EP2828009A1 - Ultraschall-prüfkopf - Google Patents
Ultraschall-prüfkopfInfo
- Publication number
- EP2828009A1 EP2828009A1 EP13715151.0A EP13715151A EP2828009A1 EP 2828009 A1 EP2828009 A1 EP 2828009A1 EP 13715151 A EP13715151 A EP 13715151A EP 2828009 A1 EP2828009 A1 EP 2828009A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transducer elements
- ultrasonic
- transducer
- angle
- probe according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000523 sample Substances 0.000 title claims abstract description 19
- 238000002604 ultrasonography Methods 0.000 title abstract description 12
- 238000012360 testing method Methods 0.000 claims description 19
- 230000008878 coupling Effects 0.000 claims description 18
- 238000010168 coupling process Methods 0.000 claims description 18
- 238000005859 coupling reaction Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 3
- 230000003111 delayed effect Effects 0.000 claims 1
- 230000007423 decrease Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 241001282736 Oriens Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/18—Methods or devices for transmitting, conducting or directing sound
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
- B06B1/0622—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/221—Arrangements for directing or focusing the acoustical waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2456—Focusing probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/262—Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/18—Methods or devices for transmitting, conducting or directing sound
- G10K11/26—Sound-focusing or directing, e.g. scanning
- G10K11/34—Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
Definitions
- the invention relates to an ultrasonic probe with an ultrasonic transducer assembly comprising a plurality of juxtaposed, time-delay controllable transducer elements arranged in a row.
- Insonification angle in a test object and the focus depth ver ⁇ changes. This makes it possible to detect larger areas of the specimen when the ultrasonic probe is stationary. Usually these are
- Ultrasonic transducer arrays around so-called line arrays in which a conventional piezoceramic transducer is divided into small acoustically separated transducer elements, wherein the dividing cutting direction transverse to
- Einschallebene is located, in which a Winkelschwenk should take place.
- the transducer elements obtained by the subdivision must not exceed a dimension in the order of the wavelength in the Einschallebene.
- Most applications require the creation of a sufficiently low divergence beam to achieve high resolution and signal-to-noise ratio, thereby requiring larger dimensions of the entire ultrasonic transducer array. This means a large number of individual Transducer elements, usually sixteen or more, which are controlled simultaneously or with a time delay together.
- transducer elements requires a corresponding number of connection cables, terminals and in particular in the internal testing of hollowed shafts, which are scanned with a helical movement of the probe, a corresponding number of slip ring contacts and a corresponding number of electronic channels in the tester, so that technical effort is significant.
- the invention is therefore based on the object to provide an ultrasound ⁇ sonic transducer with an ultrasonic transducer assembly with a plurality of juxtaposed, time-delay controllable transducer elements, with which it is possible with reduced technical complexity to cover a large swivel range in a workpiece with high spatial resolution ,
- the ultrasonic probe includes an ultrasonic transducer assembly having a plurality of juxtaposed in a row, time-delay controllable transducer elements whose transmitting / receiving surfaces such are arranged inclined to each other, that the inclination angle between the transmitting / receiving surface of two transducer elements increases with the number of An ⁇ located between these transducer elements. Furthermore, the transducer elements arranged so that min ⁇ least two of the incremental tilt angle between adjacent transducer elements are different from each other.
- the transmission / reception surfaces of the adjacently arranged transducer elements are not located in one plane, for example on the inclined surface of a common wedge, but rather on facets, for example, wherein side-by-side facets are each inclined relative to one another at a predetermined angle.
- the predetermined angle can be selected freely and adapted to the particular application or the test ⁇ fende component.
- the incremental inclination angle can be staggered so that it increases or decreases starting from the edge of the ultrasound transducer arrangement. This can be achieved compared to a circular geometry ei ⁇ ne lower overall height of the ultrasonic test head ⁇ to.
- Under incremental inclination angle is to be understood as the difference of the inclination angle between adjacent transducer elements. In other words, the incremental inclination angle is the angle below the adjacent one
- Transducer elements are inclined to each other or the angle that the transmitting-receiving surfaces of each adjacent
- transducer elements Between them. At least two incremental angles of inclination respectively adjacent
- the invention is according to the invention from each other.
- incremental tilt angles are not all the same size.
- the individual sizes of the incremental inclination angle are chosen so that in particular an angle is recessed at which would propagate in the workpiece a longitudinal wave parallel to the surface (first critical angle).
- Ultrasonic transducer assembly according to the prior art, with a smaller number of transducer elements, for example, about five to eight transducer elements to detect the same Schwenkwinkelbe- rich. Since the width of a single transducer element at the same total width of the ultrasonic transducer order is significantly larger at such a smaller number of transducer elements, preferably greater than 1.5 times the waves ⁇ length of Ultraschallsig- generated by a transducer element Nals, than with a conventional linear
- Ultrasonic transducer arrangement arises already in a common control of at least two adjacent
- Transducer elements a sufficiently narrow beam with ei ⁇ nem correspondingly high signal-to-noise ratio. By time-delayed activation of adjacent transducer elements Darue ⁇ over another swing of the irradiation angle can also be achieved out. Although this pivoting range is physically limited by the fact that only a few, preferably two to three transducer elements are controlled as a group. By means of the progressive combination of two to three
- Transducer elements can be covered with their predetermined by the respective slope pre-stamped, ie without time-delayed control different insonification angles, supplemented by the pivoting angle range within the respective combination of these transducer elements, a Truschwenkwinkel Colour comparable to that of a conventional linear array with many narrow Transducer elements in a plane is.
- a Designschwenkwinkel Scheme comparable to that of a conventional linear array with many narrow Transducer elements in a plane is.
- the technical ⁇ cal effort for wiring the Ultraschallprüfköpfes is significantly reduced. This is particularly advantageous in the internal testing of shafts with a longitudinal bore, which requires a rotational movement of the linear ultrasonic transducer assembly about the longitudinal axis of the shaft and, accordingly, a number of slip rings corresponding to the number of channels.
- ultrasonic test head consists in the fact that when driving three or more transducer elements by corresponding time delays the focus depth, i. the distance between the focus and the surface of the test object can be changed.
- the focus depth i. the distance between the focus and the surface of the test object can be changed.
- Insonification angle of the ultrasonic signal in a workpiece by time-delayed common control of at least two not immediately adjacent transducer elements to pivot.
- errors e.g. not reflect back in Einraallraum be recognized. It is particularly advantageous to make the control so that a transducer element or a
- Transducer element or another transducer element group is operated in Emp ⁇ catcher mode.
- the transducer elements are arranged on the tooth flanks of a sawtooth-shaped leading body.
- the individual tooth flanks are at a different angle to the coupling surface of the ultrasonic probe ange ⁇ provides.
- the individual tooth flanks of the existing example of plastic flow body are depending Weil ⁇ according to the angle that the respective
- the individual transducer elements are arranged on a flow body such that a respectively between the transmitting / receiving surface of the transducer elements and the coupling surface of the flow body resulting Vorlaufstre ⁇ bridge for all transducer elements is the same size.
- the test sensitivity in this case is the same for each transducer element.
- the individual transducer elements are arranged in egg ⁇ nem such a distance from the coupling surface, that the flow path for each transducer element is the same length.
- the length of the normal through the center of the respective transmitting-receiving surface of a transducer element and perpendicular normal to the coupling surface is ver ⁇ stood under advance distance.
- the distance from the center ⁇ point of the transmitting / receiving surface perpendicular to the coupling surface con- is kept constant.
- the transducer elements are arranged on the lead body such that between the center of the transmitting / receiving surface of the
- Transducer elements and perpendicular to the coupling surface of the body Vorlauf- resulting distance for all transducer elements is the same size. This facilitates the algorithms for calculating the time delay in the control of the individual
- the incremental inclination angle may also be staggered so as to increase or decrease starting from the edge of the ultrasonic transducer assembly.
- This ultrasonic transducer arrangement leads to an even lower overall height and has the advantage that the otherwise resulting in an ultrasonic test head disturbing Wiederho ⁇ development echoes are largely minimized.
- the individual tooth flanks can be formed both regularly and irregularly, ie, for example, with different widths or different lengths.
- differently sized and differently shaped transducer elements can be used, where ⁇ further varied by the sound field generated by these ⁇ who can.
- Advantageous embodiments of the invention are specified in the subclaims.
- Transducer elements respectively emitted sound beam ⁇ as the sound beam resulting from superposition also in a schematic representation, a second embodiment of a Ultraschallprüf head according to the invention in a schematic schematic diagram in a longitudinal section,
- Fig. 4 is a time-delayed control of a
- the ultrasonic test head in accordance comprises a housing 1 in which an ultrasound transducer array 2 is arranged, which arranged a plurality of side by side in a row, with a time delay drivable piezoceramic transducer elements 4i, Figs. 1, five transducer elements 4i to 4 5, comprising.
- the transducer elements 4i are arranged side by side in such a way that the transmitting / receiving surfaces 6 ⁇ , 6j are adjacent to each other
- Converter elements 4i, 4i + i at an incremental angle of inclination o are oriented inclined to each other, which is not the same for al ⁇ le adjacent transducer elements 4i, 4i + i
- the transducer elements 4i are therefore not along a circular arc, but 1, all incremental inclination angles ⁇ , ⁇ + ⁇ are different from one another, that is to say 0 (i, i + i ⁇ oi, + i for all i ⁇ j or ⁇ , 2 ⁇ «2,3 ⁇ « 3,4 ⁇ 0 (4,5)
- the incremental angle of inclination ⁇ , ⁇ + ⁇ can for example be be staggered, so he starting from the edge of
- Ultrasonic transducer assembly 2 increases or decreases. Accordingly, the inclination angle i, j between one located at the end of the row transducer element 4i and another takes
- the transmission / reception surfaces 6 ⁇ are arranged inclined to one another such that the angle of inclination ⁇ , j between the transmission / reception surface 6 ⁇ two transducer elements 4i, 4j increases with the number of transducer elements located between them.
- Typical incremental inclination angles ⁇ , ⁇ + ⁇ in the case of a Boh ⁇ tion outgoing examination of steel shafts are for example in a range between 1.5 ° and 10 °.
- the transducer elements 4i are inclined to each other such that ih ⁇ re transmitting / receiving surfaces 6 ⁇ facing each other, so that the in the cut out on the transmitting / receiving area 6 ⁇ perpendicular to normals to the transmitting / receiving surfaces 6 ⁇ facing space, in which propagate the transmitted from the transducer elements 4i sound bundles.
- the width b of the transducer elements 4i is at least equal to 1.5 times, preferably greater than four times the wavelength of the ultrasound signal generated by them and immersed in the test specimen.
- the transducer elements 4i are embedded in a sound-absorbing backing 8, wherein between a coupling surface 10 of the ultrasonic probe and the transmitting / receiving surfaces 6 ⁇ , 6 j a lead body 12 is made of a plastic, which corresponds to the incremental inclination angle ⁇ , ⁇ + ⁇ is formed for example by a faceted wedge.
- Transducer elements 4i each emitted gene bundles, which intersect in a test workpiece 16 in each case different intersections S ⁇ , when angular position of the transducer elements 4i relative to the coupling surface 10, width b of the transducer elements 4i and inclination angle 0 (i, i + i and Length of the set by the flow volume, dependent on the position of the transducer element 4 lead line 12 and the workpiece 16 are adapted to each other
- Evaluation device 17 is provided, with which by time-delayed, joint control of at least two or more adjacent transducer elements 4i of the insonification angle in the workpiece 16 can be pivoted in a limited angular range, as indicated in Fig. 1 by the double arrow 18.
- the angle of incidence can also be pivoted by time-delayed ⁇ common control two not directly Benach ⁇ barter transducer elements 4i, 4i +.
- the transducer element 4i as a transmitter and the transducer element 4i + work as a receiver.
- the depth of focus in the workpiece 16 can also be changed by appropriate time delay patterns when three or more adjacent transducer elements 4i are driven together. This is illustrated in FIG. 1 by the double arrow 19.
- the principle of the time-delayed control of the transducer elements 4i is also shown in Fig. 4.
- control and evaluation device 17 it is also possible to control the transducer elements 4i individually and to make an evaluation of the received echo signals by means of a method called SAFT using the wide sound beams respectively emitted by the individual transducer elements.
- the figure illustrates, as indicated by simultaneous superposition of these two sound beam 20 ⁇ , 20i + i a narrow ⁇ res sound beam 20i, i + i, whose focus Fi, i + i is narrower than the foci Fi, Fi + i of the acoustic beam 20 ⁇ , 20i + i and further away from the transducer elements 4i, 4i + i.
- Fig. 3 shows a second embodiment of an ultrasonic probe according to the invention with a
- Ultrasonic transducer assembly 2 the transducer elements 4i, here six transducer elements 4i to 4 ⁇ , in a row next to each other on the tooth flanks 22 of a sawtooth-shaped flow body 12 are arranged.
- the individual transducer elements 4i are according to FIG. 3 arranged perpendicularly from a center of the transmitting-receiving surface 6 ⁇ starting in each case at such a distance d ⁇ to the coupling surface 10 that the delay line d ', ie the distance in the direction of on the transmitting-receiving surface 6 ⁇ normal standing to the coupling surface ⁇ 10, for each transducer element 4i the same length and the test sensitivity for each transducer element 4i is thus the same.
- a constant distance d ⁇ enables easy control of the transducer elements 4i by the control ⁇ device 17 and its control software, because no software modification as compared to a linear array is required.
- the tooth flanks 22 of the lead body 12 are employed with respect to the coupling surface 10 at different angles, so ⁇ that the transmitting / receiving surfaces 6i and 6e of the transducer elements 4i to 4 ⁇ are inclined to each other, wherein the incremental angle of inclination ⁇ , ⁇ + ⁇ between each adjacent
- Transducer elements 4 ⁇ , ⁇ + ⁇ is different in size.
- Transducer elements with the number of intervening Chen transducer elements 4i increases.
- the angle of inclination 0 (1.3 is so ⁇ with accordingly larger than the incremental inclination angle ⁇ , 2 ⁇
- the transducer elements 4i fla ⁇ cher are arranged so that the transducer element is orien ⁇ advantage 4i under the ge ⁇ slightest angle of attack with respect to the coupling surface 10 that is, in insonification direction.
- the device 2 comprises a control device 17 for the time-delayed activation of the transducer elements 4i.
- the juxtaposed transducer elements 4i are excited successively in time in order to electronically tilt the insonification angle into the workpiece 16 or to additionally focus the ultrasonic wave.
- both individual and all transducer elements 4i or a group of transducer elements 4i for example, two adjacent transducer elements 4i, 4i + i, ge ⁇ jointly operated.
- the central axes 14 of each of a transducer element 4i emitted sound beams and the intersections S ⁇ , in which intersect the jewei ⁇ time center longitudinal axes 14, located.
- Fig. 4 is - as already mentioned above - shown how the ultrasonic transducer assembly or the individual
- Transducer elements 4i are driven to obtain a desired insonification angle and a desired focus F.
- the transducer elements are driven to 4i 4 ⁇ temporally ⁇ delay, on the one hand to pivot the angle of incidence and on the other hand suit- a desired depth of focus put.
- FIG. 4 illustrates a wavefront 24 which leads to a focusing of the ultrasound waves in the focus F which are emitted with a time delay from the transducer elements 4i, 4 2 , 4 3 .
- a large swivel angle range can be covered with a small number of transducer elements with a suitable time delay of the ultrasound pulses.
Landscapes
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Mechanical Engineering (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Ein Ultraschall-Prüfköpf enthält eine Ultraschallwandleranordnung (2), die eine Mehrzahl in einer Reihe nebeneinander angeordneter, zeitverzögert ansteuerbarer Wandlerelemente (4i) umfasst, deren Sende-/Empfangsflächen (6i) derart geneigt zueinander angeordnet sind, dass der Neigungswinkel (αi, j) zwischen der Sende-/Empfangsfläche (6i, 6j) zweier Wandlerelemente (4i, 4j) mit der Anzahl der zwischen diesen befindlichen Wandlerelemente (4i) zunimmt und mindestens zwei der inkrementalen Neigungswinkel (αi, i+1) zwischen jeweils benachbarten Wandlerelementen (4i, 4i+1) voneinander verschieden sind.
Description
Beschreibung
Ultraschall-Prüfköpf
Die Erfindung bezieht sich auf einen Ultraschall-Prüfköpf mit einer Ultraschallwandleranordnung, die eine Mehrzahl in einer Reihe nebeneinander angeordneter, zeitverzögert ansteuerbarer Wandlerelemente umfasst.
Bei einer solchen auch als Gruppenstrahler oder Phased-Array bezeichneten Ultraschallwandleranordnung können durch zeitverzögerte Ansteuerung der Wandlerelemente sowohl die
Einschallwinkel in einen Prüfling als auch die Fokustiefe ver¬ ändert werden. Dadurch ist es möglich, bei ruhendem Ultraschall-Prüfkopf größere Bereiche des Prüflings zu erfassen. In der Regel handelt es sich bei diesen
Ultraschallwandleranordnungen um sogenannten Linienarrays , bei denen ein konventioneller piezokeramischer Wandler in kleine akustisch voneinander getrennte Wandlerelemente unterteilt wird, wobei die teilende Schnittrichtung quer zur
Einschallebene liegt, in der ein Winkelschwenk stattfinden soll. Zur Erzielung eines homogenen Schallbündels und eines großen Winkelbereiches dürfen die durch die Unterteilung gewonnenen Wandlerelemente in der Einschallebene eine Abmessung in der Größenordnung der Wellenlänge nicht überschreiten. Die meisten Anwendungen erfordern zur Erzielung einer hohen Auflösung und eines hohen Signal-/Rauschabstandes die Erzeugung ei- nes Schallbündels mit hinreichend geringer Divergenz, wofür größere Abmessungen der gesamten Ultraschallwandleranordnung benötigt werden. Dies bedeutet eine große Anzahl von einzelnen
Wandlerelementen, in der Regel sechzehn oder mehr, die simultan oder zeitverzögert gemeinsam angesteuert werden. Diese große Anzahl von Wandlerelementen bedingt eine entsprechende Anzahl von Verbindungskabeln, Anschlüssen und insbesondere bei der Innenprüfung von hohlgebohrten Wellen, die mit einer schraubenförmigen Bewegung des Prüfkopfes abgetastet werden, eine entsprechende Anzahl von Schleifringkontakten sowie eine entsprechende Anzahl von elektronischen Kanälen im Prüfgerät, so dass der technische Aufwand erheblich ist.
Der Erfindung liegt daher die Aufgabe zu Grunde, einen Ultra¬ schallprüfkopf mit einer Ultraschallwandleranordnung mit einer Mehrzahl in einer Reihe nebeneinander angeordneter, zeitverzögert ansteuerbarer Wandlerelemente anzugeben, mit dem es bei verringertem technischen Aufwand möglich ist, in einem Werkstück bei hoher Ortsauflösung einen großen Schwenkbereich abzudecken .
Die genannte Aufgabe wird gemäß der Erfindung gelöst mit einem Ultraschall-Prüfköpf mit den Merkmalen des Patentanspruches 1. Gemäß diesen Merkmalen enthält der Ultraschall-Prüfköpf eine Ultraschallwandleranordnung mit einer Mehrzahl von in einer Reihe nebeneinander angeordneten, zeitverzögert ansteuerbaren Wandlerelementen, deren Sende-/Empfangsflächen derart geneigt zueinander angeordnet sind, dass der Neigungswinkel zwischen der Sende-/Empfangsfläche zweier Wandlerelemente mit der An¬ zahl der zwischen diesen befindlichen Wandlerelemente zunimmt. Des Weiteren sind die Wandlerelemente so angeordnet, dass min¬ destens zwei der inkrementalen Neigungswinkel zwischen jeweils benachbarten Wandlerelementen voneinander verschieden sind.
Mit anderen Worten: Die Sende-/Empfangsflachen der nebeneinander angeordneten Wandlerelemente befinden sich nicht in einer Ebene, beispielsweise auf der Schrägfläche eines gemeinsamen Keils, sondern beispielsweise auf Facetten, wobei nebeneinan- der liegende Facetten jeweils unter einem vorgegebenen Winkel gegeneinander geneigt sind. Der vorgegebene Winkel kann dabei frei gewählt und an die jeweilige Anwendung oder das zu prü¬ fende Bauteil angepasst werden. Dadurch ergibt sich beispiels¬ weise eine Ultraschallanordnung, bei der die Facetten bzw. die darauf angeordneten Wandlerelemente nicht entlang eines Kreis¬ bogens, sondern entlang einer von einem Kreisbogen abweichenden, gekrümmten Form bzw. auf einem in einer solchen Form ausgebildeten Vorlaufkörper angeordnet sind. Beispielsweise kann der inkrementale Neigungswinkel dabei so gestaffelt sein, dass er ausgehend vom Rand der Ultraschallwandleranordnung zu- oder abnimmt. Dadurch kann im Vergleich zu einer Kreisgeometrie ei¬ ne geringere Bauhöhe des Ultraschall-Prüfköpfes erreicht wer¬ den . Unter inkrementalem Neigungswinkel ist dabei die Differenz des Neigungswinkels zwischen jeweils benachbarten Wandlerelementen zu verstehen. Mit anderen Worten: Der inkrementale Neigungswinkel ist der Winkel unter dem jeweils benachbarte
Wandlerelemente zueinander geneigt sind bzw. der Winkel, den die Sende-Empfangsflächen der jeweils benachbarten
Wandlerelemente zwischen sich einschließen. Mindestens zwei inkrementale Neigungswinkel jeweils benachbarter
Wandlerelemente sind gemäß der Erfindung voneinander verschie¬ den bzw. unterschiedlich groß. Mit anderen Worten: Die
inkrementalen Neigungswinkel sind nicht alle gleich groß. Die einzelnen Größen der inkrementalen Neigungswinkel werden dabei so gewählt, dass insbesondere ein Winkel ausgespart wird, bei
dem sich im Werkstück eine Longitudinalwelle parallel zur Oberfläche ausbreiten würde (erster kritischer Winkel) .
Durch diese unterschiedliche Winkelstellung der Sende- /Empfangsflächen der Wandlerelemente gegenüber einer gemeinsamen Koppelfläche ist es möglich, verglichen mit einer
Ultraschallwandleranordnung nach Stand der Technik, mit einer geringeren Anzahl von Wandlerelementen, beispielsweise etwa fünf bis acht Wandlerelemente, den gleichen Schwenkwinkelbe- reich zu erfassen. Da bei einer solchen geringeren Anzahl von Wandlerelementen die Breite eines einzelnen Wandlerelementes bei gleicher Gesamtbreite der Ultraschallwandlernordnung deutlich größer ist, vorzugsweise größer als die 1,5-fache Wellen¬ länge des von einem Wandlerelement erzeugten Ultraschallsig- nals, als bei einer konventionellen linearen
Ultraschallwandleranordnung, entsteht bereits bei einer gemeinsamen Ansteuerung von mindestens zwei benachbarten
Wandlerelementen ein hinreichend schmales Schallbündel mit ei¬ nem entsprechend hohen Signal-Rausch-Verhältnis. Durch zeit- verzögerte Ansteuerung benachbarter Wandlerelemente kann darü¬ ber hinaus außerdem noch ein Schwenk des Einschallwinkels erzielt werden. Dieser Schwenkbereich ist zwar physikalisch dadurch eingeschränkt, dass nur wenige, vorzugsweise zwei bis drei Wandlerelemente als Gruppe angesteuert werden. Mittels der fortschreitenden Kombination von zwei bis drei
Wandlerelementen kann mit ihren durch die jeweilige Neigung vorgeprägten, also ohne zeitlich verzögerte Ansteuerung sich ergebenden unterschiedlichen Einschallwinkeln, ergänzt durch den Schwenkwinkelbereich innerhalb der jeweiligen Kombination dieser Wandlerelemente ein Gesamtschwenkwinkelbereich überstrichen werden, der vergleichbar mit dem eines konventionellen linearen Gruppenstrahlers mit vielen schmalen
Wandlerelemente in einer Ebene ist. Dadurch wird der techni¬ sche Aufwand bei der Verkabelung des Ultraschallprüfköpfes signifikant verringert. Dies ist insbesondere von Vorteil bei der Innenprüfung von Wellen mit einer Längsbohrung, die eine Drehbewegung der linearen Ultraschallwandleranordnung um die Längsachse der Welle und dementsprechend eine der Anzahl der Kanäle entsprechende Anzahl von Schleifringen erfordert.
Eine weitere Möglichkeit des erfindungsgemäßen Ultraschall- Prüfkopfes besteht auch darin, dass bei Ansteuerung von drei oder mehreren Wandlerelementen durch entsprechende Zeitverzögerungen die Fokustiefe, d.h. der Abstand zwischen dem Fokus und der Oberfläche des Prüflings verändert werden kann. Alternativ zur zeitverzögerten gemeinsamen Ansteuerung zweier benachbarter Wandlerelemente, ist es ebenso möglich, den
Einschallwinkel des Ultraschallsignals in ein Werkstück durch zeitverzögerte gemeinsame Ansteuerung wenigstens zweier nicht unmittelbar benachbarter Wandlerelemente zu schwenken. Mit ei- ner solchen Ansteuerung können insbesondere Fehler, die z.B. nicht in Einschallrichtung zurückreflektieren, erkannt werden. Dabei ist es insbesondere von Vorteil, die Ansteuerung so zu gestalten, dass ein Wandlerelement bzw. eine
Wandlerelementgruppe im Sendebetrieb und ein anderes
Wandlerelement bzw. eine andere Wandlerelementgruppe im Emp¬ fängerbetrieb betrieben wird.
Darüber hinaus weist der von einem einzelnen Wandlerelement ausgesendete Ultraschall einen hinreichend großen Öffnungswin- kel des Schallbündels auf, der für rekonstruierende beispiels¬ weise als SAFT bezeichnete Verfahren zur Analyse von Fehlstel¬ len von Vorteil bzw. erforderlich ist.
Bei einer vorteilhaften Ausführungsform des Ultraschall- Prüfkopfes sind die Wandlerelemente auf den Zahnflanken eines sägezahnförmigen Vorlaufkörpers angeordnet. Die einzelnen Zahnflanken sind dabei in einem unterschiedlichen Winkel gegenüber der Koppelfläche des Ultraschall-Prüfköpfes ange¬ stellt. Mit anderen Worten: Die einzelnen Zahnflanken des beispielsweise aus Kunststoff bestehenden Vorlaufkörpers sind je¬ weils entsprechend des Winkels, den das jeweilige
Wandlerelement gegenüber der gemeinsamen Koppelfläche aufwei¬ sen soll, ausgestaltet. Der Vorlaufkörper weist also selbst bereits die zur Anordnung der einzelnen Wandlerelemente pas¬ sende Form auf und die Wandlerelemente können anschließend mit geringem Aufwand auf die einzelnen Zahnflanken aufgebracht werden.
Weiter ist es von Vorteil, wenn die einzelnen Wandlerelemente auf einem Vorlaufkörper derart angeordnet sind, dass eine sich zwischen der Sende-/Empfangsfläche der Wandlerelemente und der Koppelfläche des Vorlaufkörpers jeweils ergebende Vorlaufstre¬ cke für alle Wandlerelemente gleich groß ist. Die Prüfempfind- lichkeit ist in diesem Fall für jedes Wandlerelement gleich. Mit anderen Worten: Die einzelnen Wandlerelemente sind in ei¬ nem solchen Abstand zu der Koppelfläche angeordnet, dass die Vorlaufstrecke für jedes Wandlerelement gleich lang ist. Hier wird unter Vorlaufstrecke die Länge der durch den Mittelpunkt der jeweiligen Sende-Empfangsfläche eines Wandlerelementes und darauf senkrecht stehenden Normalen bis zur Koppelfläche ver¬ standen .
Ebenso vorteilhaft kann es sein, wenn der Abstand vom Mittel¬ punkt der Sende-/Empfangsfläche lotrecht zur Koppelfläche kon-
stant gehalten wird. Mit anderen Worten: Die Wandlerelemente sind derart auf dem Vorlaufkörper angeordnet, dass ein sich zwischen dem Mittelpunkt der Sende-/Empfangsflache der
Wandlerelemente und lotrecht zu der Koppelfläche des Vorlauf- körpers ergebender Abstand für alle Wandlerelemente gleich groß ist. Dies erleichtert die Algorithmen zur Berechnung der Zeitverzögerung bei der Ansteuerung der einzelnen
Wandlerelemente erheblich. Bei einer solchen Sägezahnanordnung kann der inkrementale Neigungswinkel beispielsweise ebenfalls so gestaffelt sein, dass er ausgehend vom Rand der Ultraschallwandleranordnung zu oder abnimmt. Diese Ultraschallwandleranordnung führt zu einer noch geringeren Bauhöhe und hat den Vorteil, dass die ansonsten in einem Ultraschall-Prüfköpf entstehenden störenden Wiederho¬ lungsechos weitestgehend minimiert werden.
Die einzelnen Zahnflanken können sowohl regelmäßig als auch unregelmäßig, also z.B. verschieden breit oder unterschiedlich lang ausgebildet sein. Dadurch können unterschiedlich große und verschieden geformte Wandlerelemente verwendet werden, wo¬ durch das von diesen erzeugte Schallfeld weiter variiert wer¬ den kann. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Zur weiteren Erläuterung der Erfindung wird auf das in den Figuren dargestellte Ausführungsbeispiel verwiesen. Es zeigen:
eine erste Ausführungsform eines Ultraschallprüfköpf gemäß der Erfindung in einer schematischen Prinzipdarstellung in einem Längsschnitt,
Fig. 2 das von zwei nebeneinander angeordneten
Wandlerelementen jeweils emittierte Schallbündel so¬ wie das durch Überlagerung entstehende Schallbündel ebenfalls in einer Prinzipdarstellung, eine zweite Ausführungsform eines Ultraschallprüf kopfs gemäß der Erfindung in einer schematischen Prinzipdarstellung in einem Längsschnitt,
Fig. 4 eine zeitlich verzögerte Ansteuerung einer
Ultraschallwandleranordnung gemäß der Erfindung.
Gemäß Fig. 1 umfasst der Ultraschall-Prüfköpf ein Gehäuse 1, in dem eine Ultraschallwandleranordnung 2 angeordnet ist, die eine Mehrzahl von nebeneinander in einer Reihe angeordneter, zeitverzögert ansteuerbarer piezokeramischer Wandlerelemente 4i, gemäß Fig. 1 fünf Wandlerelemente 4i bis 45, umfasst. Die Wandlerelemente 4i sind derart nebeneinander angeordnet, dass die Sende-/Empfangsflächen 6±, 6j jeweils benachbarter
Wandlerelemente 4i, 4i+i unter einem inkrementalen Neigungswinkel o(i,i+i geneigt zueinander orientiert sind, der nicht für al¬ le benachbarten Wandlerelemente 4i, 4i+i gleich groß ist. Die Wandlerelemente 4i sind also nicht entlang eines Kreisbogens, sondern vielmehr entlang einer von einem Kreisbogen abweichenden, gekrümmten Linie angeordnet. Gemäß Fig. 1 sind alle inkrementalen Neigungswinkel ι,ι+ι voneinander verschieden, also 0(i,i+i Φ oi , +i für alle i^j bzw. οίι,2 Φ «2,3 Φ «3,4 Φ 0(4,5. Der inkrementale Neigungswinkel ι,ι+ι kann dabei beispielsweise ge-
staffelt sein, so dass er ausgehend vom Rand der
Ultraschallwandleranordnung 2 zu- oder abnimmt. Dementsprechend nimmt der Neigungswinkel i,j zwischen einem am Ende der Reihe befindlichen Wandlerelement 4i und einem anderen
Wandlerelement 4j der Reihe mit der Anzahl j - 2 der zwischen diesen befindlichen Wandlerelemente zu. Mit anderen Worten: Die Sende-/Empfangsflachen 6± sind derart geneigt zueinander angeordnet, dass der Neigungswinkel ±,j zwischen der Sende- /Empfangsflache 6± zweier Wandlerelemente 4i, 4j mit der Anzahl der zwischen diesen befindlichen Wandlerelemente zunimmt. Typische inkrementale Neigungswinkel ι,ι+ι bei der von einer Boh¬ rung ausgehenden Prüfung von Wellen aus Stahl liegen beispielsweise in einem Bereich zwischen 1,5° und 10°. Bei der Innenprüfung einer Hohlwelle beispielsweise hat sich eine Ultraschallwandleranordnung mit inkrementalen Neigungswinkeln 0(i,2 = 3,2°, oi2,3 = 3,4°, oi3,4 = 4,8° und 4,5 = 2,5° bewährt.
Denkbar wäre auch eine Ultraschallwandleranordnung, deren inkrementale Neigungswinkel nicht alle voneinander abweichen, also z.B. ι,2 = 3,2°, 0(2,3 = 3,4°, 0(3,4 = 4,8° und 4,5 = 0(1,2 = 3, 2°.
Die Wandlerelemente 4i sind derart zueinander geneigt, dass ih¬ re Sende-/Empfangsflächen 6± einander zugewandt sind, so dass sich die auf der Sende-/Empfangsfläche 6± senkrecht stehenden Normalen in dem den Sende-/Empfangsflächen 6± zugewandten Raum schneiden, in dem sich die von den Wandlerelementen 4i gesendeten Schallbündel ausbreiten. Die Breite b der Wandlerelemente 4i ist dabei wenigstens gleich dem 1,5-fachen, vorzugsweise größer als das Vierfache der Wellenlänge des von ihnen erzeug- ten und in den Prüfling eingeschallten Ultraschallsignals.
Die Wandlerelemente 4i sind in einem schalldämpfenden Backing 8 eingebettet, wobei sich zwischen einer Koppelfläche 10 des Ultraschall-Prüfköpfes und den Sende-/Empfangsflächen 6±, 6j ein Vorlaufkörper 12 aus einem Kunststoff befindet, der ent- sprechend der inkrementalen Neigungswinkel ι,ι+ι beispielsweise durch einen facettierten Keil gebildet ist.
In der Fig. 1 sind die Mittelachsen 14 der von den
Wandlerelementen 4i jeweils emittierten Schallbündel eingetra- gen, die sich in einem zu prüfenden Werkstück 16 in jeweils unterschiedlichen Schnittpunkten S± schneiden, wenn Winkelstellung der Wandlerelemente 4i relativ zur Koppelfläche 10, Breite b der Wandlerelemente 4i und Neigungswinkel 0(i, i+i sowie Länge der durch das Vorlaufvolumen festgelegten, von der Position des Wandlerelementes 4 abhängigen Vorlaufstrecke 12 bzw. des Werkstücks 16 aufeinander angepasst sind. Dadurch können verschiedene Fokustiefen erreicht und ein großer Tiefenbereich abgedeckt werden. Zur Ansteuerung der Wandlerelemente 4i ist eine Steuer- und
Auswerteeinrichtung 17 vorgesehen, mit der durch zeitverzögerte, gemeinsame Ansteuerung von wenigstens zwei oder mehrerer benachbarter Wandlerelemente 4i der Einschallwinkel in das Werkstück 16 in einem begrenzten Winkelbereich geschwenkt wer- den kann, wie es in der Fig. 1 durch den Doppelpfeil 18 angedeutet ist. Ebenso kann der Einschallwinkel auch durch zeit¬ verzögerte gemeinsame Ansteuerung zweier nicht direkt benach¬ barter Wandlerelemente 4i, 4i+ geschwenkt werden. Bei einer solchen Ansteuerung kann beispielsweise das Wandlerelement 4i als Sender und das Wandlerelement 4i+ als Empfänger arbeiten. Zudem kann außerdem die Tiefe des Fokus im Werkstück 16 durch geeignete Zeitverzögerungsmuster verändert werden, wenn drei
oder mehr benachbarte Wandlerelemente 4i gemeinsam angesteuert werden. Dies ist in der Fig. 1 durch den Doppelpfeil 19 veranschaulicht. Das Prinzip der zeitlich verzögerten Ansteuerung der Wandlerelemente 4i ist zudem in Fig. 4 dargestellt.
Mit der Steuer- und Auswerteeinrichtung 17 ist es außerdem möglich, die Wandlerelemente 4i einzeln anzusteuern und unter Ausnutzung der von den einzelnen Wandlerelementen jeweils emittierten breiten Schallbündel eine Auswertung der empfange- nen Echosignale mit einem als SAFT bezeichneten Verfahren vorzunehmen .
In Fig. 2 sind die Schallbündel 20±, 20i+i zweier nebeneinander angeordneter Wandlerelemente 4i, 4i+i mit durchgezogenen Linien bzw. gestrichelt ohne Brechung an einer Grenzfläche einge¬ zeichnet. Die Figur veranschaulicht, wie sich durch simultane Überlagerung dieser beiden Schallbündel 20±, 20i+i ein schmale¬ res Schallbündel 20i,i+i ergibt, dessen Fokus Fi,i+i schmäler ist als die Foki Fi, Fi+i der Schallbündel 20±, 20i+i und weiter von den Wandlerelementen 4i, 4i+i entfernt ist.
Fig. 3 zeigt eine zweite Ausführungsform eines Ultraschall- Prüfkopfes gemäß der Erfindung mit einer
Ultraschallwandleranordnung 2, deren Wandlerelemente 4i, hier sechs Wandlerelemente 4i bis 4ε, in einer Reihe nebeneinander auf den Zahnflanken 22 eines sägezahnförmigen Vorlaufkörpers 12 angeordnet sind.
Die einzelnen Wandlerelemente 4i sind gemäß Fig. 3 lotrecht von einem Mittelpunkt der Sende-Empfangsfläche 6± ausgehend jeweils in einem solchen Abstand d± zu der Koppelfläche 10 angeordnet, dass die Vorlaufstrecke d', also der Abstand in Richtung einer
auf die Sende-Empfangsflache 6± stehenden Normalen zur Koppel¬ fläche 10, für jedes Wandlerelement 4i gleich lang und die Prüfempfindlichkeit für jedes Wandlerelementes 4i somit gleich ist .
Prinzipiell ist es jedoch ebenso möglich, die einzelnen
Wandlerelemente 4i derart auf dem Vorlaufkörper 12 anzuordnen, dass der Abstand d± zwischen dem Mittelpunkt der Sende- /Empfangsflache 6± der Wandlerelemente 4i und lotrecht zu der Koppelfläche 10 des Vorlaufkörpers 12 für alle Wandlerelemente 4i gleich groß ist. Ein konstanter Abstand d± ermöglicht eine einfache Ansteuerung der Wandlerelemente 4i durch die Steuer¬ einrichtung 17 und deren Steuersoftware, da keine Softwareanpassung im Vergleich zu einem linearen Array erforderlich ist.
Die Zahnflanken 22 des Vorlaufkörpers 12 sind gegenüber der Koppelfläche 10 in unterschiedlichen Winkeln angestellt, so¬ dass die Sende-/Empfangsflächen 6i bis 6e der Wandlerelemente 4i bis 4ε zueinander geneigt sind, wobei der inkrementale Nei- gungswinkel θίι,ι+ι zwischen jeweils benachbarten
Wandlerelementen 4ι,ι+ι unterschiedlich groß ist. Der
inkrementale Neigungswinkel 0(2,3 ist gemäß Fig. 3 z.B. größer als der inkrementale Neigungswinkel 0(1,2. Die Sägezähne bzw. Zahnflanken 22 des Vorlaufkörpers 12 weisen also eine unregel- mäßige Form auf, sodass die Sende- und Empfangsflächen 61 bis 6e der einzelnen Wandlerelemente 4i bis 4ε gegenüber der Kop¬ pelfläche 10 in unterschiedlichem Winkel orientiert sind.
Auch in diesem Ausführungsbeispiel sind die sechs
Wandlerelemente 4i so zueinander geneigt, dass der Neigungswin¬ kel ±,j zwischen der Sende-/Empfangsfläche 6±, 6j zweier
Wandlerelemente mit der Anzahl der zwischen diesen befindli-
chen Wandlerelemente 4i zunimmt. Der Neigungswinkel 0(1,3 ist so¬ mit dementsprechend größer als der inkrementale Neigungswinkel ι,2· Mit anderen Worten: Die Winkel unter denen die Zahnflan¬ ken 22 und somit die Sende-/Empfangsflachen 6± gegenüber der Koppelfläche 10 angestellt sind, nehmen in Einschallrichtung ab. Die Wandlerelemente 4i sind also in Einschallrichtung fla¬ cher angeordnet, sodass das Wandlerelement 4i unter dem ge¬ ringsten Anstellwinkel gegenüber der Koppelfläche 10 orien¬ tiert ist. Dadurch kann beispielsweise eine Fokussierung der einzelnen Schallbündel in verschiedenen Schnittpunkten S± erreicht werden.
Des Weiteren umfasst die Vorrichtung 2 eine Steuereinrichtung 17 zum zeitverzögerten Ansteuern der Wandlerelemente 4i. Die nebeneinander angeordneten Wandlerelemente 4i werden zeitlich nacheinander angeregt, um den Einschallwinkel in das Werkstück 16 elektronisch zu schwenken oder die Ultraschallwelle zusätzlich zu fokussieren. Dabei können sowohl einzelne als auch alle Wandlerelemente 4i oder eine Gruppe aus Wandlerelementen 4i, beispielsweise zwei benachbarte Wandlerelemente 4i, 4i+i, ge¬ meinsam betrieben werden. In Fig. 3 sind wiederum die Mittelachsen 14 der jeweils von einem Wandlerelement 4i emittierten Schallbündel und die Schnittpunkte S±, in denen sich die jewei¬ ligen Mittellängsachsen 14 schneiden, eingezeichnet.
In Fig. 4 ist - wie bereits oben erwähnt - dargestellt, wie die Ultraschallwandleranordnung bzw. die einzelnen
Wandlerelemente 4i angesteuert werden, um einen gewünschten Einschallwinkel sowie einen gewünschten Fokus F zu erhalten. Gemäß Fig. 4 werden die Wandlerelemente 4i bis 4ε zeitlich ver¬ zögert angesteuert, um einerseits den Einschallwinkel zu schwenken und andererseits eine gewünschte Fokustiefe einzu-
stellen. In Fig. 4 ist eine Wellenfront 24 veranschaulicht, die zu einer Fokussierung der von den Wandlerelementen 4i, 42, 43 zeitverzögert zueinander emittierten Ultraschallwellen im Fokus F führt. Mit einem Ultraschall-Prüfköpf gemäß der Erfin- dung kann mit einer geringen Anzahl an Wandlerelementen bei geeigneter zeitlicher Verzögerung der Ultraschallimpulse ein großer Schwenkwinkelbereich abgedeckt werden.
Claims
1. Ultraschall-Prüfköpf mit einer Ultraschallwandleranordnung (2), die eine Mehrzahl in einer Reihe nebeneinander angeordneter, zeitverzögert ansteuerbarer Wandlerelemente (4i) umfasst, deren Sende-/Empfangsflachen (6±, 6j) derart geneigt zueinander angeordnet sind, dass der Neigungswinkel (o(i,j) zwischen der Sende-/Empfangsflache (6±, 6j) zweier Wandlerelemente (4i, 4j) mit der Anzahl der zwischen diesen befindlichen
Wandlerelemente (4i) zunimmt und mindestens zwei der
inkrementalen Neigungswinkel (o(i,i+i) zwischen jeweils benach¬ barten Wandlerelementen (4i, 4i+i) voneinander verschieden sind.
2. Ultraschall-Prüfköpf nach Anspruch 1, bei dem alle
inkrementalen Neigungswinkel (o(i,i+i) zwischen jeweils benach¬ barten Wandlerelementen (4i, 4i+i) voneinander verschieden sind.
3. Ultraschall-Prüfköpf nach Anspruch 1 oder 2, bei dem die Breite (b) der Wandlerelemente (4i) größer als die 1,5 fache Wellenlänge des von diesen erzeugten Ultraschallsignals sind.
4. Ultraschall-Prüfköpf nach einem der vorhergehenden Ansprü- che, bei dem die Wandlerelemente (4i) auf den Zahnflanken (22) eines sägezahnförmigen Vorlaufkörpers (12) angeordnet sind.
5. Ultraschall-Prüfköpf nach einem der vorhergehenden Ansprü¬ che, bei dem die Wandlerelemente (4i) auf einem Vorlaufkörper (12) derart angeordnet sind, dass eine sich zwischen Sende- /Empfangsflache (6±) der Wandlerelemente (4i) und der Koppel- fläche (10) des Vorlaufkörpers (12) jeweils ergebende Vorlauf¬ strecke (d') für alle Wandlerelemente (4i) gleich groß ist.
6. Ultraschall-Prüfköpf nach einem der vorhergehenden Ansprü- che, bei dem die Wandlerelemente (4i) auf einem Vorlaufkörper
(12) derart angeordnet sind, dass ein sich zwischen dem Mit¬ telpunkt der Sende-/Empfangsflache (6±) der Wandlerelemente (4i) und lotrecht zu der Koppelfläche (10) des Vorlaufkörpers (12) ergebender Abstand (d±) für alle Wandlerelemente (4i) gleich groß ist.
7. Verfahren zum Betreiben eines Ultraschall-Prüfköpfes nach einem der vorhergehenden Ansprüche, bei dem der
Einschallwinkel des Ultraschallsignals in ein Werkstück (16) durch zeitverzögerte gemeinsame Ansteuerung wenigstens zweier benachbarter Wandlerelemente (4i, 4i+i) geschwenkt wird.
8. Verfahren zum Betreiben eines Ultraschall-Prüfköpfes nach- einem der Ansprüche 1 bis 6, bei dem der Fokusabstand des Ult- raschallsignals von der Oberfläche des Werkstücks durch zeit¬ verzögerte gemeinsame Ansteuerung wenigstens dreier benachbar¬ ter Wandlerelemente (4i, 4i+i, 4i+2) verändert wird.
9. Verfahren zum Betreiben eines Ultraschall-Prüfköpfes nach einem der Ansprüche 1 bis 6, bei dem der Einschallwinkel des
Ultraschallsignals in ein Werkstück (16) durch zeitverzögerte gemeinsame Ansteuerung wenigstens zweier nicht unmittelbar be¬ nachbarter Wandlerelemente (4i, 4i+j) geschwenkt wird.
10. Verfahren zum Betreiben eines Ultraschall-Prüfköpfes nach Anspruch 9, bei dem die Ansteuerung zweier nicht unmittelbar benachbarter Wandlerelemente (4i, 4i+j) so erfolgt, dass das ei- ne Wandlerelement (4i) bzw. (4i+j) im Sendebetrieb und das ande¬ re Wandlerelement (4i) bzw. (4i+j) im Empfängerbetrieb betrieben wird .
11. Verfahren zum Betreiben eines Ultraschall-Prüfköpfes nach einem der vorhergehenden Ansprüche, bei dem die
Wandlerelemente (4i) einzeln angesteuert werden und eine Aus¬ wertung der empfangenen Echosignale mit einem SAFT-Verfahren erfolgt .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012204444 | 2012-03-20 | ||
DE201220104119 DE202012104119U1 (de) | 2012-10-26 | 2012-10-26 | Vorrichtung zur Ultraschallprüfung eines Werkstücks |
PCT/EP2013/055859 WO2013139872A1 (de) | 2012-03-20 | 2013-03-20 | Ultraschall-prüfkopf |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2828009A1 true EP2828009A1 (de) | 2015-01-28 |
Family
ID=48083114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13715151.0A Withdrawn EP2828009A1 (de) | 2012-03-20 | 2013-03-20 | Ultraschall-prüfkopf |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150009782A1 (de) |
EP (1) | EP2828009A1 (de) |
CA (1) | CA2865054A1 (de) |
WO (1) | WO2013139872A1 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6001161B2 (ja) * | 2013-03-29 | 2016-10-05 | 富士フイルム株式会社 | 穿刺針用超音波プローブ、およびそれを用いる超音波診断装置 |
WO2015011594A1 (en) | 2013-07-24 | 2015-01-29 | Koninklijke Philips N.V. | Non-imaging two dimensional array probe and system for automated screening of carotid stenosis |
US11117166B2 (en) * | 2015-05-22 | 2021-09-14 | Halliburton Energy Services, Inc. | Ultrasonic transducers with piezoelectric material embedded in backing |
US10987085B2 (en) | 2015-12-10 | 2021-04-27 | 1929803 Ontario Corp | Systems and methods for automated fluid response measurement |
EP3386398B1 (de) | 2015-12-10 | 2024-01-10 | 1929803 Ontario Corp. D/b/a Ke2 Technologies | System zur automatisierten flüssigkeitsreaktionsmessung |
WO2019169508A1 (en) | 2018-03-09 | 2019-09-12 | 1929803 Ontario Corp. D/B/A Flosonics Medical | Dynamically controllable patient fluid control device |
US11109831B2 (en) | 2018-07-17 | 2021-09-07 | 1929803 Ontario Corp, (o/a FloSonics Medical) | Ultrasound patch for detecting fluid flow |
US11087582B2 (en) * | 2018-10-19 | 2021-08-10 | Igt | Electronic gaming machine providing enhanced physical player interaction |
US11937976B2 (en) | 2020-07-06 | 2024-03-26 | 1929803 Ontario Corp | Ultrasound patch with integrated flexible transducer assembly |
CN117233263B (zh) * | 2023-11-15 | 2024-02-06 | 中北大学 | 用于管道轴向检测缺陷的窄声束电磁超声传感器及装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4865042A (en) * | 1985-08-16 | 1989-09-12 | Hitachi, Ltd. | Ultrasonic irradiation system |
JPH03280939A (ja) * | 1990-03-29 | 1991-12-11 | Fujitsu Ltd | 超音波探触子 |
US5269309A (en) * | 1991-12-11 | 1993-12-14 | Fort J Robert | Synthetic aperture ultrasound imaging system |
EP1241994A4 (de) * | 1999-12-23 | 2005-12-14 | Therus Corp | Ultraschallwendler zur bildgebung und therapie |
US20020112540A1 (en) * | 2000-12-20 | 2002-08-22 | Schlumberger Technology Corporation | Acoustic method for estimating mechanical properties of a material and apparatus therefor |
US6645162B2 (en) * | 2000-12-27 | 2003-11-11 | Insightec - Txsonics Ltd. | Systems and methods for ultrasound assisted lipolysis |
US8162858B2 (en) * | 2004-12-13 | 2012-04-24 | Us Hifu, Llc | Ultrasonic medical treatment device with variable focal zone |
US8456958B2 (en) * | 2006-02-21 | 2013-06-04 | Vermon S.A. | Capacitive micro-machined ultrasonic transducer for element transducer apertures |
NL1032186C2 (nl) * | 2006-07-17 | 2008-01-18 | Roentgen Tech Dienst Bv | Systeem voor het meten aan een wand van een pijpleiding met phased array. |
KR20080093281A (ko) * | 2007-04-16 | 2008-10-21 | 주식회사 메디슨 | 초음파 진단용 프로브 |
-
2013
- 2013-03-20 CA CA2865054A patent/CA2865054A1/en not_active Abandoned
- 2013-03-20 WO PCT/EP2013/055859 patent/WO2013139872A1/de active Application Filing
- 2013-03-20 EP EP13715151.0A patent/EP2828009A1/de not_active Withdrawn
-
2014
- 2014-09-22 US US14/492,105 patent/US20150009782A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2013139872A1 * |
Also Published As
Publication number | Publication date |
---|---|
CA2865054A1 (en) | 2013-09-26 |
US20150009782A1 (en) | 2015-01-08 |
WO2013139872A1 (de) | 2013-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013139872A1 (de) | Ultraschall-prüfkopf | |
EP0268818B1 (de) | Vorrichtung zum Senden und Empfangen von Ultraschall-Signalen | |
DE102004059856B4 (de) | Verfahren zur zerstörungsfreien Untersuchung eines Prüfkörpers mittels Ultraschall | |
DE69020104T2 (de) | Ultraschallwandler. | |
DE102011018954B4 (de) | Ultraschallprüfkopf und Verfahren zur zerstörungsfreien Prüfung eines flächig ausgebildeten Prüfkörpers | |
DE4405504A1 (de) | Verfahren und Vorrichtung zum Abbilden eines Objekts mit einem 2-D-Ultraschallarray | |
EP0667978B1 (de) | Ultraschall-prüfkopf und verfahren zu seinem betrieb | |
DE2856370A1 (de) | Bezugskoerper fuer ultraschallpruefgeraete sowie verfahren zu dessen herstellung und verwendung | |
DE102008040911A1 (de) | Verfahren zum Senden einer Ultraschallwelle und Vorrichtung zum Senden einer Ultraschallwelle | |
DE69429213T2 (de) | Ultraschallwandler | |
EP3709014A1 (de) | Wandleranordnung für ultraschall-prüfkopfsysteme, ultraschall-prüfkopfsystem und prüfverfahren | |
DE4428500C2 (de) | Ultraschallwandlerarray mit einer reduzierten Anzahl von Wandlerelementen | |
DE102015108720A1 (de) | Ultraschall-Prüfvorrichtung und Verfahren zur zerstörungsfreien Prüfung eines Rades und einer Radscheibe | |
DE102011108730B4 (de) | Verfahren und Vorrichtung zur Ultraschallprüfung mit einem Matrix Phased Array Prüfkopf | |
DE3715914C2 (de) | ||
EP2390658B1 (de) | Ultraschallprüfkopf zum Prüfen eines Werkstückes in einem konkav gekrümmten Bereich seiner Oberfläche | |
WO2008119748A1 (de) | Verfahren zur ansteuerung eines array-prüfkopfs einer vorrichtung zur ultraschallprüfung eines belebten oder unbelebten prüflings sowie vorrichtung zur ausführung des verfahrens | |
EP2689243B1 (de) | Vorrichtung und verfahren zur ultraschallprüfung eines werkstücks | |
DE102018111787A1 (de) | Verfahren zur Justierung von Prüfeinrichtungen zur Ultraschallprüfung von Werkstücken | |
DE202012104119U1 (de) | Vorrichtung zur Ultraschallprüfung eines Werkstücks | |
WO2022198248A1 (de) | Vorrichtung zur bestimmung chemisch-physikalischer eigenschaften in einem tribologischen system | |
DE19737398C1 (de) | Ultraschallwandler-Prüfkopf und Verfahren zu dessen Betrieb | |
EP1440310B1 (de) | Verfahren und vorrichtung zur ultraschallprüfung mittels eines linearen arrays und mit echostart | |
DE19808151A1 (de) | Ultraschallmeßeinrichtung für die Medizintechnik, Verfahren zum Messen mit einer derartigen Einrichtung und ihre Verwendung in der Medizintechnik | |
EP4088109A1 (de) | Zerstörungsfreie werkstoffprüfung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140807 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20150422 |