EP2831529B1 - Refroidisseur de gaz d'échappement - Google Patents

Refroidisseur de gaz d'échappement Download PDF

Info

Publication number
EP2831529B1
EP2831529B1 EP13713839.2A EP13713839A EP2831529B1 EP 2831529 B1 EP2831529 B1 EP 2831529B1 EP 13713839 A EP13713839 A EP 13713839A EP 2831529 B1 EP2831529 B1 EP 2831529B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
region
inlet
outlet
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13713839.2A
Other languages
German (de)
English (en)
Other versions
EP2831529A1 (fr
Inventor
Tobias Fetzer
DR. Boris KERLER
Lisa VON RABENAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP2831529A1 publication Critical patent/EP2831529A1/fr
Application granted granted Critical
Publication of EP2831529B1 publication Critical patent/EP2831529B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/08Assemblies of conduits having different features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Definitions

  • the present invention relates to an exhaust gas cooler for an exhaust system or for an exhaust gas recirculation system of an internal combustion engine according to the preamble of claim 1.
  • the invention also relates to an operating method for such an exhaust gas cooler.
  • Exhaust coolers may be used in an exhaust system to extract heat energy from the exhaust gas to otherwise utilize it, for example to heat a refrigerant of a refrigeration cycle or to vaporize a working fluid of a Rankine cycle or to heat an airflow for air conditioning a passenger compartment at one vehicle application.
  • an exhaust gas cooler is used to cool the recirculated exhaust gas. The cooling of the recirculated exhaust gas increases the mass flow and reduces the combustion temperatures in the combustion chambers of the internal combustion engine, which is advantageous in terms of pollutant emissions, in particular NOX emissions.
  • an exhaust gas cooler typically includes an exhaust path leading from an exhaust gas inlet to an exhaust gas outlet and a coolant path coupled therewith for heat transfer, which leads from a coolant inlet to a coolant outlet.
  • fouling In heat exchangers, so-called “fouling” (English for pollution, growth), which is the pollution of heat-transferring constituents by ingredients of the coolant used is understood. For example, algae can form in the coolant path, which can lead to a clogging of the coolant path. In the case of exhaust gas coolers, fouling on the exhaust gas side also means the addition of soot. Soot entrained in the exhaust gas can accumulate on the surfaces of the exhaust gas cooler in the exhaust gas path and thus also lead to a gradual clogging of the exhaust path.
  • a generic exhaust gas cooler is from the DE 10 2007 062 826 A1 ,
  • the coolant path has an inlet chamber, a plurality of deflection chambers and an outlet chamber, which are fluidly connected to each other in a row via groups of coolant tubes passed through the exhaust path.
  • the present invention is concerned with the problem of providing for an exhaust gas cooler of the type mentioned in an improved embodiment, which is characterized in particular by the fact that the risk of clogging of the exhaust gas path is reduced by soot particles.
  • the invention is based on the general idea to equip the exhaust gas cooler exhaust side with at least three different cooling power ranges, which follow one another in the flow direction of the exhaust gas, that are arranged in series.
  • an inlet region comprises the exhaust gas inlet and is designed for an inlet cooling capacity. Downstream of the inlet area is an intermediate area which is designed for an intermediate cooling capacity. Downstream of the intermediate region, an outlet region is provided, which comprises the exhaust gas outlet and which is designed for an outlet cooling capacity.
  • the exhaust gas cooler is now designed so that the intermediate cooling capacity is smaller than the inlet cooling capacity and smaller than the outlet cooling capacity.
  • the exhaust gas cooler presented here in particular within a common housing, has at least three differently structured regions, which follow one another in the exhaust gas path and which allow different heat transfer capacities due to their different structure.
  • cooling capacity is meant a heat flow from the exhaust gas in the direction of the coolant per unit of time.
  • the exhaust gas cooler has a single housing in which the entire exhaust gas path is accommodated and which has the exhaust gas inlet and the exhaust gas outlet.
  • the three power ranges are within this common housing of the exhaust gas cooler, whereby a particularly compact design can be realized.
  • the exhaust gas cooler has two or three housings, on which the exhaust gas path is distributed and which are connected in series via one or two connecting pipes.
  • the exhaust inlet and the exhaust outlet are located on different housings.
  • the inlet region and the exhaust gas inlet are in an inlet-side first housing, while the outlet region and the exhaust outlet are located in an outlet side second housing.
  • the intermediate region can now be accommodated either in the inlet-side housing or in the outlet-side housing or else in a middle third housing.
  • An embodiment is advantageous in which only a single and thus common coolant path is provided, which is preferably guided one after the other, that is, in series through the at least three cooling power ranges. Also preferred is a flow guide for the single exhaust path and the single coolant path in the countercurrent principle.
  • a flow guide for the single exhaust path and the single coolant path in the countercurrent principle In order to be able to realize different cooling outputs in the case of a single exhaust gas path and a single coolant path, it is possible, for example, to vary the residence times of the exhaust gas and of the coolant in the individual cooling power ranges.
  • the surfaces available for heat transfer e.g. by the use of heat transfer structures and their design can be varied.
  • the flow conditions such as the presence of turbulent or laminar flows and / or the thickness of the resulting boundary layers, by suitable means, e.g. the use of turbulators and their design, vary.
  • the exhaust gas cooler may be designed for a predetermined operating state of the exhaust gas cooler such that a hydrocarbon dew point lies in the region of a transition from the inlet region to the intermediate region, while the water dew point lies in the region of a transition from the intermediate region to the outlet region.
  • the hydrocarbons are the molecules of the respective internal combustion engine for the combustion of fuel supplied, which have not been or not fully implemented in the respective combustion chamber. These are therefore mainly long-chain hydrocarbons based on diesel, bio-diesel, gasoline, bio-gasoline and other commonly liquid fuels.
  • This special design of the exhaust gas cooler with regard to the three cooling power ranges is based on the knowledge that that in addition to soot also steam and unburned vaporous hydrocarbons are carried in the exhaust.
  • the soot accumulation on the heat-transferring surfaces in the exhaust gas path is comparatively small. Accordingly, this temperature range is assigned to the inlet area with the comparatively high inlet cooling capacity.
  • the Rußstromrung is extremely critical, since the carbon black with the condensing hydrocarbons can combine to form a sticky mass, which is relatively difficult to remove.
  • this temperature range is assigned to the intermediate area with the reduced intermediate cooling capacity.
  • the condensing water can rinse out the soot which accumulates, so that an increased cooling capacity can again be achieved in this temperature range. Accordingly, this lower temperature range is associated with the exit area with the increased exit cooling capacity.
  • the predetermined operating state can be defined for example by a predetermined exhaust gas volume flow and / or a predetermined exhaust gas temperature at the exhaust gas inlet and / or a predetermined coolant volume flow and / or a predetermined coolant temperature at the coolant inlet.
  • the outlet region of the exhaust gas path can now be configured for discharging condensate. As explained above, it is mainly in the outlet area for the condensation of water.
  • the proposed embodiment of the outlet region the resulting condensate can be selectively removed.
  • the condensate may carry flushed out soot deposits.
  • the inlet cooling capacity is greater than the outlet cooling capacity. This takes into account that the tendency to soot formation is significantly lower in the inlet area than in the outlet area.
  • the cooling capacity may be determined by the available in the exhaust path for heat transfer surface.
  • this heat exchanger surface is chosen to be significantly larger in the inlet region than in the intermediate region and that also the outlet region has a larger heat transfer surface than the intermediate region.
  • the more surface available for heat transfer the more surface is available for the addition of soot. Accordingly, if the heat transfer surface is significantly reduced in the intermediate region, significantly less surface area is available for the soot deposited in the exhaust gas, which leads to a reduction in soot accumulation in the intermediate region.
  • the cooling capacity may be determined by the density of heat transfer means in the exhaust path.
  • the density of the heat transfer means is the number of heat transfer means per unit volume in the exhaust path. The higher the density of the heat transfer medium, the greater the available heat transfer surface and the higher the cooling capacity. In terms of the exhaust gas cooler presented here, this means that the heat transfer medium density is greater in the inlet area than in the intermediate area and larger in the outlet area than in the intermediate area.
  • such heat transfer means can be provided for example by ribs and / or by turbulators and / or by flow obstacles, so-called winglets, and / or by lamellae and the like, which are arranged in the exhaust path.
  • the heat transfer medium density or the heat transfer surface can be determined by the rib density, ie by the number of ribs per unit volume in the exhaust path.
  • the rib density in the intermediate area would be smaller than in the inlet area and smaller than in the outlet area.
  • it may be provided to provide ribs only in the entry area and in the exit area and to make the intermediate area ribbed.
  • the cooling capacity can be determined by the permeable cross section of the exhaust path and / or by the flow resistance in the exhaust path.
  • the flow resistance results firstly from the heat transfer medium density and secondly from the flow-through cross section.
  • the flow resistance in the exhaust gas path is preferably smaller in the intermediate region than in the inlet region and smaller than in the outlet region. Additionally or alternatively, in the intermediate region, the flow-through cross section of the exhaust gas path is greater than in the inlet region and as in the outlet region.
  • the coolant path may lead from a coolant inlet to a coolant outlet, wherein the coolant inlet is arranged at the outlet region and the coolant outlet at the inlet region, whereby the exhaust gas cooler flows through the exhaust gas and the coolant according to the countercurrent principle. It is also possible to arrange the coolant inlet at the inlet region and the coolant outlet at the outlet region, which then causes a flow through the exhaust gas cooler with exhaust gas and coolant according to the DC principle. In any case, the coolant path is passed through all three areas of the exhaust path, in succession, ie in series. In this way, the structural integration of the three cooling power ranges is amplified into a single exhaust gas cooler.
  • the exhaust gas cooler is designed as a finned tube heat exchanger, in which a plurality of coolant tubes extend through the exhaust gas path, which guide the coolant inside and carry ribs outside, at least in the inlet region and in the outlet region.
  • the different cooling capacities in the different regions of the exhaust gas path can be changed particularly easily by varying the rib size and / or number of ribs and / or rib density.
  • the coolant path comprises an inlet chamber, a plurality of deflection chambers and an outlet chamber.
  • at least four chambers are thus provided, which are formed in the coolant path or along the coolant path, in particular in a common housing of the exhaust gas cooler.
  • the optionally provided common housing of the exhaust gas cooler on the side of the exhaust path encloses the three cooling power areas and on the side of the coolant path the above-mentioned at least four chambers.
  • the coolant path then comprises exactly six chambers.
  • the inlet chamber has a coolant inlet and is fluidly connected to the first deflection chamber via a first group of coolant tubes which are passed through the exhaust path.
  • the first deflection chamber can now be fluidically connected to the second deflection chamber via a second group of coolant tubes which are passed through the exhaust path.
  • the second deflection chamber may have a third group of be passed through the exhaust passage coolant tubes with the third deflection fluidly connected.
  • the third deflection chamber may be fluidically connected to the fourth deflection chamber via a fourth group of coolant tubes guided through the exhaust gas path.
  • the fourth deflection chamber may be fluidically connected to the outlet chamber via a fifth group of coolant tubes which are passed through the exhaust path, which has a coolant outlet.
  • the coolant flows through the six chambers of the coolant path in sequence, so that they form a series circuit.
  • a correspondingly different number of groups of coolant pipes guided through the exhaust gas path is present.
  • the coolant tubes of the first group and the second group in the outlet region and the coolant tubes of the fourth group and the fifth group in the inlet region in the counterflow principle
  • the coolant pipes of the third group run in the intermediate area.
  • the exhaust gas cooler is configured as a tube bundle heat exchanger, in which extend a plurality of exhaust pipes from the exhaust gas inlet to the exhaust gas outlet through the coolant path, which carry the exhaust gas inside and exposed to the outside of the coolant.
  • heat transfer means can now be arranged in the exhaust pipes in the entry region and in the exit region. These heat transfer means now define by their dimensioning and / or number and / or density, the cooling capacity of the respective region of the exhaust path.
  • flow guide elements or flow obstacles be arranged in the exhaust pipes.
  • Such flow-guiding elements or flow obstacles can be implemented particularly simply as so-called "winglets” in the case of a shell-and-tube heat exchanger configured as a flat-tube heat exchanger. These are usually embossments and indentations, which are made on the facing longitudinal sides of the individual flat tubes by forming. The geometry and / or number and / or density and / or distribution of these winglets, the heat transfer performance can be determined in the exhaust path.
  • An inventive method for operating an exhaust gas cooler according to claim 19, which is characterized in that it has at least three areas in the exhaust path, namely an inlet area, an intermediate area and an exit area, characterized in that different cooling capacities are realized in the at least three areas namely, an inlet cooling capacity, an intermediate cooling capacity and an outlet cooling capacity, wherein the intermediate cooling capacity is smaller than the inlet cooling capacity and smaller than the outlet cooling capacity.
  • the exhaust gas is cooled in the exhaust gas cooler before the intermediate region at least up to a hydrocarbon dew point and that the exhaust gas is cooled in the exhaust gas cooler after the intermediate region at least up to a water dew point.
  • the hydrocarbon dew point is reached in the region of a transition from the inlet region to the intermediate region, and / or that the water dew point is reached in the region of a transition from the intermediate region to the outlet region.
  • an exhaust gas cooler 1 comprises a housing 2, with which it can be installed in an exhaust system 3 or in an exhaust gas recirculation system 4 of an internal combustion engine, not shown here.
  • the exhaust gas cooler 1 contains in its housing 2 an exhaust gas path 5 through which, during operation of the exhaust gas cooler 1, an exhaust gas flow 6 is passed.
  • the exhaust gas path 5 leads from an exhaust gas inlet 7 formed on the radiator housing 2 to an exhaust gas outlet 8 formed on the radiator housing 2.
  • the exhaust gas radiator 1 in the radiator housing 2 has a coolant path 9, through which a coolant flow 10 is passed during operation of the exhaust gas radiator 1.
  • the coolant path 9 leads from a coolant inlet 11 formed on the radiator housing 2 to a coolant outlet 12 formed on the radiator housing 2.
  • the coolant path 9 is coupled in a suitable manner to transfer the heat to the exhaust path 5 in a media-separated manner.
  • the coolant inlet 11 is proximal to the exhaust gas outlet 8, while the coolant outlet 12 is arranged proximal to the exhaust gas inlet 7. Accordingly, in the embodiments shown here, a flow through the exhaust gas cooler 1 with respect to the exhaust gas flow 6 and the coolant flow 10 according to the countercurrent principle. It is clear that, in principle, a flow according to the DC principle can be realized.
  • the exhaust path 5 has an inlet region 13 indicated by a brace, downstream of this an intermediate region 14 indicated by a brace and downstream thereof an outlet region 15 indicated by a brace.
  • the inlet region 13 comprises the exhaust gas inlet 7.
  • the outlet region 15 comprises the exhaust gas outlet 8
  • the intermediate region 14 is arranged in the flow direction of the exhaust gas between the inlet region 13 and the outlet region 15. The intermediate region 14 is thus arranged distally to the exhaust gas inlet 7 and distally to the exhaust gas outlet 8.
  • the inlet area 13 is designed for an inlet cooling capacity.
  • the intermediate region 14 is designed for an intermediate cooling performance.
  • the exit area 15 is designed for a discharge cooling capacity.
  • the intermediate cooling capacity is smaller than the inlet cooling capacity and smaller than the outlet cooling capacity.
  • the outlet cooling capacity is also smaller than the inlet cooling capacity. Accordingly, the cooling power in the inlet region 13 is greater than in the intermediate region 14 and greater than in the outlet region 15. In the outlet region 15, the cooling capacity is greater than the intermediate region 14. In the intermediate region 14, the cooling capacity is smaller than in the inlet region 14 and smaller than in the outlet region 15th
  • the exhaust gas cooler 1 is expediently designed such that a dew point of hydrocarbons T HC lies in a region 16 indicated by a brace between a transition from the inlet region 13 to the intermediate region 14. Furthermore, the design of the exhaust gas cooler 1 for the predetermined operating state is expediently such that a dew point of water T H2O lies in a region 17, indicated by a brace, of a transition from the intermediate region 14 to the outlet region 15.
  • the outlet region 15 may also be designed such that it is suitable for removing condensate 18.
  • a condensate drain line 19 is indicated by a broken line.
  • the condensate drain line 19 is fluidly connected to the exhaust path 5.
  • the exhaust gas cooler 1 is configured as a finned tube heat exchanger 20, which is characterized in that a plurality of coolant tubes 21 extend through the exhaust gas path 5.
  • the coolant tubes 21 carry the coolant inside and are equipped with ribs 22 on the outside at least in the inlet region 13 and in the outlet region 15. Is recognizable in Fig. 1 a rib density, that is, a number of ribs 22 per coolant tube 21 greater than in the outlet region 15. Furthermore, it is provided here that the coolant tubes 21 in the intermediate region 14 do not carry cooling fins 22.
  • the number of ribs 22 per coolant tube 21 determines the cooling capacity in the respective power range 13, 14, 15 of the exhaust path 5.
  • the high rib density in the inlet region 13 results in a high inlet cooling capacity.
  • the reduced rib density in the outlet region 15 accordingly leads to a reduced outlet cooling performance.
  • the missing in the intermediate region 14 ribs 22 accordingly lead to a particularly low intermediate cooling capacity.
  • the coolant path 9 in the cooler housing 2 comprises an inlet chamber 23, four deflection chambers 24, 25, 26, 27 and an outlet chamber 28.
  • the deflection chambers 24, 25, 26, 27 are arranged between the inlet chamber 23 and the outlet chamber 28.
  • the inlet chamber 23 has the coolant inlet 11.
  • a first group 29 of coolant tubes 21 connects the inlet chamber 23 to the first deflection chamber 24.
  • a second group 30 of coolant tubes 21 connects the first deflection chamber 24 with the second deflection chamber 25.
  • a third group 31 of coolant tubes 21 connects the second deflection chamber 25 with the third Deflection chamber 26.
  • a fourth group 32 of coolant tubes 21 connects the third deflection chamber 26 with the fourth deflection chamber 27.
  • a fifth group 33 of coolant tubes 21 connects the fourth deflection chamber 27 with the outlet chamber 28.
  • the coolant tubes 21 of the first group 29 and the second group 30 are assigned to the outlet region 15.
  • the coolant tubes 21 of the third group 31 are assigned to the intermediate region 14.
  • the coolant tubes 21 of the fourth group 32 and the fifth group 33 are assigned to the inlet area 13. All coolant tubes 21 run parallel to one another here and connect the chambers 23 to 28 in series with each other.
  • the exhaust gas cooler 1 is designed as a tube bundle heat exchanger 34, which is characterized by a plurality of exhaust pipes 35, which are led from the exhaust gas inlet 7 to the exhaust gas outlet 8 through the coolant path 9.
  • the exhaust pipes 35 lead inside the exhaust stream 6 and are exposed to the outside coolant flow 10.
  • the exhaust pipes 35 in another embodiment, the in Fig. 3 is shown to be configured as flat tubes, which have a substantially rectangular cross-section.
  • heat transfer means 36 are arranged, which may be formed for example by a lamellar structure.
  • a pipe cross-section for such an exhaust pipe 35 is shown, wherein this pipe cross-section is designated in the outlet region 15 with a, in the intermediate region 14 with b and in the inlet region 15 with c.
  • this pipe cross-section is designated in the outlet region 15 with a, in the intermediate region 14 with b and in the inlet region 15 with c.
  • a lamellar structure 36 is arranged only in the exhaust pipes 35 of the inlet region 13 and the outlet region 15, while in the intermediate region 4 the cross-sections of the exhaust pipes 35 are free of such heat transfer means 36.
  • the lamellar structure 36 in the inlet region 13 according to the illustration c has a larger lamella number or lamellar density and a smaller wall thickness than the lamellar structure 36 in the outlet region 15 according to the illustration a.
  • a larger inlet cooling capacity can be set in the inlet area 13 than in the outlet area 15.
  • the outlet cooling capacity is also greater than in the intermediate area 14.
  • FIGS. 3a-3c each show a plan view of a configured as a flat tube exhaust pipe 35. These exhaust pipes 35 are recognizable with indentations or
  • FIG. 3a shows a plan view of the exhaust pipe 35 in the outlet region 15. Shown are purely exemplary eight flow guide 37 within the outlet region 15th Fig. 3b shows the same exhaust pipe 35 within the intermediate region 14.
  • FIG. 3c shows now the same exhaust pipe 35 in the inlet region 13. It can be seen here sixteen flow guide elements 37 are provided, whereby the cooling capacity in the inlet region 13 is significantly greater than in the intermediate region 14 and in the outlet region 15th
  • the inlet region 13 is dimensioned so that at the end of the inlet region 13, ie in the transition region 16 of the hydrocarbon dew point T HC is. Since above the hydrocarbon dew point temperature T HC soot deposition is largely uncritical or hardly takes place, can Here a particularly high cooling capacity can be realized, which is due to the large heat transfer surface with the help of the high rib density in Fig. 1 or with the help of the high lamellar density in Fig. 2 is realized.
  • the exhaust gas is cooled below the HC dew point T HC , so that condensation takes place in the intermediate region 14 of hydrocarbons.
  • the cooling capacity is significantly reduced in the intermediate region 14. This is achieved in Fig. 1 by the absence of ribs 22 or by the use of a significantly reduced rib density and in Fig. 2 by the absence of a lamellar structure 36 or by the use of a significantly reduced lamellar density.
  • the intermediate region 14 is designed so that at its end, ie in the transition region 17, the water dew point temperature T H2O is reached.
  • the condensate which forms can be collected and, for example, via a condensate outlet 19 according to FIG Fig. 1 be dissipated.
  • the exhaust gas cooler 1 presented here can be characterized in summary by having a cooling capacity adapted to the exhaust gas temperature which decreases along the exhaust gas path 5, such that in the intermediate region 14, in which a hydrocarbon condensation but no water condensation takes place significantly reduced cooling capacity is realized. In this way, in this intermediate region 14, in which the hydrocarbon condensation takes place, the accumulation of soot particles can be significantly reduced, which reduces the risk of clogging and clogging of the exhaust gas path 5 in the exhaust gas cooler 1. Although in the exit region 15 is a soot deposit in Purchase, but can be flushed out by the water condensation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (19)

  1. Refroidisseur de gaz d'échappement pour un système d'échappement (3) ou un système de recirculation de gaz d'échappement (4) d'un moteur à combustion interne,
    - avec une voie de gaz d'échappement (5), qui conduit d'une entrée de gaz d'échappement (7) à une sortie de gaz d'échappement (8),
    - avec une voie de réfrigérant (9), qui est couplée par transfert de chaleur à la voie de gaz d'échappement (5),
    - dans lequel la voie de gaz d'échappement (5) présente une zone d'entrée (13), qui comprend l'entrée de gaz d'échappement (7) et est conçue pour une puissance de refroidissement d'entrée,
    - dans lequel la voie de gaz d'échappement (5) présente en aval de la zone d'entrée (13) une zone intermédiaire (14), qui est conçue pour une puissance de refroidissement intermédiaire, qui est inférieure à la puissance de refroidissement d'entrée,
    - dans lequel la voie de gaz d'échappement (5) présente en aval de la zone intermédiaire (14) une zone de sortie (15), qui comprend la sortie de gaz d'échappement (8) et qui est conçue pour une puissance de refroidissement de sortie, qui est supérieure à la puissance de refroidissement intermédiaire,
    caractérisé en ce
    - que le refroidisseur de gaz d'échappement (1) est réalisé sous forme d'échangeur de chaleur de tuyaux à ailettes (20), dans lequel plusieurs tuyaux de réfrigérant (21) s'étendent à travers la voie de gaz d'échappement (5), qui conduisent le réfrigérant à l'intérieur et portent des nervures (22) à l'extérieur au moins dans la zone d'entrée (13) et dans la zone de sortie (15),
    - que la voie de réfrigérant (9) présente une chambre d'entrée (23), plusieurs chambres de renvoi (24, 25, 26, 27) et une chambre de sortie (28), qui sont reliées fluidiquement l'une à l'autre en série par le biais de groupes (29, 30, 31, 32, 33) de tuyaux de réfrigérant (21) traversant la voie de gaz d'échappement (5),
    - que la chambre d'entrée (23) présente une entrée de réfrigérant (11) et est reliée fluidiquement à une des chambres de renvoi (24, 25, 26, 27),
    - que les chambres de renvoi (24, 25, 26, 27) sont reliées fluidiquement l'une à l'autre,
    - que la chambre de sortie (28) présente une sortie de réfrigérant (12) et est reliée fluidiquement à une autre des chambres de renvoi (24, 25, 26, 27).
  2. Refroidisseur de gaz d'échappement selon la revendication 1,
    caractérisé par un carter unique (2), dans lequel l'ensemble de la voie de gaz d'échappement (5) est logé et qui présente l'entrée de gaz d'échappement (7) et la sortie de gaz d'échappement (8).
  3. Refroidisseur de gaz d'échappement selon la revendication 1 ou 2,
    caractérisé en ce
    que seule une voie de réfrigérant (9) unique est prévue, qui est couplée par transfert de chaleur aux au moins trois zones (13, 14, 15) de la voie de gaz d'échappement (5).
  4. Refroidisseur de gaz d'échappement selon la revendication 3,
    caractérisé en ce
    que la voie de réfrigérant (9) est couplée par transfert de chaleur successivement aux au moins trois zones (13, 14, 15) de la voie de gaz d'échappement (5).
  5. Refroidisseur de gaz d'échappement selon la revendication 4,
    caractérisé en ce
    que la voie de réfrigérant (9) est couplée par transfert de chaleur dans la direction d'écoulement du réfrigérant d'abord à la zone de sortie (15), puis à la zone intermédiaire (14) et ensuite à la zone d'entrée (13).
  6. Refroidisseur de gaz d'échappement selon l'une quelconque des revendications 1 à 5,
    caractérisé en ce
    que pour un état de fonctionnement prédéterminé du refroidisseur de gaz d'échappement (1), qui présente en particulier un débit volumique de gaz d'échappement prédéterminé, une température de gaz d'échappement prédéterminée, un débit volumique de réfrigérant prédéterminé et une température de réfrigérant prédéterminée, le refroidisseur de gaz d'échappement (1) est conçu de façon à ce qu'un point de rosée de l'hydrocarbure (THC) se trouve au niveau d'une transition (16) de la zone d'entrée (13) à la zone intermédiaire (14) et qu'un point de rosée de l'eau (TH2O) se trouve au niveau d'une transition (17) de la zone intermédiaire (14) à la zone de sortie (15).
  7. Refroidisseur de gaz d'échappement selon l'une quelconque des revendications 1 à 6,
    caractérisé en ce
    que la zone de sortie (15) de la voie de gaz d'échappement (5) est réalisée pour l'évacuation du condensat.
  8. Refroidisseur de gaz d'échappement selon l'une quelconque des revendications 1 à 7,
    caractérisé en ce
    que la puissance de refroidissement d'entrée est supérieure à la puissance de refroidissement de sortie.
  9. Refroidisseur de gaz d'échappement selon l'une quelconque des revendications 1 à 8,
    caractérisé en ce
    que la puissance de refroidissement est déterminée par la surface mise à disposition du transfert de chaleur dans la voie de gaz d'échappement (5), de façon à ce que celle-ci soit plus petite dans la zone intermédiaire (14) que dans la zone d'entrée (13) et que dans la zone de sortie (15).
  10. Refroidisseur de gaz d'échappement selon l'une quelconque des revendications 1 à 9,
    caractérisé en ce
    que la puissance de refroidissement est déterminée par la densité de moyens de transfert de chaleur (22, 36) dans la voie de gaz d'échappement (5), de façon à ce que celle-ci soit plus petite dans la zone intermédiaire (14) que dans la zone d'entrée (13) et que dans la zone de sortie (15).
  11. Refroidisseur de gaz d'échappement selon l'une quelconque des revendications 1 à 10,
    caractérisé en ce
    que la puissance de refroidissement est déterminée par la section transversale pouvant être traversée de la voie de gaz d'échappement (5) et/ou par la résistance à l'écoulement dans la voie de gaz d'échappement (5), de façon à ce que celle-ci soit plus grande dans la zone intermédiaire (14) que dans la zone d'entrée (13) et que dans la zone de sortie (15).
  12. Refroidisseur de gaz d'échappement selon l'une quelconque des revendications 1 à 11,
    caractérisé en ce
    que la puissance de refroidissement est déterminée par la résistance à l'écoulement dans la voie de gaz d'échappement (5), de façon à ce que celle-ci soit plus petite dans la zone intermédiaire (14) que dans la zone d'entrée (13) et que dans la zone de sortie (15).
  13. Refroidisseur de gaz d'échappement selon l'une quelconque des revendications 1 à 12,
    caractérisé en ce
    que la voie de réfrigérant (9) conduit d'une entrée de réfrigérant (11) à une sortie de réfrigérant (12), dans lequel l'entrée de réfrigérant (11) est agencée au niveau de la zone de sortie (15) et la sortie de réfrigérant (12) au niveau de la zone d'entrée (13) ou inversement.
  14. Refroidisseur de gaz d'échappement selon l'une quelconque des revendications 1 à 13,
    caractérisé en ce
    - que la voie de réfrigérant (9) présente quatre chambres de renvoi (24, 25, 26, 27),
    - que la chambre d'entrée (23) est reliée fluidiquement à la première chambre de renvoi (24) par le biais d'un premier groupe (29) de tuyaux de réfrigérant (21) traversant la voie de gaz d'échappement (5),
    - que la première chambre de renvoi (24) est reliée fluidiquement à la deuxième chambre de renvoi (25) par le biais d'un deuxième groupe (30) de tuyaux de réfrigérant (21) traversant la voie de gaz d'échappement (5),
    - que la deuxième chambre de renvoi (25) est reliée fluidiquement à la troisième chambre de renvoi (26) par le biais d'un troisième groupe (31) de tuyaux de réfrigérant (21) traversant la voie de gaz d'échappement (5),
    - que la troisième chambre de renvoi (26) est reliée fluidiquement à la quatrième chambre de renvoi (27) par le biais d'un quatrième groupe (32) de tuyaux de réfrigérant (21) traversant la voie de gaz d'échappement (5),
    - que la quatrième chambre de renvoi (27) est reliée fluidiquement à la chambre de sortie (28) par le biais d'un cinquième groupe (33) de tuyaux de réfrigérant (21) traversant la voie de gaz d'échappement (5).
  15. Refroidisseur de gaz d'échappement selon la revendication 14,
    caractérisé en ce
    que les tuyaux de réfrigérant (21) du premier groupe (29) et du deuxième groupe (30) s'étendent dans la zone de sortie (15) et les tuyaux de réfrigérant (21) du quatrième groupe (32) et du cinquième groupe (33) s'étendent dans la zone d'entrée (13) ou inversement, pendant que les tuyaux de réfrigérant (21) du troisième groupe (31) s'étendent dans la zone intermédiaire (14).
  16. Procédé de fonctionnement d'un refroidisseur de gaz d'échappement (1) selon l'une quelconque des revendications 1 à 15, qui présente une voie de gaz d'échappement (5) avec une zone d'entrée (13), une zone intermédiaire (14) et une zone de sortie (15),
    - dans lequel une puissance de refroidissement d'entrée est réglée dans la zone d'entrée (13),
    - dans lequel une puissance de refroidissement intermédiaire est réglée dans la zone intermédiaire (14),
    - dans lequel une puissance de refroidissement de sortie est réglée dans la zone de sortie (15),
    - dans lequel la puissance de refroidissement intermédiaire est sélectionnée plus petite que la puissance de refroidissement d'entrée et que la puissance de refroidissement de sortie.
  17. Procédé selon la revendication 16,
    caractérisé en ce
    - que le gaz d'échappement est refroidi dans le refroidisseur de gaz d'échappement (1) avant la zone intermédiaire (14) au moins jusqu'à un point de rosée de l'hydrocarbure (THC),
    - que le gaz d'échappement est refroidi dans le refroidisseur de gaz d'échappement (1) après la zone intermédiaire (14) au moins jusqu'à un point de rosée de l'eau (TH2O).
  18. Procédé selon la revendication 17,
    caractérisé en ce
    que le point de rosée de l'hydrocarbure (THC) est atteint au niveau d'une transition (16) de la zone d'entrée (13) à la zone intermédiaire (14).
  19. Procédé selon la revendication 17 ou 18,
    caractérisé en ce
    que le point de rosée de l'eau (TH2O) est atteint au niveau d'une transition (17) de la zone intermédiaire (14) à la zone de sortie (15).
EP13713839.2A 2012-03-28 2013-03-27 Refroidisseur de gaz d'échappement Not-in-force EP2831529B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012205026 2012-03-28
DE102012208742A DE102012208742A1 (de) 2012-03-28 2012-05-24 Abgaskühler
PCT/EP2013/056542 WO2013144214A1 (fr) 2012-03-28 2013-03-27 Refroidisseur de gaz d'échappement

Publications (2)

Publication Number Publication Date
EP2831529A1 EP2831529A1 (fr) 2015-02-04
EP2831529B1 true EP2831529B1 (fr) 2017-05-10

Family

ID=49154801

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13713839.2A Not-in-force EP2831529B1 (fr) 2012-03-28 2013-03-27 Refroidisseur de gaz d'échappement

Country Status (4)

Country Link
US (1) US20150047619A1 (fr)
EP (1) EP2831529B1 (fr)
DE (1) DE102012208742A1 (fr)
WO (1) WO2013144214A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938935B2 (en) 2012-07-12 2018-04-10 General Electric Company Exhaust gas recirculation system and method
US10508621B2 (en) 2012-07-12 2019-12-17 Ge Global Sourcing Llc Exhaust gas recirculation system and method
DE102013224038A1 (de) * 2013-11-25 2015-05-28 MAHLE Behr GmbH & Co. KG Abgaswärmetauscher zur Abgaskühlung einer Brennkraftmaschine, vorzugsweise für ein Kraftfahrzeug
EP2937660A1 (fr) * 2014-04-24 2015-10-28 Siemens Aktiengesellschaft Turbulateur destiné à l'utilisation dans un canal de réfrigérant et élément de transfert thermique doté d'un tel turbulateur
WO2016161093A1 (fr) * 2015-04-01 2016-10-06 General Electric Company Système et procédé de recirculation de gaz d'échappement
DE102016002380B4 (de) * 2016-03-01 2023-10-05 Volkswagen Aktiengesellschaft Kraftfahrzeug mit einem Abgaskondensator
US11732978B2 (en) * 2016-04-18 2023-08-22 Qcip Holdings, Llc Laminated microchannel heat exchangers
DE102016221566A1 (de) * 2016-11-03 2018-05-03 Bayerische Motoren Werke Aktiengesellschaft Wasserabscheider zum Abscheiden von Wasser in einem Fahrzeug
DE102017113964A1 (de) * 2017-06-23 2018-12-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung zum Laden einer Mehrzahl von Elektrofahrzeugen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180915A (ja) * 2000-12-08 2002-06-26 Hino Motors Ltd Egrクーラ
JP2005220747A (ja) * 2004-02-03 2005-08-18 Usui Kokusai Sangyo Kaisha Ltd Egrガス冷却機構
US7213639B2 (en) * 2005-03-16 2007-05-08 Detroit Diesel Coporation Heat exchanger exhaust gas recirculation cooler
DE102005029321A1 (de) * 2005-06-24 2006-12-28 Behr Gmbh & Co. Kg Wärmeübertrager
JP4756585B2 (ja) * 2005-09-09 2011-08-24 臼井国際産業株式会社 熱交換器用伝熱管
DE102007062826A1 (de) * 2007-01-17 2008-09-25 Behr Gmbh & Co. Kg Wärmetauscher für ein Kraftfahrzeug
DE102008007073A1 (de) * 2007-01-31 2008-08-07 Behr Gmbh & Co. Kg Wärmetauscher, Abgasrückführsystem und Verwendung eines Wärmetauschers
DE102008014169A1 (de) * 2007-04-26 2009-01-08 Behr Gmbh & Co. Kg Wärmetauscher, insbesondere zur Abgaskühlung, System mit einem Wärmetauscher zur Abgaskühlung, Verfahren zum Betreiben eines Wärmetauschers
US7798134B2 (en) * 2008-05-07 2010-09-21 General Electric Company System, kit, and method for locomotive exhaust gas recirculation cooling
DE102010008175B4 (de) * 2010-02-16 2014-12-04 Thesys Gmbh Wärmeübertrager
DE102010048466A1 (de) * 2010-10-14 2012-04-19 Daimler Ag Abgasrückführung mit Kondensat-Abführung
DE102011087962A1 (de) * 2011-02-08 2012-08-09 Behr Gmbh & Co. Kg Wärmeübertrager

Also Published As

Publication number Publication date
DE102012208742A1 (de) 2013-10-02
WO2013144214A1 (fr) 2013-10-03
EP2831529A1 (fr) 2015-02-04
US20150047619A1 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
EP2831529B1 (fr) Refroidisseur de gaz d'échappement
EP1985953B1 (fr) Echangeur thermique, en particulier destiné au refroidissement des gaz d'échappement, procédé d'utilisation d'un tel échangeur et système comprenant un refroidisseur EGR
EP1996888B1 (fr) Échangeur thermique pour véhicule automobile
WO2004065876A1 (fr) Echangeur thermique, notamment refroidisseur de gaz d'echappement pour automobiles
WO2007104580A2 (fr) Échangeur thermique pour véhicule automobile
DE102006012219B4 (de) Wärmeübertragungseinheit mit einem verschließbaren Fluidteileinlass
DE102006009948A1 (de) Abgaswärmeaustauscher
WO2006100072A1 (fr) Echangeur thermique pour gaz d'echappement, notamment refroidisseur de gaz d'echappement pour le recyclage des gaz d'echappement dans les vehicules a moteur
EP2134941B1 (fr) Canal d'écoulement, échangeur de chaleur, système de recyclage des gaz d'échappement, système d'apport d'air de suralimentation et utilisation d'un échangeur de chaleur
DE69609324T2 (de) Kombinierter wärmetauscher und schalldämpfer
WO2009089885A1 (fr) Dispositif d'échange de chaleur et véhicule automobile
DE102008058210A1 (de) Wärmetauscher und Verfahren für dessen Herstellung
DE102007015146A1 (de) Aluminium System Kühler
DE102009012493A1 (de) Vorrichtung zum Austausch von Wärme und Kraftfahrzeug
EP1748271B1 (fr) Tubes et ailettes pour bloc d'échange de chaleur
DE102015204983A1 (de) Wärmetauscher, insbesondere für ein Kraftfahrzeug
DE102016002380B4 (de) Kraftfahrzeug mit einem Abgaskondensator
WO2017167872A1 (fr) Échangeur de chaleur à plaques empilées
EP3203173B1 (fr) Échangeur thermique de gaz d'échappement
EP2278149B1 (fr) Echangeur thermique et système de chargement
WO2012168042A1 (fr) Moteur à combustion interne doté d'au moins une unité de catalysation
DE102014011147A1 (de) Abgaskühler mit unterschiedlicher Kühlerfinnendichte
DE102022201290A1 (de) Wärmetauscher
WO2014198846A1 (fr) Échangeur de chaleur
DE102008038498A1 (de) Wärmetauscher für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160204

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 21/00 20060101ALI20161202BHEP

Ipc: F28F 1/40 20060101AFI20161202BHEP

Ipc: F28F 13/06 20060101ALI20161202BHEP

Ipc: F28F 13/12 20060101ALI20161202BHEP

INTG Intention to grant announced

Effective date: 20161221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 892812

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013007227

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170510

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170811

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170910

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013007227

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180530

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 892812

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013007227

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510