EP2826896A1 - Bikomponentenfaser zur Herstellung von Spinnvliesen - Google Patents
Bikomponentenfaser zur Herstellung von Spinnvliesen Download PDFInfo
- Publication number
- EP2826896A1 EP2826896A1 EP20140002313 EP14002313A EP2826896A1 EP 2826896 A1 EP2826896 A1 EP 2826896A1 EP 20140002313 EP20140002313 EP 20140002313 EP 14002313 A EP14002313 A EP 14002313A EP 2826896 A1 EP2826896 A1 EP 2826896A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- bicomponent fiber
- fibers
- fiber
- bicomponent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/16—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43825—Composite fibres
- D04H1/43828—Composite fibres sheath-core
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/06—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43825—Composite fibres
- D04H1/4383—Composite fibres sea-island
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43825—Composite fibres
- D04H1/43832—Composite fibres side-by-side
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
- D04H1/46—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
- D04H1/492—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2929—Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/637—Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
Definitions
- the invention relates to a bicomponent fiber, in particular for the production of spunbonded nonwovens, with a first component and a second component, wherein the first component comprises a first polymer and the second component comprises a second polymer as an ingredient. Furthermore, the invention relates to a spunbonded nonwoven with at least one bicomponent fiber of the aforementioned type.
- Bicomponent fibers of the type in question usually have a first component of a first polymer and a second component of a second polymer.
- different types of bicomponent fibers can be distinguished, each having different characteristic distributions of the components in the fiber cross section.
- Bicomponent fibers in which the first component surrounds and thus encloses the second component in the cross-section of the fiber are referred to as core-sheath fibers.
- Bicomponent fibers in which both the first component and the second component form part of the fiber surface in the cross-section of the fiber are referred to as side-by-side fibers.
- Fibers having structures in which multiple strands of one component are embedded in a strand of the other component to form an image in cross-section reminiscent of a plurality of islands formed as a component are referred to as Iceland-in-the-Sea fibers designated.
- Bicomponent fibers in which in each case a plurality of regions of the respective component is present in cross-section and forms the outer fiber surface are referred to as segmented pie fibers, since the regions of the individual components in the cross-section regularly have a cake-like division.
- bicomponent fibers are expressly to be understood as meaning those fibers which have more than 2 components.
- the purpose of the bicomponent fibers is to improve the properties of the fibers or the properties of spunbonded nonwoven webs.
- the properties of a spunbond depend on a variety of factors. Some of these influencing factors on the properties of a spunbonded fabric are properties of the respective fibers used, such as their strength.
- a widely accepted theory, at least in its essence, is that the properties of the resulting bicomponent fiber are then a combination of the properties of the individual components of the bicomponent fiber in which the properties of the individual components complement each other to the extent possible to combine the advantages of the properties of both components in the bicomponent fiber.
- a fiber which has both a high strength and exhibits advantageous behavior when bonding the fibers to one another in nonwoven production, it is advisable to have a first component with a high strength with a second component which has good bondability , to combine.
- bicomponent fibers Another problem that arises with bicomponent fibers is the limited recyclability of the bicomponent fibers in their manufacture. If non-recoverable product fractions, such as by-product, occur during the production of bicomponent fiber products, it is desirable to be able to recycle these fractions back to fiber production as a raw material. However, it is not technically possible or uneconomical to separate the components of the bicomponent fibers. However, the recycled fraction must inevitably be fed to one of the two components. It must be accepted that the composition and properties of the recycled fraction differ from those of the component to which it is added. As a result, the composition of the component to which the recycled fraction has been added changes in the resulting bicomponent fiber.
- the associated change in the properties of the bicomponent fiber is generally undesirable and tolerable only to a certain extent. This degree to which the change in the properties of the bicomponent fiber can be tolerated, therefore, determines the limit of the maximum component of recyclable material that can be added to one component.
- the invention is based on the object, a bicomponent fiber, in particular for producing a spunbonded fabric, and a spunbonded fabric with at least to provide a better synergy effect between the properties of the individual components of the bicomponent fiber and on the other hand, the use of a higher proportion of recycled material in the production of the bicomponent fiber is possible, as in the prior art of Case is.
- the difference between the melting points of the first component and the second component is less than or equal to 8 ° C. It should be pointed out that any individual intervals or individual values are included in the intervals indicated and must be regarded as disclosed essential to the invention, even if they are not specified in detail.
- the difference in the melting points of the first component and the second component is at most 6 ° C or between 1 ° C to 8 ° C, preferably between 1 ° C to 6 ° C. In these advantageous parameter ranges, the positive effects of the present invention occur significantly more.
- One of the positive effects of the present invention is that the proportion of recycled material that can be added to one of the components in making the bicomponent fiber increases over conventional fibers. It has been found that the use of components having combined melting points according to the invention makes the change in the properties of a component caused by the addition of recycled material much lower than with conventional fibers.
- the component with the lower melting point in the cross section of the fiber forms the outer surface of the fiber.
- the lower melting point component surrounds the higher melting point component.
- the mass fraction of the component with the lower melting point of the bicomponent fiber is at most 50%, more preferably at most 25%, preferably at most 10%, in particular at most 5%.
- the bicomponent fiber is a core-sheath fiber, with the lower melting point component forming the sheath.
- the difference between the Meit flow indices of the first component and the second component is less than or equal to 25 g / 10 min, wherein the melt flow indices (hereinafter MFI) of the first component and the second component are each less than or equal to 50 g / 10 min are.
- MFI melt flow indices
- the difference between the melt flow indices of the first component and the second component is preferably less than or equal to 20 g / 10 min, more preferably 15 g / 10 min and / or the MFIs of the first component and the second component are each less than or equal to 40 g / 10 min.
- the positive influence of the beneficial differences of the MFIs essentially affects the specific tear strength and the specific nail pull-out force.
- These two Characteristics of a spunbonded nonwoven made from the fibers can be improved by the advantageously selected MFIs. Even a simultaneous increase in both characteristic values is possible, but in any case one of the two characteristic values can be improved without the other characteristic value deteriorating. This also has a positive effect on the haptic properties.
- the specific breaking strength can be increased without the softness and the so-called "textile feel" being adversely affected. Textile grip is understood to mean a feeling of touch that is perceived as pleasant.
- the MFI is measured according to ISO 1133 with a test load of 2.16 kg and a test temperature of 230 ° C.
- the MFI is also referred to as the melt flow index or as the melt flow rate (MFR).
- MFR melt flow rate
- the determination is carried out in accordance with ISO 1133, in which the material is melted in a heatable cylinder and pressed by means of the test load through a defined nozzle.
- the MFI is a measure of the viscosity of the melt of the respective polymer-containing component. The viscosity, in turn, is related to the degree of polymerization, which corresponds to the average number of monomer units in each molecule of a polymer.
- the mass fraction of the component with the higher MFI on the bicomponent fiber is at most 50%, more preferably at most 25%, preferably at most 10%, in particular at most 5%.
- the bicomponent fiber is a core-sheath fiber, with the higher MFI component forming the sheath.
- the polymer of one of the two components has been polymerized with a metallocene catalyst and the polymer of the other component has been polymerized with a Ziegler-Natta catalyst and subjected to a subsequent visbreaking treatment.
- the polymer is preferably a polyolefin, in particular polypropylene, polyethylene or its copolymer or a mixture thereof.
- the other polymer is preferably also a polyolefin or a polyolefin copolymer. It is particularly advantageous if both polymers are composed of the same monomer or are at least predominantly composed of the same monomer.
- Metallocene catalysts are structurally uniform catalysts containing transition metals coordinated by cyclopentadiene ligands. Such catalysts are detailed in the US 5,374,696 and the US 5,064,802 described. On the relevant disclosure is expressly incorporated by reference.
- the advantage of these catalysts is that the polymers prepared with these catalysts have a narrow molecular weight distribution.
- the narrow molecular weight distribution leads to nonwovens with high elongation at break. In this case, the elongation at break is the elongation of the fibers, which results at the maximum of the breaking force, which is used when tearing a nonwoven strip. Above all, however, a narrow molecular weight distribution leads to an increase in process reliability in the production of the spunbonded nonwovens.
- the frequency of spinning disorders is reduced. Furthermore, a higher draw of the fibers is possible, higher spinning speeds can be achieved and the titers that can be achieved are lower. Lower titers mean a higher fineness of the fibers and / or of the yarns obtained from the fibers.
- metallocene catalysts or the polymers prepared by means of metallocene catalysts is that the residual content of the catalyst in the polymer is very low.
- the residual content of the catalyst in the polymer is an impurity of the polymer and can cause the properties of the polymer to be undesirably altered. For example, it can lead to discoloration in the processing of the polymer.
- a disadvantage of the metallocene catalysts is their slightly higher price compared to the Ziegler-Natta catalysts. Furthermore, a thermal hardening of the fibers in the nonwoven production in the use of metallocene catalysts can be difficult. This may be the case if the possibilities opened up by the use of metallocene catalysts to increase the crystallinity and strength of the individual fibers by virtue of their higher drawability are utilized to a great extent.
- Ziegler-Natta catalysts are heterogeneous mixed catalysts containing organometallic compounds of main group elements and transition metal compounds.
- elements of the first to third main groups are used as main group elements.
- the transition metal compounds in particular contain metals of the titanium group.
- the Ziegler-Natta catalysts are essentially defined by their delimitation from the metallocene catalysts.
- the Ziegler-Natta catalysts are less expensive than the metallocene catalysts, the polymers produced with the Ziegler-Natta catalysts have a significantly broader molecular weight distribution than polymers prepared with metallocene catalysts.
- the polymers produced with Ziegler-Natta catalysts are therefore usually aftertreated. This aftertreatment is called "visbreaking".
- visbreaking In the process of visbreaking polymer chains are cleaved, which reduces the molecular weight of the individual molecules and increases the number of molecules. This also reduces the width of the molecular weight distribution. The cleavage of the polymer chains is brought about by heat, irradiation, the addition of peroxide, or by similar means. Examples of such visbreaking treatments include in the US 4,282,076 and the US 5,723,217 described.
- the mass fraction of the component whose polymer has been polymerized with a metallocene catalyst, at the bicomponent fiber is at most 50%, more preferably at most 25%, preferably at most 10%, in particular at most 5%.
- the bicomponent fiber is particularly preferably a core-sheath fiber, wherein the component whose polymer has been polymerized with a metallocene catalyst forms the sheath.
- the first component preferably has an additive for influencing or improving the properties.
- the mass fraction of the additive of the first component in the second component is preferably at most 66.6%, more preferably at most 50%, and in particular at most 33.3% by mass of the additive in the first component.
- the advantage of concentrating the additives in the first component is that it has been found that the amount of additive needed in the second component can be lower than the usual uniform distribution of the additive in the two components, if the same or an improved effect of the additive is to be generated. It is also possible that the additive is present only in the first component.
- Additive in this sense means additives which are added to the polymer in the respective component in order to modify and thereby improve the properties of the resulting fiber or of the spunbond obtained from the fiber.
- the first component and the second component are arranged in the fiber such that the first component surrounds the second component in the cross section of the fiber.
- the mass fraction of the first component on the bicomponent fiber is at most 50%, more preferably at most 25%, preferably at most 10%, especially at most 5%.
- the bicomponent fiber is particularly preferably a core-sheath fiber, wherein the first component forms the sheath.
- the additives which are added to the polymers in low concentrations generally constitute a contamination of the polymer with respect to fiber production. In the case of impurities, there is always the risk that the behavior of the components in the production of the fiber will change as a result of these impurities.
- the first polymer and / or the second polymer is a polyolefin or a polyolefin copolymer, preferably a polymer and / or copolymer of ethylene, propylene, butylene, hexene or octene and / or a mixture and / or a Blend it. It has been found that these polymers are particularly well suited for producing the bicomponent fibers according to the invention from them.
- a copolymer in this context is to be understood as meaning a polymer which has been prepared from at least two different types of monomers, the mass fraction of the monomer which is decisive for the name of the copolymer being at least 50%.
- the bicomponent fiber is a core-sheath fiber, wherein the mass fraction of the core is 50% to 98%, preferably 60% to 95%, more preferably 70% to 95%, most preferably 80% to 90%. It has been found that the advantages of the bicomponent fiber according to the invention, if this is a core-sheath fiber, occur to a particular extent in these advantageous mass parts of the core.
- the mass ratio of the two components is in the range of 10:90 to 90:10, preferably in the range of 70:30 to 30:70, more preferably in the range of 60:40 to 40:60.
- the advantages of the bicomponent fiber according to the invention can be achieved particularly well for the component ratios listed.
- the bicomponent fiber is a multilobal, in particular a tetralobal or trilobal fiber. Due to their cross-sectional geometry, these fibers have a higher specific surface area than comparable fibers with circular cross-sections.
- the advantages of the fibers according to the invention can be utilized particularly efficiently, in particular if the different properties of the components produced by the bicomponent fiber according to the invention to be optimized, are properties that affect the surface of the fiber.
- the diameter of the bicomponent fiber is between 1 ⁇ m and 50 ⁇ m, preferably between 5 ⁇ m and 30 ⁇ m, particularly preferably between 8 ⁇ m and 20 ⁇ m. It has been found that, especially with fiber diameters which lie in these advantageous ranges, the combination of two components in a bicomponent fiber leads to a particular extent to synergy effects.
- the invention relates to a spunbonded nonwoven with bicomponent fibers according to the invention.
- Two properties which play a special role in spunbonded nonwovens are the specific breaking strength of the spunbonded nonwoven and the specific nail breaking strength of the spunbonded nonwoven. In this case, a desirable high specific tensile strength is achieved by fibers with high strength.
- good bondability is to be understood as meaning that the mobility of the fibers in the spunbonded fabric can be set as defined as possible during the joining of the fibers during the production of a spunbonded nonwoven.
- the targeted adjustment of the mobility of the fibers in the nonwoven which depends on the strength of the connection of the fibers with each other, is the prerequisite for the production of a spunbonded fabric with high specific tear strength and high specific Nagelausr Designkraft.
- the bicomponent fibers according to the invention are particularly suitable for allowing a high specific breaking strength and a high specific nail breaking strength of a spunbonded fabric, since the bicomponent fibers according to the invention can be optimized with regard to a combination of good connectivity and high strength.
- Such a nonwoven produced from the fibers according to the invention is suitable for numerous applications, for example in medicine, in the hygiene sector, in the automotive industry, in the clothing sector, in home and technical textiles and in particular in the construction sector and agriculture. Possible applications also include the use in filters and membranes, battery separators and as a backing for laminates and as a carrier for coatings of all kinds.
- the weight per unit area of the spunbonded nonwoven is between 1 g / m 2 and 300 g / m 2 , preferably between 5 g / m 2 and 200 g / m 2 , particularly preferably between 8 g / m 2 and 200 g / m 2 . It has been found that at basis weights which lie in these advantageous ranges, the use of a high strength biocomponent fiber according to the invention and at the same time good bondability leads in particular to a combination of high specific tensile strength and high specific Nagelausr Designkraft of the nonwoven fabric made from these fibers ,
- the specific breaking strength of the spunbonded web is at least 1.8 N / g x 5 cm in the machine direction and / or at least 1.3 N / g x 5 cm in the cross direction, preferably 2.0 N / g x 5 cm in the machine direction and / or at least 1.5 N / g ⁇ 5 cm in the transverse direction, preferably at least 2.2 N / g ⁇ 5 cm in the machine direction and / or at least 2.0 N / g ⁇ 5 cm in the transverse direction, more preferably at least 2.4 N / g ⁇ 5 cm in the machine direction and / or at least 1.9 N / g ⁇ 5 cm in the transverse direction.
- the machine direction refers to the direction in which the spunbonded fabric has been transported in its manufacture in the machine, so regularly the length direction of a spunbonded web.
- the transverse direction designates the direction at right angles to this direction, in which the spunbond flat expands, that is to say regularly the width of a spunbonded web.
- the specific breaking force is measured according to EN 12311-1.
- the specific nail pull-out force of the spunbonded web is at least 1.0 N / g in the machine direction and / or at least 1.2 N / g in the transverse direction, preferably at least 1.4 N / g in the machine direction and / or at least 1.5 N / g in the transverse direction, preferably at least 1.6 N / g in the machine direction and / or at least 2.16 N / g ⁇ cm in the transverse direction, more preferably at least 1.8 N / g in the machine direction and / or at least 2 , 1 N / g transverse direction.
- the specific nail pull-out force is the maximum force that occurs when tearing a nonwoven strip when the nonwoven strip already has a given damage, namely a nail pushed through the nonwoven fabric.
- the specific nail pull-out force according to EN 12310-1 is measured. It has been found that the stated minimum values for the specific nail pull-out force of the spunbonded fabric can be achieved without the specific breaking strength of the spunbonded fabric falling disproportionately when bicomponent fibers according to the invention are optimized correspondingly with regard to their connectivity and strength. In particular, it is also possible to realize a combination of said specific advantageous nail pull-out forces and the aforementioned advantageous specific minimum breaking forces.
- spunbonded nonwoven which is suitable in view of its mechanical properties for a variety of applications.
- a spunbonded fabric can be used, for example, well in the construction sector, where often attachment of the spunbonded nonwoven webs by nailing, tacking or screwing must be possible.
- the spunbonded fabric must not tear or tear when it is fastened, for example, on a roof.
- geotextiles In any case, geotextiles must have a high tolerance for punctual damage, such as may be caused by sharp stones.
- the invention also extends to threads or articles made therefrom having one or a plurality of bicomponent fibers of the aforementioned type.
- the invention also relates to a spunbond fabric made from bicomponent fibers according to the invention.
- a spunbonded nonwoven according to the invention is a structure, in particular a textile fabric, of bicomponent fibers according to the invention, in particular continuous filaments, which have in some way been joined together to form a nonwoven and joined together in some way.
- the invention also relates to a process for producing the bicomponent fibers according to the invention and to a process for producing a spunbonded nonwoven fabric from the bicomponent fibers according to the invention.
- the two components of the bicomponent fiber are melted separately.
- the polymer melts thus produced form the starting material for the fibers. It is advantageous to combine the melt streams thus produced only in a spinning plate. In such a spinning plate, the melt streams are extruded through spinnerets into bicomponent fibers.
- the spinnerets have a hole diameter of 0.1 mm to 10 mm, preferably a hole diameter of 0.2 mm to 5 mm, more preferably a hole diameter of 0.5 mm to 3 mm. Spinnerets whose hole diameter is within the stated preferred ranges have been found to be particularly suitable for the production of bicomponent fibers.
- the fibers are peeled off via godets.
- Godets are special rolls used in the production of synthetic threads and fibers for transporting and / or stretching and / or thermally treating the fibers or threads.
- the cooling rate of the fibers can be regulated by the temperature of the godets. Due to the defined cooling rate, in particular during the drawing of the fibers, their mechanical properties can be further improved.
- stretching of the fibers is possible by means of an air flow guided along the fiber.
- the cooling rate the fibers regulated by the temperature of the air flow and / or the amount of air.
- the fibers which are also referred to as filaments in this context, after they have cooled and drawn.
- the fibers thus receive a random arrangement.
- parts of the fibers are reoriented in the machine direction in the transverse direction, so that an overall isotropic nonwoven can be obtained.
- the fibers can be deposited on a sieve belt.
- the layer of fibers produced in this way can then be solidified, preferably thermally.
- the thermal solidification can be carried out by flowing through hot air or steam, in a particularly advantageous manner it is done by calendering.
- Calendering is understood to mean solidification using hot or heated rolls.
- the calendering can be done with a smooth and an engraved roller.
- the engraved roller is preferably designed so that a proportionate pressing surface of at least 5% and at most 25%, preferably at least 8% and at most 20%, more preferably at least 12% and at most 20%, results due to the engraving of the roller.
- the temperature of the rollers is at most 70 ° C, preferably at most 50 ° C less than the temperature of the melting point of the component with the lower melting point. These minimum temperatures of the rollers ensure a good connection of the fibers.
- the contact pressure of the rollers in the nip is advantageously 10 N / mm to 250 N / mm, preferably 25 N / mm to 200 N / mm, particularly preferably 50 N / mm to 150 N / mm. In particular, in combination with the aforementioned advantageous temperatures, it makes sense to adjust the contact pressure in the aforementioned advantageous ranges. It has been found that the connections between the fibers resulting from the use of these parameter combinations result in a spunbonded web having good mechanical properties when the bicomponent fibers according to the invention are used.
- the solidification of the fiber layer can alternatively be done mechanically.
- the nonwoven can for example be needled or solidified by means of water jet.
- Another possible advantageous alternative is the chemical hardening of the fiber layer.
- a binder for example by soaking or spraying, applied to the fiber layer. This binder is cured, thereby bonding the fibers to the spunbonded web.
- the curing of the binder can be done for example by annealing, photo-induced or moisture-induced crosslinking, cooling, evaporation of a solvent or similar measures.
- the Fig. 1 to 16 2 show cross-sectional views of exemplary bicomponent fibers 1 according to the invention.
- the illustrated bicomponent fibers 1 each have a first component 2 and a second component 3.
- the core-sheath fibers shown surround the first component 2, the second component 3 and thus forms the outer surface of the fiber.
- the Fig. 1 to 3 shown bicomponent fibers 1 in cross-section one, at least approximately, circular or -round geometry.
- the shown bicomponent fiber shows a trilobal cross section.
- core-sheath fibers in which the proportion of the sheath-forming component is very small, for example, about 2%, but also in “core-sheath fibers” with a higher sheath proportion, it may happen that the cladding has defects. That is, the sheath does not completely surround the core, but is broken in some places, so that the core at these points also forms the outer surface of the fiber. Even such fibers are "core-sheath fibers".
- the open-shell component within the meaning of the present invention forms the outer surface of the fiber.
- the Fig. 5, 6, 8 and 10 to 13 show bicomponent fibers that are designed as side-by-side fibers. These side-by-side fibers are characterized in that both the first component 2 and the second component 3 form part of the outer surface of the bicomponent fiber 1. Even with side-by-side fibers are circular or at least approximately circular cross-sections, as in the FIGS. 5, 6 and 8 are as possible as multilobal cross sections, as in the Fig. 10 to 13 are shown.
- the first component 2 and the second component 3 can be combined in different proportions and in a different spatial arrangement to each other. For example, as in the Fig.
- a component, in the example shown, the second component 3 are arranged so that it forms only a small proportion of the outer surface of the bicomponent fiber 1 relative to its mass fraction.
- a component, in the examples shown the first component 2 may be arranged at particularly exposed locations of the bicomponent fiber 1.
- the first component 2 is arranged at the tips of the multilobal cross section of the bicomponent fiber 1.
- the in the Fig. 14 shown bicomponent fiber 1 is designed as a segmented pie fiber.
- This fiber structure has a relationship to the side-by-side fiber structures in that both the first component 2 and the second component 3 form part of the outer surface of the bicomponent fiber 1.
- the in the FIGS. 14 and 16 In contrast to the "classical" side-by-side structures, the structures shown have in common that they each have a multiplicity of regions which are formed from the first component 2 or the second component 3.
- bicomponent fiber 1 are considered with their Islands-In-The-Sea structure as a modification of a core-sheath fiber in which a plurality of cores from the second component 3 is present.
- the individual cores of the second component 3 are surrounded by a common jacket of the first component 2.
- bicomponent fiber 1 has along the fiber partially cross-sections, in which the first component 2 surrounds the second component 3 similar to a core-sheath fiber and alone forms the outer surface of the bicomponent fiber 1. At other locations along the fiber, the second component 3 also forms part of the outer surface of the bicomponent fiber 1. The first component 2 does not completely surround the second component 3 in cross-section. This also applies to the in the Fig. 9 shown bicomponent fiber 1, this has only a different, alternative geometry compared to that in the Fig. 7 shown bicomponent fiber 1 on. Also, such mixed forms are referred to as core-sheath fibers in the context of the present application, as long as the first component forms more than 50% of the outer surface of the fiber.
- a plurality of exemplary bicomponent fibers 1 forms a spunbonded nonwoven 4.
- the spunbonded web forms a web with a transverse direction X, a thickness direction Y and a length direction Z, which is also referred to as the machine direction.
- the specific breaking forces of the spunbonded fabrics 4 according to the following examples were measured according to the standard EN 12311-1, the specific nail breaking forces according to standard EN 12310-1.
- the MFIs were measured according to ISO 1133 (2.16kg at 230 ° C).
- the bicomponent fibers 1 in the following examples are core-sheath fibers, with a sheath of the first component 2 and a core of the second component 3.
- An exemplary spunbonded nonwoven 4 was made from bicomponent fibers 1 which were thermally consolidated by means of a calender.
- the basis weight of the spunbonded nonwoven 4 produced is 70 g / m 2 .
- the bicomponent fibers 1 have polypropylene with a melting point of 140 ° C in the shell as the first polymer and polypropylene having a melting point of 148 ° C in the core as the second polymer.
- the mass fraction of the core on the bicomponent fiber 1 is 90%.
- the specific tearing forces of the spunbonded nonwoven 4 are 2.41 N / g x 5 cm in the machine direction Z and 1.80 N / g x 5 cm in the transverse direction X.
- the specific nail breaking forces are 1.52 N / g in the machine direction Z and 1, 80 N / g in the transverse direction X.
- Another exemplary spunbonded nonwoven fabric 4 was produced from bicomponent fibers 1 which were likewise thermally consolidated by means of a calender.
- the basis weight of the spunbonded nonwoven fabric 4 produced is 70 g / m 2 .
- the bicomponent fibers 1 have polypropylene with a melting point of 148 ° C in the shell as the first polymer and polypropylene having a melting point of 151 ° C in the core as the second polymer.
- the mass fraction of the core on the bicomponent fiber 1 is 60%.
- the specific tearing forces of the spunbonded nonwoven fabric 4 are 2.61 N / g x 5 cm in the machine direction Z and 1.95 N / g x 5 cm in the transverse direction X.
- the specific nail breaking forces are 1.59 N / g in the machine direction Z and 1, 90 N / g in the transverse direction X.
- Another exemplary spunbonded nonwoven 4 was made from bicomponent fibers 1 which were also thermally consolidated by means of a calender.
- the basis weight of the spunbonded nonwoven 4 produced is 70 g / m 2 .
- the bicomponent fibers 1 comprise a polypropylene-based random copolymer having an ethylene content of about 5% with a melting point of 141 ° C in the shell as the first polymer and polypropylene having a melting point of 145 ° C in the core as the second polymer.
- the mass fraction of the core on the bicomponent fiber 1 is 70%.
- the specific tearing forces of the spunbonded nonwoven fabric 4 are 2.44 N / g x 5 cm in the machine direction Z and 1.90 N / g x 5 cm in the transverse direction X.
- the specific nail breaking forces are 1.49 N / g in the machine direction Z and 1, 79 N / g in the transverse direction X.
- Another exemplary spunbonded nonwoven 4 was made from bicomponent fibers 1 which were also thermally consolidated by means of a calender.
- the basis weight of the spunbonded nonwoven 4 produced is 70 g / m 2 .
- the bicomponent fibers 1 have polypropylene with a melting point of 140 ° C in the shell as the first polymer and polypropylene having a melting point of 148 ° C in the core as the second polymer.
- the mass fraction of the core on the bicomponent fiber 1 is 93%.
- the specific tearing forces of the spunbonded nonwoven 4 are 2.21 N / g ⁇ 5 cm in the machine direction Z and 1.65 N / g ⁇ 5 cm in the transverse direction X.
- the specific nail breaking forces are 1.62 N / g in the machine direction Z and 1, 93 N / g in the transverse direction X.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Multicomponent Fibers (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Die Erfindung betrifft eine Bikomponentenfaser (1), insbesondere zur Herstellung von Spinnvliesen (4), mit einer ersten Komponente (2) und einer zweiten Komponente (3), wobei die erste Komponente (2) ein erstes Polymer und die zweite Komponente ein zweites Polymer als Bestandteil. Erfindungsgemäß ist vorgesehen, dass die Differenz der Schmelzpunkte der ersten Komponente (2) und der zweiten Komponente (3) kleiner oder gleich 8 °C ist.
Description
- Die Erfindung betrifft eine Bikomponentenfaser, insbesondere zur Herstellung von Spinnvliesen, mit einer ersten Komponente und einer zweiten Komponente, wobei die erste Komponente ein erstes Polymer und die zweite Komponente ein zweites Polymer als Bestandteil aufweist. Des Weiteren betrifft die Erfindung ein Spinnvlies mit wenigstens einer Bikomponentenfaser der vorgenannten Art.
- Bikomponentenfasern der in Rede stehenden Art weisen üblicherweise eine erste Komponente aus einem ersten Polymer und eine zweite Komponente aus einem zweiten Polymer auf. Dabei können unterschiedliche Typen von Bikomponentenfasern unterschieden werden, die jeweils unterschiedliche charakteristische Verteilungen der Komponenten im Faserquerschnitt aufweisen. Bikomponentenfasern, bei denen die erste Komponente die zweite Komponente im Querschnitt der Faser umgibt und somit einschließt, werden als Kern-Mantel-Fasern bezeichnet. Bikomponentenfasern, bei denen sowohl die erste Komponente als auch die zweite Komponente einen Teil der Faseroberfläche im Querschnitt der Faser bildet, werden als Side-by-Side-Fasern bezeichnet. Fasern mit Strukturen, bei denen mehrere Stränge einer Komponente in einen Strang der anderen Komponente eingebettet sind, so dass sich im Querschnitt ein Bild ergibt, das an eine Mehrzahl aus einer Komponente gebildete Inseln erinnert, werden als Island-in-the-Sea-Fasern bezeichnet. Bikomponentenfasern, bei denen im Querschnitt jeweils eine Mehrzahl an Bereichen der jeweiligen Komponente vorhanden ist und die äußere Faseroberfläche bildet, werden als Segmented-Pie-Fasern bezeichnet, da die Bereiche der einzelnen Komponenten im Querschnitt regelmäßig eine tortenstückartige Aufteilung aufweisen. Als Bikomponentenfasern im Sinne der vorliegenden Anmeldung sind dabei auch ausdrücklich solche Fasern zu verstehen, die mehr als 2 Komponenten aufweisen.
- Zweck der Bikomponentenfasern ist es, die Eigenschaften der Fasern oder die Eigenschaften der aus den Fasern hergestellten Spinnvliese zu verbessern. Die Eigenschaften eines Spinnvlieses hängen dabei von einer Vielzahl Einflussfaktoren ab. Einige dieser Einflussfaktoren auf die Eigenschaften eines Spinnvlieses sind dabei Eigenschaften der jeweils verwendeten Fasern, wie z.B. deren Festigkeit. Eine weit verbreitete und zumindest in ihrem Grundgedanken anerkannte Theorie ist die, dass die Eigenschaften der resultierenden Bikomponentenfaser dann eine Kombination der Eigenschaften der einzelnen Komponenten der Bikomponentenfaser darstellen, bei der sich die Eigenschaften der einzelnen Komponenten möglichst dahingehend ergänzen, dass die Vorteile der Eigenschaften beider Komponenten in der Bikomponentenfaser vereint werden. Wird beispielsweise eine Faser gewünscht, die sowohl eine hohe Festigkeit aufweist als auch ein vorteilhaftes Verhalten beim Verbinden der Fasern untereinander bei der Vliesherstellung zeigt, so bietet es sich an, eine erste Komponente mit einer hohen Festigkeit mit einer zweiten Komponente, die eine gute Verbindbarkeit aufweist, zu kombinieren.
- In der Praxis sind der Nutzung dieser Synergieeffekte jedoch dahingehend Grenzen gesetzt, dass sich die Eigenschaften der Komponenten regelmäßig nicht in der beschriebenen, lediglich vorteilhaften Weise kombinieren lassen. Vielmehr ist es in der Praxis oft so, dass durch die Bikomponentenfasern lediglich ein günstiger Kompromiss aus den Eigenschaften der reinen Komponenten erzielt werden kann. Dabei resultiert insbesondere aus einer Verbesserung der Verbindbarkeit der Bikomponentenfasern gegenüber Monokomponentenfasern, dass sich aus den Fasern ein Vlies mit verbesserten Eigenschaften, insbesondere mit verbesserten Festigkeitswerten, herstellen lässt.
- Ein weiteres Problem, das sich bei Bikomponentenfasern ergibt, ist die beschränkte Rezyklierbarkeit der Bikomponentenfasern bei deren Herstellung. Fallen bei der Herstellung von Produkten aus Bikomponentenfasern nicht verwertbare Produktfraktionen, wie beispielsweise Verschnitt, an, so ist es wünschenswert, diese Fraktionen wieder der Faserherstellung als Rohstoff zuführen zu können. Dabei ist es jedoch technisch nicht möglich oder unwirtschaftlich, die Komponenten der Bikomponentenfasern zu trennen. Die rezyklierte Fraktion muss jedoch zwangsläufig einer der beiden Komponenten zugeführt werden. Dabei muss in Kauf genommen werden, dass sich die Zusammensetzung und die Eigenschaften der rezyklierten Fraktion von denen der Komponente, der sie zugefügt wird, unterscheidet. Infolge dessen verändert sich die Zusammensetzung der Komponente, welcher die rezyklierte Fraktion hinzugefügt wurde, in der resultierenden Bikomponentenfaser. Die damit verbundene Änderung der Eigenschaften der Bikomponentenfaser ist in der Regel unerwünscht und lediglich bis zu einem gewissen Grad tolerierbar. Dieser Grad, bis zu dem die Veränderung der Eigenschaften der Bikomponentenfaser toleriert werden kann, bestimmt daher die Grenze des maximal einer Komponente hinzufüg baren Anteils an rezykliertem Material.
- Der Erfindung liegt nun die Aufgabe zugrunde, eine Bikomponentenfaser, insbesondere zur Herstellung eines Spinnvlieses, sowie ein Spinnvlies mit wenigstens einer Bikomponentenfaser zur Verfügung zu stellen, wobei zum einen ein besserer Synergieeffekt zwischen den Eigenschaften der einzelnen Komponenten der Bikomponentenfaser erzielt werden kann und zum anderen die Verwendung eines höheren Anteils an rezykliertem Material bei der Herstellung der Bikomponentenfaser möglich ist, als dies beim Stand der Technik der Fall ist.
- Die vorgenannte Aufgabe wird erfindungsgemäß im Wesentlichen durch eine Bikomponentenfaser und ein Spinnvlies mit den Merkmalen der unabhängigen Ansprüche gelöst. Die Merkmale der abhängigen Ansprüche betreffen vorteilhafte Ausführungsformen.
- Erfindungsgemäß ist die Differenz der Schmelzpunkte der ersten Komponente und der zweiten Komponente kleiner oder gleich 8° C. Hinzuweisen ist darauf, dass in den angegebenen Intervallen jedwede Einzelintervalle oder Einzelwerte enthalten und als erfindungswesentlich offenbart anzusehen sind, auch wenn sie im Einzelnen nicht genannt sind.
- Im Zusammenhang mit der Erfindung ist es vorteilhaft, wenn die Differenz der Schmelzpunkte der ersten Komponente und der zweiten Komponente höchstens 6° C oder zwischen 1° C bis 8° C, bevorzugt zwischen 1° C bis 6° C ist. In diesen vorteilhaften Parameterbereichen treten die positiven Effekte der vorliegenden Erfindung signifikant stärker auf.
- Im Zusammenhang mit der Erfindung hat sich überraschenderweise gezeigt, dass bei Bikomponentenfasern, bei denen die beiden Komponenten ähnliche Schmelzpunkte aufweisen, eine Verbesserung der Synergieeffekte zwischen den Eigenschaften der beiden Komponenten erzielt werden kann. Dies betrifft insbesondere mechanische Eigenschaften. Beispielsweise ist es möglich, im Falle eines aus erfindungsgemäßen Bikomponentenfasern hergestellten Spinnvlieses sowohl die spezifische Reißkraft (oder Reißfestigkeit) als auch die spezifische Nagelausreißkraft (oder Nagelausreißfestigkeit) zu steigern. Bei konventionellen Fasern nach dem Stand der Technik gingen Maßnahmen bei der Herstellung von Spinnvliesen aus diesen Fasern, die der Steigerung der spezifischen Reißkräfte dienten, regelmäßig mit einer Senkung der spezifischen Nagelausreißkräfte einher. Im umgekehrten Fall führten Maßnahmen zur Steigerung der spezifischen Nagelausreißkräfte regelmäßig zum Sinken der spezifischen Reißkräfte. Diese nachteiligen Effekte können mit erfindungsgemäßen Bikomponentenfasern vermieden oder zumindest abgeschwächt werden.
- Zu den positiven Effekten der vorliegenden Erfindung gehört auch, dass sich der Anteil rezyklierten Materials, der einer der Komponenten bei der Herstellung der Bikomponentenfaser zugesetzt werden kann, gegenüber herkömmlichen Fasern steigert. Es hat sich gezeigt, dass bei der Verwendung von Komponenten mit erfindungsgemäß kombinierten Schmelzpunkten die Änderung der Eigenschaften einer Komponente, die durch die Zugabe von rezykliertem Material verursacht wird, weitaus geringer ausfällt als bei herkömmlichen Fasern.
- Dabei bildet vorzugsweise die Komponente mit dem niedrigeren Schmelzpunkt im Querschnitt der Faser die äußere Oberfläche der Faser. Vorzugsweise umgibt die Komponente mit dem niedrigeren Schmelzpunkt die Komponente mit dem höheren Schmelzpunkt. Diese vorteilhafte Ausgestaltung führt dazu, dass die niedrigschmelzende Komponente im Mantelbereich der Faser für eine bessere Verfestigbarkeit des Materials sorgt, zudem verbessert sich die Spinnstabilität sowie die Dehnbarkeit der Fasern. Dies führt zu einer Verbesserung der Weichheit und/oder Haptik des Spinnvlieses, des Weiteren wird die Drapierbarkeit der Fasern verbessert.
- Vorzugsweise ist der Massenanteil der Komponente mit dem niedrigeren Schmelzpunkt an der Bikomponentenfaser höchstens 50%, weiter vorzugsweise höchstens 25%, bevorzugt höchstens 10%, insbesondere höchstens 5%. Dabei ist die Bikomponentenfaser besonders bevorzugt eine Kern-Mantel-Faser, wobei die Komponente mit dem niedrigeren Schmelzpunkt den Mantel bildet.
- Vorteilhafterweise ist die Differenz der Meit-Flow-Indices der ersten Komponente und der zweiten Komponente kleiner oder gleich 25 g/10 min, wobei die Melt-Flow-Indices (im Folgenden MFI) der ersten Komponente und der zweiten Komponente jeweils kleiner oder gleich 50 g/10 min sind. Bevorzugt ist die Differenz der Melt-Flow-Indices der ersten Komponente und der zweiten Komponente kleiner oder gleich 20 g/10 min, besonders bevorzugt 15 g/10 min und/oder die MFIs der ersten Komponente und der zweiten Komponente sind jeweils kleiner oder gleich 40 g/10 min. Eine derartige vorteilhafte Auswahl der Komponenten nach dem Kriterium ihrer MFIs wirkt sich überraschenderweise auf ähnliche Art positiv aus wie die erfindungsgemäße Auswahl der Komponenten anhand ihrer Schmelzpunkte.
- Der positive Einfluss der vorteilhaften Differenzen der MFIs betrifft im Wesentlichen die spezifische Reißkraft und die spezifische Nagelausreißkraft. Diese beiden Kennwerte eines aus den Fasern hergestellten Spinnvlieses lassen sich durch die vorteilhaft gewählten MFIs verbessern. Dabei ist sogar eine gleichzeitige Steigerung beider Kennwerte möglich, jedenfalls aber lässt sich einer der beiden Kennwerte verbessern, ohne dass der andere Kennwert sich verschlechtert. Dies macht sich auch positiv in den haptischen Eigenschaften bemerkbar. So lässt sich die spezifische Reißkraft steigern, ohne dass Weichheit und der sogenannte "textile Griff" negativ beeinflusst werden. Unter textilem Griff wird dabei ein als angenehm empfundenes Berührungsgefühl verstanden.
- Dabei wird der MFI gemessen nach ISO 1133 mit einer Prüflast von 2,16 kg und einer Prüftemperatur von 230° C. Der MFI wird dabei auch als Schmelzflussindex oder auch als Schmelzemasse-Fließrate (MFR) bezeichnet. Die Ermittlung erfolgt nach ISO 1133, indem das Material in einem beheizbaren Zylinder aufgeschmolzen und mittels der Prüflast durch eine definierte Düse gedrückt wird. Der MFI ist ein Maß für die Viskosität der Schmelze der jeweiligen polymerhaltigen Komponente. Die Viskosität wiederum hängt zusammen mit dem Polymerisationsgrad, welcher der mittleren Anzahl von Monomereinheiten in jedem Molekül eines Polymers entspricht.
- Vorzugsweise ist der Massenanteil der Komponente mit dem höheren MFI an der Bikomponentenfaser höchstens 50%, weiter vorzugsweise höchstens 25%, bevorzugt höchstens 10%, insbesondere höchstens 5%. Dabei die Bikomponentenfaser besonders bevorzugt eine Kern-Mantel-Faser, wobei die Komponente mit dem höheren MFI den Mantel bildet.
- Vorteilhafterweise ist das Polymer einer der beiden Komponenten mit einem Metallocen-Katalysator polymerisiert worden und das Polymer der anderen Komponente ist mit einem Ziegler-Natta-Katalysator polymerisiert und einer anschließenden Visbreaking-Behandlung unterzogen worden. Dabei handelt es sich bei dem Polymer vorzugsweise um ein Polyolefin, insbesondere Polypropylen, Polyethylen oder deren Copolymer oder eine Mischung daraus. Das andere Polymer ist vorzugsweise ebenfalls Polyolefin oder ein Polyolefin-Copolymer. Dabei ist es besonders Vorteilhaft, wenn beide Polymere aus dem gleichen Monomer aufgebaut sind oder zumindest überwiegend aus dem gleichen Monomer aufgebaut sind.
- Metallocen-Katalysatoren sind strukturell einheitliche Katalysatoren, die von Cyklopentadien-Liganden koordinierte Übergangsmetalle enthalten. Derartige Katalysatoren sind detailliert in der
US 5,374,696 und derUS 5,064,802 beschrieben. Auf die diesbezügliche Offenbarung wird ausdrücklich Bezug genommen. Der Vorteil dieser Katalysatoren ist es, dass die mit diesen Katalysatoren hergestellten Polymere eine enge Molekulargewichtsverteilung aufweisen. Die enge Molekulargewichtsverteilung führt zu Vliesen mit hoher Reißdehnung. Dabei ist die Reißdehnung die Dehnung der Fasern, die sich am Maximum der Reißkraft ergibt, die beim Zerreißen eines Vliesstreifens aufgewendet wird. Vor allem aber führt eine enge Molekulargewichtsverteilung zu einer Erhöhung der Prozesssicherheit bei der Herstellung der Spinnvliese. Die Häufigkeit von Spinnstörungen, wie beispielsweise Faserbruch, wird reduziert. Weiterhin ist eine höhere Verstreckung der Fasern möglich, es können höhere Spinngeschwindigkeiten erreicht werden und die Titer, die erreicht werden können, sind niedriger. Dabei bedeuten niedrigere Titer eine höhere Feinheit der Fasern und/oder der aus den Fasern gewonnenen Garne. - Ein weiterer Vorteil der Metallocen-Katalysatoren bzw. der mittels Metallocen-Katalysatoren hergestellten Polymere ist, dass der Restgehalt des Katalysators im Polymer sehr gering ist. Der Restgehalt des Katalysators im Polymer stellt eine Verunreinigung des Polymers dar und kann dazu führen, dass die Eigenschaften des Polymers in unerwünschter Weise verändert werden. So kann es beispielsweise zu Verfärbungen bei der Verarbeitung des Polymers kommen.
- Ein Nachteil der Metallocen-Katalysatoren ist deren im Vergleich zu den Ziegler-Natta Katalysatoren geringfügig höherer Preis. Weiterhin kann eine thermische Verfestigung der Fasern bei der Vliesherstellung bei dem Einsatz von Metallocen-Katalysatoren erschwert werden. Dies kann dann der Fall sein, wenn die durch den Einsatz von Metallocen-Katalysatoren eröffneten Möglichkeiten, die Kristallinität und Festigkeit der einzelnen Fasern durch deren höhere Verstreckbarkeit zu erhöhen, in hohem Maße ausgenutzt wird.
- Ziegler-Natta-Katalysatoren sind heterogene Mischkatalysatoren, die metallorganische Verbindungen von Hauptgruppenelementen und Übergangsmetallverbindungen enthalten. Als Hauptgruppenelemente werden insbesondere Elemente der ersten bis dritten Hauptgruppe verwendet. Die Übergangsmetallverbindungen enthalten insbesondere Metalle der Titangruppe. Es existiert eine Vielzahl von Varianten dieser Katalysatoren. Im Sinn der vorliegenden Erfindung sind die Ziegler-Natta-Katalysatoren im Wesentlichen durch ihre Abgrenzung von den Metallocen-Katalysatoren definiert.
- Die Ziegler-Natta-Katalysatoren sind zwar kostengünstiger als die Metallocen-Katalysatoren, die mit den Ziegler-Natta-Katalysatoren erzeugten Poylmere weisen jedoch eine deutlich breitere Molekulargewichtsverteilung auf als mit Metallocen-Katalysatoren hergestellte Polymere. Zur Verbesserung der Verstreckbarkeit der Fasern, was insbesondere der Erhöhung der Prozesssicherheit dient, werden die mit Ziegler-Natta-Katalysatoren hergestellten Polymere daher üblicherweise nachbehandelt. Diese Nachbehandlung wird als "Visbreaking" bezeichnet. Bei der Visbreaking-Behandlung werden Polymerketten gespalten, wodurch sich das Molekulargewicht der einzelnen Moleküle verringert und die Anzahl der Moleküle erhöht. Dabei verringert sich auch die Breite der Molekulargewichtsverteilung. Die Spaltung der Polymerketten wird durch Hitze, Bestrahlung, die Zugabe von Peroxyd oder durch ähnliche Maßnahmen herbeigeführt. Beispiele solcher Visbreaking-Behandlungen sind u. a. in der
US 4,282,076 und derUS 5,723,217 beschrieben. - Durch eine derartige Visbreaking-Behandlung kann jedoch weder die enge Molekulargewichtsverteilung der mit Metallocen-Katalysatoren erzeugten Polymere, noch die gute Verstreckbarkeit der aus diesen Polymeren gewonnenen Fasern erzielt werden. Auch weisen mit Ziegler-Natta-Katalysatoren erzeugte Polymere einen höheren Gehalt an Verunreinigungen auf als Polymere, die mit Metallocen-Katalysatoren erzeugt worden sind. Dies liegt zum einen daran, dass bei der Herstellung des Polymers mit einem Ziegler-Natta-Katalysator ein vergleichsweise höherer Katalysatorgehalt benötigt wird, der einen vergleichsweise höheren Anteil an Katalysatorrückständen im Polymer bedingt und zum anderen an Hilfsstoffen, die im Rahmen der Visbreaking-Behandlung zugegeben werden, wodurch sie eine zusätzliche Quelle für Verunreinigungen des fertigen Polymers darstellen.
- Der Vorteil von Polymeren, die unter Verwendung von Ziegler-Natta-Katalysatoren mit einer anschließenden Visbreaking-Behandlung hergestellt werden, ist vor allem deren günstiger Preis und deren hohe Verfügbarkeit auf dem Markt. Ein weiterer Vorteil ist die gute thermische Verbindbarkeit der aus diesen Polymeren hergestellten Fasern.
- Es hat sich nun überraschenderweise gezeigt, dass die vorteilhafte Auswahl der Polymere anhand der Katalysatoren, die bei ihrer Herstellung verwendet wurden, dazu führt, dass die resultierenden Bikomponentenfasern eine Kombination der Vorteile der Verwendung der jeweiligen Katalysatortypen ermöglicht. So ist es möglich, die Kosten gegenüber der Verwendung reiner mittels Metallocen-Katalysatoren hergestellter Polymerfasern zu senken, dabei jedoch gleichzeitig die Vorteile der Verwendung von Metallocen-Katalysatoren zu verwirklichen. Zusätzlich kann dabei noch eine bessere Verbindbarkeit der Fasern im Vergleich zu Bikomponeten aus Polymeren, die ausschließlich unter Verwendung von Metallocen-Katalysatoren erzeugt wurden, erzielt werden.
- Vorzugsweise ist der Massenanteil der Komponente, deren Polymer mit einem Metallocen-Katalysator polymerisiert worden ist, an der Bikomponentenfaser höchstens 50%, weiter vorzugsweise höchstens 25%, bevorzugt höchstens 10%, insbesondere höchstens 5%. Dabei ist die Bikomponentenfaser besonders bevorzugt eine Kern-Mantel-Faser, wobei die Komponente, deren Polymer mit einem Metallocen-Katalysator polymerisiert worden ist, den Mantel bildet.
- Vorzugsweise weist die erste Komponente ein Additiv zur Eigenschaftsbeeinflussung bzw. -verbesserung auf.
- Vorzugsweise beträgt der Massenanteil des Additivs der ersten Komponente in der zweiten Komponente höchstens 66,6%, weiter bevorzugt höchstens 50%, und insbesondere höchstens 33,3% des Masseanteils des Additivs in der ersten Komponente.
- Der Vorteil der Aufkonzentrierung der Additive in der ersten Komponente liegt darin, dass sich gezeigt hat, dass die Menge des benötigten Additivs in der zweiten Komponente niedriger sein kann als bei der üblichen Gleichverteilung des Additivs in den beiden Komponenten, wenn die gleiche oder eine verbesserte Wirkung des Additivs erzeugt werden soll. Es ist auch möglich, dass das Additiv nur in der ersten Komponente vorhanden ist.
- Unter Additiv in diesem Sinne werden Zusatzstoffe verstanden, die dem Polymer in der jeweiligen Komponente zugefügt werden, um die Eigenschaften der resultierenden Faser bzw. des aus der Faser gewonnenen Spinnvlieses zu modifizieren und dadurch zu verbessern.
- Vorteilhafterweise sind die erste Komponente und die zweite Komponente in der Faser derart angeordnet, dass im Querschnitt der Faser die erste Komponente die zweite Komponente umgibt.
- Vorzugsweise ist der Massenanteil der ersten Komponente an der Bikomponentenfaser höchstens 50%, weiter vorzugsweise höchstens 25%, bevorzugt höchstens 10%, insbesondere höchstens 5%. Dabei ist die Bikomponentenfaser besonders bevorzugt eine Kern-Mantel-Faser, wobei die erste Komponente den Mantel bildet. Die Additive, die in geringen Konzentrationen den Polymeren zugesetzt werden, stellen im Hinblick auf die Faserherstellung grundsätzlich eine Verunreinigung des Polymers dar. Bei Verunreinigungen besteht grundsätzlich immer das Risiko, dass sich aufgrund dieser Verunreinigungen das Verhalten der Komponenten bei der Herstellung der Faser ändert. Daher birgt eine Ungleichverteilung der Additive in den Komponenten der Bikomponentenfaser aus der Sicht des Fachmannes zunächst das Risiko, dass sich die Qualität der Bikomponentenfaser oder die Stabilität des Herstellungsprozesses verschlechtert. Zudem kommt es aus der Sicht des Fachmannes regelmäßig nicht darauf an, dass ein Additiv in einer bestimmten Zone der Faser aufkonzentriert wird. Dies liegt an der geringen Dicke der in Rede stehenden Fasern. Ähnlich wie es bei Farbstoffen oder Pigmenten der Fall ist, macht es auch bei Additiven aus der Sicht des Fachmannes ebenfalls keinen offensichtlichen Sinn, diese in einer bestimmten Zone der Faser anzureichern. So wird beispielsweise bei einem Flammenhemmer ohnehin die gesamte Faser von den Verbrennungsvorgängen betroffen sein. Auch wird UV-Strahlung in die gesamte Faser eindringen. Dennoch hat sich überraschenderweise gezeigt, dass in einigen Fällen sogar besonders vorteilhafte Ergebnisse erzielt werden können, wenn das Additiv in der einen Komponente nicht nur verringert, sondern gänzlich weggelassen wird. Ein Vorteil der Aufkonzentrierung der Additive in der ersten Komponente ist jedenfalls die Kostenersparnis durch die niedrigere benötigte Additivmenge.
- Vorteilhafterweise handelt es sich bei dem Additiv um ein primäres oder sekundäres Antioxidanz, einen UV-Absorber, einen UV-Stabilisator, einen Flammhemmer, ein Antistatikum, ein Gleitmittel, einen Metalldesaktivator, ein Hydrophilierungsmittel, ein Hydrophobierungsmittel, ein Antifogging-Additiv und/oder ein Biozid. Besonders bevorzugt sind dabei folgende Stoffklassen und Mischungen daraus:
- Sterisch gehinderte Phenole, aromatische sekundäre oder tertiäre Amine, Aminophenole, aromatische Nitro- oder Nitrosoverbindungen als primäre Antioxidantien.
- Organische Phosphite oder Phosphonate, Thioether, Thioalkohole, Thioester, Sulfide und schwefehaltige organische Säuren, Dithiocarbamate, Thiodipropionate, Aminopyrazole, metallhaltige Chelate, Mercaptobenzimidazole als sekundäre Antioxidantien.
- Hydroxybenzophenone, Cinnamate, Oxalanilide, Salicylate, 1,3 Benzoldiol-Monobenzoate, Benzotriazole, Triazine, Benzophenone sowie UVabsorbierende Pigmente wie Titandioxid oder Ruß als UV-Absorber.
- Metallhaltige Komplexe organischer Schwefel- oder Phosphorverbindungen, sterisch gehinderte Amine (HALS) als UV-Stabilisatoren.
- Metallhydroxide, Borate, organische brom- oder chlorhaltige Verbindungen, organische Phosphorverbindungen, Antimontrixoid, Melamin, Melamincyanurat, Blähgraphit oder andere Intumeszenz-Systeme als Flammhemmer.
- Quartäre Ammoniumsalze, Alkylsulfonate, Alkylsufate, Alkylphosphate, Dithiocar-bamate, (Erd)Alkalimetallcarboxylate, Polyethylenglykole sowie deren Ester und Ether, Fettsäureester, Ethoxylate, Mono- und Diglyceride, Ethanolamine als Antistatika.
- Fettalkohole, Ester von Fettalkoholen, Fettsäuren, Fettsäureester, Dicarbonsäureester, Fettsäureamide, Metallsalze von Fettsäuren, Polyolefinwachse, natürliche oder künstliche Paraffine und deren Derivate, Fluorpolymere und Fluoroligomere, Antiblockmittel wie Kieselsäuren, Silikone, Silikate, Calciumcarbonat etc. als Gleitmittel.
- Amide von Mono- und Dicarbonsäuren und deren Derivate, zyklische Amide, Hydrazone und Bishydrazone, Hydrazide, Hydrazine, Melamin und dessen Derivate, Benzotriazole, Aminotriazole, sterisch gehinderte Phenole in Verbindung mit komplexierenden Metallverbindungen, Benzylphosphonate, Pyridithiole, Thiobisphenolester als Metalldesaktivatoren.
- Polyglycole, Ethoxylate, Fluorpolymere und Fluoroligomere, Montanwachse, insbesondere Stearate, als Hydrophilierungs-, Hydrophobierungs- oder Anti-Fogging-mittel.
- 10,10'-Oxybisphenoxarsin (OBPA), N-(Trihalogen-methylthiol)phthalimid, Tributylzinnoxid, Zinkdimethyldithiocarbamat, Diphenylantimon-2-ethylhexanoat, Kupfer-8-hydroxychinolin, Isothiazolone, Silber und Silbersalze als Biozide.
- Beispielsweise lässt sich bei der Durchführung eines Brandtests gemäß EN 13501-1 feststellen, dass bei der vorgenannten Verteilung des Additivs in den Komponenten eine geringere Menge des Additivs insgesamt, in diesem Beispiel ein Flammhemmer, ausreicht, um zu einem positiven Testergebnis zu führen, als wenn der Flammhemmer gleichmäßig in der Faser verteilt ist. Bei diesem Test wird innerhalb von Sekundenbruchteilen die gesamte Faser von der Flamme erfasst, daher lässt sich der vorteilhafte Effekt nicht ohne Weiteres auf einer Art Abschirmungswirkung des Mantelbereichs der Faser zurückführen.
- Vorteilhafterweise handelt es sich bei dem ersten Polymer und/oder dem zweiten Polymer um ein Polyolefin oder ein Polyolefin-Copolymer, vorzugsweise um ein Polymer und/oder Copolymer des Ethylen, Propylen, Buthylen, Hexen oder Octen und/oder eine Mischung und/oder einen Blend daraus. Es hat sich gezeigt, dass diese Polymere besonders gut geeignet sind, um die erfindungsgemäßen Bikomponentenfasern daraus herzustellen. Unter einem Copolymer ist in diesen Zusammenhang ein Polymer zu verstehen, das aus mindestens zwei verschiedenen Sorten von Monomeren hergestellt wurde, wobei der Massenanteil des Monomers, welches für die Benennung des Copolymers maßgeblich ist, mindestens 50% beträgt.
- Vorzugsweise ist die Bikomponentenfaser eine Kern-Mantel-Faser, wobei der Massenanteil des Kerns 50% bis 98%, bevorzugt 60% bis 95%, besonders bevorzugt 70% bis 95%, ganz besonders bevorzugt 80% bis 90% ist. Es hat sich gezeigt, dass die Vorteile der erfindungsgemäßen Bikomponentenfaser, wenn es sich bei dieser um eine Kern-Mantel-Faser handelt, in besonderem Maße bei diesen vorteilhaften Massenteilen des Kerns auftreten.
- Handelt es sich bei der Bikomponentenfaser um eine Side-by-Side-Faser, Segmented-Pie-Faser oder Islands-in-the-Sea-Faser liegt das Massenverhältnis der beiden Komponenten im Bereich von 10 : 90 bis zu 90 : 10, bevorzugt im Bereich von 70 : 30 bis zu 30 : 70, besonders bevorzugt im Bereich von 60 : 40 bis zu 40 : 60, liegt. Bei diesen Fasertypen hat sich gezeigt, dass sich die Vorteile der erfindungsgemäßen Bikomponentenfaser besonders gut für die aufgeführten Komponentenverhältnisse erzielen lassen.
- Bei einer anderen bevorzugten Ausführungsform handelt es sich bei der Bikomponentenfaser um eine multilobale, insbesondere um eine tetralobale oder trilobale Faser. Diese Fasern bieten aufgrund ihrer Querschnittsgeometrie eine höhere spezifische Oberfläche als vergleichbare Fasern mit kreisrunden Querschnitten. In Verbindung mit diesen lassen sich die Vorteile der erfindungsgemäßen Fasern besonders effizient ausnutzen, insbesondere dann, wenn die unterschiedlichen Eigenschaften der Komponenten, die durch die erfindungsgemäße Bikomponentenfaser optimiert werden sollen, Eigenschaften sind, welche die Oberfläche der Faser betreffen.
- Vorteilhafterweise beträgt der Durchmesser der Bikomponentenfaser zwischen 1 µm und 50 µm, bevorzugt zwischen 5 µm und 30 µm, besonders bevorzugt zwischen 8 µm und 20 µm. Es hat sich gezeigt, dass gerade bei Faserdurchmessern, die in diesen vorteilhaften Bereichen liegen, die Kombination zweier Komponenten in einer Bikomponentenfaser in besonderem Maße zu Synergieeffekten führt.
- Weiterhin betrifft die Erfindung ein Spinnvlies mit erfindungsgemäßen Bikomponentenfasern. Zwei Eigenschaften, die bei Spinnvliesen eine besondere Rolle spielen, sind die spezifische Reißkraft des Spinvlieses sowie die spezifische Nagelausreißkraft des Spinnvlieses. Dabei wird eine wünschenswerte hohe spezifische Reißkraft durch Fasern mit hoher Festigkeit erreicht.
- Unter guter Verbindbarkeit ist in diesem Sinne zu verstehen, dass sich beim Verbinden der Fasern während der Herstellung eines Spinnvlieses die Beweglichkeit der Fasern im Spinnvlies möglichst definiert einstellen lässt. Die gezielte Einstellung der Beweglichkeit der Fasern im Vlies, welche von der Stärke der Verbindung der Fasern untereinander abhängt, ist die Voraussetzung für die Herstellung eines Spinnvlieses mit hoher spezifischer Reißfestigkeit und gleichzeitig hoher spezifischer Nagelausreißkraft.
- In der Praxis kann das Problem bestehen, dass geeignete Fasern mit hoher Festigkeit eine schlechte Verbindbarkeit aufweisen und Fasern mit einer guten Verbindbarkeit lediglich eine niedrige Festigkeit aufweisen. Daher ist gerade im Falle der Herstellung eines Spinnvlieses, welches sowohl eine hohe spezifische Reißkraft als auch eine hohe spezifische Nagelausreißkraft aufweisen soll, der Einsatz einer Bikomponentenfaser sinnvoll. Dabei eignet sich in besonderem Maße die erfindungsgemäßen Bikomponentenfasern dazu, eine hohe spezifische Reißkraft und eine hohe spezifische Nagelausreißkraft eines Spinnvlieses zu ermöglichen, da gerade die erfindungsgemäßen Bikomponentenfasern im Hinblick auf eine Kombination aus guter Verbindbarkeit und hoher Festigkeit optimiert werden können.
- Ein solcher aus den erfindungsgemäßen Fasern hergestellter Vliesstoff eignet sich für zahlreichen Anwendungen, beispielsweise in der Medizin, im Hygienebereich, in der Automobilindustrie, im Bekleidungsbereich, in Heim- und technischen Textilien sowie insbesondere im Baubereich und der Landwirtschaft. Mögliche Anwendungen umfassen des weiteren die Verwendung in Filter und Membranen, Batterieseparatoren sowie als Stützvlies für Laminate und als Träger für Beschichtungen aller Art.
- Vorteilhafterweise beträgt das Flächengewicht des Spinnvlieses zwischen 1 g/m2 und 300 g/m2, bevorzugt zwischen 5 g/m2 und 200 g/m2, besonders bevorzugt zwischen 8 g/m2 und 200 g/m2. Es hat sich gezeigt, dass bei Flächengewichten, die in diesen vorteilhaften Bereichen liegen, die Verwendung einer erfindungsgemäßen Bikomponentenfaser mit hoher Festigkeit und gleichzeitig guter Verbindbarkeit in besonderem Maße zu einer Kombination aus hoher spezifischer Reißkraft und gleichzeitig hoher spezifischer Nagelausreißkraft des aus diesen Fasern hergestellten Vlieses führt.
- Vorteilhafterweise beträgt die spezifische Reißkraft des Spinnvlieses mindestens 1,8 N/g · 5 cm in Maschinenrichtung und/oder mindestens 1,3 N/g · 5 cm in Querrichtung, vorzugsweise 2,0 N/g · 5 cm in Maschinenrichtung und/oder mindestens 1, 5 N/g · 5 cm in Querrichtung, bevorzugt mindestens 2,2 N/g · 5 cm in Maschinenrichtung und/oder mindestens 2,0 N/g · 5 cm in Querrichtung, besonders bevorzugt mindestens 2,4 N/g · 5 cm in Maschinenrichtung und/oder mindestens 1,9 N/g · 5 cm in Querrichtung. Dabei bezeichnet die Maschinenrichtung die Richtung, in der das Spinnvlies bei seiner Herstellung in der Maschine transportiert worden ist, also regelmäßig die Längenrichtung einer Spinnvliesbahn. Die Querrichtung bezeichnet die rechtwinklig zu dieser liegenden Richtung, in der sich das Spinnvlies flächig ausdehnt, also regelmäßig die Breite einer Spinnvliesbahn. Die spezifische Reißkraft wird dabei gemessen nach EN 12311-1.
- Es hat sich gezeigt, dass diese vorteilhaften Mindestwerte für die spezifische Reißkraft des Spinnvlieses jedenfalls angestrebt werden sollten, wenn erfindungsgemäße Bikomponentenfasern für die Herstellung des Spinnvlieses verwendet werden. Die erfindungsgemäßen Bikomponentenfasern erlauben es, diese vorteilhaften Mindestwerte für die spezifische Reißkraft zu erzielen, ohne dass dabei die spezifische Nagelausreißkraft unverhältnismäßig absinkt.
- Vorteilhafterweise beträgt die spezifische Nagelausreißkraft des Spinnvlieses mindestens 1,0 N/g in Maschinenrichtung und/oder mindestens 1,2 N/g in Querrichtung, vorzugsweise mindestens 1,4 N/g in Maschinenrichtung und/ oder mindestens 1,5 N/g in Querrichtung, bevorzugt mindestens 1,6 N/g in Maschinenrichtung und/oder mindestens 2,16 N/g · cm in Querrichtung, besonders bevorzugt mindestens 1,8 N/g in Maschinenrichtung und/oder mindestens 2,1 N/g Querrichtung.
- Die spezifische Nagelausreißkraft ist dabei die maximale Kraft, die beim Zerreißen eines Vliesstreifens auftritt, wenn der Vliesstreifen bereits eine gegebene Beschädigung, nämlich einen durch den Vliesstoff gestoßenen Nagel, aufweist. Gemessen wird die spezifische Nagelausreißkraft nach EN 12310-1. Es hat sich gezeigt, dass die genannten Mindestwerte für die spezifische Nagelausreißkraft des Spinnvlieses angestrebt werden können, ohne dass die spezifische Reißkraft des Spinnvlieses unverhältnismäßig absinkt, wenn erfindungsgemäße Bikomponentenfasern entsprechend hinsichtlich ihrer Verbindbarkeit und Festigkeit optimiert werden. Insbesondere ist es dabei auch möglich, eine Kombination der genannten spezifischen vorteilhaften Nagelausreißkräfte und der zuvor genannten, vorteilhaften spezifischen Mindestreißkräfte zu realisieren.
- Die Kombination dieser beiden vorteilhaften Mindestparameter führt zu einem Spinnvlies, welches im Hinblick auf seine mechanischen Eigenschaften für eine Vielzahl von Anwendungen geeignet ist. Ein derartiges Spinnvlies kann beispielsweise gut im Baubereich eingesetzt werden, wo häufig eine Befestigung der Spinnvliesbahnen durch Nageln, Tackern oder Schrauben möglich sein muss. Das Spinnvlies darf dabei nicht ab- oder ausreißen, wenn es beispielsweise auf einem Dach befestigt wird. Auch ist eine Verwendung dieser vorteilhaften Spinnvliese als Geotextilien gut möglich. Geotextilien müssen jedenfalls eine hohe Toleranz für punktuelle Beschädigungen, wie sie beispielsweise durch spitze Steine verursacht werden können, aufweisen.
- In der Praxis geht eine hohe spezifische Nagelausreißfestigkeit oft mit einer guten Haptik einher. Die Weichheit und der textile Griff derartiger Spinnvliese eröffnen daher auch Anwendungen, z.B. Anwendungen im Hygiene- oder Medizinbereich. Ursächlich für die gute Haptik ist die hohe Beweglichkeit einzelner Fasern, die regelmäßig mit dem Auftreten hoher Nagelausreißkräfte einhergeht. Fasern, die sich derart verhalten, weisen in der Praxis regelmäßig auch als weich und angenehm empfundene haptische Eigenschaften auf. Die Fasersegmentbeweglichkeit ermöglicht es, dass sich Fasern bei der Bewegung des Nagels durch das Vlies in dem Nagel "sammeln", indem sie den Nagel, der sich durch das Vlies bewegt, ausweichen und nicht sofort zerreißen. Dies führt zu einer Zone erhöhter Faserdichte, also eine Zone erhöhter Festigkeit, um den Nagel.
- Es versteht sich, dass sich die Erfindung auch auf Fäden oder daraus hergestellte Gegenstände erstreckt, die eine oder eine Mehrzahl von Bikomponentenfasern der vorgenannten Art aufweist. Insbesondere betrifft die Erfindung auch ein aus erfindungsgemäßen Bikomponentenfasern hergestelltes Spinnvlies. Bei einem erfindungsgemäßen Spinnvlies handelt es sich um ein Gebilde, insbesondere ein textiles Flächengebilde, aus erfindungsgemäßen Bikomponentenfasern, insbesondere Endlosfasern, die auf irgendeine Weise zu einem Vlies zusammengefügt und auf irgendeine Weise miteinander verbunden worden sind.
- Die Erfindung betrifft ebenfalls ein Verfahren zur Herstellung der erfindungsgemäßen Bikomponentenfasern und ein Verfahren zur Herstellung eines Spinnvlieses aus den erfindungsgemäßen Bikomponentenfasern.
- Vorteilhafterweise werden dabei die beiden Komponenten der Bikomponentenfaser getrennt aufgeschmolzen. Die so erzeugten Polymerschmelzen bilden das Ausgangsmaterial für die Fasern. Es ist vorteilhaft, die so erzeugten Schmelzeströme erst in einer Spinnplatte zu vereinen. In einer derartigen Spinnplatte werden die Schmelzeströme durch Spinndüsen zu Bikomponentenfasern extrudiert. Vorteilhafterweise weisen dabei die Spinndüsen einen Lochdurchmesser von 0,1 mm bis 10 mm, bevorzugt einen Lochdurchmesser von 0,2 mm bis 5 mm, besonders bevorzugt einen Lochdurchmesser von 0,5 mm bis 3 mm auf. Spinndüsen, deren Lochdurchmesser in den genannten bevorzugten Bereichen liegt, haben sich als besonders geeignet für die Herstellung von Bikomponentenfasern erwiesen.
- Es ist vorteilhaft, die extrudierten Fasern nach deren Extrusion mechanisch zu verstrecken. Vorzugsweise werden die Fasern dabei über Galetten abgezogen. Bei Galetten handelt es sich um spezielle Walzen, die in der Produktion synthetischer Fäden und Fasern eingesetzt werden und zum Transportieren und/oder Verstrecken und/oder thermischen Behandeln der Fasern oder Fäden dienen.
- In vorteilhafter Weise kann dabei die Abkühlrate der Fasern durch die Temperatur der Galetten geregelt werden. Durch die definierte Abkühlrate, insbesondere während des Verstreckens der Fasern, lassen sich deren mechanische Eigenschaften weiter verbessern.
- In ebenfalls vorteilhafter Weise ist auch eine Verstreckung der Fasern durch einen entlang der Faser geführten Luftstrom möglich. Vorzugsweise wird dabei die Abkühlrate der Fasern durch die Temperatur des Luftstroms und/oder die Luftmenge geregelt.
- Zur Herstellung eines Spinnvlieses ist es vorteilhaft, die Fasern, welche in diesem Zusammenhang auch als Filamente bezeichnet werden, nach deren Abkühlung und Verstreckung zu verwirbeln. Die Fasern erhalten so eine zufällige Anordnung. Dabei werden Teile der Fasern von Maschinenrichtung in Querrichtung umorientiert, so dass ein insgesamt isotroperes Vlies erhalten werden kann. Anschließend können die Fasern auf einem Siebband abgelegt werden.
- Die so erzeugte Lage aus Fasern kann dann, vorzugsweise thermisch, verfestigt werden. Beim Verfestigen werden die einzelnen Fasern miteinander verbunden, wodurch das eigentliche Vlies entsteht. Das thermische Verfestigen kann dabei durch Durchströmen mit Heißluft oder Wasserdampf erfolgen, in besonders vorteilhafter Weise erfolgt es durch Kalandrieren. Unter Kalandrieren wird das Verfestigen unter Verwendung heißer oder beheizter Walzen verstanden. In vorteilhafter Weise kann das Kalandrieren mit einer glatten und einer gravierten Walze erfolgen. Dabei ist die gravierte Walze vorzugsweise so gestaltet, dass sich eine anteilige Pressfläche von mindestens 5% und maximal 25%, bevorzugt mindestens 8% und maximal 20%, besonders bevorzugt mindestens 12% und maximal 20%, aufgrund der Gravur der Walze ergibt. Dadurch lässt sich die Verbindung der Fasern untereinander und damit die Beweglichkeit der Fasern gezielt beeinflussen.
- Vorzugsweise beträgt die Temperatur der Walzen dabei höchstens 70° C, bevorzugt höchstens 50° C weniger als die Temperatur des Schmelzpunktes der Komponente mit dem niedrigeren Schmelzpunkt. Durch diese Mindesttemperaturen der Walzen wird eine gute Verbindung der Fasern sichergestellt. Dabei beträgt der Anpressdruck der Walzen im Walzenspalt vorteilhafter Weise 10 N/mm bis 250 N/mm, bevorzugt 25 N/mm bis 200 N/mm, besonders bevorzugt 50 N/mm bis 150 N/mm. Insbesondere in Kombination mit den vorgenannten vorteilhaften Temperaturen ist es sinnvoll, den Anpressdruck in den genannten vorteilhaften Bereichen einzustellen. Es hat sich gezeigt, dass die bei Verwendung dieser Parameterkombinationen entstehenden Verbindungen zwischen den Fasern zu einem Spinnvlies mit guten mechanischen Eigenschaften führt, wenn die erfindungsgemäßen Bikomponentenfasern verwendet werden.
- Die Verfestigung der Faserlage kann alternativ auch mechanisch erfolgen. Dabei kann das Vlies beispielsweise vernadelt oder mittels Wasserstrahl verfestigt werden. Eine weitere mögliche vorteilhafte Alternative ist die chemische Verfestigung der Faserlage. Dabei wird ein Binder, beispielsweise durch Tränken oder Besprühen, auf die Faserlage aufgebracht. Dieser Binder wird ausgehärtet, wodurch die Fasern zu dem Spinnvlies verbunden werden. Das Aushärten des Binders kann beispielsweise durch Tempern, fotoinduzierte oder feuchtigkeitsinduzierte Vernetzung, Abkühlung, Evaporation eines Lösungsmittels oder ähnliche Maßnahmen geschehen.
- Es wird ausdrücklich darauf hingewiesen, dass die in den vorgenannten separaten Absätzen angegebenen Merkmale jeweils in Kombination mit dem Grundgedanken der vorliegenden Erfindung kombinierbar sind, ohne dass zwangsläufig Merkmale aus weiteren der vorgenannten Absätze zur Realisierung der Erfindung erforderlich wären.
- Des Weiteren wird ausdrücklich darauf hingewiesen, dass alle vorgenannten und nachstehenden Intervalle sämtliche darin enthaltene Zwischenintervalle und auch Einzelwerte enthalten und diese Zwischenintervalle und Einzelwerte als erfindungswesentlich anzusehen sind, auch wenn diese Zwischenintervalle oder Einzelwerte im Einzelnen nicht konkret angegeben sind.
- Weitere Merkmale, Vorteile und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung und der Zeichnung selbst. Dabei bilden alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der vorliegenden Erfindung, unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung.
- Es zeigt:
- Fig. 1
- eine Querschnittsansicht einer Ausführungsform einer erfindungsgemäßen Bikomponentenfaser als Kern-Mantel-Faser,
- Fig. 2
- eine Querschnittsansicht einer Ausführungsform einer erfindungsgemäßen Bikomponentenfaser als Kern-Mantel-Faser mit dünnem Mantel,
- Fig. 3
- eine Querschnittsansicht einer weiteren Ausführungsform einer erfindungsgemäßen Bikomponentenfaser als Kern-Mantel-Faser mit exzentrisch angeordnetem Kern,
- Fig. 4
- eine Querschnittsansicht einer weiteren Ausführungsform einer erfindungsgemäßen trilobalen Bikomponentenfaser als Kern-Mantel-Faser,
- Fig. 5
- eine Querschnittsansicht einer weiteren Ausführungsform einer erfindungsgemäßen Bikomponentenfaser als Side-by-Side-Faser,
- Fig. 6
- eine Querschnittsansicht einer weiteren Ausführungsform einer erfindungsgemäßen Bikomponentenfaser als Side-by-Side-Faser mit geringem Anteil der zweiten Komponente,
- Fig. 7
- Querschnittsansichten an verschiedenen Stellen entlang einer weiteren Ausführungsform einer Bikomponentenfaser als Mischtyp aus Kern-Mantel-Faser und Side-by-Side-Faser,
- Fig. 8
- eine Querschnittsansicht einer weiteren Ausführungsform einer erfindungsgemäßen Bikomponentenfaser als Side-by-Side-Faser,
- Fig. 9
- Querschnitten an verschiedenen Stellen entlang einer weiteren Ausführungsform einer erfindungsgemäßen Bikomponentenfaser als Mischtyp einer Side-by-Side-Faser und einer Kern-Mantel-Faser,
- Fig. 10
- eine Querschnittsansicht einer weiteren Ausführungsform einer erfindungsgemäßen trilobalen Bikomponentenfaser als Side-by-Side-Faser,
- Fig. 11
- eine Querschnittsansicht einer weiteren Ausführungsform einer erfindungsgemäßen trilobalen Bikomponentenfaser als Side-by-Side-Faser,
- Fig. 12
- eine Querschnittsansicht einer weiteren Ausführungsform einer erfindungsgemäßen trilobalen Bikomponentenfaser als Side-by-Side-Faser mit einer alternativen Anordnung der Komponenten,
- Fig. 13
- eine Querschnittsansicht einer weiteren Ausführungsform einer erfindungsgemäßen tretralobalen Bikomponentenfaser als Side-by-Side-Faser mit einer Komponentenanordnung ähnlich der in
Fig. 12 dargestellten Faser, - Fig. 14
- eine Querschnittsansicht einer weiteren Ausführungsform einer erfindungsgemäßen Bikomponentenfaser als Segmented-Pie-Faser,
- Fig. 15
- eine Querschnittsansicht einer weiteren Ausführungsform einer erfindungsgemäßen Bikomponentenfaser als Island-In-The-Sea-Faser,
- Fig. 16
- eine Querschnittsansicht einer weiteren Ausführungsform einer erfindungsgemäßen Bikomponentenfaser mit einer streifenartigen Anordnung der Komponenten, und
- Fig. 17
- eines Teils eines beispielhaften erfindungsgemäßen Spinnvlieses.
- Die
Fig. 1 bis 16 zeigen Querschnittsansichten beispielhafter erfindungsgemäßer Bikomponentenfasern 1. Die dargestellten Bikomponentenfasern 1 weisen jeweils eine erste Komponente 2 und eine zweite Komponente 3 auf. Bei den in denFig. 1 und 4 dargestellten Kern-Mantel-Fasern umgibt dabei die erste Komponente 2 die zweite Komponente 3 und bildet so die äußere Oberfläche der Faser. Dabei weisen die in denFig. 1 bis 3 dargestellten Bikomponentenfasern 1 im Querschnitt eine, zumindest annähernd, kreisförmige bzw. -runde Geometrie auf. Die inFig. 4 dargestellte Bikomponentenfaser zeigt dagegen einen trilobalen Querschnitt. Derartige trilobale Querschnitte, wie auch andere multilobale Querschnitte, haben zur Folge, dass die Faser in Relation zu ihrer Masse über eine größere äußere Oberfläche verfügt als dies bei Fasern mit kreisförmigem Querschnitt der Fall ist. Bei "Kern-Mantel-Fasern", bei denen der Anteil der den Mantel bildenden Komponente sehr klein ist, beispielsweise bei ca. 2% liegt, aber durchaus auch bei "Kern-Mantel-Fasern" mit höherem Mantelanteil, kann es vorkommen, dass der Mantel Defekte aufweist. Das heißt, der Mantel umgibt den Kern nicht vollständig, sondern ist an einigen Stellen durchbrochen, so dass der Kern an diesen Stellen auch die äußere Oberfläche der Faser bildet. Auch bei derartigen Fasern handelt es sich um "Kern-Mantel-Fasern". Insbesondere bildet bei derartigen Fasern die den durchbrochenen Mantel bildende Komponente im Sinne der vorliegenden Erfindung die äußere Oberfläche der Faser. - Die
Fig. 5, 6, 8 und10 bis 13 zeigen Bikomponentenfasern, die als Side-by-Side-Fasern ausgeführt sind. Diese Side-by-Side-Fasern sind dadurch charakterisiert, dass sowohl die erste Komponente 2 als auch die zweite Komponente 3 einen Teil der äußeren Oberfläche der Bikomponentenfaser 1 bildet. Auch bei Side-by-Side-Fasern sind kreisrunde oder zumindest annähernd kreisrunde Querschnitte, wie sie in denFig. 5, 6 und 8 dargestellt sind, ebenso möglich wie multilobale Querschnitte, wie sie in denFig. 10 bis 13 dargestellt sind. Abhängig davon, welche Fasereigenschaften bzw Vlieseigenschaften erzielt werden sollen, können die erste Komponente 2 und die zweite Komponente 3 in unterschiedlichen Verhältnissen und in unterschiedlicher räumlicher Anordnung zueinander kombiniert werden. So kann beispielsweise, wie es in derFig. 8 gezeigt ist, eine Komponente, im gezeigten Beispiel die zweite Komponente 3, so angeordnet werden, dass sie relativ zu ihrem Massenanteil nur einen geringen Anteil der äußeren Oberfläche der Bikomponentenfaser 1 bildet. Auch kann, wie es in denFig. 12 und 13 dargestellt ist, im Falle einer multilobalen Bikomponentenfaser 1 eine Komponente, in den gezeigten Beispielen die erste Komponente 2, an besonders exponierten Stellen der Bikomponentenfaser 1 angeordnet sein. In denFig. 12 und 13 ist die erste Komponente 2 an den Spitzen des multilobalen Querschnitts der Bikomponentenfaser 1 angeordnet. - Die in der
Fig. 14 dargestellte Bikomponentenfaser 1 ist als Segmented-Pie-Faser ausgeführt. Diese Faserstruktur weist insofern eine Verwandschaft zu den Side-by-Side-Faserstrukturen auf, als dass sowohl die erste Komponente 2 als auch die zweite Komponente 3 einen Teil der äußeren Oberfläche der Bikomponentenfaser 1 bildet. Ähnliches gilt für die in derFig. 16 dargestellte Struktur der dortigen Bikomponentenfaser 1, bei der sich die erste Komponente 2 und die zweite Komponente 3 in einer Schichtstruktur im Querschnitt abwechselt. Den in denFig. 14 und 16 gezeigten Strukturen ist jedoch als Unterschied zu den "klassischen" Side-by-Side-Strukturen gemein, dass sie jeweils eine Vielzahl an Bereichen, die aus der ersten Komponente 2 oder der zweiten Komponente 3 gebildet sind, aufweisen. - Dagegen kann die in
Fig. 15 gezeigte Bikomponentenfaser 1 mit ihrer Islands-In-The-Sea-Struktur als Abwandlung einer Kern-Mantel-Faser angesehen werden, bei der eine Vielzahl von Kernen aus der zweiten Komponente 3 vorhanden ist. Die einzelnen Kerne aus der zweiten Komponente 3 sind von einem gemeinsamen Mantel aus der ersten Komponente 2 umgeben. - Weiterhin sind Mischformen zwischen Kern-Mantel-Fasern und Side-by-Side-Fasern möglich, wie sie beispielhaft in den
Fig. 7 und 9 dargestellt sind. Die inFig. 7 dargestellte Bikomponentenfaser 1 weist entlang der Faser teilweise Querschnitte auf, in denen die erste Komponente 2 die zweite Komponente 3 ähnlich einer Kern-Mantel-Faser umgibt und allein die äußere Oberfläche der Bikomponentenfaser 1 bildet. An anderen Stellen entlang der Faser bildet die zweite Komponente 3 ebenfalls einen Teil der äußeren Oberfläche der Bikomponentenfaser 1. Die erste Komponente 2 umgibt die zweite Komponente 3 im Querschnitt nicht vollständig. Dies gilt auch für die in derFig. 9 dargestellte Bikomponentenfaser 1, diese weist lediglich eine andere, alternative Geometrie im Vergleich zu der in derFig. 7 dargestellten Bikomponentenfaser 1 auf. Auch derartige Mischformen werden im Sinne der vorliegenden Anmeldung noch als Kern-Mantel-Fasern bezeichnet, solange die erste Komponente mehr als 50% der äußeren Oberfläche der Faser bildet. - In
Fig. 17 ist dargestellt, wie eine Vielzahl beispielhafter Bikomponentenfasern 1 ein Spinnvlies 4 bildet. Dabei bildet das Spinnvlies eine Bahn mit einer Querrichtung X, einer Dickenrichtung Y und einer Längenrichtung Z, die auch als Maschinenrichtung bezeichnet wird. - Die spezifischen Reißkräfte der Spinnvliese 4 gemäß der folgenden Beispiele wurden gemessen nach der Norm EN 12311-1, die spezifischen Nagelausreißkräfte nach Norm EN 12310-1. Die MFIs wurden gemessen gemäß ISO 1133 (2.16kg bei 230 °C). Die Bikomponentenfasern 1 sind in den folgenden Beispielen Kem-Mantel-Fasern, mit einem Mantel aus der ersten Komponente 2 und einem Kern aus der zweiten Komponente 3.
- Ein beispielhaftes Spinnvlies 4 wurde aus Bikomponentenfasern 1 hergestellt, die mittels eine Kalanders thermisch verfestigt wurden. Das Flächengewicht des erzeugten Spinnvlieses 4 beträgt 70 g/m2. Die Bikomponentenfasern 1 weisen Polypropylen mit einem Schmelzpunkt von 140° C im Mantel als erstes Polymer und Polypropylen mit einem Schmelzpunkt von 148° C im Kern als zweites Polymer auf. Der Masseanteil des Kerns an der Bikomponentenfaser 1 beträgt 90%. Die erreichten spezifischen Reißkräfte des Spinnvlieses 4 betragen 2,41 N/g · 5 cm in Maschinenrichtung Z und 1,80 N/g · 5 cm in Querrichtung X. Die spezifischen Nagelausreißkräfte betragen 1,52 N/g in Maschinenrichtung Z und 1,80 N/g in Querrichtung X.
- Ein weiteres beispielhaftes Spinnvlies 4 wurde aus Bikomponentenfasern 1 hergestellt, die ebenfalls mittels eine Kalanders thermisch verfestigt wurden Das Flächengewicht des erzeugten Spinnvlieses 4 beträgt 70 g/m2. Die Bikomponentenfasern 1 weisen Polypropylen mit einem Schmelzpunkt von 148° C im Mantel als erstes Polymer und Polypropylen mit einem Schmelzpunkt von 151° C im Kern als zweites Polymer auf. Der Masseanteil des Kerns an der Bikomponentenfaser 1 beträgt 60%. Die erreichten spezifischen Reißkräfte des Spinnvlieses 4 betragen 2,61 N/g · 5 cm in Maschinenrichtung Z und 1,95 N/g · 5 cm in Querrichtung X. Die spezifischen Nagelausreißkräfte betragen 1,59 N/g in Maschinenrichtung Z und 1,90 N/g in Querrichtung X.
- Ein weiteres beispielhaftes Spinnvlies 4 wurde aus Bikomponentenfasern 1 hergestellt, die auch mittels eine Kalanders thermisch verfestigt wurden. Das Flächengewicht des erzeugten Spinnvlieses 4 beträgt 70 g/m2. Die Bikomponentenfasern 1 weisen ein polypropylenbasiertes Random-Copolymer mit einem Ethylenanteil von ca. 5 % mit einem Schmelzpunkt von 141° C im Mantel als erstes Polymer und Polypropylen mit einem Schmelzpunkt von 145° C im Kern als zweites Polymer auf. Der Masseanteil des Kerns an der Bikomponentenfaser 1 beträgt 70%. Die erreichten spezifischen Reißkräfte des Spinnvlieses 4 betragen 2,44 N/g · 5 cm in Maschinenrichtung Z und 1,90 N/g · 5 cm in Querrichtung X. Die spezifischen Nagelausreißkräfte betragen 1,49 N/g in Maschinenrichtung Z und 1,79 N/g in Querrichtung X.
- Ein weiteres beispielhaftes Spinnvlies 4 wurde aus Bikomponentenfasern 1 hergestellt, die auch mittels eine Kalanders thermisch verfestigt wurden. Das Flächengewicht des erzeugten Spinnvlieses 4 beträgt 70 g/m2. Die Bikomponentenfasern 1 weisen Polypropylen mit einem Schmelzpunkt von 140° C im Mantel als erstes Polymer und Polypropylen mit einem Schmelzpunkt von 148° C im Kern als zweites Polymer auf. Der Masseanteil des Kerns an der Bikomponentenfaser 1 beträgt 93%. Die erreichten spezifischen Reißkräfte des Spinnvlieses 4 betragen 2,21 N/g · 5 cm in Maschinenrichtung Z und 1,65 N/g · 5 cm in Querrichtung X. Die spezifischen Nagelausreißkräfte betragen 1,62 N/g in Maschinenrichtung Z und 1,93 N/g in Querrichtung X.
-
- 1
- Bikomponentenfaser
- 2
- Erste Komponente
- 3
- Zweite Komponente
- 4
- Spinnvlies
Claims (13)
- Bikomponentenfaser (1), insbesondere zur Herstellung von Spinnvliesen (4), mit einer ersten Komponente (2) und einer zweiten Komponente (3), wobei die erste Komponente (2) ein erstes Polymer und die zweite Komponente ein zweites Polymer als Bestandteil aufweist,
dadurch gekennzeichnet,
dass die Differenz der Schmelzpunkte der ersten Komponente (2) und der zweiten Komponente (3) kleiner oder gleich 8 °C ist. - Bikomponentenfaser nach Anspruch 1, dadurch gekennzeichnet, dass die Differenz der Schmelzpunkte der ersten Komponente (2) und der zweiten Komponente (3) höchstens 6° C oder zwischen 1 °C bis 8 °C, vorzugsweise zwischen 1 °C bis 6 °C ist.
- Bikomponentenfaser nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Differenz der Melt-Flow-Indices der ersten Komponente (2) und der zweiten Komponente (3) kleiner oder gleich 25 g/10 min, bevorzugt kleiner oder gleich 20 g/10 min, besonders bevorzugt 15 g/10 min, ist.
- Bikomponentenfaser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Melt-Flow-Indices der ersten Komponente (2) und der zweiten Komponente (3) jeweils kleiner oder gleich 50 g/10 min, bevorzugt jeweils kleiner oder gleich 40 g/10 min, sind.
- Bikomponentenfaser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Komponente (2, 3) mit dem niedrigeren Schmelzpunkt im Querschnit der Faser die äußere Oberfläche der Bikomponentenfaser (1) bildet, vorzugsweise die Komponente (2, 3) mit dem höheren Schmelzpunkt, vorzugsweise vollständig, umgibt.
- Bikomponentenfaser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer einer der beiden Komponenten (2, 3) mit einem Metallocen-Katalysator polymerisiert worden ist.
- Bikomponentenfaser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer der anderen Komponenten (2, 3) mit einem Ziegler-Natta-Katalysator polymerisiert und einer anschließenden Visbreaking-Behandlung unterzogen worden ist.
- Bikomponentenfaser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Komponente (2) ein Additiv aufweist, wobei der Massenanteil des Additivs in der zweiten Komponente (3) kleiner ist als in der ersten Komponente (2), vorzugsweise höchstens 66,6%, weiter vorzugsweise höchstens 50% insbesondere höchstens 33,3% des Masseanteils des Additivs in der ersten Komponente (2) beträgt.
- Bikomponentenfaser nach Anspruch 8, dadurch gekennzeichnet, dass es sich bei dem Additiv um ein primäres oder sekundäres Antioxidanz, einen UV-Absorber, einen UV-Stabilisator, einen Flammhemmer, ein Antistatikum, ein Gleitmittel, einen Metalldesaktivator, ein Hydrophilierungsmittel, ein Hydrophobierungsmittel, ein Anti-Fogging-Additiv, und/oder ein Biozid handelt.
- Bikomponentenfaser nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Additiv ausgewählt ist aus der Gruppe von:Sterisch gehinderte Phenolen, aromatischen sekundären oder tertiären Aminen, Aminophenolen, aromatischen Nitro- oder Nitrosoverbindungen, Organischen Phosphiten oder Phosphonaten, Thioethern, Thioalkoholen, Thioestern, Sulfiden und schwefehaltigen organischen Säuren, Dithiocarbamaten, Thiodipropionaten, Aminopyrazolen, metallhaltigen Chelaten, Mercaptobenzimidazolen, Hydroxybenzophenonen, Cinnamaten, Oxalaniliden, Salicylaten, Resorcinol Monobenzoaten, Benzotriazolen, Triazinen, Benzophenonen, Titandioxid, Ruß, metallhaltigen Komplexen organischer Schwefel- oder Phosphorverbindungen, sterisch gehinderten Aminen (HALS), Metallhydroxiden, Boraten, organischen brom- oder chlorhaltigen Verbindungen, organischen Phosphorverbindungen, Antimontrixoid, Melamin, Melamincyanurat, Blähgraphit oder anderen Intumeszenz-Systemen, Quartären Ammoniumsalzen, Alkylsulfonaten, Alkylsulfaten, Alkylphosphaten, Dithiocarbamaten, (Erd)Alkalimetallcarboxylaten, Polyethylenglykolen sowie deren Ester und Ether, Ethoxylaten, Mono- und Diglyceriden, Fettalkoholen, Ester von Fettalkoholen, Fettsäuren, Fettsäureestern, Dicarbonsäureestern, Fettsäureamiden, Metallsalzen von Fettsäuren, Polyolefinwachsen, natürlichen oder künstlichen Paraffinen und deren Derivaten, Fluorpolymeren und Fluoroligomeren, Antiblockmitteln wie Kieselsäuren, Silikonen, Silikaten, Calciumcarbonat, Amiden von Mono- und Dicarbonsäuren und deren Derivaten, zyklischen Amiden, Hydrazonen und Bishydrazonen, Hydraziden, Hydrazinen, Melamin und dessen Derivaten, Benzotriazolen, Aminotriazolen, sterisch gehinderten Phenolen in Verbindung mit komplexierenden Metallverbindungen, Benzylphosphonaten, Pyridithiolen, Thiobisphenolestern, Polyglycolen, Ethoxylaten, Fluorpolymeren und Fluoroligomeren Montanwachsen, insbesondere Stearaten, 10,10'-Oxybisphenoxarsin (OBPA), N-(Trihalogen-methylthiol)phthalimid, Tributylzinnoxid, Zinkdimethyldithiocarbamat, Diphenylantimon-2-ethylhexanoat, Kupfer-8-hydroxychinolin, Isothiazolonen, Silber und Silbersalzen als Bioziden oder Mischungen daraus.
- Bikomponentenfaser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem ersten Polymer und/oder dem zweiten Polymer um ein Polyolefin oder ein Polyolefin-Copolymer handelt, vorzugsweise um ein Polymer und/oder Copolymer des Ethylen, Propylen, Butylen, Hexen oder Octen und/oder eine Mischung und/oder einen Blend daraus.
- Bikomponentenfaser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Massenanteil der Komponente (2, 3) mit dem niedrigeren Schmelzpunkt an der Bikomponentenfaser (1) höchstens 50%, vorzugsweise höchstens 25%, weiter vorzugsweise höchstens 10%, insbesondere höchsten 5%, ist.
- Spinnvlies (4) mit wenigstens einer Bikomponentenfasern (1) nach einem der vorhergehenden Ansprüche.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013011700 | 2013-07-15 | ||
DE201310014917 DE102013014917A1 (de) | 2013-07-15 | 2013-09-11 | Bikomponentenfaser zur Herstellung von Spinnvliesen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2826896A1 true EP2826896A1 (de) | 2015-01-21 |
Family
ID=51176869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20140002313 Withdrawn EP2826896A1 (de) | 2013-07-15 | 2014-07-07 | Bikomponentenfaser zur Herstellung von Spinnvliesen |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150017864A1 (de) |
EP (1) | EP2826896A1 (de) |
DE (2) | DE102013014917A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020088853A1 (de) * | 2018-10-31 | 2020-05-07 | Ewald Dörken Ag | Verbundfolie |
WO2020088851A1 (de) * | 2018-10-31 | 2020-05-07 | Ewald Dörken Ag | Verbundfolie |
WO2020088852A1 (de) * | 2018-10-31 | 2020-05-07 | Ewald Dörken Ag | Verbundfolie |
RU2780070C1 (ru) * | 2018-10-31 | 2022-09-19 | Эвальд Деркен Аг | Композитная пленка |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022117962A (ja) * | 2021-02-01 | 2022-08-12 | ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク | スパンボンド不織布積層体及びスパンボンド不織布積層体の製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4282076A (en) | 1979-09-17 | 1981-08-04 | Hercules Incorporated | Method of visbreaking polypropylene |
US5064802A (en) | 1989-09-14 | 1991-11-12 | The Dow Chemical Company | Metal complex compounds |
US5374696A (en) | 1992-03-26 | 1994-12-20 | The Dow Chemical Company | Addition polymerization process using stabilized reduced metal catalysts |
US5723217A (en) | 1993-05-25 | 1998-03-03 | Exxon Chemical Patents Inc. | Polyolefin fibers and their fabrics |
EP2343406A1 (de) * | 2008-10-29 | 2011-07-13 | Mitsui Chemicals, Inc. | Gekräuselte verbundfaser und vliesstoff mit der faser |
WO2012070518A1 (ja) * | 2010-11-25 | 2012-05-31 | 三井化学株式会社 | スパンボンド不織布積層体 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK132191D0 (da) * | 1991-07-05 | 1991-07-05 | Danaklon As | Fibre og fremstilling deraf |
US6162537A (en) * | 1996-11-12 | 2000-12-19 | Solutia Inc. | Implantable fibers and medical articles |
TW436535B (en) * | 1997-04-08 | 2001-05-28 | Danaklon As | Drylaid nonwoven materials, methods for producing them and bicomponent fibers for the production thereof |
US7998384B2 (en) * | 2001-08-02 | 2011-08-16 | Fiberweb Simpsonville, Inc. | Spunbond nonwoven fabrics from reclaimed polymer and the manufacture thereof |
US20030207639A1 (en) * | 2002-05-02 | 2003-11-06 | Tingdong Lin | Nonwoven web with improved adhesion and reduced dust formation |
US6670035B2 (en) * | 2002-04-05 | 2003-12-30 | Arteva North America S.A.R.L. | Binder fiber and nonwoven web |
US20040038612A1 (en) * | 2002-08-21 | 2004-02-26 | Kimberly-Clark Worldwide, Inc. | Multi-component fibers and non-woven webs made therefrom |
DE10360845A1 (de) * | 2003-12-20 | 2005-07-21 | Corovin Gmbh | Weiches Vlies auf Basis von Polyethylen |
US7807593B2 (en) * | 2005-10-26 | 2010-10-05 | Dow Global Technologies Inc. | Multi-layer, pre-stretched elastic articles |
US8007699B2 (en) * | 2008-08-20 | 2011-08-30 | Fina Technology, Inc. | Process of making bicomponent fiber |
US8668975B2 (en) * | 2009-11-24 | 2014-03-11 | Exxonmobil Chemical Patents Inc. | Fabric with discrete elastic and plastic regions and method for making same |
-
2013
- 2013-09-11 DE DE201310014917 patent/DE102013014917A1/de not_active Withdrawn
-
2014
- 2014-07-07 EP EP20140002313 patent/EP2826896A1/de not_active Withdrawn
- 2014-07-07 DE DE202014010538.3U patent/DE202014010538U1/de not_active Expired - Lifetime
- 2014-07-15 US US14/331,626 patent/US20150017864A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4282076A (en) | 1979-09-17 | 1981-08-04 | Hercules Incorporated | Method of visbreaking polypropylene |
US5064802A (en) | 1989-09-14 | 1991-11-12 | The Dow Chemical Company | Metal complex compounds |
US5374696A (en) | 1992-03-26 | 1994-12-20 | The Dow Chemical Company | Addition polymerization process using stabilized reduced metal catalysts |
US5723217A (en) | 1993-05-25 | 1998-03-03 | Exxon Chemical Patents Inc. | Polyolefin fibers and their fabrics |
EP2343406A1 (de) * | 2008-10-29 | 2011-07-13 | Mitsui Chemicals, Inc. | Gekräuselte verbundfaser und vliesstoff mit der faser |
WO2012070518A1 (ja) * | 2010-11-25 | 2012-05-31 | 三井化学株式会社 | スパンボンド不織布積層体 |
EP2644763A1 (de) * | 2010-11-25 | 2013-10-02 | Mitsui Chemicals, Inc. | Spinnvlieslaminat |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020088853A1 (de) * | 2018-10-31 | 2020-05-07 | Ewald Dörken Ag | Verbundfolie |
WO2020088851A1 (de) * | 2018-10-31 | 2020-05-07 | Ewald Dörken Ag | Verbundfolie |
WO2020088852A1 (de) * | 2018-10-31 | 2020-05-07 | Ewald Dörken Ag | Verbundfolie |
RU2780070C1 (ru) * | 2018-10-31 | 2022-09-19 | Эвальд Деркен Аг | Композитная пленка |
US11498319B2 (en) | 2018-10-31 | 2022-11-15 | Ewald Dörken Ag | Composite film |
US11745480B2 (en) | 2018-10-31 | 2023-09-05 | Ewald Dörken Ag | Composite film |
Also Published As
Publication number | Publication date |
---|---|
DE102013014917A1 (de) | 2015-01-15 |
US20150017864A1 (en) | 2015-01-15 |
DE202014010538U1 (de) | 2016-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2826895B1 (de) | Bikomponentenfaser zur Herstellung von Spinnvliesen | |
EP2826897B1 (de) | Bikomponentenfaser zur Herstellung von Spinnvliesen | |
DE69132180T2 (de) | Heiss-verschweissbare Faser mit hoher Festigkeit | |
DE3315360C2 (de) | Schmelzklebende Fasern aus Polyethylen und deren Verwendung in Verbundfasern | |
DE69621226T2 (de) | Polyolefin-polyamid konjugierter vliesstoff | |
DE3888859T2 (de) | Bikomponentfaser aus Polyolefin und aus dieser Faser hergestellter Vliesstoff. | |
DE68914936T2 (de) | Elastische Vliesstoffe und Verfahren zur Herstellung derselben. | |
DE60108603T2 (de) | Verfahren zur herstellung von polytrimethylenterephthalat-stapelfasern und polytrimethylenterephthalat-stapelfasern, -garne und -flächengebilde | |
DE3782724T2 (de) | Verfahren zur herstellung von vliesstoffen. | |
EP3054042A1 (de) | Verfahren zur Herstellung eines Laminates und Laminat | |
DE10360845A1 (de) | Weiches Vlies auf Basis von Polyethylen | |
WO2009049829A1 (de) | Polypropylenmischung | |
EP3676088B1 (de) | Verbundfolie | |
DE102018008585A1 (de) | Verbundfolie | |
EP2826898B1 (de) | Bikomponentenfaser zur herstellung von spinnvliesen | |
DE10322460B4 (de) | Verfahren und Vorrichtung zur Herstellung eines Spinnvlieses aus Filamenten aus aufgeplatzten Fasern, Filamente aus aufgeplatzen Fasern und Vliesstoff | |
EP2826896A1 (de) | Bikomponentenfaser zur Herstellung von Spinnvliesen | |
DE60008361T2 (de) | Polypropylenfasern | |
DE102018008584A1 (de) | Verbundfolie | |
DE1964060C3 (de) | Verfahren zur Herstellung von Wirrvliesen aus Hochpolymeren | |
DE112019004567T5 (de) | Fasern für vliesstoffe mit mischungen aus polymeren mit hoher und niedriger schmelzflussrate | |
DE10130481A1 (de) | Spaltbare konjugierte Polyolefin-Faser und Faserstruktur unter Verwendung dergleichen | |
EP3296438B1 (de) | Spinnvlies aus endlosfilamenten | |
DE2009971C3 (de) | Bikomponenten-Synthesefaden des Matrix/Fibrillen-Typs | |
DE10084374B4 (de) | Polypropylenfaser und deren Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20140707 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150722 |