EP2831210B1 - Use of an aliphatic polyether - Google Patents
Use of an aliphatic polyether Download PDFInfo
- Publication number
- EP2831210B1 EP2831210B1 EP13715104.9A EP13715104A EP2831210B1 EP 2831210 B1 EP2831210 B1 EP 2831210B1 EP 13715104 A EP13715104 A EP 13715104A EP 2831210 B1 EP2831210 B1 EP 2831210B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oil
- hydrocarbon
- lubricant
- polyether
- varnish
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000570 polyether Polymers 0.000 title claims description 43
- 239000004721 Polyphenylene oxide Substances 0.000 title claims description 42
- 125000001931 aliphatic group Chemical group 0.000 title claims description 15
- 229930195733 hydrocarbon Natural products 0.000 claims description 76
- 150000002430 hydrocarbons Chemical class 0.000 claims description 76
- 239000004215 Carbon black (E152) Substances 0.000 claims description 74
- 239000000314 lubricant Substances 0.000 claims description 67
- 239000002966 varnish Substances 0.000 claims description 46
- 125000004432 carbon atom Chemical group C* 0.000 claims description 26
- 230000003647 oxidation Effects 0.000 claims description 22
- 238000007254 oxidation reaction Methods 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 15
- 229920001451 polypropylene glycol Polymers 0.000 claims description 15
- 229920000233 poly(alkylene oxides) Polymers 0.000 claims description 13
- 229920001519 homopolymer Polymers 0.000 claims description 9
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 125000000743 hydrocarbylene group Chemical group 0.000 claims description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 239000003921 oil Substances 0.000 description 64
- 239000002253 acid Substances 0.000 description 35
- 229910019142 PO4 Inorganic materials 0.000 description 33
- 235000021317 phosphate Nutrition 0.000 description 33
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 32
- 239000010452 phosphate Substances 0.000 description 32
- 239000010723 turbine oil Substances 0.000 description 27
- 239000000047 product Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- 239000000654 additive Substances 0.000 description 12
- 239000003963 antioxidant agent Substances 0.000 description 12
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 10
- 238000005461 lubrication Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 150000003014 phosphoric acid esters Chemical class 0.000 description 9
- -1 polybutylene Polymers 0.000 description 8
- 239000010913 used oil Substances 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical class OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000005069 Extreme pressure additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000007866 anti-wear additive Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 239000004034 viscosity adjusting agent Substances 0.000 description 3
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical group CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 2
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N Bisphenol A Natural products C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 2
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000002199 base oil Substances 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 150000001565 benzotriazoles Chemical class 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000004737 colorimetric analysis Methods 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- DPBLXKKOBLCELK-UHFFFAOYSA-N pentan-1-amine Chemical compound CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000002530 phenolic antioxidant Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920006389 polyphenyl polymer Polymers 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005067 remediation Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 150000003580 thiophosphoric acid esters Chemical class 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- RDAGYWUMBWNXIC-UHFFFAOYSA-N 1,2-bis(2-ethylhexyl)benzene Chemical class CCCCC(CC)CC1=CC=CC=C1CC(CC)CCCC RDAGYWUMBWNXIC-UHFFFAOYSA-N 0.000 description 1
- YEYQUBZGSWAPGE-UHFFFAOYSA-N 1,2-di(nonyl)benzene Chemical class CCCCCCCCCC1=CC=CC=C1CCCCCCCCC YEYQUBZGSWAPGE-UHFFFAOYSA-N 0.000 description 1
- YAOMHRRYSRRRKP-UHFFFAOYSA-N 1,2-dichloropropyl 2,3-dichloropropyl 3,3-dichloropropyl phosphate Chemical compound ClC(Cl)CCOP(=O)(OC(Cl)C(Cl)C)OCC(Cl)CCl YAOMHRRYSRRRKP-UHFFFAOYSA-N 0.000 description 1
- AAKKZDBDOJWNQA-UHFFFAOYSA-N 1,4-dioctylcyclohexa-2,4-dien-1-amine Chemical compound C(CCCCCCC)C1(CC=C(C=C1)CCCCCCCC)N AAKKZDBDOJWNQA-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical class CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical class CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- DHTAIMJOUCYGOL-UHFFFAOYSA-N 2-ethyl-n-(2-ethylhexyl)-n-[(4-methylbenzotriazol-1-yl)methyl]hexan-1-amine Chemical compound C1=CC=C2N(CN(CC(CC)CCCC)CC(CC)CCCC)N=NC2=C1C DHTAIMJOUCYGOL-UHFFFAOYSA-N 0.000 description 1
- KPYHSKSQWKIIHY-UHFFFAOYSA-N 2-ethyl-n-(2-ethylhexyl)-n-[(5-methylbenzotriazol-1-yl)methyl]hexan-1-amine Chemical compound CC1=CC=C2N(CN(CC(CC)CCCC)CC(CC)CCCC)N=NC2=C1 KPYHSKSQWKIIHY-UHFFFAOYSA-N 0.000 description 1
- LIAWCKFOFPPVGF-UHFFFAOYSA-N 2-ethyladamantane Chemical compound C1C(C2)CC3CC1C(CC)C2C3 LIAWCKFOFPPVGF-UHFFFAOYSA-N 0.000 description 1
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical class CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- SDTMFDGELKWGFT-UHFFFAOYSA-N 2-methylpropan-2-olate Chemical compound CC(C)(C)[O-] SDTMFDGELKWGFT-UHFFFAOYSA-N 0.000 description 1
- AGIJRRREJXSQJR-UHFFFAOYSA-N 2h-thiazine Chemical compound N1SC=CC=C1 AGIJRRREJXSQJR-UHFFFAOYSA-N 0.000 description 1
- ODJQKYXPKWQWNK-UHFFFAOYSA-N 3,3'-Thiobispropanoic acid Chemical class OC(=O)CCSCCC(O)=O ODJQKYXPKWQWNK-UHFFFAOYSA-N 0.000 description 1
- STGFANHLXUILNY-UHFFFAOYSA-N 3,7-dioctyl-10h-phenothiazine Chemical compound C1=C(CCCCCCCC)C=C2SC3=CC(CCCCCCCC)=CC=C3NC2=C1 STGFANHLXUILNY-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- KCSOBOZCMQBPFM-UHFFFAOYSA-N 4-n,4-n-dinaphthalen-2-ylbenzene-1,4-diamine Chemical compound C1=CC(N)=CC=C1N(C=1C=C2C=CC=CC2=CC=1)C1=CC=C(C=CC=C2)C2=C1 KCSOBOZCMQBPFM-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- JYFHYPJRHGVZDY-UHFFFAOYSA-N Dibutyl phosphate Chemical compound CCCCOP(O)(=O)OCCCC JYFHYPJRHGVZDY-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- WJYIASZWHGOTOU-UHFFFAOYSA-N Heptylamine Chemical compound CCCCCCCN WJYIASZWHGOTOU-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical class CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920002179 Plurasafe® Polymers 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical compound Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 description 1
- 239000010692 aromatic oil Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- WRMFBHHNOHZECA-UHFFFAOYSA-N butan-2-olate Chemical compound CCC(C)[O-] WRMFBHHNOHZECA-UHFFFAOYSA-N 0.000 description 1
- 239000004303 calcium sorbate Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 125000004965 chloroalkyl group Chemical group 0.000 description 1
- AFYPFACVUDMOHA-UHFFFAOYSA-N chlorotrifluoromethane Chemical compound FC(F)(F)Cl AFYPFACVUDMOHA-UHFFFAOYSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- PAZHOQPRMVOBDD-RMRYJAPISA-N cyclopenta-1,3-diene;(1s)-1-(2-diphenylphosphanylcyclopenta-1,4-dien-1-yl)-n,n-dimethylethanamine;iron(2+) Chemical compound [Fe+2].C=1C=C[CH-]C=1.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1[C@@H](N(C)C)C PAZHOQPRMVOBDD-RMRYJAPISA-N 0.000 description 1
- BVXOPEOQUQWRHQ-UHFFFAOYSA-N dibutyl phosphite Chemical compound CCCCOP([O-])OCCCC BVXOPEOQUQWRHQ-UHFFFAOYSA-N 0.000 description 1
- POWRQOUEUWZUNQ-UHFFFAOYSA-N didecyl phosphite Chemical compound CCCCCCCCCCOP([O-])OCCCCCCCCCC POWRQOUEUWZUNQ-UHFFFAOYSA-N 0.000 description 1
- QBCOASQOMILNBN-UHFFFAOYSA-N didodecoxy(oxo)phosphanium Chemical compound CCCCCCCCCCCCO[P+](=O)OCCCCCCCCCCCC QBCOASQOMILNBN-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- CUKQEWWSHYZFKT-UHFFFAOYSA-N diheptyl hydrogen phosphite Chemical compound CCCCCCCOP(O)OCCCCCCC CUKQEWWSHYZFKT-UHFFFAOYSA-N 0.000 description 1
- XFUSKHPBJXJFRA-UHFFFAOYSA-N dihexyl hydrogen phosphite Chemical compound CCCCCCOP(O)OCCCCCC XFUSKHPBJXJFRA-UHFFFAOYSA-N 0.000 description 1
- GPVWOHFQOFSFAV-UHFFFAOYSA-N dinonyl hydrogen phosphite Chemical compound CCCCCCCCCOP(O)OCCCCCCCCC GPVWOHFQOFSFAV-UHFFFAOYSA-N 0.000 description 1
- XMQYIPNJVLNWOE-UHFFFAOYSA-N dioctyl hydrogen phosphite Chemical compound CCCCCCCCOP(O)OCCCCCCCC XMQYIPNJVLNWOE-UHFFFAOYSA-N 0.000 description 1
- LAWOZCWGWDVVSG-UHFFFAOYSA-N dioctylamine Chemical compound CCCCCCCCNCCCCCCCC LAWOZCWGWDVVSG-UHFFFAOYSA-N 0.000 description 1
- MGJHACFZFDVYIL-UHFFFAOYSA-N dipentyl hydrogen phosphite Chemical compound CCCCCOP(O)OCCCCC MGJHACFZFDVYIL-UHFFFAOYSA-N 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- KUMNEOGIHFCNQW-UHFFFAOYSA-N diphenyl phosphite Chemical compound C=1C=CC=CC=1OP([O-])OC1=CC=CC=C1 KUMNEOGIHFCNQW-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- XEJNLUBEFCNORG-UHFFFAOYSA-N ditridecyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCC XEJNLUBEFCNORG-UHFFFAOYSA-N 0.000 description 1
- RLNHLZGTGRVXDB-UHFFFAOYSA-N diundecyl hydrogen phosphite Chemical compound CCCCCCCCCCCOP(O)OCCCCCCCCCCC RLNHLZGTGRVXDB-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical group CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical class CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 1
- 239000010688 mineral lubricating oil Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- REOJLIXKJWXUGB-UHFFFAOYSA-N mofebutazone Chemical group O=C1C(CCCC)C(=O)NN1C1=CC=CC=C1 REOJLIXKJWXUGB-UHFFFAOYSA-N 0.000 description 1
- CLZGJKHEVKJLLS-UHFFFAOYSA-N n,n-diheptylheptan-1-amine Chemical compound CCCCCCCN(CCCCCCC)CCCCCCC CLZGJKHEVKJLLS-UHFFFAOYSA-N 0.000 description 1
- DIAIBWNEUYXDNL-UHFFFAOYSA-N n,n-dihexylhexan-1-amine Chemical compound CCCCCCN(CCCCCC)CCCCCC DIAIBWNEUYXDNL-UHFFFAOYSA-N 0.000 description 1
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 1
- OOHAUGDGCWURIT-UHFFFAOYSA-N n,n-dipentylpentan-1-amine Chemical compound CCCCCN(CCCCC)CCCCC OOHAUGDGCWURIT-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- NJWMENBYMFZACG-UHFFFAOYSA-N n-heptylheptan-1-amine Chemical compound CCCCCCCNCCCCCCC NJWMENBYMFZACG-UHFFFAOYSA-N 0.000 description 1
- PXSXRABJBXYMFT-UHFFFAOYSA-N n-hexylhexan-1-amine Chemical compound CCCCCCNCCCCCC PXSXRABJBXYMFT-UHFFFAOYSA-N 0.000 description 1
- RQVGZVZFVNMBGS-UHFFFAOYSA-N n-octyl-n-phenylaniline Chemical compound C=1C=CC=CC=1N(CCCCCCCC)C1=CC=CC=C1 RQVGZVZFVNMBGS-UHFFFAOYSA-N 0.000 description 1
- JACMPVXHEARCBO-UHFFFAOYSA-N n-pentylpentan-1-amine Chemical compound CCCCCNCCCCC JACMPVXHEARCBO-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- CBFCDTFDPHXCNY-UHFFFAOYSA-N octyldodecane Natural products CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000010690 paraffinic oil Substances 0.000 description 1
- 229940100684 pentylamine Drugs 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- IKNCGYCHMGNBCP-UHFFFAOYSA-N propan-1-olate Chemical compound CCC[O-] IKNCGYCHMGNBCP-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical group [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical class CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- PPEZWDDRWXDXOQ-UHFFFAOYSA-N tributoxy(sulfanylidene)-$l^{5}-phosphane Chemical compound CCCCOP(=S)(OCCCC)OCCCC PPEZWDDRWXDXOQ-UHFFFAOYSA-N 0.000 description 1
- LGQXXHMEBUOXRP-UHFFFAOYSA-N tributyl borate Chemical compound CCCCOB(OCCCC)OCCCC LGQXXHMEBUOXRP-UHFFFAOYSA-N 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- XTTGYFREQJCEML-UHFFFAOYSA-N tributyl phosphite Chemical compound CCCCOP(OCCCC)OCCCC XTTGYFREQJCEML-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- GAJQCIFYLSXSEZ-UHFFFAOYSA-L tridecyl phosphate Chemical compound CCCCCCCCCCCCCOP([O-])([O-])=O GAJQCIFYLSXSEZ-UHFFFAOYSA-L 0.000 description 1
- OHRVKCZTBPSUIK-UHFFFAOYSA-N tridodecyl phosphate Chemical compound CCCCCCCCCCCCOP(=O)(OCCCCCCCCCCCC)OCCCCCCCCCCCC OHRVKCZTBPSUIK-UHFFFAOYSA-N 0.000 description 1
- IVIIAEVMQHEPAY-UHFFFAOYSA-N tridodecyl phosphite Chemical compound CCCCCCCCCCCCOP(OCCCCCCCCCCCC)OCCCCCCCCCCCC IVIIAEVMQHEPAY-UHFFFAOYSA-N 0.000 description 1
- ZATMWXRIJNLIBA-UHFFFAOYSA-N triheptadecyl phosphate Chemical compound CCCCCCCCCCCCCCCCCOP(=O)(OCCCCCCCCCCCCCCCCC)OCCCCCCCCCCCCCCCCC ZATMWXRIJNLIBA-UHFFFAOYSA-N 0.000 description 1
- GSURLQOINUQIIH-UHFFFAOYSA-N triheptyl phosphate Chemical compound CCCCCCCOP(=O)(OCCCCCCC)OCCCCCCC GSURLQOINUQIIH-UHFFFAOYSA-N 0.000 description 1
- PPBMHSGZZYZYBO-UHFFFAOYSA-N triheptyl phosphite Chemical compound CCCCCCCOP(OCCCCCCC)OCCCCCCC PPBMHSGZZYZYBO-UHFFFAOYSA-N 0.000 description 1
- KENFVQBKAYNBKN-UHFFFAOYSA-N trihexadecyl phosphate Chemical compound CCCCCCCCCCCCCCCCOP(=O)(OCCCCCCCCCCCCCCCC)OCCCCCCCCCCCCCCCC KENFVQBKAYNBKN-UHFFFAOYSA-N 0.000 description 1
- SFENPMLASUEABX-UHFFFAOYSA-N trihexyl phosphate Chemical compound CCCCCCOP(=O)(OCCCCCC)OCCCCCC SFENPMLASUEABX-UHFFFAOYSA-N 0.000 description 1
- ZOPCDOGRWDSSDQ-UHFFFAOYSA-N trinonyl phosphate Chemical compound CCCCCCCCCOP(=O)(OCCCCCCCCC)OCCCCCCCCC ZOPCDOGRWDSSDQ-UHFFFAOYSA-N 0.000 description 1
- QUTZUATVZPXUJR-UHFFFAOYSA-N trinonyl phosphite Chemical compound CCCCCCCCCOP(OCCCCCCCCC)OCCCCCCCCC QUTZUATVZPXUJR-UHFFFAOYSA-N 0.000 description 1
- FDGZUBKNYGBWHI-UHFFFAOYSA-N trioctadecyl phosphate Chemical compound CCCCCCCCCCCCCCCCCCOP(=O)(OCCCCCCCCCCCCCCCCCC)OCCCCCCCCCCCCCCCCCC FDGZUBKNYGBWHI-UHFFFAOYSA-N 0.000 description 1
- QOQNJVLFFRMJTQ-UHFFFAOYSA-N trioctyl phosphite Chemical compound CCCCCCCCOP(OCCCCCCCC)OCCCCCCCC QOQNJVLFFRMJTQ-UHFFFAOYSA-N 0.000 description 1
- OEOJDBBVRPAIDK-UHFFFAOYSA-N tripentadecyl phosphate Chemical compound CCCCCCCCCCCCCCCOP(=O)(OCCCCCCCCCCCCCCC)OCCCCCCCCCCCCCCC OEOJDBBVRPAIDK-UHFFFAOYSA-N 0.000 description 1
- QJAVUVZBMMXBRO-UHFFFAOYSA-N tripentyl phosphate Chemical compound CCCCCOP(=O)(OCCCCC)OCCCCC QJAVUVZBMMXBRO-UHFFFAOYSA-N 0.000 description 1
- CVWUIWZKLYGDNJ-UHFFFAOYSA-N tripentyl phosphite Chemical compound CCCCCOP(OCCCCC)OCCCCC CVWUIWZKLYGDNJ-UHFFFAOYSA-N 0.000 description 1
- IKXFIBBKEARMLL-UHFFFAOYSA-N triphenoxy(sulfanylidene)-$l^{5}-phosphane Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=S)OC1=CC=CC=C1 IKXFIBBKEARMLL-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- KOWVWXQNQNCRRS-UHFFFAOYSA-N tris(2,4-dimethylphenyl) phosphate Chemical compound CC1=CC(C)=CC=C1OP(=O)(OC=1C(=CC(C)=CC=1)C)OC1=CC=C(C)C=C1C KOWVWXQNQNCRRS-UHFFFAOYSA-N 0.000 description 1
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 description 1
- LFRFOEVCFVCHEV-UHFFFAOYSA-N tris(2-chlorophenyl) phosphate Chemical compound ClC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)Cl)OC1=CC=CC=C1Cl LFRFOEVCFVCHEV-UHFFFAOYSA-N 0.000 description 1
- QQBLOZGVRHAYGT-UHFFFAOYSA-N tris-decyl phosphite Chemical compound CCCCCCCCCCOP(OCCCCCCCCCC)OCCCCCCCCCC QQBLOZGVRHAYGT-UHFFFAOYSA-N 0.000 description 1
- SVETUDAIEHYIKZ-IUPFWZBJSA-N tris[(z)-octadec-9-enyl] phosphate Chemical compound CCCCCCCC\C=C/CCCCCCCCOP(=O)(OCCCCCCCC\C=C/CCCCCCCC)OCCCCCCCC\C=C/CCCCCCCC SVETUDAIEHYIKZ-IUPFWZBJSA-N 0.000 description 1
- WYFGCJADJYRNAK-UHFFFAOYSA-N tritetradecyl phosphate Chemical compound CCCCCCCCCCCCCCOP(=O)(OCCCCCCCCCCCCCC)OCCCCCCCCCCCCCC WYFGCJADJYRNAK-UHFFFAOYSA-N 0.000 description 1
- XEQUZHYCHCGTJX-UHFFFAOYSA-N tritridecyl phosphate Chemical compound CCCCCCCCCCCCCOP(=O)(OCCCCCCCCCCCCC)OCCCCCCCCCCCCC XEQUZHYCHCGTJX-UHFFFAOYSA-N 0.000 description 1
- SUZOHRHSQCIJDK-UHFFFAOYSA-N triundecyl phosphate Chemical compound CCCCCCCCCCCOP(=O)(OCCCCCCCCCCC)OCCCCCCCCCCC SUZOHRHSQCIJDK-UHFFFAOYSA-N 0.000 description 1
- UKPASDNOVTUNJT-UHFFFAOYSA-N triundecyl phosphite Chemical compound CCCCCCCCCCCOP(OCCCCCCCCCCC)OCCCCCCCCCCC UKPASDNOVTUNJT-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M111/00—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00Â -Â C10M109/00, each of these compounds being essential
- C10M111/04—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00Â -Â C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
- C10M2209/043—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/101—Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/105—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/105—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
- C10M2209/1055—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/106—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/223—Five-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/04—Molecular weight; Molecular weight distribution
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/135—Steam engines or turbines
Definitions
- the present invention is useful in the field of hydrocarbon-based lubricants.
- Hydrocarbon lubricants such as hydrocarbon oils are susceptible to oxidation and varnish formation during high temperature uses.
- the petroleum industry over the years has eliminated some of the impurities from crude oil via hydrocracking or produced synthetic hydrocarbons to minimize oxidation problems later on.
- nitrogen has been used to blanket the reservoir to prevent a hydrocarbon oil from coming in contact with oxygen.
- companies have developed varnish prediction test methods and varnish removal filters to filter out the soluble varnish. In spite of such efforts it still becomes necessary after a period of time in use to remove used oil that has filled with sludge and varnish and recharge the system with new oil. Further, varnish deposits onto machine parts can cause the parts to stick and interfere with operation of a machine.
- an aliphatic polyether selected from: polyalkylene oxides with monomer units having 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms, more preferably 3 or 4 carbon atoms, and most preferably 3 carbon atoms is added to a hydrocarbon lubricants, particularly hydrocarbon oils; such methods in which the hydrocarbon lubricant, particularly a hydrocarbon oil, comprises oxidation products that are dissolved by the addition of the aliphatic polyether; hydrocarbon lubricant, particularly hydrocarbon oil, containing an aliphatic polyether selected from: polyalkylene oxides with monomer units having 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms, more preferably 3 or 4 carbon atoms, and most preferably 3 carbon atoms ; lubrication systems including these hydrocarbon lubricants or hydrocarbon oils; machines including these lubrication systems; and methods of operating machines including these lubrication systems.
- the aliphatic polyether is selected from aliphatic polyethers having a formula wherein R and R 2 are independently selected from aliphatic hydrocarbyl groups having one to four carbon atoms and hydrogen, with the caveat that at least one of R and R 2 is a hydrocarbyl group; R 1 is an aliphatic hydrocarbylene group having from 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms, more preferably 3 or 4 carbon atoms, and most preferably 3 carbon atoms; and n is an integer from 4 to 50.
- the polyether has a number average molecular weight of from 300 to 3000 as determined by gel permeation chromatography using polystyrene standards.
- the polyether may be added to the hydrocarbon lubricant or hydrocarbon oil or included in a hydrocarbon lubricant or hydrocarbon oil in an amount from 2 wt% to 20 wt% of the polyether, preferably from 5 wt% to 20 wt% of the polyether, based on total lubricant weight.
- a hydrocarbon lubricant or oil containing oxidation products or varnish is treated by adding to the lubricant or oil an aliphatic polyether selected from polyalkylene oxide homopolymers having a formula wherein R and R 2 are independently selected from aliphatic hydrocarbyl groups having one to four carbon atoms and hydrogen, with the caveat that at least one of R and R 2 is a hydrocarbyl group; R 1 is an aliphatic hydrocarbylene group having from 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms, more preferably 3 or 4 carbon atoms, and most preferably 3 carbon atoms; and n is an integer from 4 to 50.
- the polyether has a number average molecular weight of from 300 to 3000 as determined by gel permeation chromatography using polystyrene standards.
- the hydrocarbon lubricant or hydrocarbon oil containing oxidation products or varnish may be treated with from 2 wt% to 20 wt% of the polyether, preferably from 5 wt% to 20 wt% of the polyether, based on total treated lubricant weight.
- the polyether-containing hydrocarbon lubricants are used in lubrication systems in which the lubricant or oil reaches temperatures above about 100°C. or in which the hydrocarbon lubricant or oil is subject to oxidative conditions.
- the lubricants particularly the hydrocarbon oils, may be used in lubrication systems for turbines, hydraulics, hydrostatic drives, in mobile equipment hydraulics, and in other such machines where cleanliness of the oil lubricant is an issue.
- the disclosed lubricant compositions and methods minimize or prevent varnish formation and extend oil life of hydrocarbon oils used in applications in which they are exposed to high temperatures or oxidative conditions during use.
- the lubricant is a hydrocarbon oil used to lubricate a power generation turbine.
- the lubricant dissolves lubricant oxidation products (pre-varnish) and reduces pentane insolubles. This prevents build up of varnish on lubricated surfaces such as turbine system surfaces, which can cause sticky valves and turbine trips of the power generator.
- the polyalkylene oxide homopolymers or polyvinyl ethers do not behave as dispersants for the oxidation products and varnish particles but instead increase the polarity of the base hydrocarbon oil to allow the hydrocarbon oil to dissolve the oxidation products and varnish particles.
- the dissolved oxidation products do not agglomerate.
- the disclosed lubricant compositions and methods revitalize used oils (reduced VPR rating) so they do not have to drained and refilled, which saves on waste disposal, eliminates the need to purchase expensive varnish removal filtration systems, and prevents or diminishes future varnish formation to extend oil life.
- hydrocarbon lubricant base stock is used in these methods and compositions.
- Hydrocarbon base stocks may be manufactured using a variety of different processes including, but not limited to, distillation, solvent refining, hydrogen processing, oligomerization, esterification, and re-refining.
- hydrocarbon base stocks are aliphatic hydrocarbon oils, hydrocracked and severely hydrotreated hydrocarbon oils, furfural-refined paraffinic oil, solvent-refined napthenic oil, and solvent-refined aromatic oil; synthetic hydrocarbon oils, such as poly(alpha-olefin) oils like hydrogenated or partially hydrogenated olefins including hydrogenated hexene oligomers, hydrogenated octene oligomers, hydrogenated decene oligomers, hydrogenated C 6-10 oligomers, and hydrogenated C 8-10 oligomers; mineral oils such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types such as paraffinic neutral 100", and oils derived from coal or shale; alkylbenzenes such as dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di-(
- the polyether-containing hydrocarbon lubricant may be made using a hydrocarbon oil base stock or a fully formulated hydrocarbon lubricant, particularly a fully formulated hydrocarbon oil.
- the polyether-containing hydrocarbon lubricant or oil is made from used hydrocarbon lubricant or oil containing oxidation products, such as varnish particles or soft bodies, which may further include one or more lubricant additives.
- the hydrocarbon base oil or lubricant is combined with a polyether selected from polyalkylene oxide homopolymers.
- the polyalkylene oxide homopolymers have a formula wherein R and R 2 are independently selected from aliphatic hydrocarbyl groups having one to four carbon atoms and hydrogen, with the caveat that at least one of R and R 2 is a hydrocarbyl group;
- R 1 is an aliphatic hydrocarbylene group having from 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms, more preferably 3 or 4 carbon atoms, and most preferably 3 carbon atoms;
- n is an integer from 4 to 50, preferably from about 10 or from about 15 to about 25 or to about 30 or to about 35 or to about 40, especially preferably from about 10 to about 40 or from about 10 to about 35 or from about 15 to about 35.
- the polyalkylene oxide homopolymer has a number average molecular weight of at least 300.
- the polyalkylene oxide homopolymer has a number average molecular weight of up to 3000, more preferably up to about 2000, and particular preferably from about 500 to about 1200.
- the number average molecular weight is determined by gel permeation chromatography using polystyrene standards.
- Nonlimiting examples include polypropylene oxide and polybutylene oxide having optionally one hydroxyl endgroup and one alkoxide endgroup or, if there is no hydroxyl end group, two alkoxide endgroups, where the alkoxide endgroups may be methoxide, ethoxide, propoxide, isopropxide, n-butoxide, isobutoxide, sec-butoxide and tert-butoxide endgroups.
- Such polyalkylene oxide polymers may be prepared using an alcohol as an initiator molecule by anionic polymerization of an alkylene oxide with base catalysts, e.g.
- alkali metal hydroxides like potassium hydroxide and sodium hydroxide, sodium methoxide, or metal sodium, or by cationic polymerization of an alkylene oxide with acid catalysts such as aluminum chloride, antimony pentachloride, boron trifluoride, iron(III) chloride, or tin(IV) chloride.
- acid catalysts such as aluminum chloride, antimony pentachloride, boron trifluoride, iron(III) chloride, or tin(IV) chloride.
- acid catalysts such as aluminum chloride, antimony pentachloride, boron trifluoride, iron(III) chloride, or tin(IV) chloride.
- Many alkoxide-terminated polyalkylene oxides are commercially available, for example from BASF under the tradename PLURASAFE® and from Dow Chemical under the tradename UCONTM.
- the polyether-containing hydrocarbon oil or other lubricant that is prepared by combining the hydrocarbon oil or other hydrocarbon lubricant and polyether may contain from 2 wt% to 20 wt% of the polyether, preferably from 5 wt% to 20 wt% of the polyether, based on total polyether-containing hydrocarbon lubricant weight.
- the polyether is not amphiphilic so as to form micelles as would a surfactant. Rather, it is understood that the polyether changes the characteristics of the lubricant to permit oxidation products and varnish particles to dissolve in the oil or other hydrocarbon lubricant.
- the hydrocarbon oil or other hydrocarbon lubricant is preferably free of detergents, surfactants, and dispersants.
- the oil or lubricant may include one or more additives other than detergents, surfactants, and dispersants.
- suitable additives include antioxidants, anti-wear agents, extreme-pressure agents, friction-reducing agents, metal inactivating agents such as benzotriazoles, viscosity modifiers, pour point depressants, stabilizers, corrosion inhibitors, and flammability suppressants.
- Such additives may be used alone or in any combination of two or more. There are no particular restrictions on the inclusion of such additives. Generally, additives such as these may be present at less than or equal to about 10% by weight of the lubricant composition.
- Various embodiments of the lubricant composition may include about 0.1 to about 5% by weight of an additive or a combination of additives or about 0.2 to about 2% by weight of an additive or a combination of additives.
- Nonlimiting examples of the antioxidants that can be used include phenolic antioxidants such as 2,6-di-t-butyl-4-methylphenol and 4,4'-methylenebis(2,6-di-t-butylphenol), and bisphenol A; amine and thiazine antioxidants such as p,p-dioctylphenylamine, monooctyldiphenylamine, phenothiazine, 3,7-dioctylphenothiazine, N,N-di(2-naphthyl)-p-phenylenediamine, phenyl-1-naphthylamine, phenyl-2-naphthylamine, alkylphenyl-1-naphthylamines, and alkylphenyl-2-naphthylamines; and sulfur-containing antioxidants such as alkyl disulfide, thiodipropionic acid esters and benzothiazole.
- the lubricant composition may comprise up to about 5.0 weight % antioxidants, about 0.1 to about 5 weight %, about 0.1 to about 2.0 weight %, or about 0.2 to about 0.8 weight % antioxidants.
- the lubricant compositions may include one or a combination of two or more antioxidant compounds.
- the hydrocarbon lubricant and hydrocarbon oil compositions may include one or more extreme pressure or anti-wear additives.
- suitable extreme pressure/antiwear additives include sulfur- and phosphorous-containing types such as phosphoric acid esters, acidic phosphoric acid esters, branched alkyl amine phosphates containing 5 to 20 carbon atoms, thiophosphoric acid esters, acidic phosphoric acid ester amine salts, and chlorinated phosphoric acid esters and phosphorous acid esters that are esters of phosphoric acid or phosphorous acid with alkanols or polyether alcohols.
- phosphoric acid esters include tributyl phosphate, tripentyl phosphate, trihexyl phosphate, triheptyl phosphate, trioctyl phosphate, trinonyl phosphate, tridecyl phosphate, triundecyl phosphate, tridodecyl phosphate, tritridecyl phosphate, tritetradecyl phosphate, tripentadecyl phosphate, trihexadecyl phosphate, triheptadecyl phosphate, trioctadecyl phosphate, trioleyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyldiphenyl phosphate, and xylenyldiphenyl phosphate.
- acidic phosphoric acid esters there may be mentioned monobutyl acid phosphate, monopentyl acid phosphate, monohexyl acid phosphate, monoheptyl acid phosphate, monooctyl acid phosphate, monononyl acid phosphate, monodecyl acid phosphate, monoundecyl acid phosphate, monododecyl acid phosphate, monotridecyl acid phosphate, monotetradecyl acid phosphate, monopentadecyl acid phosphate, monohexadecyl acid phosphate, monoheptadecyl acid phosphate, monooctadecyl acid phosphate, monooleyl acid phosphate, dibutyl acid phosphate, dipentyl acid phosphate, dihexyl acid phosphate, diheptyl acid phosphate, dioctyl acid phosphate, dinonyl acid phosphate, did
- thiophosphoric acid esters include tributyl phosphorothionate, tripentyl phosphorothionate, trihexyl phosphorothionate, triheptyl phosphorothionate, trioctyl phosphorothionate, trinonyl phosphorothionate, tridecyl phosphorothionate, triundecyl phosphorothionate, tridodecyl phosphorothionate, tritridecyl phosphorothionate, tritetradecyl phosphorothionate, tripentadecyl phosphorothionate, trihexadecyl phosphorothionate, triheptadecyl phosphorothionate, trioctadecyl phosphorothionate, trioleyl phosphorothionate, triphenyl phosphorothionate, tricresyl phosphorothionate, trixylenyl phosphorot
- amine salts of acidic phosphoric acid esters include salts of acidic phosphoric acid esters with amines such as methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, and trioctylamine.
- amines such as methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, dimethylamine, diethylamine, dipropylamine,
- chlorinated phosphoric acid esters include tris(dichloropropyl) phosphate, tris(chloroethyl) phosphate, tris(chlorophenyl) phosphate, and polyoxyalkylene bis[di(chloroalkyl)]phosphate.
- dibutyl phosphite dipentyl phosphite, dihexyl phosphite, diheptyl phosphite, dioctyl phosphite, dinonyl phosphite, didecyl phosphite, diundecyl phosphite, didodecyl phosphite, dioleyl phosphite, diphenyl phosphite, dicresyl phosphite, tributyl phosphite, tripentyl phosphite, trihexyl phosphite, triheptyl phosphite, trioctyl phosphite, trinonyl phosphite, tridecyl phosphite, triundecyl phosphite, tridodec
- the extreme pressure/antiwear additives may be used individually or in any combination, in any desired amount.
- the lubricant or oil composition may include about 0.01 weight % to about 5.0 weight %, about 0.01 weight % to about 4.0 weight %, about 0.02 weight % to about 3.0 weight %, or 0.1 weight % to about 5.0 weight % each of extreme pressure additives and antiwear additives. These additives may be used alone or in any combination.
- the hydrocarbon lubricant or hydrocarbon oil may include one or more corrosion inhibitors, such as those selected from isomeric mixtures of N,N-bis(2-ethylhexyl)-4-methyl-1H-benzotriazole-1-methylamine and N,N-bis(2-ethylhexyl)-5-methyl-1H-benzotriazole-1-methylamine.
- the hydrocarbon lubricant or hydrocarbon oil may include about 0.01 to about 1.0 weight % of one or more corrosion inhibitors, about 0.01 to about 0.5 weight % of one or more corrosion inhibitors, or about 0.05 to about 0.15 weight % of one or more corrosion inhibitors.
- Viscosity modifiers are polymeric materials, typical examples of these being polyolefins, such as ethylene-propylene copolymers, hydrogenated styrene-isoprene block copolymers, hydrogenated copolymers of styrenebutadiene, copolymers of ethylene and propylene, acrylic polymers produced by polymerization of acrylate and methacrylate esters, hydrogenated isoprene polymers, polyalkyl styrenes, hydrogenated alkenyl arene conjugated diene copolymers, polyolefins, esters of maleic anhydride-styrene copolymers, and polyisobutylene.
- polyolefins such as ethylene-propylene copolymers, hydrogenated styrene-isoprene block copolymers, hydrogenated copolymers of styrenebutadiene, copolymers of ethylene and propylene, acrylic polymers
- Nonlimiting examples of pour point depressants include polyalkyl methacrylates, polyalkyl acrylates, polyvinyl acetate, polyalkylstylenes, polybutene, condensates of chlorinated paraffin and naphthalene, and condensates of chlorinated paraffin and phenol
- Nonlimiting examples of flammability suppresants include trifluorochloromethane, trifluoroiodomthane, phosphate esters and other phosphorous compounds, and iodine- or bromine-containing hydrocarbons, hydrofloroarbons, or fluorocarbons.
- a hydrocarbon lubricant or hydrocarbon oil may be treated by adding to the lubricant or oil a polyether selected from polyalkylene oxide homopolymers as described.
- the hydrocarbon lubricant or hydrocarbon oil that is treated contains an oxidation product, e.g. varnish or pre-varnish oxidation products, and the polyether is added in an amount sufficient to cause the oxidation products to dissolve in the lubricant.
- the polyether is added in an amount such that the lubricant or oil comprises from 2 wt% to 20 wt% or from 5 wt% to 20 wt% of the polyether.
- the viscosity of a hydrocarbon oil or other lubricant containing varnish, pre-varnish, or other oxidation products is reduced by the addition of the polyether to a greater degree that would be expected based on a weighted average of the viscosity of the hydrocarbon oil or lubricant and the viscosity of the polyether.
- a hydrocarbon lubricant or hydrocarbon oil treatment composition for treating hydrocarbon lubricant or hydrocarbon oil containing varnish or other oxidation products includes the polyether as described and at least one additive other than detergents, surfactants, and dispersants.
- the additive is selected from antioxidants, anti-wear agents, extreme-pressure agents, friction-reducing agents, metal inactivating agents such as benzotriazoles, viscosity modifiers, pour point depressants, stabilizers, corrosion inhibitors, flammability suppressants, and combinations of these.
- the lubricant or oil treatment composition comprises the polyether and an antioxidant.
- the lubricant or oil treatment composition reduces the viscosity of a hydrocarbon lubricant or hydrocarbon oil containing varnish, pre-varnish, or other oxidation products to a greater degree that would be expected based on a weighted average of the viscosity of the hydrocarbon lubricant or hydrocarbon oil and the viscosity of the polyether treatment composition.
- the oxidation products dissolve and do not agglomerate in the hydrocarbon lubricant or hydrocarbon oil containing the polyether. This is demonstrated in the following examples in which testing for Varnish Potential shows condemned 'used' oil returning to good working condition. Viscosity of used hydrocarbon oil decreases, ISO cleanliness codes decrease, pentane insolubles decrease, lubrication properties increase, and VPR (varnish potential rating) is reduced to 'as new fluid' acceptable for use.
- a portion of 90 parts by weight of the used Chevron GST-32 turbine oil was combined with 10 parts by weight of polypropylene oxide, terminated with one butyl ether group and one hydroxyl group, having a number average molecular weight of 1000, and containing 0.6 wt% of the butylated reaction product of p-cresol and dicyclopentadiene (CAS # 68610-51-5) and 0.01 wt% Cobratec 122 (available form PMC Specialties Group Inc., Cincinnati, OH) to make a remediated turbine oil.
- the parameters of this remediated Chevron GST-32 turbine oil were measured and are shown in Table 1.
- Theoretical values of the parameters were determined for a combination of 90 parts by weight of the used Chevron GST-32 turbine oil combined with 10 parts by weight of the polypropylene oxide by taking a weighted average of the values of the individual fluids.
- the theoretical values represent oil property values that would be expected if the polyether had no effect on the varnish particles contained in the used Chevron GST-32 turbine oil. These values are also shown in Table 1.
- the difference between the theoretical parameter values and the values actually obtained by combining the used turbine oil with the polypropylene oxide demonstrate that the added polypropylene oxide eliminated the soft varnish particles from the used turbine oil.
- a sample of used Mobil SHC-824 turbine oil was removed from a system that had excessive varnish.
- the parameters of the used oil were measured and are given in Table 2.
- a portion of 90 parts by weight of the used Mobil SHC-824 turbine oil was combined with 10 parts by weight of polypropylene oxide, terminated with one butyl ether group and one hydroxyl group, having a number average molecular weight of 1000, and containing 0.6 wt% of the butylated reaction product of p-cresol and dicyclopentadiene (CAS # 68610-51-5) and 0.01 wt% Cobratec 122 (available form PMC Specialties Group Inc., Cincinnati, OH) to make a remediated turbine oil.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Description
- The present invention is useful in the field of hydrocarbon-based lubricants.
- This section provides information helpful in understanding the invention but that is not necessarily prior art.
- Hydrocarbon lubricants such as hydrocarbon oils are susceptible to oxidation and varnish formation during high temperature uses. The petroleum industry over the years has eliminated some of the impurities from crude oil via hydrocracking or produced synthetic hydrocarbons to minimize oxidation problems later on. In another measure taken to address the problem, nitrogen has been used to blanket the reservoir to prevent a hydrocarbon oil from coming in contact with oxygen. More recently, companies have developed varnish prediction test methods and varnish removal filters to filter out the soluble varnish. In spite of such efforts it still becomes necessary after a period of time in use to remove used oil that has filled with sludge and varnish and recharge the system with new oil. Further, varnish deposits onto machine parts can cause the parts to stick and interfere with operation of a machine.
- Both draining and refilling a lubrication system and use of a varnish removal filtration system are expensive options and cannot guarantee that varnish is not deposited onto working machine parts. While there has been progress slowing the oxidation process, predicting the varnish formation, and removing some of the varnish via filtration, varnish can only be removed by filtration if the oil makes its way back to the filter. Oil out in the lines of a lubrication system can continue to degrade and deposit varnish, causing problems with operation of machinery. Dispersants may help keep soft varnish particles suspended in a hydrocarbon lubricant, but the dispersant micelles formed increase lubricant viscosity and affect performance of the lubricant. Martin Greaves, et al. discloses oil-soluble PAG base oils (Lubrication Science 2012; 24:251-262).
- The invention is set out in the appended set of claims.
- Disclosed are methods in which an aliphatic polyether selected from: polyalkylene oxides with monomer units having 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms, more preferably 3 or 4 carbon atoms, and most preferably 3 carbon atoms is added to a hydrocarbon lubricants, particularly hydrocarbon oils; such methods in which the hydrocarbon lubricant, particularly a hydrocarbon oil, comprises oxidation products that are dissolved by the addition of the aliphatic polyether; hydrocarbon lubricant, particularly hydrocarbon oil, containing an aliphatic polyether selected from: polyalkylene oxides with monomer units having 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms, more preferably 3 or 4 carbon atoms, and most preferably 3 carbon atoms ; lubrication systems including these hydrocarbon lubricants or hydrocarbon oils; machines including these lubrication systems; and methods of operating machines including these lubrication systems.
- In various embodiments of these, the aliphatic polyether is selected from aliphatic polyethers having a formula
- In the practice of the invention, a hydrocarbon lubricant or oil containing oxidation products or varnish is treated by adding to the lubricant or oil an aliphatic polyether selected from polyalkylene oxide homopolymers having a formula
- In various embodiments, the polyether-containing hydrocarbon lubricants, particularly hydrocarbon oils, are used in lubrication systems in which the lubricant or oil reaches temperatures above about 100°C. or in which the hydrocarbon lubricant or oil is subject to oxidative conditions.
- The lubricants, particularly the hydrocarbon oils, may be used in lubrication systems for turbines, hydraulics, hydrostatic drives, in mobile equipment hydraulics, and in other such machines where cleanliness of the oil lubricant is an issue.
- The disclosed lubricant compositions and methods minimize or prevent varnish formation and extend oil life of hydrocarbon oils used in applications in which they are exposed to high temperatures or oxidative conditions during use. In one method, the lubricant is a hydrocarbon oil used to lubricate a power generation turbine. The lubricant dissolves lubricant oxidation products (pre-varnish) and reduces pentane insolubles. This prevents build up of varnish on lubricated surfaces such as turbine system surfaces, which can cause sticky valves and turbine trips of the power generator.
- While not wishing to be bound by theory, it is believed that the polyalkylene oxide homopolymers or polyvinyl ethers do not behave as dispersants for the oxidation products and varnish particles but instead increase the polarity of the base hydrocarbon oil to allow the hydrocarbon oil to dissolve the oxidation products and varnish particles. The dissolved oxidation products do not agglomerate.
- The disclosed lubricant compositions and methods revitalize used oils (reduced VPR rating) so they do not have to drained and refilled, which saves on waste disposal, eliminates the need to purchase expensive varnish removal filtration systems, and prevents or diminishes future varnish formation to extend oil life.
- "A," "an," "the," "at least one," and "one or more" are used interchangeably to indicate that at least one of the item is present; a plurality of such items may be present unless the context clearly indicates otherwise.
- Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
- A detailed description of exemplary, nonlimiting embodiments follows.
- A hydrocarbon lubricant base stock is used in these methods and compositions. Hydrocarbon base stocks may be manufactured using a variety of different processes including, but not limited to, distillation, solvent refining, hydrogen processing, oligomerization, esterification, and re-refining. Nonlimiting examples of hydrocarbon base stocks are aliphatic hydrocarbon oils, hydrocracked and severely hydrotreated hydrocarbon oils, furfural-refined paraffinic oil, solvent-refined napthenic oil, and solvent-refined aromatic oil; synthetic hydrocarbon oils, such as poly(alpha-olefin) oils like hydrogenated or partially hydrogenated olefins including hydrogenated hexene oligomers, hydrogenated octene oligomers, hydrogenated decene oligomers, hydrogenated C6-10 oligomers, and hydrogenated C8-10 oligomers; mineral oils such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types such as paraffinic neutral 100", and oils derived from coal or shale; alkylbenzenes such as dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di-(2-ethylhexyl)-benzenes; polyphenyls like biphenyls, terphenyls, alkylated polyphenyls; alkylated diphenyl ethers, and mixtures of these.
- The polyether-containing hydrocarbon lubricant may be made using a hydrocarbon oil base stock or a fully formulated hydrocarbon lubricant, particularly a fully formulated hydrocarbon oil. The polyether-containing hydrocarbon lubricant or oil is made from used hydrocarbon lubricant or oil containing oxidation products, such as varnish particles or soft bodies, which may further include one or more lubricant additives.
- The hydrocarbon base oil or lubricant is combined with a polyether selected from polyalkylene oxide homopolymers. The polyalkylene oxide homopolymers have a formula
- Nonlimiting examples include polypropylene oxide and polybutylene oxide having optionally one hydroxyl endgroup and one alkoxide endgroup or, if there is no hydroxyl end group, two alkoxide endgroups, where the alkoxide endgroups may be methoxide, ethoxide, propoxide, isopropxide, n-butoxide, isobutoxide, sec-butoxide and tert-butoxide endgroups. Such polyalkylene oxide polymers may be prepared using an alcohol as an initiator molecule by anionic polymerization of an alkylene oxide with base catalysts, e.g. alkali metal hydroxides like potassium hydroxide and sodium hydroxide, sodium methoxide, or metal sodium, or by cationic polymerization of an alkylene oxide with acid catalysts such as aluminum chloride, antimony pentachloride, boron trifluoride, iron(III) chloride, or tin(IV) chloride. Many alkoxide-terminated polyalkylene oxides are commercially available, for example from BASF under the tradename PLURASAFE® and from Dow Chemical under the tradename UCON™.
- In various embodiments, the polyether-containing hydrocarbon oil or other lubricant that is prepared by combining the hydrocarbon oil or other hydrocarbon lubricant and polyether may contain from 2 wt% to 20 wt% of the polyether, preferably from 5 wt% to 20 wt% of the polyether, based on total polyether-containing hydrocarbon lubricant weight.
- The polyether is not amphiphilic so as to form micelles as would a surfactant. Rather, it is understood that the polyether changes the characteristics of the lubricant to permit oxidation products and varnish particles to dissolve in the oil or other hydrocarbon lubricant.
- The hydrocarbon oil or other hydrocarbon lubricant is preferably free of detergents, surfactants, and dispersants. The oil or lubricant may include one or more additives other than detergents, surfactants, and dispersants. Nonlimiting examples of suitable additives include antioxidants, anti-wear agents, extreme-pressure agents, friction-reducing agents, metal inactivating agents such as benzotriazoles, viscosity modifiers, pour point depressants, stabilizers, corrosion inhibitors, and flammability suppressants. Such additives may be used alone or in any combination of two or more. There are no particular restrictions on the inclusion of such additives. Generally, additives such as these may be present at less than or equal to about 10% by weight of the lubricant composition. Various embodiments of the lubricant composition may include about 0.1 to about 5% by weight of an additive or a combination of additives or about 0.2 to about 2% by weight of an additive or a combination of additives.
- Nonlimiting examples of the antioxidants that can be used include phenolic antioxidants such as 2,6-di-t-butyl-4-methylphenol and 4,4'-methylenebis(2,6-di-t-butylphenol), and bisphenol A; amine and thiazine antioxidants such as p,p-dioctylphenylamine, monooctyldiphenylamine, phenothiazine, 3,7-dioctylphenothiazine, N,N-di(2-naphthyl)-p-phenylenediamine, phenyl-1-naphthylamine, phenyl-2-naphthylamine, alkylphenyl-1-naphthylamines, and alkylphenyl-2-naphthylamines; and sulfur-containing antioxidants such as alkyl disulfide, thiodipropionic acid esters and benzothiazole. The lubricant composition may comprise up to about 5.0 weight % antioxidants, about 0.1 to about 5 weight %, about 0.1 to about 2.0 weight %, or about 0.2 to about 0.8 weight % antioxidants. The lubricant compositions may include one or a combination of two or more antioxidant compounds.
- In certain embodiments, the hydrocarbon lubricant and hydrocarbon oil compositions may include one or more extreme pressure or anti-wear additives. Nonlimiting examples of suitable extreme pressure/antiwear additives include sulfur- and phosphorous-containing types such as phosphoric acid esters, acidic phosphoric acid esters, branched alkyl amine phosphates containing 5 to 20 carbon atoms, thiophosphoric acid esters, acidic phosphoric acid ester amine salts, and chlorinated phosphoric acid esters and phosphorous acid esters that are esters of phosphoric acid or phosphorous acid with alkanols or polyether alcohols. Specific, nonlimiting examples of phosphoric acid esters include tributyl phosphate, tripentyl phosphate, trihexyl phosphate, triheptyl phosphate, trioctyl phosphate, trinonyl phosphate, tridecyl phosphate, triundecyl phosphate, tridodecyl phosphate, tritridecyl phosphate, tritetradecyl phosphate, tripentadecyl phosphate, trihexadecyl phosphate, triheptadecyl phosphate, trioctadecyl phosphate, trioleyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyldiphenyl phosphate, and xylenyldiphenyl phosphate. Specific, nonlimiting examples of acidic phosphoric acid esters there may be mentioned monobutyl acid phosphate, monopentyl acid phosphate, monohexyl acid phosphate, monoheptyl acid phosphate, monooctyl acid phosphate, monononyl acid phosphate, monodecyl acid phosphate, monoundecyl acid phosphate, monododecyl acid phosphate, monotridecyl acid phosphate, monotetradecyl acid phosphate, monopentadecyl acid phosphate, monohexadecyl acid phosphate, monoheptadecyl acid phosphate, monooctadecyl acid phosphate, monooleyl acid phosphate, dibutyl acid phosphate, dipentyl acid phosphate, dihexyl acid phosphate, diheptyl acid phosphate, dioctyl acid phosphate, dinonyl acid phosphate, didecyl acid phosphate, diundecyl acid phosphate, didodecyl acid phosphate, ditridecyl acid phosphate, ditetradecyl acid phosphate, dipentadecyl acid phosphate, dihexadecyl acid phosphate, diheptadecyl acid phosphate, dioctadecyl acid phosphate and dioleyl acid phosphate. Specific, nonlimiting examples of thiophosphoric acid esters include tributyl phosphorothionate, tripentyl phosphorothionate, trihexyl phosphorothionate, triheptyl phosphorothionate, trioctyl phosphorothionate, trinonyl phosphorothionate, tridecyl phosphorothionate, triundecyl phosphorothionate, tridodecyl phosphorothionate, tritridecyl phosphorothionate, tritetradecyl phosphorothionate, tripentadecyl phosphorothionate, trihexadecyl phosphorothionate, triheptadecyl phosphorothionate, trioctadecyl phosphorothionate, trioleyl phosphorothionate, triphenyl phosphorothionate, tricresyl phosphorothionate, trixylenyl phosphorothionate, cresyldiphenyl phosphorothionate, and xylenyldiphenyl phosphorothionate. Specific, nonlimiting examples of amine salts of acidic phosphoric acid esters include salts of acidic phosphoric acid esters with amines such as methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, and trioctylamine. Specific, nonlimiting examples of chlorinated phosphoric acid esters include tris(dichloropropyl) phosphate, tris(chloroethyl) phosphate, tris(chlorophenyl) phosphate, and polyoxyalkylene bis[di(chloroalkyl)]phosphate. As phosphorous acid esters there may be mentioned dibutyl phosphite, dipentyl phosphite, dihexyl phosphite, diheptyl phosphite, dioctyl phosphite, dinonyl phosphite, didecyl phosphite, diundecyl phosphite, didodecyl phosphite, dioleyl phosphite, diphenyl phosphite, dicresyl phosphite, tributyl phosphite, tripentyl phosphite, trihexyl phosphite, triheptyl phosphite, trioctyl phosphite, trinonyl phosphite, tridecyl phosphite, triundecyl phosphite, tridodecyl phosphite, trioleyl phosphite, triphenyl phosphite, and tricresyl phosphite. The extreme pressure/antiwear additives may be used individually or in any combination, in any desired amount. In various embodiments, the lubricant or oil composition may include about 0.01 weight % to about 5.0 weight %, about 0.01 weight % to about 4.0 weight %, about 0.02 weight % to about 3.0 weight %, or 0.1 weight % to about 5.0 weight % each of extreme pressure additives and antiwear additives. These additives may be used alone or in any combination.
- In various embodiments, the hydrocarbon lubricant or hydrocarbon oil may include one or more corrosion inhibitors, such as those selected from isomeric mixtures of N,N-bis(2-ethylhexyl)-4-methyl-1H-benzotriazole-1-methylamine and N,N-bis(2-ethylhexyl)-5-methyl-1H-benzotriazole-1-methylamine. The hydrocarbon lubricant or hydrocarbon oil may include about 0.01 to about 1.0 weight % of one or more corrosion inhibitors, about 0.01 to about 0.5 weight % of one or more corrosion inhibitors, or about 0.05 to about 0.15 weight % of one or more corrosion inhibitors.
- Viscosity modifiers (or viscosity index improvers) are polymeric materials, typical examples of these being polyolefins, such as ethylene-propylene copolymers, hydrogenated styrene-isoprene block copolymers, hydrogenated copolymers of styrenebutadiene, copolymers of ethylene and propylene, acrylic polymers produced by polymerization of acrylate and methacrylate esters, hydrogenated isoprene polymers, polyalkyl styrenes, hydrogenated alkenyl arene conjugated diene copolymers, polyolefins, esters of maleic anhydride-styrene copolymers, and polyisobutylene.
- Nonlimiting examples of pour point depressants include polyalkyl methacrylates, polyalkyl acrylates, polyvinyl acetate, polyalkylstylenes, polybutene, condensates of chlorinated paraffin and naphthalene, and condensates of chlorinated paraffin and phenol
- Nonlimiting examples of flammability suppresants include trifluorochloromethane, trifluoroiodomthane, phosphate esters and other phosphorous compounds, and iodine- or bromine-containing hydrocarbons, hydrofloroarbons, or fluorocarbons.
- A hydrocarbon lubricant or hydrocarbon oil may be treated by adding to the lubricant or oil a polyether selected from polyalkylene oxide homopolymers as described. The hydrocarbon lubricant or hydrocarbon oil that is treated contains an oxidation product, e.g. varnish or pre-varnish oxidation products, and the polyether is added in an amount sufficient to cause the oxidation products to dissolve in the lubricant. In various embodiments, the polyether is added in an amount such that the lubricant or oil comprises from 2 wt% to 20 wt% or from 5 wt% to 20 wt% of the polyether. In various embodiments the viscosity of a hydrocarbon oil or other lubricant containing varnish, pre-varnish, or other oxidation products is reduced by the addition of the polyether to a greater degree that would be expected based on a weighted average of the viscosity of the hydrocarbon oil or lubricant and the viscosity of the polyether.
- A hydrocarbon lubricant or hydrocarbon oil treatment composition for treating hydrocarbon lubricant or hydrocarbon oil containing varnish or other oxidation products includes the polyether as described and at least one additive other than detergents, surfactants, and dispersants. In various embodiments, the additive is selected from antioxidants, anti-wear agents, extreme-pressure agents, friction-reducing agents, metal inactivating agents such as benzotriazoles, viscosity modifiers, pour point depressants, stabilizers, corrosion inhibitors, flammability suppressants, and combinations of these. In particular embodiments, the lubricant or oil treatment composition comprises the polyether and an antioxidant. The lubricant or oil treatment composition reduces the viscosity of a hydrocarbon lubricant or hydrocarbon oil containing varnish, pre-varnish, or other oxidation products to a greater degree that would be expected based on a weighted average of the viscosity of the hydrocarbon lubricant or hydrocarbon oil and the viscosity of the polyether treatment composition.
- The oxidation products dissolve and do not agglomerate in the hydrocarbon lubricant or hydrocarbon oil containing the polyether. This is demonstrated in the following examples in which testing for Varnish Potential shows condemned 'used' oil returning to good working condition. Viscosity of used hydrocarbon oil decreases, ISO cleanliness codes decrease, pentane insolubles decrease, lubrication properties increase, and VPR (varnish potential rating) is reduced to 'as new fluid' acceptable for use.
- A sample of used Chevron GST-32 turbine oil was removed from a system that had been experiencing system trips and varnish problems. The parameters of the used oil were measured according to the following published test methods.
VP Pentane Insolubles -ASTM D 893
Ultra-Centrifuge Sediment Rating -Mobil Method 1169
Filter Patch Colorimetry - ASTM W K 27308
Ruler %- ASTM D 6971
Varnish Potential Rating- ASTM D 4378
Viscosity (SUS)- ASTM D 445
Total Acid Number- ASTM D 664
Water Content- ASTM E 203
Particle Count-ISO 4406. - The measured values of the used Chevron GST-32 turbine oil as removed from the system are shown in Table 1. The parameters of a new, unused sample of Chevron GST-32 turbine oil were also measured and are shown in Table 1.
- A portion of 90 parts by weight of the used Chevron GST-32 turbine oil was combined with 10 parts by weight of polypropylene oxide, terminated with one butyl ether group and one hydroxyl group, having a number average molecular weight of 1000, and containing 0.6 wt% of the butylated reaction product of p-cresol and dicyclopentadiene (CAS # 68610-51-5) and 0.01 wt% Cobratec 122 (available form PMC Specialties Group Inc., Cincinnati, OH) to make a remediated turbine oil. The parameters of this remediated Chevron GST-32 turbine oil were measured and are shown in Table 1.
- Theoretical values of the parameters were determined for a combination of 90 parts by weight of the used Chevron GST-32 turbine oil combined with 10 parts by weight of the polypropylene oxide by taking a weighted average of the values of the individual fluids. The theoretical values represent oil property values that would be expected if the polyether had no effect on the varnish particles contained in the used Chevron GST-32 turbine oil. These values are also shown in Table 1. The difference between the theoretical parameter values and the values actually obtained by combining the used turbine oil with the polypropylene oxide demonstrate that the added polypropylene oxide eliminated the soft varnish particles from the used turbine oil. The used Chevron GST-32 turbine oil remediated with 10 wt% polypropylene oxide had a 75% elimination of pentane insolubles, an ultra-centrifuge sediment rating equivalent to the new oil, and a reduction in measured color bodies. Results of the Ruler test show a 10% boost over the expected value in the antioxidant content of the original Chevron GST-32 antioxidant, which differs from the antioxidant that was combined with the polypropylene added to remediate the used oil. A 10-unit SUS drop in viscosity for the remediated oil is also evidence that the soft varnish particles have been dissolved into the oil. The polypropylene oxide also releases other polar molecules, such as water, as the varnish breaks up.
New Chevron GST-32 turbine oil Used Chevron GST-32 turbine oil Actual 90 wt% Chevron GST-32 turbine oil to 10 wt% Polypropylene oxide Theoretical 90 wt% used Chevron GST-32 turbine oil to 10 wt% Polypropylene oxide VP Pentane Insolubles (mg/L) 74 92 21 83 Ultra-Centrifuge Sediment Rating 1 3 1 2.7 Filter Patch Colorimetry 1 32 12 28 Ruler % 100 74 72 67 Varnish Potential Rating Low Elevated Low Elevated Viscosity (SUS), cSt 161 176 163 172 Total Acid Number (mg KOH/g) 0.07 0.44 0.10 0.42 Water (ppm) 137 137 384 183.4 Particle Count 17/14/11 20/16/12 19/17/13 20/16/12 - A sample of used Mobil SHC-824 turbine oil was removed from a system that had excessive varnish. The parameters of the used oil were measured and are given in Table 2. A portion of 90 parts by weight of the used Mobil SHC-824 turbine oil was combined with 10 parts by weight of polypropylene oxide, terminated with one butyl ether group and one hydroxyl group, having a number average molecular weight of 1000, and containing 0.6 wt% of the butylated reaction product of p-cresol and dicyclopentadiene (CAS # 68610-51-5) and 0.01 wt% Cobratec 122 (available form PMC Specialties Group Inc., Cincinnati, OH) to make a remediated turbine oil. The parameters of this remediated Mobil SHC-824 turbine oil were measured and are shown in Table 2. Finally, theoretical values of replenishing the lubrication system with new Mobil SHC-824 turbine oil are shown in Table 2.
Used Mobil SHC-824 turbine oil Actual 90 wt% Mobil SHC-824 turbine oil to 10 wt% Polypropylene oxide Replenishing with new Mobil SHC-824 turbine oil Viscosity (SUS), cSt 161 148 158 Total Acid Number (mg KOH/g) 0.98 0.29 0.91 Water (ppm) 81 211 133 Particle Count 24/21/21 23/18/18 24/21/21 - The addition of the polypropylene oxide reduced the viscosity of the turbine oil by 3 cSt (10 SUS) below a theoretical value. This demonstrates that the addition of the polypropylene oxide significantly reduced the effective molecular weight of the lubricant by reducing the agglomeration of polar bodies that had formed soft varnish particles in the used oil. A reduction in total acid number demonstrates a re-established balance between aminic and phenolic antioxidants active in the used turbine fluid. The reduction in particle count for the remediated used oil shows that the added polypropylene oxide removed varnish particles from the used turbine oil by dissolving them.
- The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention.
Claims (3)
- Use of an aliphatic polyether selected from polyalkylene oxide homopolymers having a formulawherein R and R2 are independently selected from hydrocarbyl groups having one to four carbon atoms and hydrogen, with the caveat that at least one of R and R2 is a hydrocarbyl group, R1 is an aliphatic hydrocarbylene group having from 3 to 6 carbon atoms, and n is an integer from 4 to 50, wherein the polyether has a number average molecular weight of from 300 to 3000,for dissolving oxidation products or varnish in a hydrocarbon lubricant containing oxidation products or varnish, particularly a hydrocarbon oil, by increasing the polarity of the hydrocarbon lubricant to allow the hydrocarbon lubricant to dissolve the oxidation products or varnish particles,wherein the polyether is added in an amount such that the lubricant comprises from 2 wt% to 20 wt% of the polyether.
- The use according to claim 1, wherein the polyalkylene oxide homopolymer comprises a butoxide-terminated polypropylene oxide.
- The use according to claim 1 or 2, wherein the polyether is added in an amount such the lubricant comprises from 5 wt% to 20 wt% of the polyether.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL13715104T PL2831210T3 (en) | 2012-03-29 | 2013-03-27 | Use of an aliphatic polyether |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/434,356 US8685905B2 (en) | 2012-03-29 | 2012-03-29 | Hydrocarbon-based lubricants with polyether |
US201261671278P | 2012-07-13 | 2012-07-13 | |
PCT/US2013/033965 WO2013148743A2 (en) | 2012-03-29 | 2013-03-27 | Hydrocarbon-based lubricants with polyether |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2831210A2 EP2831210A2 (en) | 2015-02-04 |
EP2831210B1 true EP2831210B1 (en) | 2018-11-14 |
Family
ID=48050970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13715104.9A Active EP2831210B1 (en) | 2012-03-29 | 2013-03-27 | Use of an aliphatic polyether |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP2831210B1 (en) |
AU (1) | AU2013239811B2 (en) |
CA (1) | CA2871485C (en) |
ES (1) | ES2708768T3 (en) |
IN (1) | IN2014DN08958A (en) |
PL (1) | PL2831210T3 (en) |
WO (1) | WO2013148743A2 (en) |
ZA (1) | ZA201407717B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10253275B2 (en) | 2017-07-19 | 2019-04-09 | American Chemical Technologies, Inc. | High viscosity lubricants with polyether |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU4544699A (en) | 1998-06-08 | 1999-12-30 | Moltech Corporation | Polymerization of vinyl ethers |
US6087307A (en) * | 1998-11-17 | 2000-07-11 | Mobil Oil Corporation | Polyether fluids miscible with non-polar hydrocarbon lubricants |
WO2006019548A1 (en) * | 2004-07-16 | 2006-02-23 | Dow Global Technologies Inc. | Food grade lubricant compositions |
SG10201604800QA (en) * | 2011-06-30 | 2016-08-30 | Exxonmobil Res & Eng Co | Lubricating compositions containing polyalkylene glycol mono ethers |
-
2013
- 2013-03-27 WO PCT/US2013/033965 patent/WO2013148743A2/en active Application Filing
- 2013-03-27 CA CA2871485A patent/CA2871485C/en not_active Expired - Fee Related
- 2013-03-27 AU AU2013239811A patent/AU2013239811B2/en not_active Ceased
- 2013-03-27 EP EP13715104.9A patent/EP2831210B1/en active Active
- 2013-03-27 IN IN8958DEN2014 patent/IN2014DN08958A/en unknown
- 2013-03-27 PL PL13715104T patent/PL2831210T3/en unknown
- 2013-03-27 ES ES13715104T patent/ES2708768T3/en active Active
-
2014
- 2014-10-23 ZA ZA2014/07717A patent/ZA201407717B/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CA2871485A1 (en) | 2013-10-03 |
ES2708768T3 (en) | 2019-04-11 |
WO2013148743A3 (en) | 2013-11-21 |
WO2013148743A2 (en) | 2013-10-03 |
AU2013239811A1 (en) | 2014-11-13 |
EP2831210A2 (en) | 2015-02-04 |
PL2831210T3 (en) | 2019-04-30 |
CA2871485C (en) | 2016-11-29 |
IN2014DN08958A (en) | 2015-05-22 |
ZA201407717B (en) | 2016-05-25 |
AU2013239811B2 (en) | 2016-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8299006B2 (en) | Compressor oil composition | |
CN101484560B (en) | Refrigerator oil, compressor oil composition, hydraulic fluid composition, metalworking fluid composition, heat treatment oil composition, lubricant composition for machine tool and lubricant composit | |
US8685905B2 (en) | Hydrocarbon-based lubricants with polyether | |
EP2831210B1 (en) | Use of an aliphatic polyether | |
JP2010018780A (en) | Thermally stable zinc-free anti-wear agent | |
EP3655512B1 (en) | Rejuvenation of used high viscosity lubricants with polyether | |
JP2020056447A (en) | Hydraulic device and hydraulic actuation oil composition | |
JP7324729B2 (en) | lubricating oil composition | |
CN110023466B (en) | Hydraulic oil composition and hydraulic device | |
WO2002087821A1 (en) | Method of cutting and grinding refrigerating machine parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141022 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160630 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180622 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1064816 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013046639 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20190207 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2708768 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190411 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1064816 Country of ref document: AT Kind code of ref document: T Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190314 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190214 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190214 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20190220 Year of fee payment: 7 Ref country code: PL Payment date: 20190220 Year of fee payment: 7 Ref country code: CZ Payment date: 20190214 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190314 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190215 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20190404 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013046639 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20190329 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190327 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200327 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20200401 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231229 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 12 Ref country code: GB Payment date: 20240108 Year of fee payment: 12 |