となる。水素冷却器冷却水温度が低くなるほど水素温度
も低くすることができる。この為、本図に示されている
ように、同一発電機での運転可能な発電容量が大きくな
る。すなわち発電機最大可能出力を大きくすることがで
きることになる。発電機は、回転子,固定子等の温度制
限によつて出力制限されるため、冷却効果を上げれば、
すなわち冷却水温度,水素温度を低くすれば最大可能出
力が増大することになる。本発明はこの冷却媒体温度に
よつて変わる特性を利用し、過負荷出力運転時、所内冷
却水温度調節器,水素冷却機水素温度調節器,固定子冷
却器,冷却水温度調節器の温度設定値を低温側に切替え
るものである。
The generator capacity is Becomes Hydrogen cooler The lower the cooling water temperature, the lower the hydrogen temperature can be. Therefore, as shown in this figure, the operable power generation capacity of the same generator is increased. That is, the maximum possible output of the generator can be increased. Since the output of the generator is limited by the temperature limitation of the rotor and stator, if the cooling effect is increased,
That is, if the cooling water temperature and the hydrogen temperature are lowered, the maximum possible output will increase. The present invention utilizes this characteristic that changes depending on the temperature of the cooling medium, and during overload output operation, the temperature setting of the internal cooling water temperature controller, the hydrogen cooling device hydrogen temperature controller, the stator cooling device, and the cooling water temperature controller. The value is switched to the low temperature side.

〔実施例〕〔Example〕

以下、本発明の実施例を図面により説明する。第1図
は、一般的な発電プラントの所内冷却水系統に本発明に
よる温度制御装置を適用した実施例である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment in which the temperature control device according to the present invention is applied to a cooling water system in a general power plant.

この実施例の所内冷却水系統は次記の部材によつて構成
されている。
The on-site cooling water system of this embodiment is constituted by the following members.

(イ)所内冷却水を循環させる冷却水ポンプ1、 (ロ)所内冷却水を海水により冷却する冷却水冷却器
2、 (ハ)温度の低い冷却水冷却器2の出口水と、温度の高
い冷却水冷却器2をバイパスした冷却水とを合流せし
め、その混合割合を制御することによつて合流後の冷却
水温度を一定に調節する所内冷却水温度調節弁3、 (ニ)一定温度に調節された冷却水により水素を冷却す
る発電機水素冷却器4、 (ホ)固定子冷却水を冷却する固定子冷却器(図示を省
略するが、前記の発電機水素冷却器4と同様の構成であ
る)。
(A) Cooling water pump 1 for circulating the in-house cooling water, (b) Cooling water cooler 2 for cooling the in-house cooling water with seawater, and (c) Outlet water of the cooling water cooler 2 with low temperature and high temperature. Internal cooling water temperature control valve 3 for adjusting the cooling water temperature after the merging with the cooling water bypassing the cooling water cooler 2 and controlling the mixing ratio thereof to a constant temperature. Generator hydrogen cooler 4 that cools hydrogen with the adjusted cooling water, (e) Stator cooler that cools stator cooling water (although not shown, the same structure as the generator hydrogen cooler 4 described above). Is).

(ヘ)タービン潤滑油を冷却するタービン油冷却器5、 (ト)各ポンプ類の軸受を冷却する軸受冷却器6、 (チ)上に述べた各冷却器類を接続する冷却水配管7。(F) A turbine oil cooler 5 that cools turbine lubricating oil, (g) a bearing cooler 6 that cools the bearings of each pump, and (h) a cooling water pipe 7 that connects each cooler described above.

所内冷却水温度調節弁3は、冷却水温度を検出する温度
検出エレメント21,冷却水温度を一定に調節するよう制
御信号を出す温度調節器22,電気信号を空気信号に変え
る電空変換器23により調節されるようになつている。ま
た、発電機水素冷却器4,固定子冷却器(図示省略),タ
ービン油冷却器5には、水素,固定子冷却水,油温度を
一定に調節するため、温度検出エレメント24,27,温度調
節器25,28,電空変換器26,29および温度調節弁8,9が設置
されている。また冷却水冷却器2は取水口9に設置され
た海水ポンプ10の吐出水により冷却され、海水配管11を
経て放水口12に排水される。また冷却水を循環する配管
7には冷却水ポンプ1の押込圧力を確保するため冷却水
ヘツドタンク8が設置されている。以上の構成は従来の
一般的な冷却水系統と同様である。
The on-site cooling water temperature control valve 3 includes a temperature detecting element 21 for detecting the cooling water temperature, a temperature controller 22 for issuing a control signal to adjust the cooling water temperature to a constant value, and an electropneumatic converter 23 for converting an electric signal into an air signal. It is adjusted by. Further, in the generator hydrogen cooler 4, the stator cooler (not shown), and the turbine oil cooler 5, in order to adjust the hydrogen, the stator cooling water, and the oil temperature to be constant, the temperature detection elements 24, 27, and the temperature are detected. Controllers 25 and 28, electropneumatic converters 26 and 29, and temperature control valves 8 and 9 are installed. Further, the cooling water cooler 2 is cooled by the discharge water of the seawater pump 10 installed at the intake 9, and is discharged to the water outlet 12 via the seawater pipe 11. Further, a cooling water head tank 8 is installed in the pipe 7 for circulating the cooling water in order to secure the pushing pressure of the cooling water pump 1. The above configuration is the same as that of the conventional general cooling water system.

本発明は、上述の冷却水系統において発電機出力が、定
格出力以上の過負荷出力時に、所内冷却水温度調節器22
の温度設定値、水素温度調節器25の温度設定値および固
定子冷却水温度調節器(図示せず)の温度設定値を切替
えて設定温度を低くし得るように構成してある。発電機
出力が定格出力以上でない時はノツト回路30,34により
信号発信器31,35の信号にて高温側(図では33℃および4
6℃)に設定されているが、発電機出力が定格出力以上
になると信号発信器32,36の信号により低温側(図では2
8℃および42℃)に切替器38,39にて切替えられる。尚一
次遅れ器33,37は温度設定の切替による制御の乱れ(水
素温度及び冷却水温の急変)を緩和するために設けたも
のである。図示の如く、本実施例においては、発電機定
格出力以下時の設定温度を所内冷却水は33℃、水素およ
び固定子冷却水は42℃に設定し、発電機定格出力以上時
の設定温度を所内冷却水は28℃、水素および固定子冷却
水は42℃に設定しておくと海水温度23℃以下(所内冷却
水と海水温度の差は一般的に5℃に設計される)時は、
第4図より発電機出力363MNの過負荷出力運転可能とな
る。(過負荷出力は一般的に定格出力の105%程度まで
できるようになつている) 第2図に、上記と異なる実施例の冷却水系統を示す。第
1図と第2図とはほとんど同じなので相違する点を説明
する。第2図において水素冷却器5と固定子冷却器(図
示せず)とは、冷却水冷却器2の出口水にて直接冷却す
る構成で、所内冷却水温度調節弁3にて一定温度に調節
された冷却水よりも低い温度の冷却水が得られる。した
がつて、夏場以外の、海水温度が低い時、水素冷却器水
素温度調節器25および固定子冷却器冷却水温度調節器
(図示せず)の温度設定を低温側に切替えることにより
過負荷出力運転が可能となる。尚、第1図および第2図
は、温度設定値の切替により制御の乱れ(水素温度およ
び冷却水温度の急変)を緩和するため一次遅れ器33,37
を設けたが、これをランプ関数変換器によつて行なうこ
とも可能である。
The present invention, in the above-described cooling water system, when the generator output is an overload output of the rated output or more, the on-site cooling water temperature controller 22
Of the hydrogen temperature controller 25 and the temperature setting value of the stator cooling water temperature controller (not shown) can be switched to lower the set temperature. When the generator output is not higher than the rated output, the high temperature side (33 ° C and
However, if the generator output exceeds the rated output, the low temperature side (2
8 ° C and 42 ° C) can be switched by switches 38 and 39. The primary delay devices 33 and 37 are provided to alleviate control disturbance (abrupt change of hydrogen temperature and cooling water temperature) due to temperature setting switching. As shown in the figure, in this embodiment, the set temperature when the generator rated output is less than or equal to is set to 33 ° C. for the center cooling water and 42 ° C. for hydrogen and the stator cooling water, and the set temperature when the generator rated output or more is set. When the internal cooling water is set to 28 ° C and the hydrogen and stator cooling water are set to 42 ° C, when the seawater temperature is 23 ° C or less (the difference between the internal cooling water and the seawater temperature is generally designed to be 5 ° C),
From Fig. 4, the overload output operation of the generator output 363MN becomes possible. (Generally, the overload output can be up to about 105% of the rated output.) FIG. 2 shows a cooling water system of an embodiment different from the above. Since FIG. 1 and FIG. 2 are almost the same, differences will be described. In FIG. 2, the hydrogen cooler 5 and the stator cooler (not shown) are directly cooled by the outlet water of the cooling water cooler 2, and are adjusted to a constant temperature by the on-site cooling water temperature control valve 3. Cooling water having a temperature lower than that of the cooled cooling water is obtained. Therefore, when the seawater temperature is low except in summer, the overload output can be obtained by switching the temperature setting of the hydrogen cooler hydrogen temperature controller 25 and the stator cooler cooling water temperature controller (not shown) to the low temperature side. It becomes possible to drive. It should be noted that, in FIGS. 1 and 2, the primary delay device 33, 37 is provided in order to mitigate control disturbance (abrupt change of hydrogen temperature and cooling water temperature) by switching the temperature set value.
However, it is also possible to do this by using a ramp function converter.

また、第1図および第2図の説明は、信号発信器31,32,
35,36に一定温度に設定した温度に切替える方法につい
て説明したが、第4図に示した発電機出力と発電機力率
と冷却水温度の関係線図を信号発信器32,36に入力し
て、過負荷出力運転可能な冷却水温および水素温度に調
節することも可能である。
In addition, the explanation of FIGS. 1 and 2 is based on the signal transmitters 31, 32,
The method of switching to the temperature set to a constant temperature in 35, 36 was explained, but input the generator output, generator power factor and cooling water temperature diagram shown in Fig. 4 to the signal transmitters 32, 36. It is also possible to adjust the cooling water temperature and hydrogen temperature at which overload output operation is possible.

また、第5図は過負荷出力運転時の保護装置を示すブロ
ック図で、発電機力率が規定値以上、発電機水素温度お
よび固定子冷却水温度が規定値以下でない場合、発電機
を過負荷出力運転すると回転子,固定子の温度が制限値
を超え、コイル寿命が低下する。このため、発電機力率
規定値以上、発電機水素温度および固定子冷却水温度規
定値以下のアンド(AND)回路にて発電機出力を規定値
以下に制限する保護装置を設けるものである。
Fig. 5 is a block diagram showing the protection device during overload output operation. If the generator power factor is above the specified value and the generator hydrogen temperature and the stator cooling water temperature are below the specified values, the generator is overloaded. During load output operation, the temperature of the rotor and stator will exceed the limit value, and the coil life will be reduced. For this reason, a protection device for limiting the generator output to the specified value or less is provided by an AND circuit which is equal to or higher than the specified value of the generator power factor and equal to or lower than the specified values of the generator hydrogen temperature and the stator cooling water temperature.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば電力網が未発達で
力率改善運転できない地域でも、所内冷却水温度,発電
機水素温度および固定子冷却水温を変えることにより過
負荷運転できるので、発電機容量を大きくすることなく
過負荷出力運転できるという効果がある。また、力率改
善のみの運転でないため他の発電設備と関係なく各々の
発電設備単独にて過負荷出力運転できるという効果があ
る。これらの効果の結果として、本発明を適用すること
により、発電機容量5%程度小さく出来る。
As described above, according to the present invention, even in an area where the power grid is underdeveloped and power factor correction operation is not possible, overload operation can be performed by changing the internal cooling water temperature, the generator hydrogen temperature, and the stator cooling water temperature. The effect is that overload output operation can be performed without increasing the capacity. Further, since the operation is not only for improving the power factor, there is an effect that each power generation facility can perform overload output operation independently of other power generation facilities. As a result of these effects, the generator capacity can be reduced by about 5% by applying the present invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例における所内冷却水設備の温
度調節装置の制御系統、第2図は他の実施例を示す所内
冷却水設備の温度調節装置の制御系統図、第3図は発電
機水素冷却器冷却水温度と発電機容量との関係を示す図
表、第4図は発電機水素冷却器冷却水温度と発電機力率
と発電機最大可能出力との関係を示す図表、第5図は過
負荷出力運転時の保護装置を示すブロック図である。 1……冷却水ポンプ、2……冷却水冷却器、3……所内
冷却水温度調節弁、4……発電機水素冷却器、5……タ
ービン油冷却器、6……軸受冷却器、8,9……温度調節
弁、22,25,28……温度調節器、31,32,35,36……信号発
信器。
FIG. 1 is a control system of a temperature adjusting device for a cooling water facility in a plant in one embodiment of the present invention, FIG. 2 is a control system diagram of a temperature adjusting device of a cooling water facility in a plant showing another embodiment, and FIG. Chart showing the relationship between generator hydrogen cooler cooling water temperature and generator capacity, Fig. 4 is a chart showing the relationship between generator hydrogen cooler cooling water temperature, generator power factor and generator maximum possible output, FIG. 5 is a block diagram showing a protection device during overload output operation. 1 ... Cooling water pump, 2 ... Cooling water cooler, 3 ... In-house cooling water temperature control valve, 4 ... Generator hydrogen cooler, 5 ... Turbine oil cooler, 6 ... Bearing cooler, 8 , 9 …… Temperature control valve, 22,25,28 …… Temperature controller, 31,32,35,36 …… Signal transmitter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発電機水素冷却器と、固定子冷却器と、前
記発電機水素冷却器及び前記固定子冷却器に供給される
冷却水を冷却する冷却水冷却器と、該冷却水冷却器によ
り冷却される冷却水の温度を所定の設定温度に調節する
冷却水温度調整手段とを備える発電プラントの冷却装置
において、 前記冷却水温度調整手段は、 前記発電機出力が定格値の時および定格値以下の時に
は、第1の設定温度を用いて前記冷却水の温度を調節
し、 かつ前記発電機出力が定格値以上の時には、前記第1の
設定温度よりも低い第2の設定温度を用いて前記冷却水
の温度を調節して、回転子の温度および固定子の温度が
規定値を越えないように制御する手段を具備することを
特徴とする発電プラントの冷却装置。
1. A generator hydrogen cooler, a stator cooler, a cooling water cooler for cooling cooling water supplied to the generator hydrogen cooler and the stator cooler, and the cooling water cooler. In a cooling device of a power plant comprising cooling water temperature adjusting means for adjusting the temperature of cooling water to be cooled to a predetermined set temperature, the cooling water temperature adjusting means is provided when the generator output is at a rated value and at a rated value. When the value is less than the value, the temperature of the cooling water is adjusted using the first set temperature, and when the generator output is the rated value or more, the second set temperature lower than the first set temperature is used. A cooling device for a power plant, comprising means for adjusting the temperature of the cooling water so that the temperature of the rotor and the temperature of the stator do not exceed specified values.
JP11060186A 1986-05-16 1986-05-16 Power plant cooling water system Expired - Lifetime JPH0714265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11060186A JPH0714265B2 (en) 1986-05-16 1986-05-16 Power plant cooling water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11060186A JPH0714265B2 (en) 1986-05-16 1986-05-16 Power plant cooling water system

Publications (2)

Publication Number Publication Date
JPS62268976A JPS62268976A (en) 1987-11-21
JPH0714265B2 true JPH0714265B2 (en) 1995-02-15

Family

ID=14539981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11060186A Expired - Lifetime JPH0714265B2 (en) 1986-05-16 1986-05-16 Power plant cooling water system

Country Status (1)

Country Link
JP (1) JPH0714265B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2704988T3 (en) * 2012-04-25 2019-03-21 Basf Se Procedure for supplying a cooling medium in a secondary circuit
CN112782576A (en) * 2019-11-11 2021-05-11 株洲中车时代电气股份有限公司 Fan fault monitoring method and device of converter

Also Published As

Publication number Publication date
JPS62268976A (en) 1987-11-21

Similar Documents

Publication Publication Date Title
US7592784B2 (en) Power manager for an electrical power generator
CA2343247C (en) Method for controlling a power drive system
CA2158187C (en) Electrical power generating installation and method of operating same
JP4314165B2 (en) Hybrid fuel cell system
JPH0714265B2 (en) Power plant cooling water system
KR20200007872A (en) Hydro Power System Linkage System
US9964984B2 (en) System for controlling load sharing
JP2007056748A (en) Cogeneration device
JPH11332109A (en) Controller for private power generator
JP6967995B2 (en) Engine generator system and its control method as well as cogeneration system
JP2581560B2 (en) Power adjustment method
JPH0343693Y2 (en)
JPS63124797A (en) Helper drive for turbine
JPH10184316A (en) Power generation control device utilizing exhaust heat
JP2000035244A (en) Compressor driver
JPH0237189A (en) Drive for automatic feedwater pump in reservoir
JP2523520B2 (en) Control device for variable speed turbine generator
SU1590673A1 (en) Method and apparatus for controlling compressor capacity
JPH0727413A (en) Device for exhaust heat utilization
JPS62271907A (en) Control device for supply oil temperature
JPS6245978A (en) Water pump-up power station
CN114909771A (en) Air conditioner cooling water operation control system
SU1078574A1 (en) Method of adjusting asynchronous rectifier windwheel generator
JPH08149696A (en) Power generation facility and control method therefor
JPS6287671A (en) Pumped storage generating unit