EP2825502A1 - Method for producing co and/or h2 in an alternating operation between two operating modes - Google Patents

Method for producing co and/or h2 in an alternating operation between two operating modes

Info

Publication number
EP2825502A1
EP2825502A1 EP13708492.7A EP13708492A EP2825502A1 EP 2825502 A1 EP2825502 A1 EP 2825502A1 EP 13708492 A EP13708492 A EP 13708492A EP 2825502 A1 EP2825502 A1 EP 2825502A1
Authority
EP
European Patent Office
Prior art keywords
heating
reactor
reaction
group
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13708492.7A
Other languages
German (de)
French (fr)
Inventor
Alexander Karpenko
Kristian VOELSKOW
Emanuel Kockrick
Albert TULKE
Daniel Gordon Duff
Stefanie Eiden
Oliver Felix-Karl SCHLÜTER
Vanessa GEPERT
Ulrich Nieken
René KELLING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Bayer Intellectual Property GmbH
Original Assignee
Bayer Technology Services GmbH
Bayer Intellectual Property GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Technology Services GmbH, Bayer Intellectual Property GmbH filed Critical Bayer Technology Services GmbH
Publication of EP2825502A1 publication Critical patent/EP2825502A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/36Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00398Controlling the temperature using electric heating or cooling elements inside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00522Controlling the temperature using inert heat absorbing solids outside the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2409Heat exchange aspects
    • B01J2219/2416Additional heat exchange means, e.g. electric resistance heater, coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2427Catalysts
    • B01J2219/2428Catalysts coated on the surface of the monolith channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2427Catalysts
    • B01J2219/243Catalyst in granular form in the channels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1088Non-supported catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1623Adjusting the temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for the production of synthesis gas in the interplay of an endothermic reaction, electrical heating and an exothermic reaction. Due to the increased expansion of renewable energies, a fluctuating supply of energy in the power grid is created. In phases of favorable electricity prices results for the operation of reactors for carrying out endothermic reactions, preferably for the production of synthesis gas, the possibility of an economical and economically meaningful operation taking advantage of renewable energies when they are electrically heated. In phases in which no regeneratively generated electrical energy is available, then another form of energy supply of the endothermic reactions must be selected.
  • synthesis gas is produced by steam reforming of methane. Due to the high heat demand of the reactions involved, they are carried out in externally heated reformer tubes. Characteristic of this method is the limitation by the reaction equilibrium, a heat transport tempering and, above all, the pressure and temperature limitation of the reformer tubes used (nickel-based steels). Temperature and pressure side results in a limitation to a maximum of 900 ° C at about 20 to 40 bar.
  • An alternative method is autothermal reforming.
  • a portion of the fuel is burned by the addition of oxygen within the reformer, so that the reaction gas is heated and the expiring endothermic reactions are supplied with heat.
  • DE 10 2007 022 723 A1 and US 2010/0305221 describe a process for the production and conversion of synthesis gas, which is characterized in that it has a plurality of different operating states, which essentially consist of the alternating (i) daytime operation and (ii) night-time operation, day-to-day operations (i) being mainly dry reforming and steam reforming with the supply of renewable energy and night-time operation (ii) mainly comprising the partial oxidation of hydrocarbons and wherein the produced synthesis gas is used for the production of value products.
  • WO 2007/042279 A1 deals with a reformer system with a reformer for the chemical conversion of a hydrocarbon-containing fuel into a hydrogen-rich reformate gas, and electrical heating means by which the reformer heat energy for producing a reaction temperature required for the feed can be supplied, wherein the reformer system further comprises a capacitor has, which can supply the electric heating means with electric current.
  • WO 2004/071947 A2 / US 2006/0207178 AI relate to a system for the production of hydrogen, comprising a reformer for generating hydrogen from a hydrocarbon fuel, a compressor for compressing the generated hydrogen, a renewable energy source for converting a renewable resource into electrical Energy for driving the compressor and a storage device for storing the hydrogen from the compressor.
  • the object of the present invention is to provide such a method.
  • it has set itself the task of specifying a method for the production of synthesis gas, which is suitable for alternating operation between two different modes of operation.
  • This object is achieved according to the invention by a process for the preparation of carbon monoxide and / or hydrogen-containing gas mixtures, comprising the steps: - Providing a flow reactor, which is adapted for the reaction of a fluid comprising reactants, wherein the reactor comprises at least one heating level, which is electrically heated by means of one or more heating elements, wherein the heating level can be traversed by the fluid and wherein arranged on at least one heating element, a catalyst is and is heated there;
  • the amount of heat Q2 is the amount of heat released by the electric heating of the reactor. In particular, it is the amount of heat that raises the temperature of the reactants in the reactor.
  • the amount of heat Q3 is calculated.
  • the well-known in the field of chemical engineering procedures are suitable. This is considered to be the endothermic reaction of C0 2 with the other starting materials in the composition, which is present in the reactor.
  • the heat quantity Q3 necessary for an equilibrium yield Y of> 90% is derived therefrom.
  • a reaction in the reactor can be a yield, based on the carbon dioxide used, due to thermodynamic limitations of 58%. 90% of 58% equals 52.2%, which is used to calculate Q3 heat demand.
  • Q3 is selected so that an equilibrium yield Y> 90% to ⁇ 100% and more preferably> 92% to ⁇ 99.99% is achieved.
  • the production of the products takes place in a reactor which is heated both autothermally and by means of electrical energy made available.
  • Methane with water or C0 2 can preferably be used as starting materials.
  • the reverse water gas shift reaction is another way to produce preferably CO.
  • high temperatures of> 700 ° C are desirable in order to maximize yields.
  • An autothermal reaction regime makes it possible to provide the required energy input, in particular very endothermic reactions such as dry reforming (+ 247 kJ / mol) or steam reforming (+ 206 kJ / mol).
  • the autothermal reaction is carried out by the oxidation of preferably methane and / or hydrogen as well as part of the resulting products (eg CO).
  • the oxidation takes place on the one hand at the entrance of the reactor, whereby the inlet temperature can be quickly brought to a high level and so-called "cold spots" are avoided by the endothermy of the reactions.
  • the gas feed takes place laterally along the reactor length in order to reduce the fuel gas concentrations in the inlet region and thus the theoretically maximum possible adiabatic temperature increase.
  • the side feed can bring the temperature level to values above the inlet temperature. This heating concept is coupled with the additional possibility of feeding in electrical energy, preferably in the middle and at the end of the reactor.
  • optimal temperature profiles can be set along the reactor, for example an increasing temperature ramp along the reactor length, which positively influences the thermodynamics of the endothermic reactions.
  • the reaction is optimized in terms of CO / H 2 - yield.
  • the feeding of electrical energy can originate, for example, from renewable sources. Due to the increased expansion of renewable energies, a fluctuating supply of energy in the power grid is created. In phases of favorable electricity prices results for the operation of Reactors for the production of synthesis gas (endothermic reactions) the possibility of an economically and economically meaningful operation taking advantage of renewable energies with the simultaneous saving of methane / hydrogen, which are then less necessary for heating. On the other hand, there are phases of high electricity prices, in which the supply of electrical energy necessary for carrying out the processes should be minimized. However, the share of regenerative energy in the grid also determines the eco-efficiency of the process. As will be described further below, the process management of the endothermic synthesis gas production with regard to the energy demand can be designed so that economically and ecologically meaningful operating points can be set depending on the price of electricity and the proportion of regenerative energy in the power grid.
  • the energy supply in the process described above takes place within the reactor by oxidation of a portion of the feed gas supplied, methane in DRM or SMR and / or hydrogen in RWGS, and / or by electrical heating. Both ways can be used for all mentioned reactions.
  • part of the methane supplied (in the case of DR and SMR) or hydrogen (in the case of RWGS) is partially oxidized by additionally introduced oxygen.
  • the resulting heat of combustion is then used for both the respective endothermic reaction and for further heating of the reaction gas.
  • this makes sense in order to absorb the endotherm of the reaction and to avoid so-called "cold spots". Also, this can be used to bring the reaction gas to a desired inlet and outlet temperature.
  • intermediate gas feeds can also be made an energy input for the reaction and / or heating of the reaction gas and a temperature profile can be adjusted, which are achieved in thermodynamically limited reforming higher CO / H 2 yields.
  • the fuel gas concentration in the inlet area is also reduced by the side feed and thus the theoretically possible adiabatic temperature increase is reduced.
  • the necessary oxygen addition can take place both continuously and discontinuously.
  • the addition of oxygen takes place in the upper explosion range and can be realized in the following forms: addition of pure oxygen, addition of air and / or in admixture with one of the otherwise occurring in the reactor species (CH 4 , H 2 , C0 2 , H 2 0, N 2 ). An oxygen / air mixture together with C0 2 and / or H 2 0 is sought.
  • Another advantage of this reactor concept lies in the flexible switching of the heating modes from oxidation to electrical and / or driving in alternating operation between strong (DR, SMR) and weak endothermic reactions (RWGS).
  • the same reactor is used for both reaction types (endothermic and exothermic), so that it is not necessary to switch the reactant streams to separate apparatuses. Rather, there is the possibility of a gradual start of the other reaction by continuously reducing the supply of methane while increasing the hydrogen supply to the reactor and vice versa. It is therefore also a mixed form of both reactions to-casual.
  • a metered addition of water is also possible in this concept, so that operation as a steam reformer (SMR, +206 kJ / mol) or a mixed form results from the three abovementioned reactions.
  • SMR steam reformer
  • +206 kJ / mol a mixed form
  • C0 2 reacts with hydrocarbons, H 2 O and / or H 2 to form (inter alia) CO.
  • the hydrocarbons involved in the endothermic and exothermic reactions are preferably alkanes, alkenes, alkynes, alkanols, alkenols and / or alkynols.
  • alkanes methane is particularly suitable, among the alkanols methanol and / or ethanol are preferred.
  • hydrocarbons CO and / or hydrogen are used as starting materials. They react with each other or with other reactants in the reactor.
  • OCM methane
  • the combustion of hydrogen can be used. It is both possible that the combustion of hydrogen in the RWGS reaction by metering of 0 2 in the educt gas (ideally a locally distributed or lateral metering) takes place, as well as possible that hydrogen-rich residual gases (for example, PSA exhaust gas), such They can be incurred in the purification of the synthesis gas, recycled and burned together with 0 2 , which then the process gas is heated.
  • hydrogen-rich residual gases for example, PSA exhaust gas
  • An advantage of the oxidative mode of operation is that soot deposits formed by dry reforming or steam reforming can be removed and thus the catalyst used can be regenerated. Moreover, it is possible to regenerate passivation layers, the heating conductor or other metallic internals in order to increase the service life.
  • endothermic reactions are heated from the outside through the walls of the reaction tubes. Opposite is the autothermal reforming with 0 2 -addition.
  • the endothermic reaction can be efficiently internally supplied with heat via an electrical heating within the reactor (the undesired alternative would be electrical heating via radiation through the reactor wall). This type of reactor operation is particularly economical if the excess supply resulting from the expansion of renewable energy sources can be used cost-effectively.
  • FIG. 1 shows schematically a flow reactor in an expanded representation.
  • the endothermic reaction is selected from: methane dry reforming, methane methane reverse gas reforming, reverse gas shift, coal gasification and / or methane pyrolysis
  • the exothermic reaction is selected from: partial oxidation of methane, autothermal reforming, Boudouard reaction, methane combustion, CO oxidation, hydrogen oxidation, oxidative coupling of methane and / or Sabatier methanation (C0 2 and CO to methane).
  • the proportion of the quantity of heat Q2 increases downstream in the reactor. In a further embodiment of the method according to the invention, this further comprises the steps:
  • Threshold Sl for the cost of the electric current available for the flow reactor and / or a threshold value S2 for the relative proportion of electrical energy from regenerative
  • the first threshold S 1 relates to the electricity cost of the reactor, in particular the cost of electrically heating the reactor by the heating elements in the heating levels. Here it can be determined up to which height the electric heating is still economically reasonable.
  • the second threshold S2 relates to the relative proportion of electrical energy from regenerative sources available to the reactor and, in particular, to the electrical heating of the reactor by the heating elements in the heating levels.
  • the relative proportion is in this case based on the total electrical energy of the electric current available for the flow reactor and can of course vary over time. Examples of regenerative sources from which electrical energy can be obtained are wind, solar, geothermal, wave and hydro.
  • the relative share can be determined by providing information to the energy supplier. If, for example, a factory site owns its own regenerative energy sources such as solar plants or wind turbines, this relative energy share can also be indicated via performance monitoring.
  • the threshold value S2 can be understood as a requirement to use renewable energies to the greatest possible extent.
  • S2 may mean that from a proportion of 5%, 10%, 20% or 30% of electrical energy from renewable sources, the electrical heating of the reactor should take place.
  • a comparison of the desired values with the actual values in the method can now reach the conclusion that electrical energy is available inexpensively and / or enough electrical energy is available from renewable sources. Then, the flow reactor is operated so that the exothermic reaction is carried out to a lesser extent and / or more electrically heated.
  • the system can be coupled with a water electrolysis unit for hydrogen production.
  • the operating strategy of water electrolysis is also linked to the parameters 'electricity price' and 'proportion of regenerative energy in the grid'. The entire system may therefore have at least one hydrogen storage if required.
  • the flow reactor comprises: seen in the flow direction of the fluid, a plurality of heating levels which are electrically heated by heating elements and wherein the heating levels are permeable by the fluid, wherein a catalyst is arranged on at least one heating element and is heatable there , Wherein furthermore at least once an intermediate plane between two heating planes is arranged and wherein the intermediate plane is also traversed by the fluid.
  • FIG. 1 schematically shown flow reactor used according to the invention is flowed through by a fluid comprising reactants from top to bottom, as shown by the arrows in the drawing.
  • the fluid may be liquid or gaseous and may be single-phase or multi-phase.
  • the fluid is gaseous. It is conceivable that the fluid contains only reactants and reaction products, but also that additionally inert components such as inert gases are present in the fluid.
  • the reactor has a plurality of (four in the present case) heating levels 100, 101, 102, 103, which are electrically heated by means of corresponding heating elements 110, 111, 112, 113.
  • the heating levels 100, 101, 102, 103 are flowed through by the fluid during operation of the reactor and the heating elements 110, 111, 112, 113 are contacted by the fluid.
  • At least one heating element 110, 111, 112, 113, a catalyst is arranged and is heated there.
  • the catalyst may be directly or indirectly connected to the heating elements 110, 111, 112, 113 so that these heating elements constitute the catalyst support or a support for the catalyst support.
  • the heat supply of the reaction takes place electrically and is not introduced from the outside by means of radiation through the walls of the reactor, but directly into the interior of the reaction space. It is realized a direct electrical heating of the catalyst.
  • thermoistor alloys such as FeCr Al alloys are preferably used.
  • electrically conductive Si-based materials particularly preferably SiC.
  • This has the effect of homogenizing the fluid flow.
  • additional catalyst is present in one or more intermediate levels 200, 201, 202 or other isolation elements in the reactor. Then an adiabatic reaction can take place.
  • the intermediate levels may act as flame arresters as needed, especially in reactions where oxygen delivery is provided.
  • the material forms an Al 2 O 3 protective layer by the action of temperature in the presence of air / oxygen.
  • This passivation layer can serve as a basecoat of a washcoat, which acts as a catalytically active coating.
  • the direct resistance heating of the catalyst or the heat supply of the reaction is realized directly through the catalytic structure.
  • the formation of other protective layers such as Si-OC systems.
  • the pressure in the reactor can take place via a pressure-resistant steel jacket.
  • suitable ceramic insulation materials it can be achieved that the pressure-bearing steel is exposed to temperatures of less than 200 ° C and, if necessary, less than 60 ° C.
  • the electrical connections are shown in FIG. 1 only shown very schematically. They can be routed in the cold area of the reactor within an insulation to the ends of the reactor or laterally from the heating elements 110, 111, 112, 113, so that the actual electrical connections can be provided in the cold region of the reactor.
  • the electrical heating is done with direct current or alternating current.
  • heating elements 110, 111, 112, 113 are arranged, which are constructed in a spiral, meandering, grid-shaped and / or reticulated manner.
  • At least one heating element 110, 111, 112, 113 may have a different amount and / or type of catalyst from the other heating elements 110, 111, 112, 113.
  • the heating elements 110, 111, 112, 113 are arranged so that they can each be electrically heated independently of each other.
  • the individual heating levels can be individually controlled and regulated.
  • In the reactor inlet area can be dispensed with a catalyst in the heating levels as needed, so that only the heating and no reaction takes place in the inlet area. This is particularly advantageous in terms of starting the reactor.
  • a temperature profile adapted for the respective reaction can be achieved. With regard to the application for endothermic equilibrium reactions, this is, for example, a temperature profile which achieves the highest temperatures and thus the highest conversion at the reactor outlet.
  • the (for example ceramic) intermediate levels 200, 201, 202 or their contents 210, 211, 212 comprise a material resistant to the reaction conditions, for example a ceramic foam.
  • the material of the content 210, 211, 212 of an intermediate level 200, 201, 202 comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • SiC silicon and / or zirconium.
  • cordierite is an example of this.
  • the intermediate level 200, 201, 202 may include, for example, a loose bed of solids. These solids themselves may be porous or solid, so that the fluid flows through gaps between the solids. It is preferred that the material of the solid bodies comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite. It is also possible that the intermediate plane 200, 201, 202 comprises a one-piece porous solid. In this case, the fluid flows through the intermediate plane via the pores of the solid. This is shown in FIG. 1 shown. Preference is given to honeycomb monoliths, as used for example in the exhaust gas purification of internal combustion engines. Another conceivable possibility is that one or more of the intermediate levels are voids.
  • the average length of a heating level 100, 101, 102, 103 is viewed in the direction of flow of the fluid and the average length of an intermediate level 200, 201, 202 in the direction of flow of the fluid is in a ratio of> 0.01: 1 to ⁇ 100: 1 to each other. Even more advantageous are ratios of> 0.1: 1 to ⁇ 10: 1 or 0.5: 1 to ⁇ 5: 1.
  • Suitable catalysts may, for example, be selected from the group comprising:
  • A, A 'and A are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb, Bi and / or Cd;
  • B, B 'and B are independently selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb , Hf, Zr, Tb, W, Gd, Yb, Mg, Li, Na, K, Ce and / or Zn; and
  • A, A 'and A are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb and / or Cd;
  • B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W , Gd, Yb, Bi, Mg, Cd, Zn, Re, Ru, Rh, Pd, Os, Ir and / or Pt; B 'is selected from the group: Re, Ru, Rh, Pd, Os, Ir and / or Pt;
  • B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Bi, Mg, Cd and / or Zn, and 0 ⁇ w ⁇ 0.5, 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, and 1 ⁇ delta ⁇ 1;
  • Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt;
  • M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and / or Lu;
  • M is selected from the group: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu , Ag and / or Au;
  • L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb and / or Lu; and 4 ⁇ z ⁇ 9;
  • a metal Ml and / or at least two different metals Ml and M2 on and / or in a carrier wherein the carrier comprises a carbide, oxycarbide, carbonitride, nitride, boride, silicide, germanide and / or selenide of metals A and / or B is;
  • Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu;
  • a and B are independently selected from the group: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu;
  • (VIII) a catalyst comprising Ni, Co, Fe, Cr, Mn, Zn, Al, Rh, Ru, Pt and / or Pd; and or
  • reaction products includes the catalyst phases present under reaction conditions.
  • the reactor can be modular.
  • a module may include, for example, a heating level, an insulation level, the electrical contact and the corresponding further insulation materials and thermal insulation materials.
  • the individual heating elements 110, 111, 112, 113 are operated with a respective different heating power.
  • the reaction temperature in the reactor is at least in places> 700 ° C to ⁇ 1300 ° C. More preferred ranges are> 800 ° C to ⁇ 1200 ° C and> 900 ° C to ⁇ 1100 ° C.
  • the average (mean) contact time of the fluid to a heating element 110, 111, 112, 113 may be, for example,> 0.01 seconds to ⁇ 1 second and / or the average contact time of the fluid to an intermediate level 110, 111, 112, 113 may be, for example > 0.001 seconds to ⁇ 5 seconds.
  • Preferred contact times are> 0.005 to ⁇ 1 second, more preferably> 0.01 to ⁇ 0.9 seconds.
  • the reaction can be carried out at a pressure of> 1 bar to ⁇ 200 bar.
  • the pressure is> 2 bar to ⁇ 50 bar, more preferably> 10 bar to ⁇ 30 bar.
  • the H 2 / CO ratio changes from 1: 1 to 2: 1 when changing from C0 2 reforming to POX. Modifications by adding H 2 0 or C0 2 to the SMR are also possible. When changing from Dry Reforming to POX, however, the H 2 / CO ratio changes from 1: 1 to 2: 1.
  • the main target product may be CO or H 2 .
  • the characteristic value Sl has fallen below and / or the characteristic value S2 has been exceeded.
  • the endothermic operation that is, steam reforming or dry reforming, wherein in addition C0 2 is used as Cl source, which is reflected in a saving of methane, preferred.
  • C0 2 is used as Cl source
  • two moles of CO and two moles of H 2 are obtained per mole of methane.
  • the educt ratio of C0 2 / CH 4 is> 1.25.
  • the C0 2 present in the product gas is separated off in subsequent process steps and recycled to the reactor.
  • the mode of operation is changed over from the endothermic operation to the exothermic operation.
  • methane is fed with 02 to the reactor.
  • C0 2 can be further added during the switching phase and used as a kind of inert component until the POX reaction is stabilized and a new stationary state is reached.
  • the separated in the following steps C0 2 can be temporarily stored in order to start the endothermic reaction used as starting material.
  • the reactant streams or the throughput of methane and oxygen are adjusted so that a constant amount of CO or H 2 amount is available for subsequent processes.
  • the target product is CO.
  • the characteristic value Sl has fallen below and / or the characteristic value S2 has been exceeded.
  • endothermic operation that is, performance of the rWGS reaction using C0 2 as the Cl source, is preferred.
  • one mole of CO and one mole of water will be contained per mole of CO 2 .
  • the educt ratio of H 2 / CO 2 is> 1.25.
  • the C0 2 present in the product gas is separated off in subsequent process steps and recycled to the reactor.
  • the Characteristic value S 1 is exceeded and / or the characteristic value S2 is exceeded, the mode of operation is changed over from the endothermic operation to the exothermic operation.
  • methane is fed with 0 2 to the reactor.
  • C0 2 can be further added during the switching phase and used as a kind of inert component until the POX reaction is stabilized and a new stationary state is reached.
  • Part of the hydrogen produced during POX operation can be cached and used to operate the rWGS reaction.
  • the reactant streams or the throughput of methane and oxygen are adjusted in such a way that a constant amount of CO is available for subsequent processes.
  • the saving of methane in carrying out the electrically heated C0 2 reforming which uses C0 2 as Cl source, is weighed against the cost of electric heating.
  • the switching to the exothermic mode of operation takes place in order to react on soot formation during the endothermic operation.
  • the 0 2 operation can also be used to regenerate passivation layers within the reactor.
  • the electrical heating elements can be used in the region of the reactor inlet for the starting process.
  • a rapid heating of the reactant stream is possible, which reduces coking when carrying out the endothermic reforming reactions and, when carrying out the POX, allows a locally defined ignition of the reaction and thus enables safe reactor operation.
  • the present invention relates to a control unit which is set up for the control of the method according to the invention.
  • This control unit can also be distributed to a plurality of modules which communicate with one another or can then comprise these modules.
  • the controller may include a volatile and / or non-volatile memory containing machine-executable instructions associated with the method of the invention. In particular, these may be machine-executable instructions for detecting the threshold values, for comparing the threshold values with the currently prevailing conditions and for controlling control valves and compressors for gaseous reactants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

The invention relates to a method for producing syngas in an alternating operation between two operating modes. The method has the steps of providing a flow reactor; endothermically reacting carbon dioxide with hydrocarbons, water, and/or hydrogen in the flow reactor, at least carbon monoxide being formed as the product, under the effect of heat generated electrically by one or more heating elements (110, 111, 112, 113); and at the same time exothermically reacting hydrocarbons, carbon monoxide, and/or hydrogen as reactants in the flow reactor. The exothermic reaction releases a heat quantity Q1, the electric heating of the reactor releases a heat quantity Q2, and the exothermic reaction and the electric heating of the reactor are operated such that the sum of Q1 and Q2 is greater than or equal to the heat quantity Q3 which is required for an equilibrium yield Y of the endothermic reaction of ≥ 90%.

Description

Verfahren für die Herstellung von CO und/oder H? im Wechselbetrieb zwischen zwei Betriebsarten  Process for the production of CO and / or H? in alternating operation between two operating modes
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Synthesegas im Wechselspiel einer endothermen Reaktion, elektrischem Beheizen und einer exothermen Reaktion. Bedingt durch den verstärkten Ausbau regenerativer Energien entsteht ein fluktuierendes Energieangebot im Stromnetz. In Phasen günstiger Strompreise ergibt sich für den Betrieb von Reaktoren zur Durchführung endothermer Reaktionen, bevorzugt für die Herstellung von Synthesegas, die Möglichkeit eines wirtschaftlichen und ökonomisch sinnvollen Betriebs unter Ausnutzung der regenerativen Energien, wenn diese elektrisch beheizt werden. In Phasen, in welchen keine regenerativ erzeugte elektrische Energie verfügbar ist, muss dann eine andere Form der Energieversorgung der endothermen Reaktionen gewählt werden. The present invention relates to a process for the production of synthesis gas in the interplay of an endothermic reaction, electrical heating and an exothermic reaction. Due to the increased expansion of renewable energies, a fluctuating supply of energy in the power grid is created. In phases of favorable electricity prices results for the operation of reactors for carrying out endothermic reactions, preferably for the production of synthesis gas, the possibility of an economical and economically meaningful operation taking advantage of renewable energies when they are electrically heated. In phases in which no regeneratively generated electrical energy is available, then another form of energy supply of the endothermic reactions must be selected.
Konventionell erfolgt die Herstellung von Synthesegas mittels der Dampfreformierung von Methan. Aufgrund des hohen Wärmebedarfs der beteiligten Reaktionen erfolgt deren Durchführung in von außen beheizten Reformerröhren. Charakteristisch für dieses Verfahren ist die Limitierung durch das Reaktionsgleichgewicht, eine Wärmetransporthmitierung und vor allem die Druck- und Temperaturlimitierung der eingesetzten Reformerröhren (nickelbasierte Stähle). Temperatur- und druckseitig resultiert daraus eine Limitierung auf maximal 900 °C bei ca. 20 bis 40 bar. Conventionally, synthesis gas is produced by steam reforming of methane. Due to the high heat demand of the reactions involved, they are carried out in externally heated reformer tubes. Characteristic of this method is the limitation by the reaction equilibrium, a heat transport tempering and, above all, the pressure and temperature limitation of the reformer tubes used (nickel-based steels). Temperature and pressure side results in a limitation to a maximum of 900 ° C at about 20 to 40 bar.
Ein alternatives Verfahren ist die autotherme Reformierung. Hierbei wird ein Teil des Brennstoffs durch Zugabe von Sauerstoff innerhalb des Reformers verbrannt, so dass das Reaktionsgas aufgeheizt wird und die ablaufenden endothermen Reaktionen mit Wärme versorgt werden. An alternative method is autothermal reforming. In this case, a portion of the fuel is burned by the addition of oxygen within the reformer, so that the reaction gas is heated and the expiring endothermic reactions are supplied with heat.
Im Stand der Technik sind einige Vorschläge für eine interne Heizung von chemischen Reaktoren bekannt geworden. So beschreiben beispielsweise Zhang et al., International Journal of Hydrogen Energy 2007, 32, 3870-3879 die Simulation und experimentelle Analyse eines co-axialen, zylindrischen Methan-Dampfreformers unter Verwendung eines elektrisch beheizten Alumit- Katalysators (EHAC). Some proposals for internal heating of chemical reactors have become known in the art. For example, Zhang et al., International Journal of Hydrogen Energy 2007, 32, 3870-3879 describe the simulation and experimental analysis of a coaxial, cylindrical methane steam reformer using an electrically heated alumite catalyst (EHAC).
Hinsichtlich eines Wechselbetriebes beschreiben DE 10 2007 022 723 AI beziehungsweise US 2010/0305221 ein Verfahren zur Herstellung und Umsetzung von Synthesegas, das dadurch gekennzeichnet ist, dass es mehrere unterschiedliche Betriebszustände aufweist, die im Wesentlichen aus dem im Wechsel zueinander stehenden (i) Tagesbetrieb und (ii) Nachtbetrieb bestehen, wobei der Tagesbetrieb (i) hauptsächlich die trockene Reformierung und das Steamreforming unter der Zuführung von regenerativer Energie und der Nachtbetrieb (ii) hauptsächlich die partielle Oxidation von Kohlenwasserstoffen umfasst und wobei das hergestellte Synthesegas zur Herstellung von Wertprodukten verwendet wird. With regard to alternating operation, DE 10 2007 022 723 A1 and US 2010/0305221 describe a process for the production and conversion of synthesis gas, which is characterized in that it has a plurality of different operating states, which essentially consist of the alternating (i) daytime operation and (ii) night-time operation, day-to-day operations (i) being mainly dry reforming and steam reforming with the supply of renewable energy and night-time operation (ii) mainly comprising the partial oxidation of hydrocarbons and wherein the produced synthesis gas is used for the production of value products.
US 2007/003478 AI offenbart die Herstellung von Synthesegas mit einer Kombination von Dampfreformierungs- und Oxidationschemie. Das Verfahren beinhaltet die Verwendung von Feststoffen, um den Kohlenwasserstoff -Feed aufzuheizen und das gasförmige Produkt abzukühlen. Gemäß dieser Veröffentlichung kann Wärme dadurch konserviert werden, dass der Gasfluss von Feed- und Produktgasen intervallmäßig umgekehrt wird. US 2007/003478 Al discloses the production of synthesis gas with a combination of steam reforming and oxidation chemistry. The process involves the use of solids to heat the hydrocarbon feed and to cool the gaseous product. According to this publication, heat can be conserved by reversing the gas flow of feed and product gases at intervals.
WO 2007/042279 AI beschäftigt sich mit einem Reformersystem mit einem Reformer zum chemischen Umsetzen eines kohlenwasserstoffhaltigen Kraftstoffes in ein wasserstoffgasreiches Reformatgas, sowie elektrischen Heizmitteln, mittels welchen dem Reformer Wärmeenergie zum Herstellen einer für die Umsetzung erforderlichen Reaktionstemperatur zuführbar ist, wobei das Reformersystem weiterhin einen Kondensator aufweist, der die elektrischen Heizmittel mit elektrischem Strom versorgen kann. WO 2007/042279 A1 deals with a reformer system with a reformer for the chemical conversion of a hydrocarbon-containing fuel into a hydrogen-rich reformate gas, and electrical heating means by which the reformer heat energy for producing a reaction temperature required for the feed can be supplied, wherein the reformer system further comprises a capacitor has, which can supply the electric heating means with electric current.
WO 2004/071947 A2/ US 2006/0207178 AI betreffen ein System zur Herstellung von Wasserstoff, umfassend einen Reformer zur Generierung von Wasserstoff aus einem Kohlenwasserstoff-Treibstoff, einen Kompressor zur Komprimierung des erzeugten Wasserstoffs, eine erneuerbare Energiequelle zur Umwandlung einer erneuerbaren Ressource in elektrische Energie zum Antrieb des Kompressors und eine Speichervorrichtung zur Speicherung des Wasserstoffs von dem Kompressor. Aus dem zuvor Gesagten wird deutlich, dass eine ökonomisch sinnvolle Herstellung von Synthesegas unter Ausnutzung von regenerativen Energiequellen gewisse Anforderungen an die Verfahrensdurchführung und den hierin eingesetzten Reaktor stellen. Einerseits muss eine effiziente elektrische Beheizung des Reaktors, das heißt eine effiziente Wärmeversorgung der endothermen Reaktion realisiert werden. Andererseits sollte für Phasen, in denen keine regenerativ erzeugte Energie nutzbar ist, die Möglichkeit zur anderweitigen Beheizung des Reaktors vorliegen. WO 2004/071947 A2 / US 2006/0207178 AI relate to a system for the production of hydrogen, comprising a reformer for generating hydrogen from a hydrocarbon fuel, a compressor for compressing the generated hydrogen, a renewable energy source for converting a renewable resource into electrical Energy for driving the compressor and a storage device for storing the hydrogen from the compressor. From what has been said above, it becomes clear that an economically sensible production of synthesis gas by utilizing regenerative energy sources places certain demands on the process procedure and the reactor used therein. On the one hand, an efficient electrical heating of the reactor, that is an efficient heat supply of the endothermic reaction must be realized. On the other hand, should be available for phases in which no regenerative energy is available, the possibility of otherwise heating the reactor.
Die vorliegende Erfindung hat sich die Aufgabe gestellt, ein solches Verfahren bereitzustellen. Insbesondere hat sie sich die Aufgabe gestellt, ein Verfahren zur Herstellung von Synthesegas anzugeben, welches für einen Wechselbetrieb zwischen zwei verschiedenen Betriebsweisen geeignet ist. Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von Kohlenmonoxid und/oder Wasserstoff enthaltenden Gasgemischen, umfassend die Schritte: - Bereitstellen eines Strömungsreaktors, welcher zur Reaktion eines Reaktanden umfassenden Fluids eingerichtet ist, wobei der Reaktor mindestens eine Heizebene umfasst, welche mittels eines oder mehrerer Heizelemente elektrisch beheizt wird, wobei die Heizebene von dem Fluid durchströmbar ist und wobei an mindestens einem Heizelement ein Katalysator angeordnet ist und dort beheizbar ist; The object of the present invention is to provide such a method. In particular, it has set itself the task of specifying a method for the production of synthesis gas, which is suitable for alternating operation between two different modes of operation. This object is achieved according to the invention by a process for the preparation of carbon monoxide and / or hydrogen-containing gas mixtures, comprising the steps: - Providing a flow reactor, which is adapted for the reaction of a fluid comprising reactants, wherein the reactor comprises at least one heating level, which is electrically heated by means of one or more heating elements, wherein the heating level can be traversed by the fluid and wherein arranged on at least one heating element, a catalyst is and is heated there;
- endotherme Reaktion von Kohlendioxid mit Kohlenwasserstoffen, Wasser und/oder Wasserstoff in dem Strömungsreaktor, wobei als Produkt mindestens Kohlenmonoxid gebildet wird, unter elektrischer Beheizung durch ein oder mehrere Heizelemente; und gleichzeitig - Endothermic reaction of carbon dioxide with hydrocarbons, water and / or hydrogen in the flow reactor, wherein at least carbon monoxide is formed as a product, under electrical heating by one or more heating elements; and at the same time
- exotherme Reaktion von Kohlenwasserstoffen, Kohlenmonoxid und/oder Wasserstoff als Edukten in dem Strömungsreaktor; wobei die exotherme Reaktion eine Wärmemenge Ql freisetzt, das elektrische Beheizen des Reaktors eine Wärmemenge Q2 freisetzt und die exotherme Reaktion und das elektrische Beheizen des Reaktors so betrieben werden, dass die Summe aus Ql und Q2 größer oder gleich der für eine Gleichgewichtsausbeute Y der endothermen Reaktion von > 90% benötigten Wärmemenge Q3 ist. - exothermic reaction of hydrocarbons, carbon monoxide and / or hydrogen as educts in the flow reactor; wherein the exothermic reaction releases a heat quantity Ql, the electric heating of the reactor releases a heat quantity Q2 and the exothermic reaction and the electrical heating of the reactor are operated so that the sum of Ql and Q2 is greater than or equal to that for an equilibrium Y yield of the endothermic reaction of> 90% heat required Q3.
Im erfindungsgemäßen Verfahren werden verschiedene Wärmemengen betrachtet und miteinander in Beziehung gesetzt. Sie können, je nach Notwendigkeit, beispielsweise auf die Zeit oder auf die im Reaktor reagierende Stoffmenge referenziert werden. Die Wärmemenge Ql wird bei der exothermen Reaktion freigesetzt und trägt auf diese Weise zur Erwärmung der Reaktanden bei. In the method according to the invention different amounts of heat are considered and related to each other. They may be referenced, as needed, for example, to time or to the amount of reactant in the reactor. The amount of heat Ql is released in the exothermic reaction and thus contributes to the heating of the reactants.
Die Wärmemenge Q2 ist die Wärmemenge, die durch das elektrische Beheizen des Reaktors freigesetzt wird. Insbesondere ist sie die Wärmemenge, die die Temperatur der im Reaktor befindlichen Reaktanden erhöht. The amount of heat Q2 is the amount of heat released by the electric heating of the reactor. In particular, it is the amount of heat that raises the temperature of the reactants in the reactor.
Die Wärmemenge Q3 wird berechnet. Hierzu eignen sich die im Bereich des Chemieingenieurwesens hinlänglich bekannten Verfahren. Man betrachtet hierzu die endotherme Reaktion von C02 mit den anderen Edukten in der Zusammensetzung, welche im Reaktor vorliegt. Die für eine Gleichgewichtsausbeute Y von > 90% nötige Wärmemenge Q3 wird daraus abgeleitet. The amount of heat Q3 is calculated. For this purpose, the well-known in the field of chemical engineering procedures are suitable. This is considered to be the endothermic reaction of C0 2 with the other starting materials in the composition, which is present in the reactor. The heat quantity Q3 necessary for an equilibrium yield Y of> 90% is derived therefrom.
Der Ausdruck "Gleichgewichtsausbeute Y der endothermen Reaktion von 90%" ist so zu verstehen, dass 90% der thermodynamisch maximal erreichbaren Ausbeute unter den gegebenen Bedingungen erreicht werden. Beispielsweise kann eine Reaktion im Reaktor eine Ausbeute, bezogen auf das eingesetzte Kohlendioxid, aufgrund thermodynamischer Begrenzungen von 58% erreichen. 90% von 58% entsprächen 52,2%, welche für den Bedarf an Wärme Q3 zugrunde gelegt werden. The expression "equilibrium yield Y of the endothermic reaction of 90%" is to be understood as meaning that 90% of the maximum thermodynamically achievable yield is achieved under the given conditions. For example, a reaction in the reactor can be a yield, based on the carbon dioxide used, due to thermodynamic limitations of 58%. 90% of 58% equals 52.2%, which is used to calculate Q3 heat demand.
Durch Steuerung der Anteile von elektrischer Beheizung und exothermer Reaktion wird nun dafür gesorgt, dass die Summe aus Ql und Q2 mindestens Q3 entspricht. Vorzugsweise ist Q3 so gewählt, dass eine Gleichgewichtsausbeute Y > 90% bis < 100% und mehr bevorzugt > 92% bis < 99,99% erreicht wird. By controlling the proportions of electrical heating and exothermic reaction, it is now ensured that the sum of Q1 and Q2 is at least equal to Q3. Preferably, Q3 is selected so that an equilibrium yield Y> 90% to <100% and more preferably> 92% to <99.99% is achieved.
Im erfindungsgemäßen Verfahren erfolgt die Herstellung der Produkte, insbesondere von Synthesegas, in einem Reaktor, welcher sowohl autotherm als auch mittels zur Verfügung gestellter elektrischer Energie beheizt wird. Dabei können bevorzugt Methan mit Wasser bzw. C02 als Edukte eingesetzt werden. Die Reverse Water-Gas-Shift Reaktion stellt eine weitere Möglichkeit dar, um bevorzugt CO herzustellen. Für die Ausführung der Reaktionen sind, insbesondere am Austritt des Reaktors, hohe Temperaturen von » 700 °C anzustreben, um Ausbeuten zu maximieren. Eine autotherme Reaktionsführung ermöglicht den benötigten Energieeintrag insbesondere sehr endothermer Reaktionen wie dem Dry Reforming (+ 247 kJ/mol) oder Steam Reforming (+ 206 kJ/mol) zur Verfügung zu stellen. Die autotherme Reaktionsführung erfolgt hierbei durch die Oxidation von bevorzugt Methan und/oder Wasserstoff als auch Teils der entstehenden Produkte (z.B. CO). Die Oxidation erfolgt einerseits am Eingang des Reaktors, wodurch die Eingangstemperatur rasch auf ein hohes Niveau gebracht werden kann und sogenannte "Cold Spots" durch die Endothermie der Reaktionen vermieden werden. Und/oder erfolgt zusätzlich die Gaseinspeisung durch seitlich entlang der Reaktorlänge, um die Brenngaskonzentrationen im Eintrittsbereich zu reduzieren und damit die theoretisch maximal mögliche adiabate Temperaturerhöhung. Zudem kann durch die Seiteneinspeisung das Temperaturniveau auf Werte oberhalb der Eintrittstemperatur gebracht werden. Dieses Aufheizkonzept wird gekoppelt mit der zusätzlichen Möglichkeit der Einspeisung von elektrischer Energie, bevorzugt in der Mitte und am Ende des Reaktors. Durch die Kopplung beider Heizmechanismen, autothermer und elektrischer Energieeintrag, kann die Einstellung optimaler Temperaturprofile entlang des Reaktors erfolgen, beispielsweise eine ansteigende Temperaturrampe entlang der Reaktorlänge, welche die Thermodynamik der endothermen Reaktionen positiv beeinflusst. Somit wird die Reaktionsführung in Hinblick auf die CO/H2 - Ausbeute optimiert. In the process of the invention, the production of the products, in particular of synthesis gas, takes place in a reactor which is heated both autothermally and by means of electrical energy made available. Methane with water or C0 2 can preferably be used as starting materials. The reverse water gas shift reaction is another way to produce preferably CO. For the execution of the reactions, especially at the outlet of the reactor, high temperatures of> 700 ° C are desirable in order to maximize yields. An autothermal reaction regime makes it possible to provide the required energy input, in particular very endothermic reactions such as dry reforming (+ 247 kJ / mol) or steam reforming (+ 206 kJ / mol). The autothermal reaction is carried out by the oxidation of preferably methane and / or hydrogen as well as part of the resulting products (eg CO). The oxidation takes place on the one hand at the entrance of the reactor, whereby the inlet temperature can be quickly brought to a high level and so-called "cold spots" are avoided by the endothermy of the reactions. In addition, and / or additionally, the gas feed takes place laterally along the reactor length in order to reduce the fuel gas concentrations in the inlet region and thus the theoretically maximum possible adiabatic temperature increase. In addition, the side feed can bring the temperature level to values above the inlet temperature. This heating concept is coupled with the additional possibility of feeding in electrical energy, preferably in the middle and at the end of the reactor. By coupling both heating mechanisms, autothermal and electrical energy input, optimal temperature profiles can be set along the reactor, for example an increasing temperature ramp along the reactor length, which positively influences the thermodynamics of the endothermic reactions. Thus, the reaction is optimized in terms of CO / H 2 - yield.
Die Einspeisung von elektrischer Energie kann beispielsweise aus regenerativen Quellen stammen. Bedingt durch den verstärkten Ausbau regenerativer Energien entsteht ein fluktuierendes Energieangebot im Stromnetz. In Phasen günstiger Strompreise ergibt sich für den Betrieb von Reaktoren zur Herstellung von Synthesegas (endotherme Reaktionen) die Möglichkeit eines wirtschaftlichen und ökonomisch sinnvollen Betriebes unter Ausnutzung der regenerativen Energien unter der gleichzeitigen Einsparung von Methan/Wasserstoff, welche dann weniger zur Beheizung notwendig sind. Dem gegenüber stehen Phasen hoher Strompreise, in denen die zur Durchführung der Prozesse erforderliche Zufuhr an elektrischer Energie minimiert werden sollte. Der Anteil an regenerativer Energie im Netz bestimmt allerdings auch die Ökoeffizienz des Prozesses. Wie später weiter beschrieben werden wird, kann die Prozessführung der endothermen Synthesegaserzeugung hinsichtlich des Energiebedarfes so gestaltet werden, dass in Abhängigkeit vom Strompreis und dem Anteil an regenerativer Energie im Stromnetz wirtschaftlich und ökologisch sinnvolle Betriebspunkte eingestellt werden können. The feeding of electrical energy can originate, for example, from renewable sources. Due to the increased expansion of renewable energies, a fluctuating supply of energy in the power grid is created. In phases of favorable electricity prices results for the operation of Reactors for the production of synthesis gas (endothermic reactions) the possibility of an economically and economically meaningful operation taking advantage of renewable energies with the simultaneous saving of methane / hydrogen, which are then less necessary for heating. On the other hand, there are phases of high electricity prices, in which the supply of electrical energy necessary for carrying out the processes should be minimized. However, the share of regenerative energy in the grid also determines the eco-efficiency of the process. As will be described further below, the process management of the endothermic synthesis gas production with regard to the energy demand can be designed so that economically and ecologically meaningful operating points can be set depending on the price of electricity and the proportion of regenerative energy in the power grid.
Die Energiezufuhr in dem oben beschriebenen Verfahren erfolgt innerhalb des Reaktors durch Oxidation von einem Anteil des zugeführten Feedgases, Methan bei DRM bzw. SMR und/oder Wasserstoff bei RWGS, und/oder durch elektrische Beheizung. Beide Wege sind für alle erwähnten Reaktionen einsetzbar. Bei der Oxidation wird ein Teil des zugeführten Methans (bei DR und SMR) bzw. Wasserstoffs (bei RWGS) durch zusätzlich eingebrachten Sauerstoff partiell oxidiert. Die daraus entstehende Verbrennungswärme wird darauf sowohl für die jeweilige endotherme Reaktion als auch für eine weitere Aufheizung des Reaktionsgases genutzt. Insbesondere am Reaktoreingang ist dies sinnvoll, um die Endothermie der Reaktion aufzufangen und sogenannte "Cold Spots" zu vermeiden. Ebenfalls kann dies dazu benutzt werden, das Reaktionsgas auf eine gewünschte Eingangs- sowie Ausgangstemperatur zu bringen. Durch Zwischengaseinspeisungen kann zusätzlich ein Energieeintrag für die Reaktion und/oder die Aufheizung des Reaktionsgases erfolgen und ein Temperaturprofil eingestellt werden, wodurch bei thermodynamisch limitierten Reformingprozessen höhere CO/H2 Ausbeuten erzielt werden. Ebenfalls wird durch die Seiteneinspeisung die Brenngaskonzentration im Eintrittsbereich reduziert und somit die theoretisch mögliche adiabate Temperaturerhöhung reduziert. Die notwendige Sauerstoffzugabe kann sowohl kontinuierlich als auch diskontinuierlich erfolgen. Die Sauerstoffzugabe erfolgt im oberen Explosionsbereich und kann in den folgenden Formen verwirklicht werden: Zugabe von reinem Sauerstoff, Zugabe von Luft und/oder im Gemisch mit einer der sonst im Reaktor vorkommenden Spezies (CH4, H2, C02, H20, N2). Ein Sauerstoff-/ Luftgemisch zusammen mit C02 und/oder H20 wird dabei angestrebt. The energy supply in the process described above takes place within the reactor by oxidation of a portion of the feed gas supplied, methane in DRM or SMR and / or hydrogen in RWGS, and / or by electrical heating. Both ways can be used for all mentioned reactions. In the oxidation, part of the methane supplied (in the case of DR and SMR) or hydrogen (in the case of RWGS) is partially oxidized by additionally introduced oxygen. The resulting heat of combustion is then used for both the respective endothermic reaction and for further heating of the reaction gas. In particular at the reactor inlet, this makes sense in order to absorb the endotherm of the reaction and to avoid so-called "cold spots". Also, this can be used to bring the reaction gas to a desired inlet and outlet temperature. By intermediate gas feeds can also be made an energy input for the reaction and / or heating of the reaction gas and a temperature profile can be adjusted, which are achieved in thermodynamically limited reforming higher CO / H 2 yields. The fuel gas concentration in the inlet area is also reduced by the side feed and thus the theoretically possible adiabatic temperature increase is reduced. The necessary oxygen addition can take place both continuously and discontinuously. The addition of oxygen takes place in the upper explosion range and can be realized in the following forms: addition of pure oxygen, addition of air and / or in admixture with one of the otherwise occurring in the reactor species (CH 4 , H 2 , C0 2 , H 2 0, N 2 ). An oxygen / air mixture together with C0 2 and / or H 2 0 is sought.
Mit zunehmenden Reaktionsumsatzes des Methans/Wasserstoffs ist Beheizungsmethode durch Oxidation der Eduktmaterialien zunehmend ineffektiv. Dies wird gelöst durch die zusätzliche Nutzung von elektrischen Heizsegmenten, in welchen der restliche Umsatz erfolgen kann. Mit Hilfe der elektrischen Beheizung ermöglicht das erfindungsgemäße Reaktorkonzept, über welche mittels der Kopplung mit einer elektrischen Heizsegmenten weiterhin die benötigte Energie der Reaktion im hinteren Teil des Reaktors zugeführt wird, zusätzliche Ausbeuten des Synthesegases. Durch einen segmentierten Einbau von Heizelementen, wird ein beliebiges Temperaturprofil über die Reaktorlänge innerhalb des gewünschten Temperaturbereichs ermöglicht. With increasing reaction conversion of methane / hydrogen heating method by oxidation of the starting materials is increasingly ineffective. This is achieved by the additional use of electrical heating segments, in which the remaining sales can be made. With the help of the electric heating reactor of the invention allows, via which by means of the coupling with an electric heating segments continue to require the required energy Reaction is fed to the rear of the reactor, additional yields of the synthesis gas. By a segmented installation of heating elements, any temperature profile over the reactor length is made possible within the desired temperature range.
Ein weiterer Vorteil dieses Reaktorkonzeptes liegt im flexiblen Umstellen der Beheizungsarten von Oxidation auf elektrisch und/oder des Fahrens im Wechselbetrieb zwischen stark (DR, SMR) und schwach endothermen Reaktionen (RWGS). Another advantage of this reactor concept lies in the flexible switching of the heating modes from oxidation to electrical and / or driving in alternating operation between strong (DR, SMR) and weak endothermic reactions (RWGS).
Im erfindungsgemäßen Verfahren wird für beide Reaktionstypen (endotherm und exotherm) der gleiche Reaktor verwendet, so dass kein Umschalten der Eduktströme auf separate Apparate erfolgen muss. Vielmehr besteht die Möglichkeit eines allmählichen Anfahrens der jeweils anderen Reaktion durch kontinuierliches Reduzieren der Methanzufuhr bei gleichzeitigem Erhöhen der Wasserstoffzufuhr zum Reaktor und umgekehrt. Es ist daher auch eine Mischform beider Reaktionen zu-lässig. Eine Zudosierung von Wasser ist in diesem Konzept ebenfalls möglich, so dass sich ein Betrieb als Dampfreformer (SMR, +206 kJ/mol) bzw. eine Mischform aus den drei obengenannten Reaktionen ergibt. Somit lässt sich der Grad der Endothermie beliebig einstellen und wird im Betrieb den energiewirtschaftlichen und lokalen Randbedingungen angepasst. In the process according to the invention, the same reactor is used for both reaction types (endothermic and exothermic), so that it is not necessary to switch the reactant streams to separate apparatuses. Rather, there is the possibility of a gradual start of the other reaction by continuously reducing the supply of methane while increasing the hydrogen supply to the reactor and vice versa. It is therefore also a mixed form of both reactions to-casual. A metered addition of water is also possible in this concept, so that operation as a steam reformer (SMR, +206 kJ / mol) or a mixed form results from the three abovementioned reactions. Thus, the degree of endothermy can be set arbitrarily and is adapted in operation to the energy industry and local boundary conditions.
In der endothermen Fahrweise des Reaktors reagiert C02 mit Kohlenwasserstoffen, H20 und/oder H2 unter Bildung von (unter anderem) CO. Die beteiligten Kohlenwasserstoffe für die endothermen und exothermen Reaktionen sind vorzugsweise Alkane, Alkene, Alkine, Alkanole, Alkenole und/oder Alkinole. Unter den Alkanen ist Methan besonders geeignet, unter den Alkanolen sind Methanol und/oder Ethanol bevorzugt. In the endothermic driving of the reactor, C0 2 reacts with hydrocarbons, H 2 O and / or H 2 to form (inter alia) CO. The hydrocarbons involved in the endothermic and exothermic reactions are preferably alkanes, alkenes, alkynes, alkanols, alkenols and / or alkynols. Among the alkanes, methane is particularly suitable, among the alkanols methanol and / or ethanol are preferred.
In der exothermen Fahrweise werden als Edukte Kohlenwasserstoffe, CO und/oder Wasserstoff eingesetzt. Sie reagieren untereinander oder mit weiteren Edukten im Reaktor. In the exothermic procedure hydrocarbons, CO and / or hydrogen are used as starting materials. They react with each other or with other reactants in the reactor.
Wie bereits erwähnt sind Beispiele für endotherme Reaktionen: As already mentioned, examples of endothermic reactions are:
Dry Reforming von Methan (DR): CH4 + C02 *± 2 CO + 2 H2 Steam Reforming von Methan (SMR) : CH4 + H20 *± 3 H2 + CO Dry reforming of methane (DR): CH 4 + C0 2 * ± 2 CO + 2 H 2 Steam reforming of methane (SMR): CH 4 + H 2 0 * ± 3 H 2 + CO
Umgekehrte Wassergas-Shift-Reaktion (RWGS): C02 + H2 *± CO + H20 Reverse Water Gas Shift Reaction (RWGS): C0 2 + H 2 * ± CO + H 2 0
Beispiele für exotherme Reaktionen sind: Examples of exothermic reactions are:
Partialoxidation von Methan (POX): CH4 + 1/2 02 -> CO + 2 H2 Partial oxidation of methane (POX): CH 4 + 1/2 0 2 -> CO + 2 H 2
Boudouard-Reaktion: 2CO^ C + CO Methanverbrennung (CMB): CH4 + 2 02 ^ C02 + 2 H20 CO-Oxidation: CO + Vi 02 -> C02 Wasserstoff- Verbrennung: H2 + i 02— > H20 Boudouard reaction: 2CO ^ C + CO Methane combustion (CMB): CH 4 + 2 0 2 ^ C0 2 + 2 H 2 0 CO oxidation: CO + Vi 0 2 -> C0 2 Hydrogen combustion: H 2 + i 0 2 -> H 2 0
Oxidative Kopplung von Methan (OCM): 2 CH4 + 02 -> C2H4 + 2 H20 Durch die exotherme Partialoxidation wird die benötigte thermische Energie gewonnen und weiterhin Synthesegas produziert. So kann beispielsweise nachts oder während windstiller Tagesabschnitte die Produktion im gleichen Reaktor weiter fortgeführt werden. Oxidative coupling of methane (OCM): 2 CH 4 + 0 2 -> C 2 H 4 + 2 H 2 0 The exothermic partial oxidation gives the required thermal energy and continues to produce synthesis gas. Thus, for example, at night or during windless daytime sections, production can be continued in the same reactor.
Weiterhin kann als alternative oder zusätzliche Beheizungsmethode die Verbrennung von Wasserstoff eingesetzt werden. Es ist sowohl möglich, dass die Verbrennung von Wasserstoff bei der RWGS-Reaktion durch Zudosierung von 02 in das Eduktgas (idealerweise eine örtlich verteilte oder seitliche Zudosierung) erfolgt, als auch möglich, dass wasserstoffreiche Restgase (zum Beispiel PSA-Abgas), wie sie bei der Aufreinigung des Synthesegases anfallen können, zurückgeführt und zusammen mit 02 verbrannt werden, wodurch dann das Prozessgas aufgeheizt wird. Ein Vorteil der oxidativen Fahrweise ist, dass durch Dry Reforming oder Steam Reforming gebildete Rußablagerungen entfernt werden können und so der eingesetzte Katalysator regeneriert werden kann. Überdies ist es möglich Passivierungsschichten, der Heizleiter oder anderer metallischer Einbauten, zu regenerieren, um die Standzeit zu erhöhen. Furthermore, as an alternative or additional heating method, the combustion of hydrogen can be used. It is both possible that the combustion of hydrogen in the RWGS reaction by metering of 0 2 in the educt gas (ideally a locally distributed or lateral metering) takes place, as well as possible that hydrogen-rich residual gases (for example, PSA exhaust gas), such They can be incurred in the purification of the synthesis gas, recycled and burned together with 0 2 , which then the process gas is heated. An advantage of the oxidative mode of operation is that soot deposits formed by dry reforming or steam reforming can be removed and thus the catalyst used can be regenerated. Moreover, it is possible to regenerate passivation layers, the heating conductor or other metallic internals in order to increase the service life.
In der Regel werden endotherme Reaktionen von außen durch die Wände der Reaktionsröhren beheizt. Dem gegenüber steht die autotherme Reformierung mit 02-Zugabe. Im hier beschriebenen Reaktorbetrieb kann über eine elektrische Beheizung innerhalb des Reaktors (die unerwünschte Alternative wäre elektrische Beheizung via Strahlung durch die Reaktorwand) die endotherme Reaktion effizient intern mit Wärme versorgt werden. Diese Art des Reaktorbetriebs wird insbesondere dann wirtschaftlich, wenn das aus dem Ausbau der regenerativen Energiequellen resultierende Überangebot kostengünstig genutzt werden kann. In general, endothermic reactions are heated from the outside through the walls of the reaction tubes. Opposite is the autothermal reforming with 0 2 -addition. In the reactor operation described here, the endothermic reaction can be efficiently internally supplied with heat via an electrical heating within the reactor (the undesired alternative would be electrical heating via radiation through the reactor wall). This type of reactor operation is particularly economical if the excess supply resulting from the expansion of renewable energy sources can be used cost-effectively.
Das erfindungsgemäße Verfahren sieht vor, die DR-, SMR-, RWGS- und POX-Reaktionen in demselben Reaktor ablaufen zu lassen. Ein Mischbetrieb ist ausdrücklich vorgesehen. Einer der Vorteile dieser Möglichkeit ist das allmähliche Anfahren der jeweils anderen Reaktion, zum Beispiel durch kontinuierliches Reduzieren der Kohlenwasserstoffzufuhr bei gleichzeitiger Erhöhung der Methanzufuhr oder durch kontinuierliches Erhöhen der Kohlenwasserstoffzufuhr bei gleichzeitiger Verringerung der Methanzufuhr. Die vorliegende Erfindung einschließlich bevorzugter Ausführungsformen wird in Verbindung mit der nachfolgenden Zeichnung weiter erläutert, ohne hierauf beschränkt zu sein. Die Ausführungsformen können beliebig miteinander kombiniert werden, sofern sich nicht eindeutig das Gegenteil aus dem Kontext ergibt. FIG. 1 zeigt schematisch einen Strömungsreaktor in expandierter Darstellung. The process according to the invention provides for the DR, SMR, RWGS and POX reactions to proceed in the same reactor. A mixed operation is expressly provided. One of the advantages of this approach is the gradual onset of the other reaction, for example, by continuously reducing the hydrocarbon feed while increasing the methane feed or by continuously increasing the hydrocarbon feed while reducing the methane feed. The present invention including preferred embodiments will be further explained in connection with the following drawings without being limited thereto. The embodiments can be combined as desired, unless clearly the opposite results from the context. FIG. 1 shows schematically a flow reactor in an expanded representation.
In einer Ausführungsform des erfindungsgemäßen Verfahrens ist die endotherme Reaktion ausgewählt aus: Dry Reforming von Methan, Steam Reforming von Methan, umgekehrte Wassergas-Shift-Reaktion, Kohlevergasung und/oder Methanpyrolyse und die exotherme Reaktion ist ausgewählt aus: Partialoxidation von Methan, autothermale Reformierung, Boudouard- Reaktion, Methan Verbrennung, CO-Oxidation, Wasserstoff-Oxidation, oxidative Kopplung von Methan und/oder Sabatier-Methanisierung (C02 und CO zu Methan). In one embodiment of the process according to the invention, the endothermic reaction is selected from: methane dry reforming, methane methane reverse gas reforming, reverse gas shift, coal gasification and / or methane pyrolysis, and the exothermic reaction is selected from: partial oxidation of methane, autothermal reforming, Boudouard reaction, methane combustion, CO oxidation, hydrogen oxidation, oxidative coupling of methane and / or Sabatier methanation (C0 2 and CO to methane).
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens nimmt in Strömungsrichtung des Reaktanden umfassenden Fluids gesehen stromabwärts im Reaktor der Anteil der Wärmemenge Q2 zu. In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens umfasst dieses weiterhin die Schritte: In a further embodiment of the method according to the invention, in the flow direction of the fluid comprising the reactant, the proportion of the quantity of heat Q2 increases downstream in the reactor. In a further embodiment of the method according to the invention, this further comprises the steps:
- Festlegen eines - set one
Schwell wertes Sl für die Kosten der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie und/oder eines Schwellwertes S2 für den relativen Anteil von elektrischer Energie aus regenerativenThreshold Sl for the cost of the electric current available for the flow reactor and / or a threshold value S2 for the relative proportion of electrical energy from regenerative
Quellen der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie; und Sources of electrical energy available to the flow reactor; and
- Vergleichen der Kosten der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie mit dem Schwellwert S 1 und/oder des relativen Anteils von elektrischer Energie aus regenerativen Quellen der für denComparing the cost of the electric energy available for the flow reactor with the threshold value S 1 and / or the relative proportion of electrical energy from regenerative sources for the
Strömungsreaktor zur Verfügung stehenden elektrischen Energie mit dem Schwellwert S2; Flow reactor available electrical energy with the threshold S2;
- Verringern des Umfangs der exothermen Reaktion und/oder Erhöhen des Umfangs des elektrischen Beheizens des Reaktors, wenn der Schwellwert Sl unterschritten wird und/oder der Schwellwert S2 überschritten wird; und - Erhöhen des Umfangs der exothermen Reaktion und/oder Verringern des Umfangs des elektrischen Beheizens des Reaktors, wenn der Schwellwert Sl unterschritten wird und/oder der Schwellwert S2 überschritten wird. - Reducing the extent of the exothermic reaction and / or increasing the amount of electrical heating of the reactor, when the threshold value Sl is exceeded and / or the threshold value S2 is exceeded; and - Increasing the scope of the exothermic reaction and / or reducing the amount of electrical heating of the reactor when the threshold value Sl is exceeded and / or the threshold value S2 is exceeded.
In dieser Variante zum hybriden Betrieb einer Synthesegasherstellung wird anhand von einem oder mehreren Schwellwerten entschieden, welche Betriebsart gewählt werden soll. Der erste Schwellwert S 1 betrifft die Elektrizitätskosten für den Reaktor, im Speziellen die Kosten für eine elektrische Beheizung des Reaktors durch die Heizelemente in den Heizebenen. Hier kann festgelegt werden, bis zu welcher Höhe die elektrische Beheizung noch wirtschaftlich sinnvoll ist. In this variant for the hybrid operation of a synthesis gas production, it is decided based on one or more threshold values which mode of operation is to be selected. The first threshold S 1 relates to the electricity cost of the reactor, in particular the cost of electrically heating the reactor by the heating elements in the heating levels. Here it can be determined up to which height the electric heating is still economically reasonable.
Der zweite Schwellwert S2 betrifft den relativen Anteil von elektrischer Energie aus regenerativen Quellen, die für den Reaktor und auch wieder im Speziellen für die elektrische Beheizung des Reaktors durch die Heizelemente in den Heizebenen zur Verfügung steht. Der relative Anteil ist hierbei bezogen auf die gesamte elektrische Energie der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie und kann selbstverständlich im zeitlichen Verlauf schwanken. Beispiele für regenerative Quellen, aus denen elektrische Energie gewonnen werden kann, sind Windenergie, Solarenergie, geothermale Energie, Wellenenergie und Wasserkraft. Der relative Anteil kann durch Auskünfte beim Energieversorger bestimmt werden. Stehen beispielsweise auf einem Werksgelände eigene regenerative Energiequellen wie Solaranlagen oder Windenergieanlagen, so kann über eine Leistungsüberwachung auch dieser relative Energieanteil angegeben werden. So wie sich der Schwell wert Sl beispielsweise als Preisobergrenze verstehen lässt, kann der Schwellwert S2 als Vorgabe aufgefasst werden, im größtmöglichen vertretbaren Umfang erneuerbare Energien zu nutzen. Beispielsweise kann S2 lauten, dass ab einem Anteil von 5%, 10%, 20% oder 30% von elektrischer Energie aus erneuerbaren Quellen die elektrische Beheizung des Reaktors erfolgen soll. Ein Vergleich der Soll-Werte mit den Ist-Werten im Verfahren kann nun zu dem Ergebnis gelangen, dass elektrische Energie preisgünstig vorhanden ist und/oder genug elektrische Energie aus erneuerbaren Quellen zur Verfügung steht. Dann wird der Strömungsreaktor so betrieben, dass die exotherme Reaktion in einem geringeren Umfang durchgeführt wird und/oder mehr elektrisch beheizt wird. Ergibt der Soll/Ist- Vergleich, dass elektrische Energie zu teuer ist und/oder zuviel Energie aus nicht-regenerativen Quellen eingesetzt werden müsste, so wird der Umfang der exothermen Reaktion erhöht und/oder der Umfang des elektrischen Beheizens heruntergefahren. Um sicherzustellen, dass auch bei längeren RWGS-Phasen eine ausreichende Menge an Wasserstoff zur Verfügung steht, kann das System mit einer Wasserelektrolyseeinheit zur Wasserstofferzeugung gekoppelt werden. Die Betriebsstrategie der Wasserelektrolyse wird dabei ebenfalls an die Parameter 'Strompreis' und 'Anteil an regenerativer Energie im Netz' gekoppelt. Das Gesamtsystem kann daher im Bedarfsfall über mindestens einen Wasserstoffspeicher verfügen. Mit der Möglichkeit der Durchführung einer Dampfreformierung bzw. eines gemischten Reformings und dem somit gegenüber dem DR erhöhten Wasserstoffanteil im Synthesegas ergibt sich ein weiterer Freiheitsgrad in der Betriebsstrategie zur Herstellung von Wasserstoff für reine RWGS-Phasen. In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens umfasst der Strömungsreaktor: in Strömungsrichtung des Fluids gesehen eine Mehrzahl von Heizebenen, welche mittels Heizelementen elektrisch beheizt werden und wobei die Heizebenen von dem Fluid durchströmbar sind, wobei an mindestens einem Heizelement ein Katalysator angeordnet ist und dort beheizbar ist, wobei weiterhin mindestens einmal eine Zwischenebene zwischen zwei Heizebenen angeordnet ist und wobei die Zwischenebene ebenfalls von dem Fluid durchströmbar ist. The second threshold S2 relates to the relative proportion of electrical energy from regenerative sources available to the reactor and, in particular, to the electrical heating of the reactor by the heating elements in the heating levels. The relative proportion is in this case based on the total electrical energy of the electric current available for the flow reactor and can of course vary over time. Examples of regenerative sources from which electrical energy can be obtained are wind, solar, geothermal, wave and hydro. The relative share can be determined by providing information to the energy supplier. If, for example, a factory site owns its own regenerative energy sources such as solar plants or wind turbines, this relative energy share can also be indicated via performance monitoring. Just as the threshold value Sl can be understood, for example, as a price upper limit, the threshold value S2 can be understood as a requirement to use renewable energies to the greatest possible extent. For example, S2 may mean that from a proportion of 5%, 10%, 20% or 30% of electrical energy from renewable sources, the electrical heating of the reactor should take place. A comparison of the desired values with the actual values in the method can now reach the conclusion that electrical energy is available inexpensively and / or enough electrical energy is available from renewable sources. Then, the flow reactor is operated so that the exothermic reaction is carried out to a lesser extent and / or more electrically heated. If the target / actual comparison reveals that electrical energy is too expensive and / or too much energy should be used from non-regenerative sources, the extent of the exothermic reaction is increased and / or the amount of electrical heating is shut down. To ensure that even with longer RWGS phases a sufficient amount of hydrogen is available, the system can be coupled with a water electrolysis unit for hydrogen production. The operating strategy of water electrolysis is also linked to the parameters 'electricity price' and 'proportion of regenerative energy in the grid'. The entire system may therefore have at least one hydrogen storage if required. With the possibility of carrying out a steam reforming or a mixed reforming and thus the increased hydrogen content in the synthesis gas relative to the DR, a further degree of freedom results in the operating strategy for the production of hydrogen for pure RWGS phases. In a further embodiment of the method according to the invention, the flow reactor comprises: seen in the flow direction of the fluid, a plurality of heating levels which are electrically heated by heating elements and wherein the heating levels are permeable by the fluid, wherein a catalyst is arranged on at least one heating element and is heatable there , Wherein furthermore at least once an intermediate plane between two heating planes is arranged and wherein the intermediate plane is also traversed by the fluid.
Der in FIG. 1 schematisch gezeigte erfindungsgemäß einzusetzende Strömungsreaktor wird von einem Reaktanden umfassenden Fluid von oben nach unten durchströmt, wie durch die Pfeile in der Zeichnung dargestellt. Das Fluid kann flüssig oder gasförmig sein und einphasig oder mehrphasig aufgebaut sein. Vorzugsweise, auch angesichts der möglichen Reaktionstemperaturen, ist das Fluid gasförmig. Es ist sowohl denkbar, dass das Fluid ausschließlich Reaktanden und Reaktionsprodukte enthält, aber auch, dass zusätzlich inerte Komponenten wie Inertgase im Fluid vorliegen. The in FIG. 1 schematically shown flow reactor used according to the invention is flowed through by a fluid comprising reactants from top to bottom, as shown by the arrows in the drawing. The fluid may be liquid or gaseous and may be single-phase or multi-phase. Preferably, also in view of the possible reaction temperatures, the fluid is gaseous. It is conceivable that the fluid contains only reactants and reaction products, but also that additionally inert components such as inert gases are present in the fluid.
In Strömungsrichtung des Fluids gesehen weist der Reaktor eine Mehrzahl von (im vorliegenden Fall vier) Heizebenen 100, 101, 102, 103 auf, welche mittels entsprechender Heizelemente 110, 111, 112, 113 elektrisch beheizt werden. Die Heizebenen 100, 101, 102, 103 werden im Betrieb des Reaktors von dem Fluid durchströmt und die Heizelemente 110, 111, 112, 113 werden von dem Fluid kontaktiert. An mindestens einem Heizelement 110, 111, 112, 113 ist ein Katalysator angeordnet und ist dort beheizbar. Der Katalysator kann direkt oder indirekt mit den Heizelementen 110, 111, 112, 113 verbunden sein, so dass diese Heizelemente den Katalysatorträger oder einen Träger für den Katalysatorträger darstellen. In dem Reaktor erfolgt somit die Wärmeversorgung der Reaktion elektrisch und wird nicht von Außen mittels Strahlung durch die Wandungen des Reaktors eingebracht, sondern direkt in das Innere des Reaktionsraumes. Es wird eine direkte elektrische Beheizung des Katalysators realisiert. As seen in the direction of flow of the fluid, the reactor has a plurality of (four in the present case) heating levels 100, 101, 102, 103, which are electrically heated by means of corresponding heating elements 110, 111, 112, 113. The heating levels 100, 101, 102, 103 are flowed through by the fluid during operation of the reactor and the heating elements 110, 111, 112, 113 are contacted by the fluid. At least one heating element 110, 111, 112, 113, a catalyst is arranged and is heated there. The catalyst may be directly or indirectly connected to the heating elements 110, 111, 112, 113 so that these heating elements constitute the catalyst support or a support for the catalyst support. In the reactor, therefore, the heat supply of the reaction takes place electrically and is not introduced from the outside by means of radiation through the walls of the reactor, but directly into the interior of the reaction space. It is realized a direct electrical heating of the catalyst.
Für die Heizelemente 110, 111, 112, 113 kommen bevorzugt Heißleiterlegierungen wie FeCr AI- Legierungen zum Einsatz. Alternativ zu metallischen Werkstoffen können zudem auch elektrisch leitfähige Si-basierte Materialien, besonders bevorzugt SiC, eingesetzt werden. For the heating elements 110, 111, 112, 113, thermistor alloys such as FeCr Al alloys are preferably used. In addition to metallic materials, it is also possible to use electrically conductive Si-based materials, particularly preferably SiC.
Im Reaktor ist weiterhin mindestens einmal eine vorzugsweise keramische Zwischenebene 200, 201, 202 zwischen zwei Heizebenen 100, 101, 102, 103 angeordnet, wobei die Zwischenebene(n) 200, 201, 202 ebenfalls im Betrieb des Reaktors vom dem Fluid durchströmt werden. Dieses hat den Effekt einer Homogenisierung der Fluidströmung Es ist auch möglich, dass zusätzlicher Katalysator in einer oder mehreren Zwischenebenen 200, 201, 202 oder weiteren Isolationselementen im Reaktor vorhanden ist. Dann kann eine adiabatische Reaktion ablaufen. Die Zwischenebenen können bei Bedarf insbesondere bei Reaktionen, in denen eine Sauerstoff- Zufuhr vorgesehen ist, als Flammsperre fungieren. In the reactor at least once more preferably a ceramic intermediate level 200, 201, 202 between two heating levels 100, 101, 102, 103, wherein the intermediate level (s) 200, 201, 202 are also traversed by the fluid in the operation of the reactor. This has the effect of homogenizing the fluid flow. It is also possible that additional catalyst is present in one or more intermediate levels 200, 201, 202 or other isolation elements in the reactor. Then an adiabatic reaction can take place. The intermediate levels may act as flame arresters as needed, especially in reactions where oxygen delivery is provided.
Bei der Verwendung von FeCrAl-Heißleitern kann die Tatsache ausgenutzt werden, dass das Material durch Temperatureinwirkung in Gegenwart von Luft/Sauerstoff eine Al203-Schutzschicht ausbildet. Diese Passivierungsschicht kann als Grundschicht eines Washcoats dienen, welcher als katalytisch aktive Beschichtung fungiert. Damit ist die direkte Widerstandsbeheizung des Katalysators beziehungsweise die Wärmeversorgung der Reaktion direkt über die katalytische Struktur realisiert. Es ist auch, bei Verwendung anderer Heißleiter, die Bildung anderer Schutzschichten wie beispielsweise von Si-O-C-Systemen möglich. When using FeCrAl thermistors, the fact can be exploited that the material forms an Al 2 O 3 protective layer by the action of temperature in the presence of air / oxygen. This passivation layer can serve as a basecoat of a washcoat, which acts as a catalytically active coating. Thus, the direct resistance heating of the catalyst or the heat supply of the reaction is realized directly through the catalytic structure. It is also possible, when using other thermistor, the formation of other protective layers such as Si-OC systems.
Die Druckaufnahme im Reaktor kann über einen druckfesten Stahlmantel erfolgen. Unter Verwendung geeigneter keramischer Isolationsmaterialien kann erreicht werden, dass der drucktragende Stahl Temperaturen von weniger als 200 °C und, wo notwendig, auch weniger als 60 °C ausgesetzt wird. Durch entsprechende Vorrichtungen kann dafür gesorgt werden, dass bei Taupunktsunterschreitung keine Auskondensation von Wasser am Stahlmantel erfolgt. The pressure in the reactor can take place via a pressure-resistant steel jacket. Using suitable ceramic insulation materials it can be achieved that the pressure-bearing steel is exposed to temperatures of less than 200 ° C and, if necessary, less than 60 ° C. By means of appropriate devices, it can be ensured that, when the dew point is undershot, there is no condensation of water on the steel jacket.
Die elektrischen Anschlüsse sind in FIG. 1 nur sehr schematisch dargestellt. Sie können im kalten Bereich des Reaktors innerhalb einer Isolierung zu den Enden des Reaktors geführt oder seitlich aus den Heizelementen 110, 111, 112, 113 durchgeführt werden, so dass die eigentlichen elektrischen Anschlüsse im kalten Bereich des Reaktors vorgesehen sein können. Die elektrische Beheizung erfolgt mit Gleichstrom oder Wechselstrom. The electrical connections are shown in FIG. 1 only shown very schematically. They can be routed in the cold area of the reactor within an insulation to the ends of the reactor or laterally from the heating elements 110, 111, 112, 113, so that the actual electrical connections can be provided in the cold region of the reactor. The electrical heating is done with direct current or alternating current.
Durch geeignete Formgebung kann eine Oberflächenvergrößerung erreicht werden. Es ist möglich, dass in den Heizebenen 100, 101, 102, 103 Heizelemente 110, 111, 112, 113 angeordnet sind, welche spiralförmig, mäanderförmig, gitterförmig und/oder netzförmig aufgebaut sind. By appropriate shaping an increase in surface area can be achieved. It is possible that in the heating levels 100, 101, 102, 103 heating elements 110, 111, 112, 113 are arranged, which are constructed in a spiral, meandering, grid-shaped and / or reticulated manner.
Es ist weiterhin möglich, dass an zumindest einem Heizelement 110, 111, 112, 113 eine von den übrigen Heizelementen 110, 111, 112, 113 verschiedene Menge und/oder Art des Katalysators vorliegt. Vorzugsweise sind die Heizelemente 110, 111, 112, 113 so eingerichtet, dass sie jeweils unabhängig voneinander elektrisch beheizt werden können. It is also possible for at least one heating element 110, 111, 112, 113 to have a different amount and / or type of catalyst from the other heating elements 110, 111, 112, 113. Preferably, the heating elements 110, 111, 112, 113 are arranged so that they can each be electrically heated independently of each other.
Im Endergebnis können die einzelnen Heizebenen einzeln gesteuert und geregelt werden. Im Reaktoreintrittsbereich kann nach Bedarf auch auf einen Katalysator in den Heizebenen verzichtet werden, so dass ausschließlich die Aufheizung und keine Reaktion im Eintrittsbereich erfolgt. Dieses ist insbesondere im Hinblick auf das Anfahren des Reaktors von Vorteil. Wenn sich die einzelnen Heizebenen 100, 101, 102, 103 in Leistungseintrag, Katalysatorbeladung und/oder Katalysatorart unterscheiden, kann ein für die jeweilige Reaktion angepasstes Temperaturprofil erreicht werden. In Hinblick auf die Anwendung für endotherme Gleichgewichtsreaktionen ist dieses beispielsweise ein Temperaturprofil, das die höchsten Temperaturen und damit den höchsten Umsatz am Reaktoraustritt erreicht. Die (beispielsweise keramischen) Zwischenebenen 200, 201, 202 respektive ihr Inhalt 210, 211, 212 umfassen ein gegenüber den Reaktionsbedingungen beständiges Material, beispielsweise einen keramischen Schaum. Sie dienen zur mechanischen Abstützung der Heizebenen 100, 101, 102, 103 sowie zur Durchmischung und Verteilung des Gasstroms. Gleichzeitig ist so eine elektrische Isolierung zwischen zwei Heizebenen möglich. Es ist bevorzugt, dass das Material des Inhalts 210, 211, 212 einer Zwischenebene 200, 201, 202 Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit. As a result, the individual heating levels can be individually controlled and regulated. In the reactor inlet area can be dispensed with a catalyst in the heating levels as needed, so that only the heating and no reaction takes place in the inlet area. This is particularly advantageous in terms of starting the reactor. If the individual heating levels 100, 101, 102, 103 differ in power input, catalyst charge and / or type of catalyst, a temperature profile adapted for the respective reaction can be achieved. With regard to the application for endothermic equilibrium reactions, this is, for example, a temperature profile which achieves the highest temperatures and thus the highest conversion at the reactor outlet. The (for example ceramic) intermediate levels 200, 201, 202 or their contents 210, 211, 212 comprise a material resistant to the reaction conditions, for example a ceramic foam. They serve for mechanical support of the heating levels 100, 101, 102, 103 and for mixing and distribution of the gas stream. At the same time an electrical insulation between two heating levels is possible. It is preferred that the material of the content 210, 211, 212 of an intermediate level 200, 201, 202 comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
Die Zwischenebene 200, 201, 202 kann beispielsweise eine lose Schüttung von Festkörpern umfassen. Diese Festkörper selbst können porös oder massiv sein, so dass das Fluid durch Lücken zwischen den Festkörpern hindurchströmt. Es ist bevorzugt, dass das Material der Festkörper Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit. Es ist ebenfalls möglich, dass die Zwischenebene 200, 201, 202 einen einstückigen porösen Festkörper umfasst. In diesem Fall durchströmt das Fluid die Zwischenebene über die Poren des Festkörpers. Dieses ist in FIG. 1 dargestellt. Bevorzugt sind Wabenmonolithe, wie sie beispielsweise bei der Abgasreinigung von Verbrennungsmotoren eingesetzt werden. Eine weitere denkbare Möglichkeit ist, dass eine oder mehrere der Zwischenebenen Leerräume sind. The intermediate level 200, 201, 202 may include, for example, a loose bed of solids. These solids themselves may be porous or solid, so that the fluid flows through gaps between the solids. It is preferred that the material of the solid bodies comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite. It is also possible that the intermediate plane 200, 201, 202 comprises a one-piece porous solid. In this case, the fluid flows through the intermediate plane via the pores of the solid. This is shown in FIG. 1 shown. Preference is given to honeycomb monoliths, as used for example in the exhaust gas purification of internal combustion engines. Another conceivable possibility is that one or more of the intermediate levels are voids.
Hinsichtlich der baulichen Abmessungen ist bevorzugt, dass die durchschnittliche Länge einer Heizebene 100, 101, 102, 103 in Strömungsrichtung des Fluids gesehen und die durchschnittliche Länge einer Zwischenebene 200, 201, 202 in Strömungsrichtung des Fluids gesehen in einem Verhältnis von > 0,01 : 1 bis < 100: 1 zueinander stehen. Noch vorteilhafter sind Verhältnisse von > 0,1 : 1 bis < 10: 1 oder 0,5: 1 bis < 5: 1. With regard to the structural dimensions, it is preferred that the average length of a heating level 100, 101, 102, 103 is viewed in the direction of flow of the fluid and the average length of an intermediate level 200, 201, 202 in the direction of flow of the fluid is in a ratio of> 0.01: 1 to <100: 1 to each other. Even more advantageous are ratios of> 0.1: 1 to <10: 1 or 0.5: 1 to <5: 1.
Geeignete Katalysatoren können beispielsweise ausgewählt sein aus der Gruppe umfassend: Suitable catalysts may, for example, be selected from the group comprising:
(I) ein Mischmetalloxid der A (i.w.x)A' wA"xB(i.y.z)B'yB"z03.deita wobei hier gilt: A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl , Lu, Ni, Co, Pb, Bi und/oder Cd; (I) a mixed metal oxide of A ( i w ) x A ' w A x B ( i y y z) B' y B z 0 3 . de i ta wherein applies: A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb, Bi and / or Cd;
B, B' und B" sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Mg, Li, Na, K, Ce und/oder Zn; und B, B 'and B "are independently selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb , Hf, Zr, Tb, W, Gd, Yb, Mg, Li, Na, K, Ce and / or Zn; and
0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < delta < 1 ; 0 <w <0.5; 0 <x <0.5; 0 <y <0.5; 0 <z <0.5 and -1 <delta <1;
(II) ein Mischmetalloxid der Formel A (i-w-x)A' wA"xB(1.y.z)B'yB"z03.deita wobei hier gilt: (II) a mixed metal oxide of the formula A (iw- x ) A ' w A " x B ( 1, y, z ) B' y B" z 0 3 .
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl , Lu, Ni, Co, Pb und/oder Cd; A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb and / or Cd;
B ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Bi, Mg, Cd, Zn, Re, Ru, Rh, Pd, Os, Ir und/oder Pt; B' ist ausgewählt aus der Gruppe: Re, Ru, Rh, Pd, Os, Ir und/oder Pt; B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W , Gd, Yb, Bi, Mg, Cd, Zn, Re, Ru, Rh, Pd, Os, Ir and / or Pt; B 'is selected from the group: Re, Ru, Rh, Pd, Os, Ir and / or Pt;
B" ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Bi, Mg, Cd und/oder Zn; und 0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < delta < 1 ; B "is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Bi, Mg, Cd and / or Zn, and 0 <w <0.5, 0 <x <0.5, 0 <y <0.5, 0 <z <0.5, and 1 <delta <1;
(III) eine Mischung von wenigstens zwei verschiedenen Metallen Ml und M2 auf einem Träger, welcher ein mit einem Metall M3 dotiertes Oxid von AI, Ce und/oder Zr umfasst; wobei hier gilt: (III) a mixture of at least two different metals Ml and M2 on a support comprising an oxide of Al, Ce and / or Zr doped with a metal M3; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Re, Ru, Rh, Ir, Os, Pd und/oder Pt; und Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt; and
M3 ist ausgewählt aus der Gruppe: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and / or Lu;
(IV) ein Mischmetalloxid der Formel LOx(M(y/z)Al(2-y/z)03)z; wobei hier gilt: L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; (IV) a mixed metal oxide of the formula LO x (M (y / z) Al (2 - y / z) 0 3 ) z ; where L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl, La, Ce, Pr, Nd , Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and / or Lu;
M ist ausgewählt aus der Gruppe: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu, Ag und/oder Au; M is selected from the group: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu , Ag and / or Au;
1 < x < 2; 0 < y < 12; und 1 <x <2; 0 <y <12; and
4 < z < 9; 4 <z <9;
(V) ein Mischmetalloxid der Formel L0(A1203)Z; wobei hier gilt: (V) a mixed metal oxide of the formula L0 (A1 2 0 3 ) Z ; where:
L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; und 4 < z < 9; L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb and / or Lu; and 4 <z <9;
(VI) ein oxidischer Katalysator, der Ni und Ru umfasst; (VI) an oxide catalyst comprising Ni and Ru;
(VII) ein Metall Ml und/oder wenigstens zwei verschiedene Metalle Ml und M2 auf und/oder in einem Träger, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selenid der Metalle A und/oder B ist; wobei hier gilt: (VII) a metal Ml and / or at least two different metals Ml and M2 on and / or in a carrier, wherein the carrier comprises a carbide, oxycarbide, carbonitride, nitride, boride, silicide, germanide and / or selenide of metals A and / or B is; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu; Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu;
A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu; A and B are independently selected from the group: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu;
(VIII) ein Katalysator umfassend Ni, Co, Fe, Cr, Mn, Zn, AI, Rh, Ru, Pt und/oder Pd; und/oder (VIII) a catalyst comprising Ni, Co, Fe, Cr, Mn, Zn, Al, Rh, Ru, Pt and / or Pd; and or
Reaktionsprodukte von (I), (II), (III), (IV), (V), (VI), (VII) und/oder (VIII) in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C. Reaction products of (I), (II), (III), (IV), (V), (VI), (VII) and / or (VIII) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at one temperature from> 700 ° C.
Der Begriff "Reaktionsprodukte" schließt die unter Reaktionsbedingungen vorliegenden Katalysatorphasen mit ein. The term "reaction products" includes the catalyst phases present under reaction conditions.
Bevorzugt sind für: Preferred are for:
(I) LaNi03 und/oder LaNioj-o^Feoj-o^Os (insbesondere LaNi0>8Fe0>2O3) (II) LaNi0>9-o,99Ruo,oi-o,i03 und/oder LaNi0>9-o,99Rho,oi-o,iC>3 (insbesondere LaNi0>95Ru0>05O3 und/oder LaNi0>95Rh0>05O3). (I) LaNi0 3 and / or LaNio j -o ^ Feo j -o ^ Os (especially LaNi 0> 8 Fe 0> 2O 3 ) (II) LaNi 0> 9-o , 99 Ruo , oi-o , i0 3 and / or LaNi 0> 9-o , 99 Rho , oi-o , iC> 3 (in particular LaNi 0> 95 Ru 0> 05O 3 and / or LaNi 0> 95 Rh 0> 05O 3 ).
(III) Pt-Rh auf Ce-Zr-Al-Oxid, Pt-Ru und/oder Rh-Ru auf Ce-Zr-Al-Oxid (III) Pt-Rh on Ce-Zr-Al oxide, Pt-Ru and / or Rh-Ru on Ce-Zr-Al oxide
(IV) BaNiAlnOi9, CaNiAlnOi9, BaNi0,975Ruo,o25AliiOi9, BaNio.gsRuo.osAlnOig, BaNi0>92Ruo,o8AlnOi9, (V) BaAl120i9, SrAl120i9 und/oder CaAl120 19 (VI) Ni und Ru auf Ce-Zr-Al-Oxid, auf einem Oxid aus der Klasse der Perowskite und/oder auf einem Oxid aus der Klasse der Hexaaluminate (IV) BaNiAl n Oi 9 , CaNiAl n Oi 9 , BaNi 0 , 975Ruo, o25AliiOi 9 , BaNio.gsRuo.osAlnOig, BaNi 0> 92Ruo , o 8 AlnOi 9 , (V) BaAl 12 0i 9 , SrAl 12 0i 9 and / or CaAl 12 0 19 (VI) Ni and Ru on Ce-Zr-Al oxide, on an oxide of the class of perovskites and / or on an oxide of the class of hexaaluminates
(VII) Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu auf Mo2C und/oder WC. Im erfindungsgemäßen Verfahren erfolgt im bereitgestellten Reaktor ein elektrisches Beheizen wenigstens eines der Heizelemente 110, 111, 112, 113. Dieses kann, muss aber nicht zeitlich vor dem Durchströmen eines Reaktanden umfassenden Fluids durch den Strömungsreaktor unter zumindest teilweiser Reaktion der Reaktanden des Fluids erfolgen. (VII) Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho , He, Tm, Yb, and / or Lu on Mo 2 C and / or WC. In the process according to the invention, an electric heating of at least one of the heating elements 110, 111, 112, 113 takes place in the reactor provided. This can, but does not have to, take place before the flow of a reactant through the flow reactor under at least partial reaction of the reactants of the fluid.
Der Reaktor kann modular aufgebaut sein. Ein Modul kann beispielsweise eine Heizebene, eine Isolationsebene, die elektrische Kontaktierung und die entsprechenden weiteren Isolationsmaterialien und Wärmedämmstoffe enthalten. The reactor can be modular. A module may include, for example, a heating level, an insulation level, the electrical contact and the corresponding further insulation materials and thermal insulation materials.
Wie bereits im Zusammenhang mit dem Reaktor erwähnt ist es vorteilhaft, wenn die einzelnen Heizelemente 110, 111, 112, 113 mit einer jeweils unterschiedlichen Heizleistung betrieben werden. Hinsichtlich der Temperatur ist bevorzugt, dass die Reaktionstemperatur im Reaktor wenigstens stellenweise > 700 °C bis < 1300 °C beträgt. Mehr bevorzugte Bereiche sind > 800 °C bis < 1200 °C und > 900 °C bis < 1100 °C. As already mentioned in connection with the reactor, it is advantageous if the individual heating elements 110, 111, 112, 113 are operated with a respective different heating power. With regard to the temperature, it is preferred that the reaction temperature in the reactor is at least in places> 700 ° C to <1300 ° C. More preferred ranges are> 800 ° C to <1200 ° C and> 900 ° C to <1100 ° C.
Die durchschnittliche (mittlere) Kontaktzeit des Fluids zu einem Heizelement 110, 111, 112, 113 kann beispielsweise > 0,01 Sekunden bis < 1 Sekunde betragen und/oder die durchschnittliche Kontaktzeit des Fluids zu einer Zwischenebene 110, 111, 112, 113 kann beispielsweise > 0,001 Sekunden bis < 5 Sekunden betragen. Bevorzugte Kontaktzeiten sind > 0,005 bis < 1 Sekunden, mehr bevorzugt > 0,01 bis < 0,9 Sekunden. The average (mean) contact time of the fluid to a heating element 110, 111, 112, 113 may be, for example,> 0.01 seconds to <1 second and / or the average contact time of the fluid to an intermediate level 110, 111, 112, 113 may be, for example > 0.001 seconds to <5 seconds. Preferred contact times are> 0.005 to <1 second, more preferably> 0.01 to <0.9 seconds.
Die Reaktion kann bei einem Druck von > 1 bar bis < 200 bar durchgeführt werden. Vorzugsweise beträgt der Druck > 2 bar bis < 50 bar, mehr bevorzugt > 10 bar bis < 30 bar. In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird: The reaction can be carried out at a pressure of> 1 bar to <200 bar. Preferably, the pressure is> 2 bar to <50 bar, more preferably> 10 bar to <30 bar. In a further embodiment of the method according to the invention:
- ein gewünschtes H2/CO-Verhältnisses im Synthesegas festgelegt und - Set a desired H 2 / CO ratio in the synthesis gas and
- die Reaktion von Kohlendioxid mit Kohlenwasserstoffen, Wasser und/oder Wasserstoff im Strömungsreaktor, wobei als Produkt mindestens Kohlenmonoxid gebildet wird, unter elektrischer Beheizung durch ein oder mehrere Heizelemente (110, 111, 112, 113) dann durchgeführt wird, wenn das gewünschte Verhältnis von H2/CO unterschritten ist; und - die Reaktion von Kohlenwasserstoffen mit Sauerstoff im Strömungsreaktor, wobei als Produkte mindestens Kohlenmonoxid und Wasserstoff gebildet werden, dann durchgeführt wird, wenn das gewünschte Verhältnis von H2/CO überschritten ist; wobei folgende Ausnahme gilt: ein Wechsel von der Reaktion von Kohlendioxid mit Kohlenwasserstoffen, wobei als Produkt mindestens Kohlenmonoxid gebildet wird, zur Reaktion von Kohlenwasserstoffen mit Sauerstoff, wobei als Produkte mindestens Kohlenmonoxid und Wasserstoff gebildet werden, findet dann statt, wenn das gewünschte Verhältnis von H2/CO unterschritten wird und umgekehrt. - The reaction of carbon dioxide with hydrocarbons, water and / or hydrogen in the flow reactor, wherein at least carbon monoxide is formed as product, under electrical heating by one or more heating elements (110, 111, 112, 113) is then carried out when the desired ratio of H 2 / CO has fallen below; and - The reaction of hydrocarbons with oxygen in the flow reactor, wherein at least carbon monoxide and hydrogen are formed as products, is carried out when the desired ratio of H 2 / CO is exceeded; with the following exception: a change from the reaction of carbon dioxide with hydrocarbons, at least carbon monoxide being formed as product, for the reaction of hydrocarbons with oxygen, forming at least carbon monoxide and hydrogen as products, takes place when the desired ratio of H 2 / CO falls below and vice versa.
Im konkreten Beispielfall ändert sich das H2/CO-Verhältnis beim Wechsel von C02-Reformierung auf POX von 1 : 1 auf 2: 1. Modifikationen durch die Zugabe von H20 oder C02 beim SMR sind zudem möglich. Beim Wechsel von Dry Reforming auf POX ändert sich dagegen das H2/CO- Verhältnis von 1 : 1 auf 2: 1. In the concrete example case, the H 2 / CO ratio changes from 1: 1 to 2: 1 when changing from C0 2 reforming to POX. Modifications by adding H 2 0 or C0 2 to the SMR are also possible. When changing from Dry Reforming to POX, however, the H 2 / CO ratio changes from 1: 1 to 2: 1.
In einer weiteren Ausführungsform kann das Hauptzielprodukt CO oder H2 sein. Der Kennwert Sl ist unterschritten und/oder der Kennwert S2 ist überschritten. In Folge dessen ist der endotherme Betrieb, das heißt Steam Reforming oder Dry Reforming, wobei bei zusätzlich C02 als Cl-Quelle verwendet wird, was sich in einer Einsparung von Methan niederschlägt, bevorzugt. Als Ergebnis des Dry Reformings werden pro Mol Methan zwei Mol CO und zwei Mol H2 erhalten. Das Eduktverhältnis von C02/CH4 ist > 1,25. Das im Produktgas vorhandene C02 wird in nachfolgenden Prozessschritten abgetrennt und in den Reaktor rückgeführt. Sobald der Kennwert Sl überschritten und/oder der Kennwert S2 unterschritten wird, wird die Fahrweise vom endothermen Betrieb auf den exothermen Betrieb umgestellt. Hierbei wird Methan mit 02 dem Reaktor zugeführt. C02 kann währende der Umschaltphase weiter zudosiert werden und als eine Art Inertkomponente eingesetzt werden bis die POX-Reaktion stabilisiert ist und ein neuer stationärer Zustand erreicht wird. Das in den Nachfolgeschritten abgetrennte C02 kann zwischengespeichert um beim Anfahren der endothermen Reaktion als Edukt eingesetzt werden. Beim Wechsel der Fahrweise auf partielle Oxidation werden die Eduktströme bzw. der Durchsatz von Methan und Sauerstoff derart angepasst, dass ein konstante CO-Menge oder H2-Menge für Folgeprozesse zur Verfügung steht. In a further embodiment, the main target product may be CO or H 2 . The characteristic value Sl has fallen below and / or the characteristic value S2 has been exceeded. As a result, the endothermic operation, that is, steam reforming or dry reforming, wherein in addition C0 2 is used as Cl source, which is reflected in a saving of methane, preferred. As a result of the dry reforming, two moles of CO and two moles of H 2 are obtained per mole of methane. The educt ratio of C0 2 / CH 4 is> 1.25. The C0 2 present in the product gas is separated off in subsequent process steps and recycled to the reactor. As soon as the characteristic value Sl is exceeded and / or the characteristic value S2 is undershot, the mode of operation is changed over from the endothermic operation to the exothermic operation. Here, methane is fed with 02 to the reactor. C0 2 can be further added during the switching phase and used as a kind of inert component until the POX reaction is stabilized and a new stationary state is reached. The separated in the following steps C0 2 can be temporarily stored in order to start the endothermic reaction used as starting material. When changing the procedure to partial oxidation, the reactant streams or the throughput of methane and oxygen are adjusted so that a constant amount of CO or H 2 amount is available for subsequent processes.
In einer weiteren bevorzugten Ausführungsform ist das Zielprodukt CO. Der Kennwert Sl ist unterschritten und/oder der Kennwert S2 ist überschritten. In Folge dessen ist der endotherme Betrieb, das heißt die Durchführung der rWGS-Reaktion, wobei C02 als Cl-Quelle verwendet wird, bevorzugt. Als Ergebnis der rWGS-Reaktion werden pro Mol C02 ein Mol CO und ein Mol Wasser enthalten. Das Eduktverhältnis von H2/C02 ist > 1,25. Das im Produktgas vorhandene C02 wird in nachfolgenden Prozessschritten abgetrennt und in den Reaktor rückgeführt. Sobald der Kennwert S 1 überschritten und/oder der Kennwert S2 unterschritten wird, wird die Fahrweise vom endothermen Betrieb auf den exothermen Betrieb umgestellt. Hierbei wird Methan mit 02 dem Reaktor zugeführt. C02 kann währende der Umschaltphase weiter zudosiert werden und als eine Art Inertkomponente eingesetzt werden bis die POX-Reaktion stabilisiert ist und ein neuer stationärer Zustand erreicht wird. Ein Teil des während des POX-Betriebs hergestellten Wasserstoffs kann zwischengespeichert und für den Betrieb der rWGS-Reaktion eingesetzt werden. Beim Wechsel der Fahrweise auf partielle Oxidation werden die Eduktströme bzw. der Durchsatz von Methan und Sauerstoff derart angepasst, dass ein konstante CO-Menge für Folgeprozesse zur Verfügung steht. In einer weiteren Ausführungsform des Verfahrens kann flexibel auf den Methanpreis reagiert werden. Dieser wird dann mit dem jeweils vorhandenen Strompreis abgeglichen. Hierbei wird die Einsparung von Methan bei der Durchführung der elektrisch beheizten C02-Reformierung, welche C02 als Cl -Quelle verwendet, gegen die Kosten für die elektrische Beheizung abgewogen. In a further preferred embodiment, the target product is CO. The characteristic value Sl has fallen below and / or the characteristic value S2 has been exceeded. As a result, endothermic operation, that is, performance of the rWGS reaction using C0 2 as the Cl source, is preferred. As a result of the rWGS reaction, one mole of CO and one mole of water will be contained per mole of CO 2 . The educt ratio of H 2 / CO 2 is> 1.25. The C0 2 present in the product gas is separated off in subsequent process steps and recycled to the reactor. As soon as the Characteristic value S 1 is exceeded and / or the characteristic value S2 is exceeded, the mode of operation is changed over from the endothermic operation to the exothermic operation. Here, methane is fed with 0 2 to the reactor. C0 2 can be further added during the switching phase and used as a kind of inert component until the POX reaction is stabilized and a new stationary state is reached. Part of the hydrogen produced during POX operation can be cached and used to operate the rWGS reaction. When changing the mode of operation to partial oxidation, the reactant streams or the throughput of methane and oxygen are adjusted in such a way that a constant amount of CO is available for subsequent processes. In a further embodiment of the method, it is possible to respond flexibly to the methane price. This is then compared with the current electricity price. Here, the saving of methane in carrying out the electrically heated C0 2 reforming, which uses C0 2 as Cl source, is weighed against the cost of electric heating.
In einer weiteren Ausführungsform erfolgt die Umschaltung auf die exotherm Fahrweise um auf Russbildung während des endothermen Betriebs zu reagieren. Der Betrieb mit 02 kann zudem dazu verwendet werden, um Passivierungsschichten innerhalb des Reaktors zu regenerieren. In a further embodiment, the switching to the exothermic mode of operation takes place in order to react on soot formation during the endothermic operation. The 0 2 operation can also be used to regenerate passivation layers within the reactor.
Neben dem exothermen Betrieb zur Bereitstellung eines Synthesegases können die elektrischen Heizelemente im Bereich des Reaktoreintritts für den Anfahrvorgang eingesetzt werden. Somit ist ein rasches Aufheizen des Eduktstroms möglich, was bei der Durchführung der endothermen Reformierreaktionen die Verkokung verringert und bei der Durchführung der POX ein örtlich definiertes Zünden der Reaktion ermöglicht und damit einen sicheren Reaktorbetrieb ermöglicht. In addition to the exothermic operation for providing a synthesis gas, the electrical heating elements can be used in the region of the reactor inlet for the starting process. Thus, a rapid heating of the reactant stream is possible, which reduces coking when carrying out the endothermic reforming reactions and, when carrying out the POX, allows a locally defined ignition of the reaction and thus enables safe reactor operation.
Gleichfalls betrifft die vorliegende Erfindung eine Steuerungseinheit, welche für die Steuerung des erfindungsgemäßen Verfahrens eingerichtet ist. Diese Steuerungseinheit kann auch auf mehrere Module, welche miteinander kommunizieren, verteilt sein beziehungsweise diese Module dann umfassen. In der Steuerungseinheit kann sich ein flüchtiger und/oder nichtflüchtiger Speicher befinden, der maschinenausführbare Befehle im Zusammenhang mit dem erfindungsgemäßen Verfahren enthält. Insbesondere kann es sich dabei um maschinenausführbare Befehle zur Erfassung der Schwellwerte, zum Vergleich der Schwellwerte mit den momentan herrschenden Bedingungen und zur Steuerung von Stellventilen und Verdichtern für gasförmige Reaktanden handeln. Likewise, the present invention relates to a control unit which is set up for the control of the method according to the invention. This control unit can also be distributed to a plurality of modules which communicate with one another or can then comprise these modules. The controller may include a volatile and / or non-volatile memory containing machine-executable instructions associated with the method of the invention. In particular, these may be machine-executable instructions for detecting the threshold values, for comparing the threshold values with the currently prevailing conditions and for controlling control valves and compressors for gaseous reactants.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von Kohlenmonoxid und/oder Wasserstoff enthaltenden Gasgemischen, umfassend die Schritte: 1. A process for the preparation of carbon monoxide and / or hydrogen-containing gas mixtures, comprising the steps:
- Bereitstellen eines Strömungsreaktors, welcher zur Reaktion eines Reaktanden umfassenden Fluids eingerichtet ist, wobei der Reaktor mindestens eine Heizebene (100, 101, 102, 103) umfasst, welche mittels eines oder mehrerer Heizelemente (110, 111, 112, 113) elektrisch beheizt wird, wobei die Heizebene (100, 101, 102, 103) von dem Fluid durchströmbar ist und wobei an mindestens einem Heizelement (110, 111, 112, 113) ein Katalysator angeordnet ist und dort beheizbar ist; - Providing a flow reactor, which is adapted to the reaction of a fluid comprising reactants, wherein the reactor at least one heating level (100, 101, 102, 103), which is electrically heated by means of one or more heating elements (110, 111, 112, 113) , wherein the heating level (100, 101, 102, 103) can be traversed by the fluid and wherein at least one heating element (110, 111, 112, 113), a catalyst is arranged and is heated there;
- endotherme Reaktion von Kohlendioxid mit Kohlenwasserstoffen, Wasser und/oder Wasserstoff in dem Strömungsreaktor, wobei als Produkt mindestens Kohlenmonoxid gebildet wird, unter elektrischer Beheizung durch ein oder mehrere Heizelemente (110, 111, 112, 113); und gleichzeitig - exotherme Reaktion von Kohlenwasserstoffen, Kohlenmonoxid und/oder Wasserstoff als Edukten in dem Strömungsreaktor; wobei die exotherme Reaktion eine Wärmemenge Ql freisetzt, das elektrische Beheizen des Reaktors eine Wärmemenge Q2 freisetzt und die exotherme Reaktion und das elektrische Beheizen des Reaktors so betrieben werden, dass die Summe aus Ql und Q2 größer oder gleich der für eine Gleichgewichtsausbeute Y der endothermen Reaktion von > 90% benötigten Wärmemenge Q3 ist. - Endothermic reaction of carbon dioxide with hydrocarbons, water and / or hydrogen in the flow reactor, wherein at least carbon monoxide is formed as a product, under electrical heating by one or more heating elements (110, 111, 112, 113); and simultaneously - exothermic reaction of hydrocarbons, carbon monoxide and / or hydrogen as educts in the flow reactor; wherein the exothermic reaction releases a heat quantity Ql, the electric heating of the reactor releases a heat quantity Q2 and the exothermic reaction and the electrical heating of the reactor are operated so that the sum of Ql and Q2 is greater than or equal to that for an equilibrium Y yield of the endothermic reaction of> 90% heat required Q3.
2. Verfahren gemäß Anspruch 1, wobei die endotherme Reaktion ausgewählt ist aus: Dry Reforming von Methan, Steam Reforming von Methan, umgekehrte Wassergas-Shift-Reaktion, Kohlevergasung und/oder Methanpyrolyse und die exotherme Reaktion ausgewählt ist aus: Partialoxidation von Methan, autothermale Reformierung, Boudouard-Reaktion, Methanverbrennung, CO-Oxidation, Wasserstoff-Oxidation, oxidative Kopplung von Methan und/oder Sabatier-Methanisierung. 2. The method of claim 1, wherein the endothermic reaction is selected from: dry reforming of methane, steam reforming of methane, reverse water gas shift reaction, coal gasification and / or methane pyrolysis and the exothermic reaction is selected from: partial oxidation of methane, autothermal Reforming, Boudouard reaction, methane combustion, CO oxidation, hydrogen oxidation, oxidative coupling of methane and / or Sabatier methanation.
3. Verfahren gemäß Anspruch 1, wobei in Strömungsrichtung des Reaktanden umfassenden Fluids gesehen stromabwärts im Reaktor der Anteil der Wärmemenge Q2 zunimmt. 3. The method according to claim 1, wherein seen in the flow direction of the reactant fluid increases downstream of the reactor, the proportion of the heat quantity Q2.
4. Verfahren gemäß Anspruch 1, weiterhin umfassend die Schritte: 4. The method of claim 1, further comprising the steps of:
- Festlegen eines Schwell wertes Sl für die Kosten der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie und/oder eines - Set a threshold value Sl for the cost of the available flow reactor for the available electrical energy and / or a
Schwellwertes S2 für den relativen Anteil von elektrischer Energie aus regenerativen Quellen der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie; und Threshold S2 for the relative proportion of electrical energy from regenerative sources of the electrical energy available for the flow reactor; and
- Vergleichen der Kosten der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie mit dem Schwellwert S 1 und/oder des relativen Anteils von elektrischer Energie aus regenerativen Quellen der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie mit dem Schwellwert S2; Comparing the costs of the electrical energy available for the flow reactor with the threshold value S 1 and / or the relative proportion of electrical energy from regenerative sources of the electrical energy available for the flow reactor with the threshold value S2;
- Verringern des Umfangs der exothermen Reaktion und/oder Erhöhen des Umfangs des elektrischen Beheizens des Reaktors, wenn der Schwellwert Sl unterschritten wird und/oder der- Reducing the extent of the exothermic reaction and / or increasing the amount of electrical heating of the reactor, when the threshold value Sl is exceeded and / or the
Schwellwert S2 überschritten wird; und Threshold S2 is exceeded; and
- Erhöhen des Umfangs der exothermen Reaktion und/oder Verringern des Umfangs des elektrischen Beheizens des Reaktors, wenn der Schwellwert Sl unterschritten wird und/oder der Schwellwert S2 überschritten wird. - Increasing the scope of the exothermic reaction and / or reducing the amount of electrical heating of the reactor when the threshold value Sl is exceeded and / or the threshold value S2 is exceeded.
5. Verfahren gemäß Anspruch 1, wobei der Strömungsreaktor umfasst: in Strömungsrichtung des Fluids gesehen eine Mehrzahl von Heizebenen (100, 101, 102, 103), welche mittels Heizelementen (110, 111, 112, 113) elektrisch beheizt werden und wobei die Heizebenen (100, 101, 102, 103) von dem Fluid durchströmbar sind, wobei an mindestens einem Heizelement (100, 101, 102, 103) ein Katalysator angeordnet ist und dort beheizbar ist, wobei weiterhin mindestens einmal eine keramische Zwischenebene (200, 201, 202) (die vorzugsweise von einem keramischen oder metallischen Traggerüst/-ebene getragen wird) zwischen zwei Heizebenen (100, 101, 102, 103) angeordnet ist und wobei die Zwischenebene (200, 201, 202) ebenfalls von dem Fluid durchströmbar ist. 5. The method of claim 1, wherein the flow reactor comprises: seen in the flow direction of the fluid, a plurality of heating levels (100, 101, 102, 103), which are electrically heated by means of heating elements (110, 111, 112, 113) and wherein the heating levels (100, 101, 102, 103) can be flowed through by the fluid, wherein a catalyst is arranged on at least one heating element (100, 101, 102, 103) and is heatable there, wherein at least once an intermediate ceramic level (200, 201, 202) (which is preferably supported by a ceramic or metallic support framework / plane) is arranged between two heating levels (100, 101, 102, 103) and wherein the intermediate level (200, 201, 202) 201, 202) can also be flowed through by the fluid.
6. Verfahren gemäß Anspruch 5, wobei in den Heizebenen (100, 101, 102, 103) Heizelemente (110, 111, 112, 113) angeordnet sind, welche spiralförmig, mäanderförmig, gitterförmig und/oder netzförmig aufgebaut sind. 6. The method according to claim 5, wherein in the heating levels (100, 101, 102, 103) heating elements (110, 111, 112, 113) are arranged, which are constructed spirally, meandering, lattice-shaped and / or reticulated.
7. Verfahren gemäß Anspruch 5, wobei an zumindest einem Heizelement (110, 111, 112, 113) eine von den übrigen Heizelementen (110, 111, 112, 113) verschiedene Menge und/oder Art des Katalysators vorliegt. 7. The method according to claim 5, wherein at least one heating element (110, 111, 112, 113) is present from the other heating elements (110, 111, 112, 113) different amount and / or type of catalyst.
8. Verfahren gemäß Anspruch 5, wobei die Heizelemente (110, 111, 112, 113) so eingerichtet sind, dass sie jeweils unabhängig voneinander elektrisch beheizt werden können. 8. The method according to claim 5, wherein the heating elements (110, 111, 112, 113) are arranged so that they can each be electrically heated independently.
9. Verfahren gemäß Anspruch 5, wobei das Material des Inhalts (210, 211, 212) einer Zwischenebene (200, 201, 202) Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. The method of claim 5, wherein the material of the intermediate level content (210, 211, 212) (200, 201, 202) comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
10. Verfahren gemäß Anspruch 5, wobei die durchschnittliche Länge einer Heizebene (100, 101, 102, 103) in Strömungsrichtung des Fluids gesehen und die durchschnittliche Länge einer Zwischenebene (200, 201, 202) in Strömungsrichtung des Fluids gesehen in einem Verhältnis von > 0,01 : 1 bis < 100: 1 zueinander stehen. 10. The method according to claim 5, wherein the average length of a heating level (100, 101, 102, 103) viewed in the direction of flow of the fluid and the average length of an intermediate level (200, 201, 202) seen in the flow direction of the fluid in a ratio of> 0.01: 1 to <100: 1 to each other.
11. Verfahren gemäß Anspruch 1, wobei der Katalysator ausgewählt ist aus der Gruppe umfassend: 11. The method of claim 1, wherein the catalyst is selected from the group comprising:
(I) ein Mischmetalloxid der A (i.w.x)A' wA"xB(i.y.z)B'yB"z03.deita wobei hier gilt: (I) a mixed metal oxide of A ( i w ) x A ' w A x B ( i y y z) B' y B z 0 3 . de i ta where:
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl , Lu, Ni, Co, Pb, Bi und/oder Cd; A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm , Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb, Bi and / or Cd;
B, B' und B" sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Mg, Li, Na, K, Ce und/oder Zn; und 0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < delta < 1 ; B, B 'and B "are independently selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb , Hf, Zr, Tb, W, Gd, Yb, Mg, Li, Na, K, Ce and / or Zn; and 0 <w <0.5; 0 <x <0.5; 0 <y <0.5; 0 <z <0.5 and -1 <delta <1;
(II) ein Mischmetalloxid der Formel A (i-w-x)A' wA"xB(1.y.z)B'yB"z03.deita wobei hier gilt: (II) a mixed metal oxide of the formula A (iw- x ) A ' w A " x B ( 1, y, z ) B' y B" z 0 3 .
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, TI , Lu, Ni, Co, Pb und/oder Cd; A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb and / or Cd;
B ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Bi, Mg, Cd, Zn, Re, Ru, Rh, Pd, Os, Ir und/oder Pt; B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W , Gd, Yb, Bi, Mg, Cd, Zn, Re, Ru, Rh, Pd, Os, Ir and / or Pt;
B' ist ausgewählt aus der Gruppe: Re, Ru, Rh, Pd, Os, Ir und/oder Pt; B" ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Bi, Mg, Cd und/oder Zn; und B 'is selected from the group: Re, Ru, Rh, Pd, Os, Ir and / or Pt; B "is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Bi, Mg, Cd and / or Zn; and
0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < delta < 1; 0 <w <0.5; 0 <x <0.5; 0 <y <0.5; 0 <z <0.5 and -1 <delta <1;
(III) eine Mischung von wenigstens zwei verschiedenen Metallen Ml und M2 auf einem Träger, welcher ein mit einem Metall M3 dotiertes Oxid von AI, Ce und/oder Zr umfasst; wobei hier gilt: (III) a mixture of at least two different metals Ml and M2 on a support comprising an oxide of Al, Ce and / or Zr doped with a metal M3; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Re, Ru, Rh, Ir, Os, Pd und/oder Pt; und Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt; and
M3 ist ausgewählt aus der Gruppe: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and / or Lu;
(IV) ein Mischmetalloxid der Formel LOx(M(y/z)Al(2-y/z)03)z; wobei hier gilt: (IV) a mixed metal oxide of the formula LO x (M (y / z) Al (2 - y / z) 0 3 ) z ; where:
L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, TI, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; M ist ausgewählt aus der Gruppe: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu, Ag und/oder Au; 1 < x < 2; L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb and / or Lu; M is selected from the group: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu , Ag and / or Au; 1 <x <2;
0 < y < 12; und 0 <y <12; and
4 < z < 9; 4 <z <9;
(V) ein Mischmetalloxid der Formel L0(A1203)Z; wobei hier gilt: (V) a mixed metal oxide of the formula L0 (A1 2 0 3 ) Z ; where:
L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; und L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb and / or Lu; and
4 < z < 9; 4 <z <9;
(VI) ein oxidischer Katalysator, der Ni und Ru umfasst; (VII) ein Metall Ml und/oder wenigstens zwei verschiedene Metalle Ml und M2 auf und/oder in einem Träger, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selenid der Metalle A und/oder B ist; wobei hier gilt: (VI) an oxide catalyst comprising Ni and Ru; (VII) a metal Ml and / or at least two different metals Ml and M2 on and / or in a carrier, wherein the carrier comprises a carbide, oxycarbide, carbonitride, nitride, boride, silicide, germanide and / or selenide of metals A and / or B is; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu; Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu;
A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu; A and B are independently selected from the group: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu;
(VIII) ein Katalysator umfassend Ni, Co, Fe, Cr, Mn, Zn, AI, Rh, Ru, Pt und/oder Pd; und/oder (VIII) a catalyst comprising Ni, Co, Fe, Cr, Mn, Zn, Al, Rh, Ru, Pt and / or Pd; and or
Reaktionsprodukte von (I), (II), (III), (IV), (V), (VI), (VII) und/oder (VIII) in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C. Reaction products of (I), (II), (III), (IV), (V), (VI), (VII) and / or (VIII) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at one temperature from> 700 ° C.
12. Verfahren gemäß Anspruch 5, wobei die einzelnen Heizelemente (110, 111, 112, 113) mit einer jeweils unterschiedlichen Heizleistung betrieben werden. 12. The method according to claim 5, wherein the individual heating elements (110, 111, 112, 113) are operated with a respective different heating power.
13. Verfahren gemäß Anspruch 1, wobei die Reaktionstemperatur im Reaktor wenigstens stellenweise > 700 °C bis < 1300 °C beträgt. 13. The method according to claim 1, wherein the reaction temperature in the reactor at least in places> 700 ° C to <1300 ° C.
14. Verfahren gemäß Anspruch 5, wobei die durchschnittliche Kontaktzeit des Fluids zu einem Heizelement (110, 111, 112, 113) > 0,001 Sekunden bis < 1 Sekunde beträgt und/oder die durchschnittliche Kontaktzeit des Fluids zu einer Zwischenebene (110, 111, 112, 113) > 0,001 Sekunden bis < 5 Sekunden beträgt. 14. The method according to claim 5, wherein the average contact time of the fluid to a heating element (110, 111, 112, 113) is> 0.001 seconds to <1 second and / or the average contact time of the fluid to an intermediate level (110, 111, 112 , 113)> 0.001 seconds to <5 seconds.
15. Verfahren gemäß Anspruch 1, wobei die gewählte Reaktion bei einem Druck von > 1 bar bis < 200 bar durchgeführt wird. 15. The method according to claim 1, wherein the selected reaction is carried out at a pressure of> 1 bar to <200 bar.
EP13708492.7A 2012-03-13 2013-03-12 Method for producing co and/or h2 in an alternating operation between two operating modes Withdrawn EP2825502A1 (en)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
DE102012203911 2012-03-13
DE102012203912 2012-03-13
DE102012203925 2012-03-13
DE102012203919 2012-03-13
DE102012203913 2012-03-13
DE102012203920 2012-03-13
DE102012203922 2012-03-13
DE102012203914 2012-03-13
DE102012203915 2012-03-13
DE102012203923 2012-03-13
DE102012203917 2012-03-13
DE102012203926 2012-03-13
PCT/EP2013/055010 WO2013135705A1 (en) 2012-03-13 2013-03-12 Method for producing co and/or h2 in an alternating operation between two operating modes

Publications (1)

Publication Number Publication Date
EP2825502A1 true EP2825502A1 (en) 2015-01-21

Family

ID=47844385

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13708492.7A Withdrawn EP2825502A1 (en) 2012-03-13 2013-03-12 Method for producing co and/or h2 in an alternating operation between two operating modes

Country Status (10)

Country Link
US (1) US20150129805A1 (en)
EP (1) EP2825502A1 (en)
JP (1) JP2015509905A (en)
KR (1) KR20140140562A (en)
CN (1) CN104169210A (en)
AU (1) AU2013231342A1 (en)
CA (1) CA2866987A1 (en)
HK (1) HK1204316A1 (en)
SG (1) SG11201405327QA (en)
WO (6) WO2013135710A2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180044702A1 (en) * 2015-03-20 2018-02-15 Sekisui Chemical Co., Ltd. Method and apparatus for producing organic substances
CN106277223B (en) * 2015-09-03 2019-04-30 苏州金渠环保科技有限公司 Sewage disposal device
ES2674434B2 (en) * 2016-12-29 2018-12-04 Consejo Superior De Investigaciones Cientificas PROCEDURE FOR OBTAINING FORMULA CATALYSTS My (Ce1-xLxO2-x / 2) 1-y FOR USE IN THE REVERSE REACTION OF DISPLACEMENT OF WATER GAS AND PARTIAL OXIDATION OF METHANE TO SYNTHESIS GAS BY METHOD OF COMBUSTION METHOD
US10946362B1 (en) 2017-02-24 2021-03-16 University Of South Florida Perovskite oxides for thermochemical conversion of carbon dioxide
US11691882B2 (en) 2017-05-30 2023-07-04 University Of South Florida Supported perovskite-oxide composites for enhanced low temperature thermochemical conversion of CO2 to CO
WO2018219992A1 (en) 2017-06-02 2018-12-06 Basf Se Method for carbon dioxide hydrogenation in the presence of a nickel- and magnesium-spinel-containing catalyst
WO2018219986A1 (en) 2017-06-02 2018-12-06 Basf Se Process for carbon dioxide hydrogenation in the presence of an iridium- and/or rhodium-containing catalyst
DE102017120814A1 (en) 2017-09-08 2019-03-14 Karlsruher Institut für Technologie Conversion reactor and process management
CN107837805B (en) * 2017-11-09 2020-04-17 南京大学(苏州)高新技术研究院 Preparation and application of powder catalytic material, thin film catalytic material and composite nano catalytic material
US11649164B2 (en) 2017-12-08 2023-05-16 Haldor Topsøe A/S Plant and process for producing synthesis gas
WO2019110267A1 (en) 2017-12-08 2019-06-13 Haldor Topsøe A/S Process and system for producing synthesis gas
US11932538B2 (en) 2017-12-08 2024-03-19 Haldor Topsøe A/S Process and system for reforming a hydrocarbon gas
US20200406212A1 (en) * 2017-12-08 2020-12-31 Haldor Topsøe A/S System and process for synthesis gas production
EP3574991A1 (en) 2018-05-31 2019-12-04 Haldor Topsøe A/S Steam reforming heated by resistance heating
CN108927173B (en) * 2018-08-06 2021-11-23 沈阳沈科姆科技有限公司 Alkyne selective hydrogenation catalyst and preparation method and application thereof
CN109261175A (en) * 2018-10-18 2019-01-25 乳源东阳光氟有限公司 A kind of hydrogenation-dechlorination loading type Pd/AlF3Catalyst and its preparation method and application
KR102142355B1 (en) 2018-11-23 2020-08-07 한국화학연구원 Cdr reactor for preventing catalyst inactivation having multi-layered catalyst
US11964872B2 (en) 2018-12-03 2024-04-23 Shell Usa, Inc. Process and reactor for converting carbon dioxide into carbon monoxide
JP2022545711A (en) 2019-08-26 2022-10-28 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー CO2 hydrogenation in countercurrent reactor
CA3163744A1 (en) * 2019-12-04 2021-06-10 Haldor Topsoe A/S Gas heater
CA3163636A1 (en) * 2019-12-04 2021-06-10 Haldor Topsoe A/S Electrically heated carbon monooxide reactor
EP4077211A1 (en) 2019-12-20 2022-10-26 Cummins, Inc. Reversible fuel cell system architecture
AU2021284990B2 (en) 2020-06-01 2023-12-07 Shell Internationale Research Maatschappij B.V. A flexible process for converting carbon dioxide, hydrogen, and methane into synthesis gas
CN111744500B (en) * 2020-07-30 2022-10-18 武汉科林化工集团有限公司 High-oxygen-resistant medium-temperature hydrolysis catalyst and preparation method thereof
FI130176B (en) * 2020-10-01 2023-03-29 Teknologian Tutkimuskeskus Vtt Oy Method and apparatus for producing product gas and use
CA3197009A1 (en) * 2020-10-30 2022-05-05 Gas Technology Institute Electrically heated reforming reactor for reforming of methane and other hydrocarbons
US20240173691A1 (en) * 2021-04-15 2024-05-30 Shell Usa, Inc. Modular reactor configuration for production of chemicals with electrical heating for carrying out reactions
CN115725346A (en) * 2021-09-01 2023-03-03 中国石油大学(北京) Preparation method of synthesis gas with high carbon monoxide concentration
DE102022125987A1 (en) 2021-11-25 2023-05-25 Dbi - Gastechnologisches Institut Ggmbh Freiberg Process and device for generating hydrogen from hydrocarbon-containing gas mixtures
CN115121243B (en) * 2022-07-13 2023-10-13 南京大学 Thermocatalytic CO 2 Selective hydrogenation catalyst, preparation method and application thereof

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1008667A (en) * 1972-06-30 1977-04-19 Foster Wheeler Corporation Catalytic steam reforming
US4321250A (en) 1979-11-21 1982-03-23 Phillips Petroleum Company Rhodium-containing perovskite-type catalysts
JPH05301705A (en) 1992-04-28 1993-11-16 Osaka Gas Co Ltd Method for producing co gas and device therefor
FR2696109B1 (en) 1992-09-28 1994-11-04 Inst Francais Du Petrole Oxidation catalyst and partial methane oxidation process.
JPH11130405A (en) * 1997-10-28 1999-05-18 Ngk Insulators Ltd Reforming reaction device, catalytic device, exothermic catalytic body used for the same and operation of reforming reaction device
KR20010101612A (en) 1999-01-21 2001-11-14 앤쥼 쉐이크 바쉬어+마틴 험프리스 Catalyst Carrier Carrying Nickel Ruthenium and Lanthanum
DE10023410A1 (en) * 2000-05-12 2001-11-15 Linde Gas Ag Production of carbon monoxide- and hydrogen-containing treatment gas comprises forming treatment gas for catalytically converting hydrocarbon gas in catalyst retort to which heat can be fed and varied over its length
JP4318917B2 (en) * 2000-12-05 2009-08-26 テキサコ ディベラップメント コーポレイション Compact fuel processor for producing hydrogen rich gas
US6929785B2 (en) * 2001-02-13 2005-08-16 Delphi Technologies, Inc. Method and apparatus for preheating of a fuel cell micro-reformer
US20030186805A1 (en) 2002-03-28 2003-10-02 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
EP1419814A1 (en) 2002-11-15 2004-05-19 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Perovskite catalyst for the partial oxidation of natural gas
CA2515321A1 (en) 2003-02-06 2004-08-26 Ztek Corporation Renewable energy operated hydrogen reforming system
KR100555294B1 (en) 2003-09-17 2006-03-03 한국과학기술연구원 Process for the preparation of dimethyl ether using reverse-water-gas-shift reaction
BRPI0612898A2 (en) 2005-06-29 2016-11-29 Exxonmobil Res & Eng Co process to produce synthesis gas
US20070084116A1 (en) * 2005-10-13 2007-04-19 Bayerische Motoren Werke Aktiengesellschaft Reformer system having electrical heating devices
WO2008033812A2 (en) * 2006-09-11 2008-03-20 Purdue Research Foundation System and process for producing synthetic liquid hydrocarbon
DK1920832T3 (en) 2006-11-08 2012-02-27 Air Liquide Process for preparing a supported precious metal catalyst
JP5592250B2 (en) 2007-04-27 2014-09-17 サウディ ベーシック インダストリーズ コーポレイション Catalytic hydrogenation of carbon dioxide to synthesis gas.
DE102007022723A1 (en) 2007-05-11 2008-11-13 Basf Se Process for the production of synthesis gas
JP5411133B2 (en) 2007-06-25 2014-02-12 サウディ ベーシック インダストリーズ コーポレイション Catalytic hydrogenation of carbon dioxide to synthesis gas.
ITMI20072228A1 (en) * 2007-11-23 2009-05-24 Eni Spa PROCEDURE FOR PRODUCING SYNTHESIS AND HYDROGEN GAS STARTING FROM LIQUID AND GASEOUS HYDROCARBONS
PL2141118T3 (en) 2008-07-03 2014-01-31 Haldor Topsoe As Chromium-free water gas shift catalyst
JP5402683B2 (en) 2009-02-02 2014-01-29 株式会社村田製作所 Reverse shift reaction catalyst, method for producing the same, and method for producing synthesis gas
JP5551234B2 (en) 2009-03-16 2014-07-16 サウディ ベーシック インダストリーズ コーポレイション Nickel / lanthanum oxide catalyst for producing synthesis gas
US7829048B1 (en) * 2009-08-07 2010-11-09 Gm Global Technology Operations, Inc. Electrically heated catalyst control system and method
US8658554B2 (en) 2009-11-04 2014-02-25 The United States Of America, As Represented By The Secretary Of The Navy Catalytic support for use in carbon dioxide hydrogenation reactions
US8529849B2 (en) 2011-06-17 2013-09-10 American Air Liquide, Inc. Heat transfer in SMR tubes

Also Published As

Publication number Publication date
WO2013135706A1 (en) 2013-09-19
WO2013135710A3 (en) 2013-11-28
HK1204316A1 (en) 2015-11-13
WO2013135699A1 (en) 2013-09-19
CN104169210A (en) 2014-11-26
CA2866987A1 (en) 2013-09-19
JP2015509905A (en) 2015-04-02
KR20140140562A (en) 2014-12-09
WO2013135710A2 (en) 2013-09-19
AU2013231342A1 (en) 2014-10-16
WO2013135707A1 (en) 2013-09-19
US20150129805A1 (en) 2015-05-14
SG11201405327QA (en) 2014-10-30
WO2013135700A1 (en) 2013-09-19
WO2013135705A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
EP2825502A1 (en) Method for producing co and/or h2 in an alternating operation between two operating modes
WO2013135667A1 (en) Method for producing synthesis gas
DE69908242T2 (en) reformer
Djinović et al. Ru-based catalysts for CO selective methanation reaction in H2-rich gases
WO2014097142A1 (en) Parallel preparation of hydrogen, carbon monoxide and carbon-comprising product
EP1425244B1 (en) Compact reformer unit in the low performance range, for producing hydrogen from gaseous hydrocarbons
Yu et al. On-board production of hydrogen for fuel cells over Cu/ZnO/Al2O3 catalyst coating in a micro-channel reactor
EP1542800A1 (en) Multi-layer catalyst for the autothermal steam reforming of hydrocarbons and a method for using said catalyst
Dinka et al. Perovskite catalysts for the auto-reforming of sulfur containing fuels
Sadykov et al. Syngas generation from hydrocarbons and oxygenates with structured catalysts
Villegas et al. A combined thermodynamic/experimental study for the optimisation of hydrogen production by catalytic reforming of isooctane
US20220348472A1 (en) Catalytic reactor system and catalyst for conversion of captured c02 and renewable h2 into low-carbon syngas
WO2013135668A1 (en) Chemical reactor system, comprising an axial flow reactor with heating levels and intermediate levels
WO2013135660A1 (en) Axial flow reactor having heating planes and intermediate planes
Choi et al. Pre-reforming of higher hydrocarbons contained associated gas using a pressurized reactor with a Ni19. 5-Ru0. 05/CGO catalyst
WO2013135673A1 (en) Method for reducing carbon dioxide at high temperatures on catalysts especially carbide supported catalysts
EP1717198A2 (en) Process and apparatus for reforming at high temperature
EP2520542A1 (en) Reformer
DE112004000518T5 (en) High performance fuel conditioning system Fuel cell power plant
WO2013135657A1 (en) Method for producing synthesis gas in alternating operation between two operating modes
WO2013135664A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts on oxidic substrates doped with aluminum, cerium, and/or zirconium
Rogozhnikov et al. Structured catalysts for the conversion of liquefied petroleum gas to hydrogen-rich gas and for anode off-gas afterburning
Galletti et al. CO methanation as alternative refinement process for CO abatement in H2-rich gas for PEM applications
WO2013135666A1 (en) Axial flow reactor based on an fe-cr-al alloy
WO2013135663A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts comprising noble metal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150821