EP2825823B1 - Gasturbinen-verbrennungssystem und verfahren der flammenstabilisierung in solch einem system - Google Patents

Gasturbinen-verbrennungssystem und verfahren der flammenstabilisierung in solch einem system Download PDF

Info

Publication number
EP2825823B1
EP2825823B1 EP12798270.0A EP12798270A EP2825823B1 EP 2825823 B1 EP2825823 B1 EP 2825823B1 EP 12798270 A EP12798270 A EP 12798270A EP 2825823 B1 EP2825823 B1 EP 2825823B1
Authority
EP
European Patent Office
Prior art keywords
radial
inflow swirler
gas turbine
fluid
combustion system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12798270.0A
Other languages
English (en)
French (fr)
Other versions
EP2825823A1 (de
Inventor
Suresh Sadasivuni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12798270.0A priority Critical patent/EP2825823B1/de
Publication of EP2825823A1 publication Critical patent/EP2825823A1/de
Application granted granted Critical
Publication of EP2825823B1 publication Critical patent/EP2825823B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07001Air swirling vanes incorporating fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14021Premixing burners with swirling or vortices creating means for fuel or air

Definitions

  • the present invention relates to a gas turbine combustion system and to flame stabilisation in a gas turbine combustion system.
  • the invention relates to flame stabilisation in swirl stabilized diffusion flames.
  • US 6,311,496 B1 describes a gas turbine combustion system with two radial inflow swirlers that are successively used by the airstream.
  • US 2005/00257530 A1 shows a fuel-air mixing apparatus in which two radial inflow swirlers are used which have different radii and which are displaced relative to each other in an axial direction.
  • the first swirler is located upstream from plain jet orifices of a fuel delivery line in said axial direction whereas the second swirler is located downstream from the plain jet orifices in said axial direction.
  • EP 0 939 275 A2 describes a fuel nozzle and nozzle guide for a gas turbine engine.
  • the fuel nozzle includes a radial inflow swirler and an annular air passage leading from the swirler to a combustion chamber of the gas turbine engine.
  • the fuel nozzle includes an axial swirler and a tubular air passage that leads to the combustion chamber and is encircled by the annular air passage.
  • the radial swirler and the axial swirler may produce co-swirls or counter-swirls.
  • the nozzle guide includes a radial inflow swirler and a frustroconical air passage leading from the swirler to the combustion chamber.
  • the radial inflow swirler and the frustroconical air passage of the nozzle guide are coaxial to the radial inflow swirler and the annular air passage of the nozzle.
  • the radial inflow swirler of the nozzle guide may provide a co-swirl or a counter-swirl relative the swirl from the swirlers of the fuel nozzle.
  • EP 0 660 038 A2 shows a mixing duct with two annular arrays of swirler vanes which are separated by an annular divider. They may produce co-swirls or counter-swirls.
  • the first objective is achieved by a gas turbine combustion system as claimed in claim 1.
  • the second objective is achieved by a method of flame stabilisation in a gas turbine combustion system as claimed in claim 9.
  • the depending claims contain further developments of the invention.
  • An inventive gas turbine combustion system comprises a central axis and a radial direction with respect to said central axis, a first radial inflow swirler and a second radial inflow swirler.
  • the first radial inflow swirler has radial outer intake openings located at a radial outer circumference of the first radial inflow swirler.
  • the radial outer intake openings of the first radial inflow swirler are refered to as first radial outer intake openings in the following.
  • the first radial inflow swirler has outlet openings located at a radial inner circumference of the first radial inflow swirler. These outlet openings are referred to as first radial inner outlet openings in the following.
  • Flow passages named first flow passages in the following, extend from the first radial outer intake openings to the first radial inner outlet openings. Each first flow passage includes a first angle with respect to the radial direction.
  • the gas turbine combustion system further comprises a second radial inflow swirler having radial outer intake openings which are located at a radial outer circumference of the second radial inflow swirler and which are referred to as second radial outer intake openings in the following.
  • the second radial inflow swirler has radial inner outlet openings, which are referred to as second radial inner outlet openings in the following and which are located at a radial inner circumference of the second radial inflow swirler.
  • Flow passages named second flow passages in the following, extend from the second radial outer intake openings to the second radial inner outlet openings.
  • Each second flow passage includes an angle with respect to the radial direction. This angle is referred to as a second angle in the following.
  • the number of second flow passages may be identical to the number of first flow passages.
  • the radial outer circumference of the second radial inflow swirler has a diameter that is at least slightly smaller than the diameter of the radial inner circumference of the first radial inflow swirler, and the second radial inflow swirler is located coaxially with and radially inside an opening formed by the inner circumference of the first radial inflow swirler, i.e. inside a space encircled by the radial inner circumference of the first radial inflow swirler.
  • the first angle has a different sign than the second angle with respect to the radial direction.
  • the second radial inflow swirler produces a swirl counterrotating with respect to the swirl generated by the first radial inflow swirler.
  • the counterrotation produced by the two swirlers leads to a more uniform mixing of an oxidant, like in particular the oxygen in the air, and fuel and to a stable flame which has the advantages of lesser flameouts, a more distributed mixing of fuel and the oxidant, a better control of the combustion burner, lesser hotspots and a lower heat load across the metal surfaces like, for example, the combustor walls.
  • the first angle and the second angle may have the same absolute value so that they only differ in their orientation with respect to the radial direction.
  • fuel injection openings are located in the second radial inflow swirler and are open towards the second flow passages. More preferably, the fuel injection openings are located inside the second flow passages, in particular in the radial outer half of the second flow passages, preferably in the outer third of the second flow passages.
  • a radial gap may be present between the radial inner circumference of the first radial inflow swirler and the radial outer circumference of the second radial inflow swirler.
  • the flow cross section of the second flow passages may be smaller than the flow cross section of the first flow passages since part of the fluid can be introduced into a combustion chamber through the radial gap while another part will be introduced into the combustion chamber through the second radial inflow swirler.
  • a method of flame stabilisation in a gas turbine combustion system is provided.
  • a fluid flows along a flow path with a radial component from a fluid inlet to a fluid outlet.
  • the fluid is a fluid that comprises an oxidant, and a fuel is mixed with the fluid that comprises an oxidant so as to transform the fluid into a mixture comprising fuel and the oxidant.
  • air is used as the fluid (that comprises oxygen as the oxidant) the fluid is transformed into a fuel/air mixture.
  • a first swirl with a first rotational direction is introduced into the flowing fluid in a radial upstream section of the flow path by passing the fluid through the first radial inflow swirler of the gas turbine combustion system to generate a swirling fluid.
  • a second swirl with a second rotational direction is introduced into at least a portion of the fluid that exits the outlet openings of the first radial inflow swirler by passing the fluid through the second radial inflow swirler of the gas turbine combustion system to generate a swirling fluid.
  • the second rotational direction represents a counterrotation with respect to the first rotational direction.
  • the inventive method is particularly effective in improving flame stability and uniform mixing of fuel and oxidant if fuel is introduced into the fluid where the second swirl is generated.
  • the fuel is introduced into the fluid at a location where generation of the second swirl begins.
  • inventive combustion system will be described with respect to Figures 1 and 2 in the context of a combustor arrangement including an inventive combustion system.
  • inventive combustion system is adapted for performing the inventive method of flame stabilisation in a gas turbine combustion system which will also be described with respect to Figures 1 and 2 .
  • Figure 1 shows part of a combustor arrangement in a sectional view.
  • the combustor arrangement comprises a combustion chamber 3 and a combustion system 1 that is connected to a combustion chamber 3 via a small pre-chamber 5.
  • the pre-chamber is sometimes also called transition section and may be part of the combustion system 1 like in the present embodiment.
  • the pre-chamber 5 may as well be a part of the combustion chamber 3 or a distinct part that is neither part of the combustion system 1 nor of the combustion chamber 3.
  • the combustion system 1 comprises a first radial inflow swirler 7 that, shows rotational symmetry with respect to a central combustor axis A.
  • the first radial inflow swirler is equipped with a number of vanes 9 that are distributed along the circumferential direction of the swirler 7 and are spaced apart from each other.
  • Flow passages 11 are formed between neighbouring vanes 9.
  • Each flow passage 11 extends from a first radial outer intake opening 13 located at a radial outer circumference of the swirler 7 to a first radial inner outlet opening 15 located at a radial inner circumference of the swirler 7.
  • the flow passages 11 of the first swirler 7 are angled with respect to the radial direction of the swirler with a first angle ⁇ so that a swirl is imparted to a fluid flowing through the flow channel 11.
  • the combustion system 1 further comprises a second radial inflow swirler 17 that, like the first radial inflow swirler, shows radial symmetry.
  • the second radial inflow swirler 17 has an outer circumference the diameter of which is smaller than the inner circumference of the first radial inflow swirler 11.
  • the second radial inflow swirler 17 is located inside an opening formed by the inner circumference of the first radial inflow swirler 7 so that a fluid that exits the outlet openings 15 of the first radial inflow swirler 7 is directed towards the second radial inflow swirler 17.
  • the second radial inflow swirler 17 comprises a number of vanes 19 that are distributed in circumferential direction of the swirler such that second flow passages 21 are formed between them.
  • Each second flow passages 21, i.e. each flow passage of the second radial inflow swirler 17, extends from a second radial outer intake opening 23 located at the radial outer circumference of the second swirler to a second radial inner outlet opening 25, i.e. an outlet opening of the second swirler 17 that is located at the inner circumference of the second radial inflow swirler 17.
  • the radial outer intake openings 23 of the second radial inflow swirler 17 show towards the radial inner circumference of the first radial inflow swirler 7, in which the radial inner outlet openings 15 of the first radial inflow swirler 7 are located. Hence, a fluid exiting the first radial inflow swirler 7 can enter the second radial inflow swirler 17.
  • the flow channels 21 of the second radial inflow swirler 17 include an angle with the radial direction (denominated ⁇ in Figure 2 ) which has, in the present embodiment, the same absolute value as the angle of the flow channels 11 of the first radial inflow swirler 7 but a different sign.
  • the flow channels 11 of the first radial inflow swirler 7 impart a clockwise swirl to a flowing fluid
  • the flow channels 21 of the second radial inflow swirler 17 impart a counter-clockwise swirl to a fluid flowing therethrough, or vice versa.
  • Both swirlers 7, 17 are mounted to a base plate 31 such that they are arranged coaxially with each other and with respect to the combustor axis A. Hence, in radial direction the second radial inflow swirler 17 is surrounded by the first radial inflow swirler 7. Moreover, in the present embodiment the radial inflow swirlers 7, 17 are arranged such that a radial gap 27 is formed between the inner circumference of the first radial inflow swirler 7 and the outer circumference of the second radial inflow swirler 17.
  • Fuel channels 33 extend through the base plate 31 and lead to fuel opening 29 in the flow passages 21 of the second radial inflow swirler 7.
  • the fuel openings 29 are located in the outer half of the second flow passages 21, preferably in the outer third of the second flow passages 21, and more preferably in the outer fourth of the second flow passages 21.
  • the first radial inflow swirler 7 is surrounded by a flow channel 35 which allows feeding a fluid, in particular air or any other suitable fluid that comprises an oxidant, to the intake openings 13 of the first radial inflow swirler.
  • the intake openings 23 of the second radial inflow swirler generate turbulences in the flow channel sections adjoining the intake openings 15.
  • the turbulences are generated due to a reversal in rotation direction that is necessary for the air to enter the flow passages 21 of the second swirler 17.
  • the turbulence are highest in a flow passage zone adjoining the intake openings 23 of the flow passages.
  • a fuel gas like, for example, syngas or coke oven gas (COG) is introduced into the turbulent airstreams in the second flow passages 21 through the fuel holes 29.
  • the strong turbulence leads to a highly uniform mixing of fuel and air until the fuel/air mixture leaves the second flow channels 21 through the second outlet openings 25.
  • Due to the angle ⁇ the second flow passages 21 include with the radial direction a second swirl (indicate by arrow 39) with a counter-clockwise rotation is imparted to the fuel/air mixture flowing through the second flow passages 21.
  • a further effect of giving the angle of the flow channels of the first and second swirlers a different sign with respect to the radial direction is that the fuel/air mixture has a different direction of rotation than the air entering the pre-chamber 5 through the gap 27 that is present between both swirlers 7, 17 in the described embodiment.
  • the air rotating clockwise in the present embodiment can form an envelop around the fuel/air mixture rotating counter-clockwise in the present embodiment which makes it more difficult for fuel/air mixture to reach the wall of the pre-chamber 5 and the combustion chamber 3, thereby reducing heat load across the metal surface of the combustor wall.
  • a further advantage is that turbulences are formed where the counter-clockwise swirling fuel/air mixture is in contact with the clockwise swirling air, which turbulences lead to a more distributed mixing of fuel and air.
  • the mentioned effects contribute to leading to less flameouts and less hotspots, in particular with use of H 2 containing gases like syngas or COG. In the end, this leads to a better controllable combustion burner.
  • the present invention has been described with respect to a specific embodiment to describe a method of improve mixing of gas and air and to stabilise the flame by using the concepts of swirl strength in diffusion flames to anchor it in a stabile way.
  • counterrotating swirls are used to improve mixing and stabilising of the flame.
  • the invention shall not be restricted to the specific embodiment described with respect to the figures, since deviations thereform are possible.
  • both swirlers have the same number of flow passages the second wirler could have a higher or lower number of flow passages than the first swirler.
  • the flow passages of both swirlers are angled by the same absolute value with respect to the radial direction but with a different sign.
  • a further possible deviation from the embodiment described with respect to the figures is the number of fuel opening that are present in each flow passage of the second swirler. While in the described embodiment only one fuel openings is present in each flow passage a higher number of fuel openings may be present as well. Moreover, the fuel openings do not need to be present in the base plate. Alternatively or additionally, fuel openings could be located in the sidewalls of the vanes. Since the location of the fuel openings is closely related to the geometry of the swirler and the fuel to be used the exact position of the fuel openings may depend on the concrete design of the first and second radial inflow swirler and/or on the intended use of the combustion system.

Claims (11)

  1. Gasturbinen-Verbrennungssystem (1), welches umfasst:
    - eine Mittelachse (A) und eine radiale Richtung bezüglich dieser Mittelachse (A);
    - eine erste Verwirbelungsvorrichtung (7) mit radialem Zufluss, die erste radiale äußere Ansaugöffnungen (13), die an einem radialen Außenumfang der ersten Verwirbelungsvorrichtung (7) mit radialem Zufluss angeordnet sind, erste radiale innere Auslassöffnungen (15), die an einem radialen Innenumfang der ersten Verwirbelungsvorrichtung (7) mit radialem Zufluss angeordnet sind, und erste Durchflusskanäle (11), die sich von den ersten radialen äußeren Ansaugöffnungen (13) zu den ersten radialen inneren Auslassöffnungen (15) erstrecken, aufweist, wobei jeder erste Durchflusskanal (11) einen ersten Winkel (α) mit der radialen Richtung einschließt;
    - eine zweite Verwirbelungsvorrichtung (17) mit radialem Zufluss, die zweite radiale äußere Ansaugöffnungen (23), die an einem radialen Außenumfang der zweiten Verwirbelungsvorrichtung (17) mit radialem Zufluss angeordnet sind, zweite radiale innere Auslassöffnungen (25), die an einem radialen Innenumfang der zweiten Verwirbelungsvorrichtung (17) mit radialem Zufluss angeordnet sind, und zweite Durchflusskanäle (21), die sich von den zweiten radialen äußeren Ansaugöffnungen (23) zu den zweiten radialen inneren Auslassöffnungen (25) erstrecken, aufweist, wobei jeder zweite Durchflusskanal (21) einen zweiten Winkel (β) mit der radialen Richtung einschließt;
    - wobei der radiale Außenumfang der zweiten Verwirbelungsvorrichtung (17) mit radialem Zufluss einen Durchmesser aufweist, welcher kleiner als der Durchmesser des radialen Innenumfangs der ersten Verwirbelungsvorrichtung (7) mit radialem Zufluss ist, und die zweite Verwirbelungsvorrichtung (17) mit radialem Zufluss koaxial mit und radial innerhalb einer Öffnung angeordnet ist, die von dem Innenumfang der ersten Verwirbelungsvorrichtung (7) mit radialem Zufluss gebildet wird, so dass ein Fluid, welches aus den Auslassöffnungen (15) der ersten Verwirbelungsvorrichtung (7) mit radialem Zufluss austritt, in Richtung der zweiten Verwirbelungsvorrichtung (17) mit radialem Zufluss gelenkt wird, und
    - wobei der erste Winkel (α) ein anderes Vorzeichen als der zweite Winkel (β) in Bezug auf die radiale Richtung aufweist.
  2. Gasturbinen-Verbrennungssystem (1) nach Anspruch 1, wobei Brennstoffeinspritzöffnungen (29) in der zweiten Verwirbelungsvorrichtung (17) mit radialem Zufluss angeordnet sind und zu den zweiten Durchflusskanälen (21) hin offen sind.
  3. Gasturbinen-Verbrennungssystem (1) nach Anspruch 2, wobei die Brennstoffeinspritzöffnungen (29) innerhalb der zweiten Durchflusskanäle (21) angeordnet sind.
  4. Gasturbinen-Verbrennungssystem (1) nach Anspruch 3, wobei die Brennstoffeinspritzöffnungen (29) in der radial äußeren Hälfte der zweiten Durchflusskanäle (21) angeordnet sind.
  5. Gasturbinen-Verbrennungssystem (1) nach einem der Ansprüche 1 bis 4, wobei die Anzahl der zweiten Durchflusskanäle (21) identisch mit der Anzahl der ersten Durchflusskanäle (11) ist.
  6. Gasturbinen-Verbrennungssystem (1) nach einem der Ansprüche 1 bis 5, wobei ein radialer Zwischenraum (27) zwischen dem radialen Innenumfang der ersten Verwirbelungsvorrichtung (7) mit radialem Zufluss und dem radialen Außenumfang der zweiten Verwirbelungsvorrichtung (17) mit radialem Zufluss vorhanden ist.
  7. Gasturbinen-Verbrennungssystem (1) nach Anspruch 6, wobei der Durchflussquerschnitt der zweiten Durchflusskanäle (21) kleiner als der Durchflussquerschnitt der ersten Durchflusskanäle (11) ist.
  8. Gasturbinen-Verbrennungssystem (1) nach einem der Ansprüche 1 bis 7, wobei der erste Winkel (α) und der zweite Winkel (β) denselben absoluten Betrag haben.
  9. Verfahren zur Flammenstabilisierung in einem Gasturbinen-Verbrennungssystem (1), in welchem ein Fluid entlang eines Strömungsweges mit einer radialen Komponente strömt, unter Verwendung eines Gasturbinen-Verbrennungssystems (1) nach einem der Ansprüche 1 bis 8, wobei
    - das Fluid ein Fluid ist, welches ein Oxidationsmittel umfasst, und ein Brennstoff mit dem Fluid gemischt wird, welches ein Oxidationsmittel umfasst, um das Fluid in ein Gemisch umzuwandeln, welches Brennstoff und das Oxidationsmittel umfasst;
    - ein erster Wirbel mit einer ersten Drehrichtung (37) in dem strömenden Fluid in einem radial stromaufwärtigen Abschnitt des Strömungsweges erzeugt wird, indem das Fluid durch die erste Verwirbelungsvorrichtung (7) mit radialem Zufluss des Gasturbinen-Verbrennungssystems geleitet wird, um ein wirbelndes Fluid zu erzeugen; und
    - in einem radial stromabwärtigen Abschnitt des Strömungsweges ein zweiter Wirbel mit einer zweiten Drehrichtung (39) in wenigstens einem Teil des Fluids erzeugt wird, indem dieser Teil des wirbelnden Fluids durch die zweite Verwirbelungsvorrichtung (17) mit radialem Zufluss des Gasturbinen-Verbrennungssystems geleitet wird,
    wobei
    die zweite Drehrichtung eine Gegenrichtung (39) in Bezug auf die erste Drehrichtung (37) darstellt.
  10. Verfahren nach Anspruch 9, wobei Brennstoff dort in das Fluid eingebracht wird, wo der zweite Wirbel erzeugt wird.
  11. Verfahren nach Anspruch 10, wobei der Brennstoff an einem Ort in das Fluid eingebracht wird, wo die Erzeugung des zweiten Wirbels beginnt.
EP12798270.0A 2012-03-13 2012-12-05 Gasturbinen-verbrennungssystem und verfahren der flammenstabilisierung in solch einem system Not-in-force EP2825823B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12798270.0A EP2825823B1 (de) 2012-03-13 2012-12-05 Gasturbinen-verbrennungssystem und verfahren der flammenstabilisierung in solch einem system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12159203.4A EP2639505A1 (de) 2012-03-13 2012-03-13 Gasturbinen-Verbrennungssystem und -verfahren der Flammenstabilisierung in solch einem System
PCT/EP2012/074412 WO2013135324A1 (en) 2012-03-13 2012-12-05 Gas turbine combustion system and method of flame stabilization in such a system
EP12798270.0A EP2825823B1 (de) 2012-03-13 2012-12-05 Gasturbinen-verbrennungssystem und verfahren der flammenstabilisierung in solch einem system

Publications (2)

Publication Number Publication Date
EP2825823A1 EP2825823A1 (de) 2015-01-21
EP2825823B1 true EP2825823B1 (de) 2016-03-23

Family

ID=47324135

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12159203.4A Withdrawn EP2639505A1 (de) 2012-03-13 2012-03-13 Gasturbinen-Verbrennungssystem und -verfahren der Flammenstabilisierung in solch einem System
EP12798270.0A Not-in-force EP2825823B1 (de) 2012-03-13 2012-12-05 Gasturbinen-verbrennungssystem und verfahren der flammenstabilisierung in solch einem system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12159203.4A Withdrawn EP2639505A1 (de) 2012-03-13 2012-03-13 Gasturbinen-Verbrennungssystem und -verfahren der Flammenstabilisierung in solch einem System

Country Status (3)

Country Link
US (1) US20150033752A1 (de)
EP (2) EP2639505A1 (de)
WO (1) WO2013135324A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2588732B1 (de) * 2010-07-02 2019-01-02 Exxonmobil Upstream Research Company Emissionsarme dreifachzyklus-stromerzeugungssysteme und verfahren dafür
US20150285502A1 (en) * 2014-04-08 2015-10-08 General Electric Company Fuel nozzle shroud and method of manufacturing the shroud
EP3882547A1 (de) 2020-03-20 2021-09-22 Primetals Technologies Germany GmbH Brennerrohr, brennerrohrbaugruppe und brenner-einheit

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165241A (en) * 1991-02-22 1992-11-24 General Electric Company Air fuel mixer for gas turbine combustor
DE69431969T2 (de) * 1993-07-30 2003-10-30 United Technologies Corp Wirbelmischvorrichtung für eine Brennkammer
GB9326367D0 (en) * 1993-12-23 1994-02-23 Rolls Royce Plc Fuel injection apparatus
US5511375A (en) * 1994-09-12 1996-04-30 General Electric Company Dual fuel mixer for gas turbine combustor
US5613363A (en) * 1994-09-26 1997-03-25 General Electric Company Air fuel mixer for gas turbine combustor
US5590529A (en) * 1994-09-26 1997-01-07 General Electric Company Air fuel mixer for gas turbine combustor
DE59704739D1 (de) * 1996-12-20 2001-10-31 Siemens Ag Brenner für fluidische brennstoffe
US6550251B1 (en) * 1997-12-18 2003-04-22 General Electric Company Venturiless swirl cup
GB2332509B (en) 1997-12-19 2002-06-19 Europ Gas Turbines Ltd Fuel/air mixing arrangement for combustion apparatus
JPH11257664A (ja) * 1997-12-30 1999-09-21 United Technol Corp <Utc> ガスタ―ビンエンジンの燃料噴射ノズル/ガイドアセンブリ
GB9818160D0 (en) 1998-08-21 1998-10-14 Rolls Royce Plc A combustion chamber
WO2000049337A1 (de) * 1999-02-16 2000-08-24 Siemens Aktiengesellschaft Brenneranordnung und verfahren zum betrieb einer brenneranordnung
US6826913B2 (en) * 2002-10-31 2004-12-07 Honeywell International Inc. Airflow modulation technique for low emissions combustors
US7065972B2 (en) * 2004-05-21 2006-06-27 Honeywell International, Inc. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions
EP2192347B1 (de) 2008-11-26 2014-01-01 Siemens Aktiengesellschaft Rohrförmige Wirbelkammer
US9115896B2 (en) * 2012-07-31 2015-08-25 General Electric Company Fuel-air mixer for use with a combustor assembly
CN104136845B (zh) * 2012-08-07 2015-09-23 日野自动车株式会社 排气净化装置用燃烧器
GB201303428D0 (en) * 2013-02-27 2013-04-10 Rolls Royce Plc A vane structure and a method of manufacturing a vane structure
US9513010B2 (en) * 2013-08-07 2016-12-06 Honeywell International Inc. Gas turbine engine combustor with fluidic control of swirlers
KR101895137B1 (ko) * 2014-03-11 2018-09-04 미츠비시 히타치 파워 시스템즈 가부시키가이샤 보일러용 연소 버너

Also Published As

Publication number Publication date
EP2639505A1 (de) 2013-09-18
US20150033752A1 (en) 2015-02-05
WO2013135324A1 (en) 2013-09-19
EP2825823A1 (de) 2015-01-21

Similar Documents

Publication Publication Date Title
US9518740B2 (en) Axial swirler for a gas turbine burner
US6993916B2 (en) Burner tube and method for mixing air and gas in a gas turbine engine
JP5663023B2 (ja) 燃焼装置用の入口予混合器
JP6335903B2 (ja) 火炎シート燃焼器ドーム
US5251447A (en) Air fuel mixer for gas turbine combustor
US20090056336A1 (en) Gas turbine premixer with radially staged flow passages and method for mixing air and gas in a gas turbine
EP1826485B1 (de) Brenner und Verbrennungsverfahren dafür
US8015814B2 (en) Turbine engine having folded annular jet combustor
EP1867925A1 (de) Brenner
EP2754963A1 (de) Gasturbinenbrennkammer
JP2015533412A (ja) 希釈ガス混合器を備えた2段燃焼
CN109804200B (zh) 旋流器、燃烧装置组件以及具有改善燃料/空气混合的燃气涡轮
JP2014215036A (ja) ガスタービンにおける缶型環状燃焼器配列用の缶型燃焼器
US8596074B2 (en) Gas turbine combustor
EP2825823B1 (de) Gasturbinen-verbrennungssystem und verfahren der flammenstabilisierung in solch einem system
EP1921376A1 (de) Brennstoffeinspritzsystem
EP2340398B1 (de) Hauptdrallvorrichtungen mit abwechselnder drallrichtung in magervorgemischten gasturbinenbrennkammern
JP6417620B2 (ja) 燃焼器、ガスタービン
FI3584501T3 (en) Burner system and method for generating hot gas in a gas turbine plant
CN117120776A (zh) 用于燃气涡轮机的燃烧室

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150930

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 783532

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012016055

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 783532

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160723

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160725

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012016055

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

26N No opposition filed

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012016055

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161205

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161205

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161205

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323