WO2013135660A1 - Axial flow reactor having heating planes and intermediate planes - Google Patents

Axial flow reactor having heating planes and intermediate planes Download PDF

Info

Publication number
WO2013135660A1
WO2013135660A1 PCT/EP2013/054947 EP2013054947W WO2013135660A1 WO 2013135660 A1 WO2013135660 A1 WO 2013135660A1 EP 2013054947 W EP2013054947 W EP 2013054947W WO 2013135660 A1 WO2013135660 A1 WO 2013135660A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
group
fluid
flow reactor
reaction
Prior art date
Application number
PCT/EP2013/054947
Other languages
German (de)
French (fr)
Inventor
Leslaw Mleczko
Alexander Karpenko
Emanuel Kockrick
Albert TULKE
Daniel Gordon Duff
Alexandra GROßE-BÖWING
Daniel Wichmann
Vanessa GEPERT
Original Assignee
Bayer Intellectual Property Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property Gmbh filed Critical Bayer Intellectual Property Gmbh
Publication of WO2013135660A1 publication Critical patent/WO2013135660A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/36Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00398Controlling the temperature using electric heating or cooling elements inside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00522Controlling the temperature using inert heat absorbing solids outside the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2409Heat exchange aspects
    • B01J2219/2416Additional heat exchange means, e.g. electric resistance heater, coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2427Catalysts
    • B01J2219/2428Catalysts coated on the surface of the monolith channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2427Catalysts
    • B01J2219/243Catalyst in granular form in the channels

Definitions

  • the present invention relates to a flow reactor for the reaction of a fluid comprising reactants, comprising a plurality of oil layers as viewed in the flow direction of the fluid. which are electrically heated by means of heating elements and wherein the heating levels can be traversed by the fluid, wherein a catalyst is arranged on at least one heating element and can be heated there. It further relates to a method for operating a flow control element according to the invention.
  • synthesis gas is produced by steam reforming of methane. Due to the high heat demand of the reactions involved, they are carried out in externally heated reformer tubes. Characteristic of this method is the limitation by the reaction equilibrium, a heat transport limitation and especially the pressure and temperature! imitation of the reformer tubes used (nickel-based steels). Temperature and pressure side results in a limitation to a maximum of 900 ° C at about 10 to 40 bar.
  • An alternative method is autothermal reforming.
  • a portion of the fuel is burned by the addition of oxygen within the reformer, so that the reaction gas is heated and the expiring endothermic reactions are supplied with heat.
  • DE 10 2008 027 882 A1 relates to a process for the production of a carbon monoxide-rich, low-methane gas (synthesis gas), wherein an insert containing hydrocarbons
  • an apparatus for producing a low carbon, low methane gas comprising a refractory lined, pressure resistant reactor (ATR reactor) in which a hydrocarbon containing feed (fuel) is co-charged with carbon dioxide (CO2) and / or Steam and Oxidationsmittei by catalytically assisted partial oxidation (autothermal reforming or ATR) can be implemented and a reactor burner through which the starting materials in the reaction chamber of the ATR reactor can be introduced, the synthesis gas as product gas from the ATR reactor at a temperature of more than 1100 ° C is deductible.
  • ATR reactor refractory lined, pressure resistant reactor
  • ATR reactor in which a hydrocarbon containing feed (fuel) is co-charged with carbon dioxide (CO2) and / or Steam and Oxidationsmittei by catalytically assisted partial oxidation (autothermal reforming or ATR) can be implemented and a reactor burner through which the starting materials in the reaction chamber of the ATR reactor can be introduced, the synthesis gas as product gas from the
  • a device for removing oil mist and / or odors by oxidation to a solid catalyst which is characterized in that the solid noble metal catalyst on a metallic conductive wire, belt mesh or tubular support in adhering thinly or firmly bonding by burn-in with the metallic carrier, or by first coating the metallic carrier with a substantially porous mass, anchoring it to the metallic carrier by baking and loading the porous mass by impregnation with noble metal catalysts and the metallic carrier to heat by DC or AC current to the required oxidation temperature, wherein the change of the electrical resistance is used for temperature control and the effluent gas from the converter is used to preheat the incoming gas.
  • DE 10 2010 033316 A1 describes an exhaust gas treatment system comprising: M electrically heated substrates coated with a catalyst material and arranged in series to receive exhaust gas from a machine, M being an integer greater than one; and a heater control module that applies power to N of the M substrates to heat the N substrates for a predetermined period, where N is an integer less than M, wherein during the predetermined period the engine is off and the M electrically heated substrates are not Absorb exhaust.
  • DE 103 171 7 relates to an electrically heated reactor for carrying out gas reactions at high temperature, comprising a reactor block surrounded by an enclosure of one or more monolithic modules of a material suitable for resistance heating or inductive heating, designed as a reaction space channels one on the opposite side of the reactor block, each one device for supplying and discharging a gaseous medium to / from the channels and at least two connected to a power source and the reactor block electrodes (8, 8 ') / to pass a current through the reactor block or a device / to induce a flow in the reactor block, wherein the enclosure of the reactor block comprises a gas-tight sealing double jacket and at least one device for supplying an inert gas in the double jacket.
  • the object of the present invention is therefore to provide a reactor suitable for this purpose.
  • a flow reactor for the reaction of a fluid comprising reactants comprising in the flow direction of the fluid a plurality of heating levels, which are electrically heated by heating elements and wherein the heating levels are flowed through by the fluid, wherein disposed on at least one heating element, a catalyst is and is heated there.
  • the flow reactor is characterized in that at least once an intermediate level between two heating levels is arranged, wherein the intermediate level is also traversed by the fluid.
  • the intermediate level or its contents can also be catalytically coated. This not only serves as a bearing surface for the metallic conductor, but also generates a pressure loss depending on the porosity and thickness, which results in better flow distribution, especially in the reactor inlet.
  • the combination of heat conductor and intermediate level (or support surface) can then be on a metallic support structure, which ensures the mechanical stability. It is preferred that the intermediate plane is an electrical insulation, in particular in the presence of a metallic support structure.
  • a dwell of a reacting fluid can continue to be achieved, within which there is a more favorable heat distribution.
  • the reaction can be influenced in a comparatively simple manner. Furthermore, it is possible to influence the reaction by catalytic coatings in different type or amount in the intermediate level or their content.
  • Another object of the present invention is a method for operating a flow reactor, comprising the steps: a) providing the above-mentioned flow reactor according to the invention; b) electrically heating at least one of the heating elements of the above-mentioned flow reactor according to the invention; and c) passing a reactant-comprising fluid through the flow reactor with at least partial reaction of the reactants of the fluid.
  • Reactions that can be carried out in the flow reactor according to the invention for example, the dry reforming of methane (DR, C 1 h + CO2 ⁇ - '* 2 CO + 2 H2), the reverse water gas shift reaction (RWGS, C0 2 + 1!: ⁇ ⁇ CO + H 2 0), the partial oxidation of methane
  • FIG. I -4 schematically flow reactors according to the invention in an expanded representation
  • FIG. 5-10 results of simulation calculations
  • FIG. 1 schematically shown flow reactor is flowed through by a reactant fluid from top to bottom, as shown by the arrows in the drawing.
  • the fluid may be liquid or gaseous and may be single-phase or multi-phase.
  • the fluid is gaseous. It is conceivable that the fluid contains only reactants and reaction products, but also that additionally inert components such as inert gases are present in the fluid.
  • the reactor has a plurality of (four in the present case) heating levels 100, 101, 102, 103, which by means of corresponding heating elements 1 10, 1 1 1. 1 12. 1 1 electrically heated.
  • the heating levels 100, 101, 102, 103 are flowed through during operation of the reactor of the fluid and the heating elements 1 10, 1 1 1, 1 12, 1 13 are contacted by the fluid.
  • At least one heating element 1 10, 1 1 1, 1 12, 1 1 3, a catalyst is arranged and is heated there.
  • the catalyst can directly or indirectly with the heating elements 1 10, 1 1 1, 1 12, 1 13 be connected, so that these heating elements represent the catalyst support or a support for the catalyst support.
  • the heat supply of the reaction takes place electrically and is not introduced from the outside by means of radiation through the walls of the reactor, but directly into the interior of the reaction space. It is realized a direct electrical heating of the catalyst.
  • the heating elements 110, 111, 112, 113 are preferably Bankleiterlegtechniken such as FeCrAl alloys used.
  • electrically conductive Si-based materials particularly preferably SiC, and / or carbon-based materials.
  • a ceramic intermediate level 200, 201, 202 (which is preferably supported by a ceramic or metallic support frame plane) between two heating levels 100, 101, 102, 103, wherein the intermediate level (s) 200, 201, 202 or the contents 210, 21 1, 212 of an intermediate level 200, 201, 202 are likewise flowed through by the fluid during operation of the reactor. This has the effect of homogenizing the fluid flow.
  • additional catalyst is present in one or more intermediate levels 200, 201, 202 or other isolation elements in the reactor. Then an adiabatic reaction can take place.
  • the electrical connections are shown in FIG. 1 only shown very schematically. They can be performed in the cold area of the reactor within an insulation to the ends of the reactor or laterally from the heating elements 1 10, III, 1 12, 1 I 3 performed so that the actual electrical connections can be provided in the cold region of the reactor.
  • the electrical heating is done with direct current or alternating current.
  • inlet temperatures are often reached by 600 ° C, which are often below the desired inlet temperatures that reduce the formation of soot / carbon in reforming reactions.
  • the connection of one or more of the described electrically heated elements as a gas heater allows a rapid heating of the educt gases to temperatures higher than usual in the prior art, without an oxygen-containing atmosphere is required.
  • the use of the electrically heated elements in the inlet region of the reactor also has a positive effect with regard to the cold start and starting behavior, in particular with regard to rapid heating to the reaction temperature and better controllability.
  • heating elements 110, 1 1 1. 112, 113 are arranged, which spiral, meandering. gitt erförmig and / or net-shaped are constructed.
  • At least one heating element 110, 111, 112, 113 one of the remaining heating elements 110, I I I. 112, 1 13 different amount and / or to the catalyst is present.
  • the heating elements 110, 11, 112, 113 are arranged so that they can each be electrically heated independently of each other.
  • the individual heating levels can be individually controlled and regulated.
  • a catalyst in the heating levels can also be dispensed with in the reactor inlet area, so that only the heating and no reactivation takes place in the inlet area. This is particularly advantageous in view of starting the reactor.
  • a temperature profile adapted to the respective reaction can be achieved.
  • this is, for example, a temperature profile which achieves the highest temperatures and thus the highest conversion at the reactor outlet.
  • the (for example ceramic) intermediate levels 200, 201, 202 or their contents 210, 211, 212 comprise a material resistant to the reaction conditions, for example a ceramic foam. They serve for mechanical support of the heating levels 100, 101, 102, 103 and for mixing and distribution of the gas stream. At the same time is such an electrical
  • the material of the content 210, 211, 212 of an intermediate level 200, 201, 202 comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • An example of this is SiC, Further preferred is cordierite.
  • the intermediate level 200, 201, 202 may include, for example, a loose bed of solids. These solids themselves may be porous or solid, so that the fluid flows through gaps between the solids. It is preferred that the material of the solid bodies comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
  • the intermediate level 200, 201, 202 comprises a one-piece porous solid.
  • the fluid flows through the intermediate plane via the pores of the solid. This is shown in FIG. 1 shown.
  • Preference is given to honeycomb monoliths, as used for example in the exhaust gas purification of internal combustion engines.
  • the average length of a heating level 100, 101, 102, 103 is viewed in the direction of flow of the fluid and the average length of an intermediate level 200, 201, 202 in the direction of flow of the fluid is in a ratio of> 0.01: 1 to ⁇ 100: 1 to each other. Even more advantageous are ratios of> 0.1: 1 to ⁇ 10: 1 or 0.5: 1 to ⁇ 5: 1.
  • Suitable catalysts may for example be selected from the group consisting of:
  • A, A 'and A are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K,
  • B, B 'and B are independently selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb H, Zr, Tb, W. (id.Yb, Mg, Li, Na, K. Ce, and / or Zu, and
  • B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb. ⁇ ⁇ . Zr, Tb. W. Gd. Yb, Mg, Cd. To. Re. Ru. Rh. Pd. Os, Ir and / or Pt;
  • B ' is selected from the group: Re, Ru, Rh, Pd, Os, Ir and / or Pt;
  • Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt;
  • M3 is selected from the group: Sc, Y, La, Ce, Pr. Nd, Sm, Eu. Gd. Tb, Dy. Ho, he. Tin. Yb and / or Lu;
  • M is selected from the group: Ti, Zr. Hf, V, Nb. Ta, Cr, Mo, W. Mn. Re. Fe, Ru. Os, Co, Rh. Ir, Ni, Pd. Pt. Zn. Cu, Ag and / or Au;
  • L is selected from the group: Na, K, Rh. Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In. Tl, La, Ce, Pr, Nd, Sm, Eu, (id Tb, Dy Ho, Er, Tm Yb, and / or Lu;
  • (Vi) oxide catalyst comprising Ni and Ru.
  • Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh. Ir. Os, Pd, Pt, Zn, Cu, La. Ce, Pr. Nd. Sm, Eu, Gd, Tb. Dy. 1 lo. He. Tm, Yb. and / or Lu;
  • a and B are independently selected from the group: Be. Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y. Zr, Nb, Mo, I I f. Ta, W. La. Ce, Pr. Nd, Sm, Eu. Gd. Tb, Dy. Ho, he. Tm. Yb. and / or Lu; and / or reaction products of (I), (II), (III), (IV), (V), (VI) and / or (VII) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of > 700 ° C.
  • reaction products includes the catalyst phases present under reaction conditions.
  • the reactor according to the invention may be modular.
  • a module may include, for example, a heating level, an intermediate level, the electrical contact and the corresponding further insulation materials and thermal insulation materials.
  • electrical heating of at least one of the heating elements 110, 111, 112, 113 takes place in the reactor provided. This can, but does not have to, take place before flow of a reactant comprising fluid through the flow reactor with at least partial reaction of the reactants of the fluid ,
  • the individual heating elements 110, 111, 112, 113 are operated with a respective different heating power.
  • the reaction temperature in the reactor is at least in places> 700 ° C to ⁇ 1300 ° C. More preferred ranges are> 800 ° C to ⁇ 1200
  • the average (average) contact time of the fluid to a heating element 110, 11, 112, 13 can be, for example,> 0.01 seconds to ⁇ 1 second and / or the average contact time of the fluid to an intermediate level 110, 111, 112, 113 may be, for example,> 0.001 seconds to ⁇ 5 seconds.
  • Preferred contact times are> 0.005 to ⁇ 1 second, more preferably> 0.01 to ⁇ 0.9 seconds.
  • the Reakti n can be carried out at a pressure of> 1 bar to ⁇ 200 bar.
  • the pressure is> 2 bar to ⁇ 50 bar, more preferably> 6 bar to ⁇ 30 bar.
  • the reactants in the fluid are selected from the group comprising alkanes, alkenes, alkynes, alkanols, alkenols, alkynols, carbon monoxide, carbon dioxide, water, ammonia, hydrogen and / or oxygen.
  • the alkanes methane is particularly suitable, among the alkanols methanol and / or ethanol are preferred.
  • FIG. FIG. 2 shows another reactor according to the invention, which can preferably be used for the RWGS reaction.
  • the first heating level 100 with heating element 110 is not yet provided with a catalyst and serves as a gas heater.
  • the subsequent intermediate level 200 contains a monolithic shaped catalyst body 210 which is coated catalytically table. Alternatively, it may also be a catalyst bed. This is followed by a heating level 101 with heating element 1 1 1, an intermediate level 201 with a porous support layer 211 (optionally catalytically coated) and a further heating level 102 with heating element 1 12 at.
  • this heating level 102 Downstream of this heating level 102 is again an intermediate level 202 with a monolithic shaped catalyst body or catalyst bed 212, a heating level 103 with a heating element 13, and in the form of a catalyst body or catalyst bed 213. At least one of the heating elements 1 1 1, 1 12 and 1 13 also includes a catalyst. Again, the individual catalyst-carrying elements of the reactor can differ in the type and amount of the catalyst and the heating elements can be controlled and regulated individually or in groups.
  • the characteristics of the RWGS reaction lie in a comparatively moderate heat requirement and in the fact that it is an equilibrium reaction.
  • methanation may occur especially at elevated pressure and at temperatures below 800 ° C. Therefore, a high gas inlet temperature is preferably selected in order to thermodynamically suppress the side reactions and in particular the methanation.
  • a high outlet tem- perature ensures high sales.
  • the catalytic reaction takes place here for the most part adiabatically to the monolithic Katalysatorformkörp ern and to a lesser extent provided with the catalyst
  • FIG. 3 shows a further reactor according to the invention, which can preferably be used for dry reforming.
  • the first heating level 100 with heating element 110 can not yet be provided with a catalyst and then serves as a pure gas heater. In order to avoid unwanted side reactions, however, a (weakly) catalytically active layer may already be applied to the heating element 110.
  • the subsequent intermediate level 200 contains a porous support layer 210, which may optionally be catalytically coated. This is followed by a heating level 101 with catalytically coated 1 lei / element 11 1, an intermediate level 201 with a porous support layer 21 1 (optionally catalytically coated) and a further heating level 102 with catalytically coated heating element 1 12 at.
  • this heating level 102 Downstream of this heating level 102 is again an intermediate level 202 with a porous support layer 212 (optionally catalytically coated), a heating level 103 with catalytically coated heating element 1 13 and an intermediate level 203 with a porous support layer 213 (optionally catalytically coated).
  • the catalyst supporting elements of the reactor may differ in the type and amount of catalyst and the heating elements may be controlled and controlled individually or in groups.
  • the main feature of the (O-reforming is a high heat requirement, which is locally limited, especially in the first third of the reactor.) It is an equilibrium reaction with a soot formation as side reaction, therefore it is preferable to use high gas inlet temperatures
  • the reaction takes place essentially on the catalytically coated heating elements, and FIG. 4 shows a further reactor according to the invention which can preferably be used for methane steam reforming With heating element 110, this can not yet be provided with a catalyst and then serves as a pure gas heater However, a (weakly) catalytically active layer can already be applied to heating element 110.
  • the subsequent intermediate plane 200 contains a porous supporting layer 210, which may optionally be catalytically coated.
  • a heating level 101 with a catalytically coated heating element 11 1 is followed by a heating level 101 with a catalytically coated heating element 11 1, an intermediate level 201 with a porous support layer 211 (optionally catalytically coated) and a further heating level 102 with a catalytically coated heating element 112. Downstream of this heating level 102 is again an intermediate level 202 with a porous support layer 212 (optionally catalytically coated), a heating level 103 with a catalytically coated heating element 13 and an intermediate level 203 with a monolithic shaped catalyst body or catalyst 213.
  • the individual catalyst-carrying elements of the reactor can differ in the type and amount of the catalyst and the heating elements can be controlled and regulated individually or in groups.
  • the main feature of methane steam reforming is a high heat requirement. It is an equilibrium reaction with a soot formation as a side reaction. Therefore, it is preferable to select high gas inlet temperatures to thermodynamically suppress the side reaction. 1 l he exit temperatures ensure a high turnover.
  • the reaction is carried out essentially in the first reactor segment on the catalytically coated heating elements.
  • the first segment is characterized by the fact that the reactant concentration and the heat requirement of the reaction are very high.
  • the further reaction of the starting material e can take place on catalytically coated moldings.
  • the heating elements then act as an intermediate heating according to Bedar.
  • the model includes a solid phase and a gas phase
  • FIG. Figure 5 shows the conversion (XCH 4 , XCCM) over the normalized reactor length.
  • the "peaks" in the sales profile result from the consideration of a bypass flow, which is mixed in behind each lei / element.
  • the turnover rises steadily and reaches 90% after the first half of the reactor, then the turnover flattens off and approaches on Output to the corresponding equilibrium value.
  • FIG. 6 shows the temperature profile of the gas and solid phase.
  • the maximum power of the heating elements is given up in the inlet area (corresponds to 1 00% in the power profile). Much of the electrical energy is consumed by the heat of reaction.
  • the power input is selected such that the solid-state temperature (including the catalysis) is in the range around 1 100 ° C.
  • the reaction gas enters the reactor at 800 ° C, through heat exchange with the solid, the temperature of the gas phase increases the reactor length. The reaction takes place on the solid, reactions in the gas phase are not taken into account.
  • FIG. 7 shows the relative heating power per heating element.
  • the profile of heat input per element (in percent based on the maximum power of a single element) shows that the highest power is introduced in the first third of the reactor. At the rear of the reactor, sales level off and only a small input of power is required. This is where the concepts derive. which provide monolithic shaped bodies or catalyst charge in the area.
  • Mode II In contrast to the mode of operation I, the advantage of the reactor concept is illustrated here, in order to be able to impose a desired temperature profile on the reaction.
  • the gas temperature in the inlet is 800 ° C and the power input per heating element is chosen so that a continuous
  • FIG. 8 shows the conversion (XCH4, Xcce) over the normalized reactor length
  • FIG. 9 shows the temperature profile of the gas and solid phase
  • FIG. 1 0 shows the relative heating power per heating element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a flow reactor for reacting a fluid comprising reactants, comprising a plurality of heating planes (100, 101, 102, 103) as viewed in the flow direction of the fluid, which heating planes are electrically heated by means of heating elements (110, 111, 112, 113), wherein the fluid can flow through the heating planes (100, 101, 102, 103), wherein a catalyst is arranged on at least one heating element (100, 101, 102, 103) and can be heated there. An intermediate plane (200, 201, 202) is arranged between two heating planes (100, 101, 102, 103) at least once, wherein the fluid can likewise flow through the intermediate plane (200, 201, 202). The invention further relates to a method for operating a flow reactor, comprising the following steps: providing a flow reactor according to the invention; electrically heating at least one of the heating elements (110, 111, 112, 113); and having a fluid comprising reactants flow through the flow reactor in order to at least partially react the reactants of the fluid.

Description

Axialer Strömungsreaktor mit Heiz- und Zwischenebenen  Axial flow reactor with heating and intermediate levels
Die vorliegende Erfindung betrifft einen Strömungsreaktor zur Reaktion eines Reaktanden umfassenden Fluids, umfassend in Strömungsrichtung des Fluids gesehen eine Mehrzahl von I lei/ebenen. welche mittels Heizelementen elektrisch beheizt werden und wobei die Heizebenen von dem Fluid durchströmbar sind, wobei an mindestens einem Heizelement ein Katalysator angeordnet ist und dort beheizbar ist. Sie betrifft weiterhin ein Verfahren zum Betreiben eines erfindungsgemäßen Str ömungsr eakt or s . The present invention relates to a flow reactor for the reaction of a fluid comprising reactants, comprising a plurality of oil layers as viewed in the flow direction of the fluid. which are electrically heated by means of heating elements and wherein the heating levels can be traversed by the fluid, wherein a catalyst is arranged on at least one heating element and can be heated there. It further relates to a method for operating a flow control element according to the invention.
Bedingt durch den verstärkten Ausbau regenerativer Energien entsteht ein fluktuierendes Energieangebot im Stromnetz. In Phasen günstiger Strompreise ergibt sich für den Betrieb von Reaktoren zur Durchführung endothermer Reaktionen, bevorzugt für die Herstellung von Synthesegas, die Möglichkeit eines wirtschaftlichen und ökonomisch sinnvollen Betriebs unter Ausnutzung der regenerativen Energien, wenn diese elektrisch beheizt werden. Due to the increased expansion of renewable energies, a fluctuating supply of energy in the power grid is created. In phases of favorable electricity prices results for the operation of reactors for carrying out endothermic reactions, preferably for the production of synthesis gas, the possibility of an economical and economically meaningful operation taking advantage of renewable energies when they are electrically heated.
Konventionell erfolgt die Herstellung von Synthesegas mittels der Dampfreformierung von Methan. Aufgrund des hohen Wärmebedarfs der beteiligten Reaktionen erfolgt deren Durchführung in von außen beheizten Reformerröhren. Charakteristisch für dieses Verfahren ist die Limitierung durch das Reaktionsgleichgewicht, eine Wärmetransportlimitierung und vor allem die Druck- und Temperatur! imitierung der eingesetzten Reformerröhren (nickelbasierte Stähle). Temperatur- und druckseitig resultiert daraus eine Limitierung auf maximal 900 °C bei ca. 10 bis 40 bar. Conventionally, synthesis gas is produced by steam reforming of methane. Due to the high heat demand of the reactions involved, they are carried out in externally heated reformer tubes. Characteristic of this method is the limitation by the reaction equilibrium, a heat transport limitation and especially the pressure and temperature! imitation of the reformer tubes used (nickel-based steels). Temperature and pressure side results in a limitation to a maximum of 900 ° C at about 10 to 40 bar.
Ein alternatives Verfahren ist die autotherme Reformierung. Hierbei wird ein Teil des Brennstoffs durch Zugabe von Sauerstoff innerhalb des Reformers verbrannt, so dass das Reaktionsgas aufgeheizt wird und die ablaufenden endothermen Reaktionen mit Wärme versorgt werden. An alternative method is autothermal reforming. In this case, a portion of the fuel is burned by the addition of oxygen within the reformer, so that the reaction gas is heated and the expiring endothermic reactions are supplied with heat.
Im Stand der Technik sind einige Vorschläge für eine interne Heizung von chemischen Reaktoren bekannt geworden. So beschreiben beispielsweise Zhang et al., International Journal of Hydrogen Energy 2007, 32, 3870-3879 die Simulation und experimentelle Analyse eines co-axialen, zylindrischen Methan-Dampfreformers unter Verwendung eines elektrisch beheizten Alumit- Katalysators (EHAC). Some proposals for internal heating of chemical reactors have become known in the art. For example, Zhang et al., International Journal of Hydrogen Energy 2007, 32, 3870-3879 describe the simulation and experimental analysis of a coaxial, cylindrical methane steam reformer using an electrically heated alumite catalyst (EHAC).
DE 10 2008 027 882 AI betrifft ein Verfahren zur Erzeugung eines kohlenmonoxidreichen, methanarmen Gases (Synthesegas), wobei ein Kohlenwasserstoffe enthaltender EinsatzDE 10 2008 027 882 A1 relates to a process for the production of a carbon monoxide-rich, low-methane gas (synthesis gas), wherein an insert containing hydrocarbons
(Brennstoff) gemeinsam mit Kohlendioxid (CO2) und/oder Wasserdampf sowie einem Oxidationsmittel durch katalytisch unterstützte partielle Oxidation (autotherme Reformierung beziehungsweise ATR) umgesetzt wird. Das Synthesegas als Produktgas der autothermen Reformierung wird mit einer Temperatur von mehr als 1100 °C gewonnen. Ebenfalls beschrieben wird eine Vorrichtung zur Erzeugung eines kohlenmonoxidreichen, methanarmen Gases (Synthesegas), aufweisend einen mit einer feuerfesten Auskleidung versehenen, druckfesten Reaktor (ATR-Reaktor), in dem ein Kohlenwasserstoffe enthaltender Einsatz (Brennstoff) gemeinsam mit Kohlendioxid (CO2) und/oder Wasserdampf sowie einem Oxidationsmittei durch katalytisch unterstützte partielle Oxidation (Autothermal-Reformierung beziehungsweise ATR) umsetzbar ist sowie einen Reaktorbrenner, über den die Einsatzstoffe in den Reaktionsraum des ATR-Reaktors einbringbar sind, wobei das Synthesegas als Produktgas aus dem ATR-Reaktor mit einer Temperatur von mehr als 1100 °C abziehbar ist. DE 19960521 Λ 1 offenbart eine Vorrichtung zur Beseitigung von Ölnebeln und/oder Gerüchen durch Oxidation an einem festen Katalysator, die dadurch gekennzeichnet ist, dass der feste Edelmetall- Katalysator auf einem metallisch leitenden draht-, band- gitter- gewebe- oder rohrförmigen Träger in dünner Schicht festhaftend aufzubringen oder durch Einbrennen mit dem metallischen Träger fest zu verbinden, oder den metallischen Träger zuerst mit einer weitgehend porösen Masse zu beschichten, durch Einbrennen auf dem metallischen Träger zu verankern und die poröse Masse durch Tränken mit Edelmetallkatalysatoren zu beladen und den metallischen Träger mittels Gleich- oder Wechselstrom auf die erforderliche Oxidationstemperatur zu erhitzen, wobei die Änderung des elektrischen Widerstands zur Temperaturregelung dient und das aus dem Konverter ausströmende Gas zum Vorwärmen des einströmenden Gases benutzt wird. DE 10 2010 033316 AI beschreibt ein Abgasbehandlungssystem, umfassend: M elektrisch beheizte Substrate, die mit einem Katalysatormaterial beschichtet sind und die in Reihe angeordnet sind, um Abgas einer Maschine aufzunehmen, wobei M eine ganze Zahl größer als Eins ist; und ein Heizungssteuermodul, das Leistung an N der M Substrate anlegt, um die N Substrate während einer vorbestimmten Periode zu erwärmen, wobei N eine ganze Zahl kleiner als M ist, wobei während der vorbestimmten Periode die Maschine abgeschaltet ist und die M elektrisch beheizten Substrate kein Abgas aufnehmen. (Fuel) together with carbon dioxide (CO2) and / or water vapor and an oxidizing agent by catalytically assisted partial oxidation (autothermal reforming or ATR) is implemented. The synthesis gas as the product gas of the autothermal Reforming is obtained at a temperature of more than 1100 ° C. Also described is an apparatus for producing a low carbon, low methane gas (syngas) comprising a refractory lined, pressure resistant reactor (ATR reactor) in which a hydrocarbon containing feed (fuel) is co-charged with carbon dioxide (CO2) and / or Steam and Oxidationsmittei by catalytically assisted partial oxidation (autothermal reforming or ATR) can be implemented and a reactor burner through which the starting materials in the reaction chamber of the ATR reactor can be introduced, the synthesis gas as product gas from the ATR reactor at a temperature of more than 1100 ° C is deductible. Discloses a device for removing oil mist and / or odors by oxidation to a solid catalyst, which is characterized in that the solid noble metal catalyst on a metallic conductive wire, belt mesh or tubular support in adhering thinly or firmly bonding by burn-in with the metallic carrier, or by first coating the metallic carrier with a substantially porous mass, anchoring it to the metallic carrier by baking and loading the porous mass by impregnation with noble metal catalysts and the metallic carrier to heat by DC or AC current to the required oxidation temperature, wherein the change of the electrical resistance is used for temperature control and the effluent gas from the converter is used to preheat the incoming gas. DE 10 2010 033316 A1 describes an exhaust gas treatment system comprising: M electrically heated substrates coated with a catalyst material and arranged in series to receive exhaust gas from a machine, M being an integer greater than one; and a heater control module that applies power to N of the M substrates to heat the N substrates for a predetermined period, where N is an integer less than M, wherein during the predetermined period the engine is off and the M electrically heated substrates are not Absorb exhaust.
DE 103 171 7 Λ 1 betrifft einen elektrisch beheizten Reaktor zur Durchführung von Gasreaktionen bei hoher Temperatur, umfassend einen mit einer Umhüllung umgebenen Reaktorblock aus einem oder mehreren monolithischen Modulen aus einem für eine Widerstandsbeheizung oder induktive Beheizung geeigneten Material, als Reaktionsraum ausgebildete Kanäle, die von einer auf die gegenüberliegende Seite des Reaktorblocks reichen, je eine Vorrichtung zum Zuführen und zum Abführen eines gasförmigen Mediums zu/aus den Kanälen und mindestens zwei mit einer Stromquelle und dem Reaktorblock verbundene Elektroden (8, 8') /um Durchleiten eines Stroms durch den Reaktorblock oder eine Vorrichtung /um Induzieren eines Stroms im Reaktorblock, wobei die Umhüllung des Reaktorblocks einen diesen gasdicht abschließenden Doppelmantel und mindestens eine Vorrichtung zum Zufuhren eines Inertgases in den Doppelmantel umfasst. DE 103 171 7 relates to an electrically heated reactor for carrying out gas reactions at high temperature, comprising a reactor block surrounded by an enclosure of one or more monolithic modules of a material suitable for resistance heating or inductive heating, designed as a reaction space channels one on the opposite side of the reactor block, each one device for supplying and discharging a gaseous medium to / from the channels and at least two connected to a power source and the reactor block electrodes (8, 8 ') / to pass a current through the reactor block or a device / to induce a flow in the reactor block, wherein the enclosure of the reactor block comprises a gas-tight sealing double jacket and at least one device for supplying an inert gas in the double jacket.
Die Publikation Guo et al., Chemical Engineering Science 2011, 66, 6287-6296 ist auf dieThe publication Guo et al., Chemical Engineering Science 2011, 66, 6287-6296 is assigned to
Dampfreformierung von Kerosin gerichtet. Wünschenswert wäre jedoch, eine genauere Kontrolle eines Temperaturprofils bei einer endothermen intern beheizten Reaktion zu erhalten. Die vorliegende Erfindung hat sich daher die Aufgabe gestellt, einen hierfür geeigneten Reaktor bereitzustellen. Steam reforming of kerosene directed. However, it would be desirable to obtain a more accurate control of a temperature profile in an endothermic internally heated reaction. The object of the present invention is therefore to provide a reactor suitable for this purpose.
Diese Aufgabe wird erfindungsgemäß gelöst durch einen Strömungsreaktor zur Reaktion eines Reaktanden umfassenden Fluids, umfassend in Strömungsrichtung des Fluids gesehen eine Mehrzahl von Heizebenen, welche mittels Heizelementen elektrisch beheizt werden und wobei die Heizebenen von dem Fluid durchströmbar sind, wobei an mindestens einem Heizelement ein Katalysator angeordnet ist und dort beheizbar ist. Der Strömungsreaktor zeichnet sich dadurch aus, dass mindestens einmal eine Zwischenebene zwischen zwei Heizebenen angeordnet ist, wobei die Zwischenebene ebenfalls von dem Fluid durchströmbar ist. Die Zwischenebene beziehungsweise deren Inhalt kann auch katalytisch beschichtet sein. Diese dient nicht nur als Auflagefläche für den metallischen Leiter, sondern generiert auch Abhängig von Porosität und Dicke einen Druckverlust, der vor allem im Reaktoreinlauf eine bessere Strömungsverteilung zur Folge hat. Die Kombination aus Heizleiter und Zwischenebene (beziehungsweise Auflagefläche) kann dann auf einem metallischen Tragegerüst liegen, das für die mechanische Stabilität sorgt. Es ist bevorzugt, dass die Zwischenebene eine elektrische Isolierung darstellt, insbesondere bei Vorliegen eines metallischen Tragegerüstes. This object is achieved by a flow reactor for the reaction of a fluid comprising reactants comprising in the flow direction of the fluid a plurality of heating levels, which are electrically heated by heating elements and wherein the heating levels are flowed through by the fluid, wherein disposed on at least one heating element, a catalyst is and is heated there. The flow reactor is characterized in that at least once an intermediate level between two heating levels is arranged, wherein the intermediate level is also traversed by the fluid. The intermediate level or its contents can also be catalytically coated. This not only serves as a bearing surface for the metallic conductor, but also generates a pressure loss depending on the porosity and thickness, which results in better flow distribution, especially in the reactor inlet. The combination of heat conductor and intermediate level (or support surface) can then be on a metallic support structure, which ensures the mechanical stability. It is preferred that the intermediate plane is an electrical insulation, in particular in the presence of a metallic support structure.
Durch die eine oder mehrere im Reaktor befindliche, nicht beheizte Zwischenebene kann weiterhin eine Verweilstrecke eines reagierenden Fluids erreicht werden, innerhalb derer sich eine günstigere Wärmeverteilung ergibt. Durch die Wahl entsprechend langer oder kurzer Strecken des Fluids durch die Zwischenebene(n) kann auf vergleichsweise einfache Art Einfluss auf die Reaktion genommen werden. Weiterhin ist es möglich, die Reaktion durch katalytische Beschichtungen in unterschiedlicher Art oder Menge in der Zwischen ebene beziehungsweise deren Inhalt zu beeinflussen. By the one or more located in the reactor, unheated intermediate level, a dwell of a reacting fluid can continue to be achieved, within which there is a more favorable heat distribution. By choosing correspondingly long or short distances of the fluid through the intermediate plane (s), the reaction can be influenced in a comparatively simple manner. Furthermore, it is possible to influence the reaction by catalytic coatings in different type or amount in the intermediate level or their content.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Betreiben eines Strömungsreaktors, umfassend die Schritte: a) Bereitstellen des vorgenannten erfindungsgemäßen Strömungsreaktors; b) Elektrisches Beheizen wenigstens eines der Heizelemente des vorgenannten erfindungsgemäßen Strömungsreaktors; und c) Durchströmen eines Reaktanden umfassenden Fluids durch den Strömungsreaktor unter zumindest teilweiser Reaktion der Reaktanden des Fluids. Reaktionen, die in dem erfindungsgemäßen Strömungsreaktor durchgeführt werden können, sind beispielsweise das Dry Reforming von Methan (DR, C 1 h + CO2 ·-'* 2 CO + 2 H2), die umgekehrte Wassergas-Shift-Reaktion (RWGS, C02 + 1 !:· ^ CO + H20), die Partialoxidation von MethanAnother object of the present invention is a method for operating a flow reactor, comprising the steps: a) providing the above-mentioned flow reactor according to the invention; b) electrically heating at least one of the heating elements of the above-mentioned flow reactor according to the invention; and c) passing a reactant-comprising fluid through the flow reactor with at least partial reaction of the reactants of the fluid. Reactions that can be carried out in the flow reactor according to the invention, for example, the dry reforming of methane (DR, C 1 h + CO2 · - '* 2 CO + 2 H2), the reverse water gas shift reaction (RWGS, C0 2 + 1!: · ^ CO + H 2 0), the partial oxidation of methane
(POX, CH4 + 1/2 0: -· CO * 2 H2), die Methan-Dampfreformierung (SMR, CH4 + H20 ± CO + 3 H2) sowie die Reaktion von Methan mit Ammoniak zur Gewinnung von Blausäure (BMA, C I U + NH3 ^ HCN + 3 H2). (POX, CH 4 + 1/2 0 : - · CO * 2 H 2 ), the methane steam reforming (SMR, CH 4 + H 2 0 ± CO + 3 H 2 ) as well as the reaction of methane with ammonia to obtain Hydrocyanic acid (BMA, CIU + NH 3 ^ HCN + 3 H 2 ).
Die vorliegende Erfindung einschließlich bevorzugter Ausführungsformen wird in Verbindung mit den nachfolgenden Zeichnungen und Beispielen erläutert, ohne hierauf beschränkt zu sein. Die Ausführungsformen können beliebig miteinander kombiniert werden, sofern sich nicht eindeutig das Gegenteil aus dem Kontext ergibt. Es zeigen: The present invention, including preferred embodiments thereof, is illustrated in conjunction with the following drawings and examples, without being limited thereto. The embodiments can be combined as desired, unless clearly the opposite results from the context. Show it:
FIG. I -4 schematisch erfindungsgemäße Strömungsreaktoren in expandierter Darstellung FIG. I -4 schematically flow reactors according to the invention in an expanded representation
FIG. 5-10 Ergebnisse von Simulationsberechnungen FIG. 5-10 results of simulation calculations
Der in FIG. 1 schematisch gezeigte Strömungsreaktor wird von einem Reaktanden umfassenden Fluid von oben nach unten durchströmt, wie durch die Pfeile in der Zeichnung dargestellt. Das Fluid kann flüssig oder gasförmig sein und einphasig oder mehrphasig aufgebaut sein. Vorzugsweise, auch angesichts der möglichen Reaktionstemperaturen, ist das Fluid gasförmig. Es ist sowohl denkbar, dass das Fluid ausschließlich Reaktanden und Reaktionsprodukte enthält, aber auch, dass zusätzlich inerte Komponenten wie inertgase im Fluid vorliegen. The in FIG. 1 schematically shown flow reactor is flowed through by a reactant fluid from top to bottom, as shown by the arrows in the drawing. The fluid may be liquid or gaseous and may be single-phase or multi-phase. Preferably, also in view of the possible reaction temperatures, the fluid is gaseous. It is conceivable that the fluid contains only reactants and reaction products, but also that additionally inert components such as inert gases are present in the fluid.
In Strömungsrichtung des Fluids gesehen weist der Reaktor eine Mehrzahl von (im vorliegenden Fall vier) Heizebenen 100, 101, 102, 103 auf, welche mittels entsprechender Heizelemente 1 10, 1 1 1 . 1 12. 1 1 elektrisch beheizt werden. Die Heizebenen 100, 101 , 102, 103 werden im Betrieb des Reaktors von dem Fluid durchströmt und die Heizelemente 1 10, 1 1 1 , 1 12, 1 13 werden von dem Fluid kontaktiert. Viewed in the direction of flow of the fluid, the reactor has a plurality of (four in the present case) heating levels 100, 101, 102, 103, which by means of corresponding heating elements 1 10, 1 1 1. 1 12. 1 1 electrically heated. The heating levels 100, 101, 102, 103 are flowed through during operation of the reactor of the fluid and the heating elements 1 10, 1 1 1, 1 12, 1 13 are contacted by the fluid.
An mindestens einem Heizelement 1 10, 1 1 1 , 1 12, 1 1 3 ist ein Katalysator angeordnet und ist dort beheizbar. Der Katalysator kann direkt oder indirekt mit den Heizelementen 1 10, 1 1 1 , 1 12, 1 13 verbunden sein, so dass diese Heizelemente den Katalysatorträger oder einen Träger für den Katalysatorträger darstellen. At least one heating element 1 10, 1 1 1, 1 12, 1 1 3, a catalyst is arranged and is heated there. The catalyst can directly or indirectly with the heating elements 1 10, 1 1 1, 1 12, 1 13 be connected, so that these heating elements represent the catalyst support or a support for the catalyst support.
In dem Reaktor erfolgt somit die Wärmeversorgung der Reaktion elektrisch und wird nicht von Außen mittels Strahlung durch die Wandungen des Reaktors eingebracht, sondern direkt in das Innere des Reaktionsraumes. Es wird eine direkte elektrische Beheizung des Katalysators realisiert. In the reactor, therefore, the heat supply of the reaction takes place electrically and is not introduced from the outside by means of radiation through the walls of the reactor, but directly into the interior of the reaction space. It is realized a direct electrical heating of the catalyst.
Für die Heizelemente 110, 111, 112, 113 kommen bevorzugt Heizleiterlegierungen wie FeCrAl- Legierungen zum Einsatz. Alternativ zu metallischen Werkstoffen können zudem auch elektrisch leitfähige Si-basierte Materialien, besonders bevorzugt SiC, und/oder kohlenstoffbasierte Materialien eingesetzt werden. Im erfindungsgemäßen Reaktor ist weiterhin mindestens einmal eine zum Beispiel keramische Zwischen ebene 200, 201, 202 (die vorzugsweise von einem keramischen oder metallischen TraggerüstAebene getragen wird) zwischen zwei Heizebenen 100, 101, 102, 103 angeordnet, wobei die Zwischenebene(n) 200, 201, 202 beziehungsweise der Inhalt 210, 21 1 , 212 einer Zwischenebene 200, 201, 202 ebenfalls im Betrieb des Reaktors von dem Fluid durchströmt werden. Dieses hat den Effekt einer Homogenisierung der Fluids trömung Es ist auch möglich, dass zusätzlicher Katalysator in einer oder mehreren Zwischenebenen 200, 201 , 202 oder weiteren Isolationselementen im Reaktor vorhanden ist. Dann kann eine adiabatische Reaktion ablaufen. For the heating elements 110, 111, 112, 113 are preferably Heizleiterlegierungen such as FeCrAl alloys used. In addition to metallic materials, it is also possible to use electrically conductive Si-based materials, particularly preferably SiC, and / or carbon-based materials. In the reactor according to the invention is further at least once, for example, a ceramic intermediate level 200, 201, 202 (which is preferably supported by a ceramic or metallic support frame plane) between two heating levels 100, 101, 102, 103, wherein the intermediate level (s) 200, 201, 202 or the contents 210, 21 1, 212 of an intermediate level 200, 201, 202 are likewise flowed through by the fluid during operation of the reactor. This has the effect of homogenizing the fluid flow. It is also possible that additional catalyst is present in one or more intermediate levels 200, 201, 202 or other isolation elements in the reactor. Then an adiabatic reaction can take place.
Bei der Verwendung von FeCrAl-Heizleitern kann die Tatsache ausgenutzt werden, dass das Material durch Temperatur ein Wirkung in Gegenwart von Luft/Sauerstoff eine AbC -Schutzschicht ausbildet. Diese Passivierungsschicht kann als Grundlage eines Washcoats dienen, welcher als katalytisch aktive Beschichtung fungiert. Damit ist die direkte Widerstandsbeheizung des Katalysators beziehungsweise die Wärmeversorgung der Reaktion direkt über die katalytische Struktur realisiert. Es ist auch, bei Verwendung anderer Heizleiter, die Bildung anderer Schutzschichten wie beispielsweise von Si-O-C-Systemen möglich. Die Druckaufnahme im Reakt r kann über einen druckfesten Stahlmantel erfolgen. Unter Verwendung geeigneter keramischer Isolationsmaterialien kann erreicht werden, dass der drucktragende Stahl Temperaturen von weniger als 200 °C und, wo notwendig, auch weniger als 60 °C ausgesetzt wird. Durch entsprechende Vorrichtungen kann dafür gesorgt werden, dass bei Taupunktsunterschreitung keine Auskondensation von Wasser am Stahlmantel erfolgt. Die elektrischen Anschlüsse sind in FIG. 1 nur sehr schematisch dargestellt. Sie können im kalten Bereich des Reaktors innerhalb einer Isolierung zu den Enden des Reaktors geführt oder seitlich aus den Heizelementen 1 10, I I I , 1 12, 1 I 3 durchgeführt werden, so dass die eigentlichen elektrischen Anschlüsse im kalten Bereich des Reaktors vorgesehen sein können. Die elektrische Beheizung erfolgt mit Gleichstrom oder Wechselstrom. When using FeCrAl heaters, the fact that the material forms an AbC protective layer by temperature acting in the presence of air / oxygen can be exploited. This passivation layer can serve as the basis of a washcoat which acts as a catalytically active coating. Thus, the direct resistance heating of the catalyst or the heat supply of the reaction is realized directly through the catalytic structure. It is also possible, when using other heating conductors, the formation of other protective layers such as Si-OC systems. The pressure in React r can take place via a pressure-resistant steel jacket. Using suitable ceramic insulation materials it can be achieved that the pressure-bearing steel is exposed to temperatures of less than 200 ° C and, if necessary, less than 60 ° C. By means of appropriate devices, it can be ensured that, when the dew point is undershot, there is no condensation of water on the steel jacket. The electrical connections are shown in FIG. 1 only shown very schematically. They can be performed in the cold area of the reactor within an insulation to the ends of the reactor or laterally from the heating elements 1 10, III, 1 12, 1 I 3 performed so that the actual electrical connections can be provided in the cold region of the reactor. The electrical heating is done with direct current or alternating current.
Vor dem Hintergrund der herkömmlichen Wärmerückgewinnung und Wärmeintegration im Gesamt prozess und/oder Anlagenverbund werden häufig Reaktoreintrittstemperaturen um die 600 °C erreicht, die damit häufig unter den gewünschten Eintrittstemperaturen liegen, die bei Reformierreaktionen die Bildung von Russ/Kohlenstoff reduzieren. Die Vorschaltung eines oder mehrerer der beschriebenen elektrisch beheizten Elemente als Gaserhitzer ermöglicht ein rasches Aufheizen der Eduktgase auf Temperaturen höher als nach dem Stand der Technik üblich, ohne dass eine sauerstoffhaltige Atmosphäre erforderlich ist. Der Einsatz der elektrisch beheizten Elemente im Eintrittsbereich des Reaktors wirkt sich auch positiv im Hinblick auf das Kaltstart- und Anfahrverhalten aus, insbesondere in I linblick auf das rasche Aufheizen auf Reaktionstemperatur und die bessere Kontrollierbarkeit. Against the background of conventional heat recovery and heat integration in the overall process and / or system composite reactor inlet temperatures are often reached by 600 ° C, which are often below the desired inlet temperatures that reduce the formation of soot / carbon in reforming reactions. The connection of one or more of the described electrically heated elements as a gas heater allows a rapid heating of the educt gases to temperatures higher than usual in the prior art, without an oxygen-containing atmosphere is required. The use of the electrically heated elements in the inlet region of the reactor also has a positive effect with regard to the cold start and starting behavior, in particular with regard to rapid heating to the reaction temperature and better controllability.
Durch geeignete Formgebung kann eine Oberflächenvergrößerung erreicht werden. Es ist möglich, dass in den Heizebenen 100, 101, 102, 103 Heizelemente 110, 1 1 1. 112, 113 angeordnet sind, welche spiralförmig, mäanderförmig. gitt erförmig und/oder netzförmig aufgebaut sind. By appropriate shaping an increase in surface area can be achieved. It is possible that in the heating levels 100, 101, 102, 103 heating elements 110, 1 1 1. 112, 113 are arranged, which spiral, meandering. gitt erförmig and / or net-shaped are constructed.
Es ist weiterhin möglich, dass an zumindest einem Heizelement 110, 111, 112, 113 eine von den übrigen Heizelementen 110, I I I . 112, 1 13 verschiedene Menge und/oder An des Katalysators vorliegt. Vorzugsweise sind die Heizelemente 110, 1 11, 112, 113 so eingerichtet, dass sie jeweils unabhängig voneinander elektrisch beheizt werden können. I m Endergebnis können die einzelnen Heizebenen einzeln gesteuert und geregelt werden. I m Reaktoreintrittsbereich kann nach Bedarf auch auf einen Katalysator in den Heizebenen verzichtet werden, so dass ausschließlich die Aufheizung und keine Reakti n im Eintrittsbereich erfolgt. Dieses ist insbesondere im 1 linblick auf das Anfahren des Reaktors von Vorteil. Wenn sich die einzelnen Heizebenen 100, 101 , 102, 103 in Leistungseintrag, Kataly s atorb el adung und/oder Katalysatorart unterscheiden, kann ein tür die jeweilige Reaktion angepasstes Temperaturprofil erreicht werden. In Hinblick auf die Anwendung für endotherme Gleichgewichtsreaktionen ist dieses beispielsweise ein Temperaturprofil, das die höchsten Temperaturen und damit den höchsten Umsatz am Reaktoraustritt erreicht. It is also possible that at least one heating element 110, 111, 112, 113 one of the remaining heating elements 110, I I I. 112, 1 13 different amount and / or to the catalyst is present. Preferably, the heating elements 110, 11, 112, 113 are arranged so that they can each be electrically heated independently of each other. In the final result, the individual heating levels can be individually controlled and regulated. As required, a catalyst in the heating levels can also be dispensed with in the reactor inlet area, so that only the heating and no reactivation takes place in the inlet area. This is particularly advantageous in view of starting the reactor. If the individual heating levels 100, 101, 102, 103 differ in power input, catalyst adsorption and / or type of catalyst, a temperature profile adapted to the respective reaction can be achieved. With regard to the application for endothermic equilibrium reactions, this is, for example, a temperature profile which achieves the highest temperatures and thus the highest conversion at the reactor outlet.
Die (beispielsweise keramischen) Zwischenebenen 200, 201, 202 respektive ihr Inhalt 210, 211, 212 umfassen ein gegenüber den Reaktionsbedingungen beständiges Material, beispielsweise einen keramischen Schaum. Sie dienen zur mechanischen Abstützung der Heizebenen 100, 101, 102, 103 sowie zur Durchmischung und Verteilung des Gasstroms. Gleichzeitig ist so eine elektrischeThe (for example ceramic) intermediate levels 200, 201, 202 or their contents 210, 211, 212 comprise a material resistant to the reaction conditions, for example a ceramic foam. They serve for mechanical support of the heating levels 100, 101, 102, 103 and for mixing and distribution of the gas stream. At the same time is such an electrical
Isolierung zwischen zwei Heizebenen möglich. Es ist bevorzugt, dass das Material des Inhalts 210, 211, 212 einer Zwischenebene 200, 201, 202 Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC, Ferner bevorzugt ist Cordierit. Insulation between two heating levels possible. It is preferred that the material of the content 210, 211, 212 of an intermediate level 200, 201, 202 comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC, Further preferred is cordierite.
Die Zwischenebene 200, 201, 202 kann beispielsweise eine lose Schüttung von Festkörpern umfassen. Diese Festkörper selbst können porös oder massiv sein, so dass das Fluid durch Lücken zwischen den Festkörpern hindurchströmt. Es ist bevorzugt, dass das Material der Festkörper Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit. The intermediate level 200, 201, 202 may include, for example, a loose bed of solids. These solids themselves may be porous or solid, so that the fluid flows through gaps between the solids. It is preferred that the material of the solid bodies comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
Es ist ebenfalls möglich, dass die Zwischen ebene 200, 201, 202 einen einstückigen porösen Festkörper umfasst. In diesem Fall durchströmt das Fluid die Zwischenebene über die Poren des Festkörpers. Dieses ist in FIG. 1 dargestellt. Bevorzugt sind Wabenmonolithe, wie sie beispielsweise bei der Abgasreinigung von Verbrennungsmotoren eingesetzt werden. It is also possible that the intermediate level 200, 201, 202 comprises a one-piece porous solid. In this case, the fluid flows through the intermediate plane via the pores of the solid. This is shown in FIG. 1 shown. Preference is given to honeycomb monoliths, as used for example in the exhaust gas purification of internal combustion engines.
Hinsichtlich der baulichen Abmessungen ist bevorzugt, dass die durchschnittliche Länge einer Heizebene 100, 101, 102, 103 in Strömungsrichtung des Fluids gesehen und die durchschnittliche Länge einer Zwischenebene 200, 201, 202 in Strömungsrichtung des Fluids gesehen in einem Verhältnis von > 0,01 : 1 bis < 100:1 zueinander stehen. Noch vorteilhafter sind Verhältnisse von > 0,1 : 1 bis < 10:1 oder 0,5: 1 bis < 5:1. With regard to the structural dimensions, it is preferred that the average length of a heating level 100, 101, 102, 103 is viewed in the direction of flow of the fluid and the average length of an intermediate level 200, 201, 202 in the direction of flow of the fluid is in a ratio of> 0.01: 1 to <100: 1 to each other. Even more advantageous are ratios of> 0.1: 1 to <10: 1 or 0.5: 1 to <5: 1.
Geeignete Katalysatoren können beispielsweise ausgewählt sein aus der Gruppe bestehend aus: Suitable catalysts may for example be selected from the group consisting of:
(I) Mischmetalloxide der Formel A (i-w-x)A'„A"xB(i-y.z)B'yB"z03-deita wobei hier gilt: (I) mixed metal oxides of the formula A (i -w -x) A '"A" x B (. I- y z) B' y B "z 03-Deita wherein applies:
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K,A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K,
Rh. Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb. Dy, Ho, Er, Tm, Yb, Tl , Lu, Ni, Co, Pb, Bi und/oder Cd; Rh, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb, Bi and / or Cd;
B, B' und B" sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb. H f. Zr, Tb. W. ( id. Yb, Mg, Li, Na, K. Ce und/oder Zu; und B, B 'and B "are independently selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb H, Zr, Tb, W. (id.Yb, Mg, Li, Na, K. Ce, and / or Zu, and
0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < delta < 1; 0 <w <0.5; 0 <x <0.5; 0 <y <0.5; 0 <z <0.5 and -1 <delta <1;
(II) Mischmetalloxide der Formel A(i-w-x)A' wA"xB(i-y-z)B'yB"z03-deita wobei hier gilt: A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb. Dy. Ho, Er. Tm. Yb, Tl , Lu, Ni, Co, Pb und/oder Cd; (II) mixed metal oxides of the formula A (i -w -x) A 'w A "x B (i- y - z) B' y B" z 03-Deita which applies here: A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb. Dy. Ho, Er. Tm. Yb, Tl, Lu, Ni, Co, Pb and / or Cd;
B ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb. Ι ΙΓ. Zr, Tb. W. Gd. Yb, Mg, Cd. Zu. Re. Ru. Rh. Pd. Os, Ir und/oder Pt; B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb. Ι ΙΓ. Zr, Tb. W. Gd. Yb, Mg, Cd. To. Re. Ru. Rh. Pd. Os, Ir and / or Pt;
B' ist ausgewählt aus der Gruppe: Re, Ru, Rh, Pd, Os, Ir und/oder Pt; B 'is selected from the group: Re, Ru, Rh, Pd, Os, Ir and / or Pt;
6" ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi . Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb. I I f. Zr. Tb, W, Gd, Yb. Mg, Cd und/oder Zn; und 0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < delta < 1; 6 "is selected from the group: Cr, Mn, Fe, Bi. Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb II, Zr, Tb , W, Gd, Yb, Mg, Cd and / or Zn, and 0 <w <0.5, 0 <x <0.5, 0 <y <0.5, 0 <z <0.5 and -1 <delta <1;
(III) Mischungen von wenigstens zwei verschiedenen Metalien Ml und M2 auf einem Träger, welcher ein mit einem Metall M3 dotiertes Oxid von AI, Ce und oder Zr umfasst; wobei hier gilt: (III) mixtures of at least two different metals M1 and M2 on a support which comprises an oxide of Al, Ce and Zr doped with a metal M3; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Re, Ru, Rh, Ir, Os, Pd und/oder Pt; und Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt; and
M3 ist ausgewählt aus der Gruppe: Sc, Y, La, Ce, Pr. Nd, Sm, Eu. Gd. Tb, Dy . Ho, Er. Tin. Yb und/oder Lu; M3 is selected from the group: Sc, Y, La, Ce, Pr. Nd, Sm, Eu. Gd. Tb, Dy. Ho, he. Tin. Yb and / or Lu;
(IV) Mischmetalloxide der Formel LOx(M(y/z)Ai(2-y/z)03)z; wobei hier gilt: L ist ausgewählt aus der Gruppe: Na, K. Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl, La, Ce, Pr, Nd. Sm, Eu, Gd. Tb. Dy . Ho, Er. Tm, Yb und/oder Lu; (IV) mixed metal oxides of the formula LO x (M (y / z ) Ai (2-y / z ) 03) z; where L is selected from the group: Na, K. Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl, La, Ce, Pr, Nd , Sm, Eu, Gd. Tb. Dy. Ho, he. Tm, Yb and / or Lu;
M ist ausgewählt aus der Gruppe: Ti, Zr. Hf, V, Nb. Ta, Cr, Mo, W. Mn. Re. Fe, Ru. Os, Co, Rh. Ir, Ni, Pd. Pt. Zn. Cu, Ag und/oder Au; M is selected from the group: Ti, Zr. Hf, V, Nb. Ta, Cr, Mo, W. Mn. Re. Fe, Ru. Os, Co, Rh. Ir, Ni, Pd. Pt. Zn. Cu, Ag and / or Au;
1 < x < 2; 0 < y < 12; und 4 < z < 9; (V) Mischmetalloxide der Formel L0(A1203)Z; wobei hier gilt: L ist ausgewählt aus der Gruppe: Na, K, Rh. Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In. Tl, La, Ce, Pr, Nd, Sm, Eu, (id. Tb, Dy. Ho, Er, Tm. Yb und/oder Lu; und 1 <x <2; 0 <y <12; and 4 <z <9; (V) mixed metal oxides of the formula L0 (Al 2 O 3 ) Z ; where: L is selected from the group: Na, K, Rh. Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In. Tl, La, Ce, Pr, Nd, Sm, Eu, (id Tb, Dy Ho, Er, Tm Yb, and / or Lu;
4 < z < 9; 4 <z <9;
(Vi) oxidischer Katalysator, der Ni und Ru umfasst. (VII) Metall Ml und/oder wenigstens zwei verschiedene Metalle Ml und M2 auf und/oder in einem Träger, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selenid der Metalle A und/oder B ist; wobei hier gilt: (Vi) oxide catalyst comprising Ni and Ru. (VII) metal Ml and / or at least two different metals Ml and M2 on and / or in a carrier, wherein the carrier is a carbide, oxycarbide, carbonitride, nitride, boride, silicide, germanide and / or selenide of the metals A and / or B is; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh. Ir. Os, Pd, Pt, Zn, Cu, La. Ce, Pr. Nd. Sm, Eu, Gd, Tb. Dy. 1 lo. Er. Tm, Yb. und/oder Lu; Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh. Ir. Os, Pd, Pt, Zn, Cu, La. Ce, Pr. Nd. Sm, Eu, Gd, Tb. Dy. 1 lo. He. Tm, Yb. and / or Lu;
A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be. Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y. Zr, Nb, Mo, I I f. Ta, W. La. Ce, Pr. Nd, Sm, Eu. Gd. Tb, Dy. Ho, Er. Tm. Yb. und/oder Lu; und/oder Reaktionsprodukte von (I), (II), (III), (IV), (V), (VI) und/oder (VII) in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C. A and B are independently selected from the group: Be. Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y. Zr, Nb, Mo, I I f. Ta, W. La. Ce, Pr. Nd, Sm, Eu. Gd. Tb, Dy. Ho, he. Tm. Yb. and / or Lu; and / or reaction products of (I), (II), (III), (IV), (V), (VI) and / or (VII) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of > 700 ° C.
Der Begriff "Reaktionsprodukte" schließt di e unter Reaktionsbedingungen vorliegenden Katalysatorphasen mit ein. The term "reaction products" includes the catalyst phases present under reaction conditions.
Bevorzugt sind für: (I) LaNiCh und/oder LaNio.7-o.9F eo, 1-0,3 O3 (insbesondere LaNio.sF 60,203) Preference is given to: (I) LaNiCh and / or LaNio.7-o.9F eo, 1-0.3 O3 (in particular LaNio.sF 60.203)
(II) LaNi0,9-o,99R o,o 1 -0, 103 und/oder LaNi0,9-o,99Rho,oi~o,i03 (insbesondere LaNie.95Ruo.05O3 und/oder LaNio.gsRho.osOs). (II) LaNi 0 , 9-o, 99R o, o 1 -0, 103 and / or LaNi 0 , 9-o, 99Rho, oi ~ o, i03 (in particular LaNie.95Ruo.05O3 and / or LaNio.gsRho. Osos).
(III) Pt-Rh auf Ce-Zr-Al-Oxid, Pt-Ru und/oder Rh-Ru auf Ce-Zr-Al-Oxid (III) Pt-Rh on Ce-Zr-Al oxide, Pt-Ru and / or Rh-Ru on Ce-Zr-Al oxide
BaNiAlnOi9, C a N i A I1 1O19, BaNi0>975Ruo, 1O1BaNiAlnOi9, C a N i A I1 1O19, BaNi 0> 975Ruo, 1O1
BaNio,92Ruo,o8AlnOi9, BaNio,84Pto,i6AlnOi9 und/oder
Figure imgf000011_0001
BaNio, 92Ruo, o8AlnOi9, BaNio, 84Pto, i6AlnOi9 and / or
Figure imgf000011_0001
(V) BaAl!20i9, SrAl! 20i9 und/oder CaAli20i9 (VI) Ni und Ru auf Ce-Zr-Al-Oxid, auf einem Oxid aus der Klasse der Perowskite und/oder auf einem Oxid aus der Klasse der Hexaaluminate (V) BaAl ! 2 0i9, SrAl ! 2 0i9 and / or CaAli 2 0i 9 (VI) Ni and Ru on Ce-Zr-Al oxide, on an oxide of the class of perovskites and / or on an oxide of the class of hexaaluminates
(VII) Cr, Mn, Fe. Co, Ni, Re, Ru. Rh. Ir. Os, Pd, Pt, Zn. Cu, La. Ce, Pr. Nd. Sm. Eu, (id. Tb, Dy. (VII) Cr, Mn, Fe. Co, Ni, Re, Ru. Rh. Ir. Os, Pd, Pt, Zn. Cu, La. Ce, Pr. Nd. Sm. Eu, (id. Tb, Dy.
1 lo. Er, Tin. Yb, und/oder Lu auf M02C und/ oder WC. Der erfindungsgemäße Reaktor kann modular aufgebaut sein. Ein Modul kann beispielsweise eine Heizebene, eine Zwischenebene, die elektrische Kontaktierung und die entsprechenden weiteren Isolationsmaterialien und Wärmedämmstoffe enthalten. 1 lo. He, Tin. Yb, and / or Lu on M0 2 C and / or WC. The reactor according to the invention may be modular. A module may include, for example, a heating level, an intermediate level, the electrical contact and the corresponding further insulation materials and thermal insulation materials.
I m erfindungsgemäß en Verfahren erfolgt im bereitgestellten Reaktor ein elektrisches Beheizen wenigstens eines der Heizelemente 110, 111, 112, 113. Dieses kann, muss aber nicht zeitlich vor dem Durchströmen eines Reaktanden umfassenden Fluids durch den Strömungsreaktor unter zumindest teilweiser Reaktion der Reaktanden des Fluids erfolgen. In the process according to the invention, electrical heating of at least one of the heating elements 110, 111, 112, 113 takes place in the reactor provided. This can, but does not have to, take place before flow of a reactant comprising fluid through the flow reactor with at least partial reaction of the reactants of the fluid ,
Wie bereits im Zusammenhang mit dem Reaktor erwähnt ist es vorteilhaft, wenn die einzelnen Heizelemente 110, 111, 112, 113 mit einer jeweils unterschiedlichen Heizleistung betrieben werden. Hinsichtlich der Temperatur ist bevorzugt, dass die Reaktionstemperatur im Reaktor wenigstens stellenweise > 700 °C bis < 1300 °C beträgt. Mehr bevorzugte Bereiche sind > 800 °C bis < 1200As already mentioned in connection with the reactor, it is advantageous if the individual heating elements 110, 111, 112, 113 are operated with a respective different heating power. With regard to the temperature, it is preferred that the reaction temperature in the reactor is at least in places> 700 ° C to <1300 ° C. More preferred ranges are> 800 ° C to <1200
°C und > 900 °C bis < 1100 °C, insbesondere > 850 °C bis < 1050 °C. ° C and> 900 ° C to <1100 ° C, in particular> 850 ° C to <1050 ° C.
Die durchs chnittliche (mittlere) Kontaktzeit des Fluids zu einem Heizelement 110, 1 1 1. 112, 1 13 kann beispielsweise > 0,01 Sekunden bis < 1 Sekunde betragen und/oder die durchschnittliche Kontaktzeit des Fluids zu einer Zwischen ebene 110, 111, 112, 113 kann beispielsweise > 0,001 Sekunden bis < 5 Sekunden betragen. Bevorzugte Kontaktzeiten sind > 0,005 bis < 1 Sekunden, mehr bevorzugt > 0,01 bis < 0,9 Sekunden. The average (average) contact time of the fluid to a heating element 110, 11, 112, 13 can be, for example,> 0.01 seconds to <1 second and / or the average contact time of the fluid to an intermediate level 110, 111, 112, 113 may be, for example,> 0.001 seconds to <5 seconds. Preferred contact times are> 0.005 to <1 second, more preferably> 0.01 to <0.9 seconds.
Die Reakti n kann bei einem Druck von > 1 bar bis < 200 bar durchgeführt werden. Vorzugsweise beträgt der Druck > 2 bar bis < 50 bar, mehr bevorzugt > 6 bar bis < 30 bar. Es ist bevorzugt, dass die Reaktanden im Fluid ausgewählt sind aus der Gruppe umfassend Alkane, Alkene, Alkine, Alkanole, Alkenole, Alkinole, Kohlenmonoxid, Kohlendioxid, Wasser, Ammoniak, Wasserstoff und/oder Sauerstoff. Unter den Alkanen ist Methan besonders geeignet, unter den Alkanolen sind Methanol und/ oder Ethanol bevorzugt. The Reakti n can be carried out at a pressure of> 1 bar to <200 bar. Preferably, the pressure is> 2 bar to <50 bar, more preferably> 6 bar to <30 bar. It is preferred that the reactants in the fluid are selected from the group comprising alkanes, alkenes, alkynes, alkanols, alkenols, alkynols, carbon monoxide, carbon dioxide, water, ammonia, hydrogen and / or oxygen. Among the alkanes, methane is particularly suitable, among the alkanols methanol and / or ethanol are preferred.
FIG. 2 zeigt einen weiteren er findungs gemäßen Reaktor, welcher vorzugsweise für die RWGS- Reaktion eingesetzt werden kann. Die erste Heizebene 100 mit Heizelement 110 ist hierbei noch nicht mit einem Katalysator versehen und dient als Gaserhitzer. Die anschließende Zwischenebene 200 enthält einen monolithischen Katalysatorformkörper 210, welcher kataly tisch beschichtet ist. Alternativ kann es sich auch um eine Katalysatorschüttung handeln. Hieran schließen sich eine Heizebene 101 mit Heizelement 1 1 1 , eine Zwischenebene 201 mit einer porösen Stützschicht 211 (optional katalytisch beschichtet) sowie eine weitere Heizebene 102 mit Heizelement 1 12 an. Dieser Heizebene 102 nachgelagert ist wieder eine Zwischenebene 202 mit monolithischem Katalysatorformkörper oder Katalysatorschüttung 212, eine Heizebene 103 mit Heizelement 1 13 un d e in e Z w i s ch en eb en e 203 m it m on o l ith i s ch em Katalysatorformkörper oder Katalysatorschüttung 213. Mindestens eines der Heizelemente 1 1 1 , 1 12 und 1 13 umfasst auch einen Katalysator. Auch hier können die einzelnen katalysatortragenden Elemente des Reaktors sich in Art und Menge des Katalysators unterscheiden und die Heizelemente können einzeln oder in Gruppen gesteuert und geregelt werden. FIG. FIG. 2 shows another reactor according to the invention, which can preferably be used for the RWGS reaction. The first heating level 100 with heating element 110 is not yet provided with a catalyst and serves as a gas heater. The subsequent intermediate level 200 contains a monolithic shaped catalyst body 210 which is coated catalytically table. Alternatively, it may also be a catalyst bed. This is followed by a heating level 101 with heating element 1 1 1, an intermediate level 201 with a porous support layer 211 (optionally catalytically coated) and a further heating level 102 with heating element 1 12 at. Downstream of this heating level 102 is again an intermediate level 202 with a monolithic shaped catalyst body or catalyst bed 212, a heating level 103 with a heating element 13, and in the form of a catalyst body or catalyst bed 213. At least one of the heating elements 1 1 1, 1 12 and 1 13 also includes a catalyst. Again, the individual catalyst-carrying elements of the reactor can differ in the type and amount of the catalyst and the heating elements can be controlled and regulated individually or in groups.
Die Merkmale der RWGS-Reaktion liegen in einem vergleichsweise moderaten Wärmebedarf und darin, dass es sich um eine Gleichgewichtsreaktion handelt. Als Nebenreaktion kann eine Methanisierung vor allem bei erhöhtem Druck und bei Temperaturen von unter 800 °C auftreten. Daher wird vorzugsweise eine hohe Gaseintrittstemperatur gewählt, um die Nebenreaktionen und insbesondere die Methanisierung thermodynamisch zu unterdrücken. Eine hohe Austrittstemp er atur wiederum sorgt für einen hohen Umsatz. The characteristics of the RWGS reaction lie in a comparatively moderate heat requirement and in the fact that it is an equilibrium reaction. As a side reaction, methanation may occur especially at elevated pressure and at temperatures below 800 ° C. Therefore, a high gas inlet temperature is preferably selected in order to thermodynamically suppress the side reactions and in particular the methanation. A high outlet tem- perature, on the other hand, ensures high sales.
Die katalytische Umsetzung erfolgt hier zum überwiegenden Teil adiabat an den monolithischen Katalysatorformkörp ern und in einem geringeren Maße an den mit Katalysator versehenenThe catalytic reaction takes place here for the most part adiabatically to the monolithic Katalysatorformkörp ern and to a lesser extent provided with the catalyst
Heizelementen. Heating elements.
FIG. 3 zeigt einen weiteren er fmdungs gemäßen Reaktor, welcher vorzugsweise für das Dry Reforming eingesetzt werden kann. Die erste Heizebene 100 mit Heizelement 110 kann hierbei noch nicht mit einem Katalysator versehen sein und dient dann als reiner Gaserhitzer. Zur Vermeidung unerwünschter Nebenreaktionen kann aber bereits eine (schwach) katalytisch aktive Schicht auf dem Heizelement 1 10 angebracht sein. Die anschließende Zwischenebene 200 enthält eine poröse Stützschicht 210, welche optional katalytisch beschichtet sein kann. Hieran schließen sich eine Heizebene 101 mit katalytisch beschichtetem 1 lei/element 11 1 , eine Zwischenebene 201 mit einer porösen Stützschicht 21 1 (optional katalytisch beschichtet) sowie eine weitere Heizebene 102 mit katalytisch beschichtetem Heizelement 1 12 an. Dieser Heizebene 102 nachgelagert ist wieder eine Zwischenebene 202 mit einer porösen Stützschicht 212 (optional katalytisch beschichtet), eine Heizebene 103 mit katalytisch beschichtetem Heizelement 1 13 und eine Zwischenebene 203 mit einer porösen Stützschicht 213 (optional katalytisch beschichtet). Auch hier können die ein/einen katalysatortragenden Elemente des Reaktors sich in Art und Menge des Katalysators unterscheiden und die Heizelemente können einzeln oder in Gruppen gesteuert und geregelt werden. FIG. 3 shows a further reactor according to the invention, which can preferably be used for dry reforming. The first heating level 100 with heating element 110 can not yet be provided with a catalyst and then serves as a pure gas heater. In order to avoid unwanted side reactions, however, a (weakly) catalytically active layer may already be applied to the heating element 110. The subsequent intermediate level 200 contains a porous support layer 210, which may optionally be catalytically coated. This is followed by a heating level 101 with catalytically coated 1 lei / element 11 1, an intermediate level 201 with a porous support layer 21 1 (optionally catalytically coated) and a further heating level 102 with catalytically coated heating element 1 12 at. Downstream of this heating level 102 is again an intermediate level 202 with a porous support layer 212 (optionally catalytically coated), a heating level 103 with catalytically coated heating element 1 13 and an intermediate level 203 with a porous support layer 213 (optionally catalytically coated). Again, the catalyst supporting elements of the reactor may differ in the type and amount of catalyst and the heating elements may be controlled and controlled individually or in groups.
Das Hauptmerkmal der (O -Reformierung liegt in einem hohen Wärmebedarf, welcher lokal begrenzt vor allem im ersten Drittel des Reaktors herrscht. Es ist eine Gleichgewichtsreaktion mit einer Rußbildung als Nebenreaktion. Daher ist es bevorzugt, hohe Gas eintrittstemp er atur en zu wählen, um die Nebenreaktion thermodynamisch zu unterdrücken. Hohe Austrittstemperaturen sorgen lür einen hohen Umsatz. Die Reaktion erfolgt hierbei im Wesentlichen an den katalytisch beschichteten Heizelementen. FIG. 4 zeigt einen weiteren erfindungsgemäßen Reaktor, welcher vorzugsweise für die Methan- Dampfreformierung eingesetzt werden kann. Die erste Heizebene 100 mit Heizelement 110 kann hierbei noch nicht mit einem Katalysator versehen sein und dient dann als reiner Gaserhitzer. Zur Vermeidung unerwünschter Nebenreaktionen kann aber bereits eine (schwach) katalytisch aktive Schicht auf dem Heizelement 110 angebracht sein. Die anschließende Zwischenebene 200 enthält eine poröse Stütz Schicht 210, welche optional katalytisch beschichtet sein kann. Hieran schließen sich eine Heizebene 101 mit katalytisch beschichtetem Heizelement 1 1 1. eine Zwischenebene 201 mit einer porösen Stützschicht 211 (optional katalytisch beschichtet) sowie eine weitere Heizebene 102 mit katalytisch beschichtetem Heizelement 112 an. Dieser Heizebene 102 nachgelagert ist wieder eine Zwischenebene 202 mit einer porösen Stützschicht 212 (optional katalytisch beschichtet), eine Heizebene 103 mit katalytisch beschichtetem Heizelement 1 13 und eine Zwischenebene 203 mit monolithischem Katalysatorformkörper oder Kataly s at or s chüttung 213. The main feature of the (O-reforming is a high heat requirement, which is locally limited, especially in the first third of the reactor.) It is an equilibrium reaction with a soot formation as side reaction, therefore it is preferable to use high gas inlet temperatures The reaction takes place essentially on the catalytically coated heating elements, and FIG. 4 shows a further reactor according to the invention which can preferably be used for methane steam reforming With heating element 110, this can not yet be provided with a catalyst and then serves as a pure gas heater However, a (weakly) catalytically active layer can already be applied to heating element 110. The subsequent intermediate plane 200 contains a porous supporting layer 210, which may optionally be catalytically coated. This is followed by a heating level 101 with a catalytically coated heating element 11 1, an intermediate level 201 with a porous support layer 211 (optionally catalytically coated) and a further heating level 102 with a catalytically coated heating element 112. Downstream of this heating level 102 is again an intermediate level 202 with a porous support layer 212 (optionally catalytically coated), a heating level 103 with a catalytically coated heating element 13 and an intermediate level 203 with a monolithic shaped catalyst body or catalyst 213.
Auch hier können die einzelnen katalysatortragenden Elemente des Reaktors sich in Art und Menge des Katalysators unterscheiden und die Heizelemente können einzeln oder in Gruppen gesteuert und geregelt werden. Das Hauptmerkmal der Methan-Dampfreformierung liegt in einem hohen Wärmebedarf. Es ist eine Gleichgewichtsreaktion mit einer Rußbildung als Nebenreaktion. Daher ist es bevorzugt, hohe Gas eintrittstemp eraturen zu wählen, um die Nebenreaktion thermodynamisch zu unterdrücken. 1 l he Austrittstemperaturen sorgen für einen hohen Umsatz. Die Reaktion wird im Wesentlichen im ersten Reaktorsegment an den katalytisch beschichteten Heizelementen durchgeführt. Das erste Segment zeichnet sich dadurch aus, dass die Eduktkonzentration und der Wärmebedarf der Reaktion sehr hoch sind. Im zweiten Segment des Reaktors, das sich dadurch auszeichnet, dass das Edukt Methan bereits zum größten Teil umgesetzt ist und der volumenspezifische Wärmebedarf deutlich geringer ist, kann die weitere Umsetzung der Edukt e an katalytisch beschichteten Formkörpern erfolgen. Die Heizelemente fungieren dann nach Bedar als Zwischenheizung. Nachfolgend werden Simulationsstudien für zwei vers chiedene B etriebsweis en eines erfindungsgemäßen Reaktors ("Fahrweise I" und "Fahrweise II") beschrieben. Again, the individual catalyst-carrying elements of the reactor can differ in the type and amount of the catalyst and the heating elements can be controlled and regulated individually or in groups. The main feature of methane steam reforming is a high heat requirement. It is an equilibrium reaction with a soot formation as a side reaction. Therefore, it is preferable to select high gas inlet temperatures to thermodynamically suppress the side reaction. 1 l he exit temperatures ensure a high turnover. The reaction is carried out essentially in the first reactor segment on the catalytically coated heating elements. The first segment is characterized by the fact that the reactant concentration and the heat requirement of the reaction are very high. In the second segment of the reactor, which is characterized by the fact that the reactant methane is already largely implemented and the volume-specific heat requirement is significantly lower, the further reaction of the starting material e can take place on catalytically coated moldings. The heating elements then act as an intermediate heating according to Bedar. In the following, simulation studies for two different operating modes of a reactor according to the invention ("driving style I" and "driving style II") are described.
Den Simulationsstudien wurde folgendes zugrunde gelegt: · Die mathematischen Modellgleichungen wurden auf Basis der Bilanzierung der Masse und Energie am differentiellen Volumenelement abgeleitet The simulation studies were based on the following: · The mathematical model equations were derived on the basis of the balance of mass and energy at the differential volume element
• Das Modell beinhaltet eine Feststoffphase und eine Gasphasen • The model includes a solid phase and a gas phase
• Der Stoffübergang zwischen Gas und Katalysator wird berücksichtigt (Linearer Trieb kraftansatz) · Änderungen der Zustande großen werden nur in axialer Strömungsrichtung betrachtet (1D - Modell) • The mass transfer between gas and catalyst is taken into account (linear drive force approach) • Changes of the states are considered large only in the axial flow direction (1D model)
• Die Temperatur- und Druckabhängigkeit der Stoffgrößen wird berücksichtigt Die Simulationsstudien beziehen sich auf a) die C().--Reformierung b) den Reaktortyp in Anlehnung an FIG. 3, das heißt, die Fleizebenen sind katalytisch beschichtet und die Reaktion läuft an diesen katalytisch aktiven Heizleitern ab • The temperature and pressure dependence of the substance sizes is taken into account The simulation studies refer to a) the C () .-- reforming b) the reactor type based on FIG. 3, that is, the Fleecebenen are catalytically coated and the reaction proceeds on these catalytically active heating conductors
Fahrweise 1 : Driving style 1:
FIG. 5 zeigt den Umsatz (XCH4, XCCM) über der normierten Reaktorlänge. Die„Zacken" im Umsatzprofil resultieren aus der Berücksichtigung eines Bypassstroms, der hinter j edem 1 lei/element zugemischt wird. Der Umsatz steigt stetig an und erreicht nach der 1. Hälfte des Reaktors 90 %, danach flacht der Umsatzverlauf ab und nähert sich am Ausgang dem entsprechenden Gleichgewichtswert an. FIG. Figure 5 shows the conversion (XCH 4 , XCCM) over the normalized reactor length. The "peaks" in the sales profile result from the consideration of a bypass flow, which is mixed in behind each lei / element.The turnover rises steadily and reaches 90% after the first half of the reactor, then the turnover flattens off and approaches on Output to the corresponding equilibrium value.
FIG. 6 zeigt das Temperaturprofil der Gas- und Feststoffphase. Bei der gezeigten Fahrweise wird im Eintrittsbereich die maximale Leistung der Heizelemente aufgegeben (entspricht 1 00% im Leistungsprofil). Ein Großteil der elektrisch eingebrachten Energie wird durch die Wärmetönung der Reaktion verbraucht. Der Leistungseintrag ist so gewählt, dass die Feststofftemperatur (beinhaltet die Kataly s atorphas e) im Bereich um 1 100 °C liegt. Das Reaktionsgas tritt mit 800 °C in den Reaktor ein, durch Wärmetausch mit dem Feststoff steigt die Temperatur der Gasphase über die Reaktorlänge an. Die Reaktion findet am Feststoff statt, Reaktionen in der Gasphase sind nicht berücksichtigt. FIG. 6 shows the temperature profile of the gas and solid phase. In the mode of operation shown, the maximum power of the heating elements is given up in the inlet area (corresponds to 1 00% in the power profile). Much of the electrical energy is consumed by the heat of reaction. The power input is selected such that the solid-state temperature (including the catalysis) is in the range around 1 100 ° C. The reaction gas enters the reactor at 800 ° C, through heat exchange with the solid, the temperature of the gas phase increases the reactor length. The reaction takes place on the solid, reactions in the gas phase are not taken into account.
FIG. 7 zeigt die relative Heizleistung pro Heizelement. Das Profil der pro Element eingebrachten Heizleistung (in Prozent basierend auf der maximalen Leistung eines einzelnen Elements) zeigt, dass die höchste Leistung im ersten Drittel des Reaktors eingebracht wird. Im hinteren Bereich des Reaktors flacht der Umsatz ab und es ist nur noch ein geringer Leistungseintrag erforderlich. Daraus leiten sich die Konzepte ab. die in dem Bereich monolithische Formkörper oder Katalys ator s chüttung vorsehen. FIG. 7 shows the relative heating power per heating element. The profile of heat input per element (in percent based on the maximum power of a single element) shows that the highest power is introduced in the first third of the reactor. At the rear of the reactor, sales level off and only a small input of power is required. This is where the concepts derive. which provide monolithic shaped bodies or catalyst charge in the area.
Fahrweise II: I m Unterschied zur Fahrweise I wird hier der Vorteil des Reaktorkonzepts verdeutlicht, der Reaktion ein gewünschtes Temperaturprofil aufprägen zu können. Die Gastemperatur im Eintritt liegt bei 800 °C und der Leistungseintrag pro Heizelement ist so gewählt, dass eine kontinuierlicheMode II: In contrast to the mode of operation I, the advantage of the reactor concept is illustrated here, in order to be able to impose a desired temperature profile on the reaction. The gas temperature in the inlet is 800 ° C and the power input per heating element is chosen so that a continuous
Rampe über der Reaktorlänge aufgeprägt wird wobei die höchste Temperatur am Reaktorausgang erreicht wird. I m Unterschied zur Fahrweise I ist bei di eser Fahrweise ein längerer Reaktor erforderlich, allerdings werden die Heizelemente deutlich weniger belastet, was zu längeren Standzeiten führen kann. FIG. 8 zeigt den Umsatz (XCH4, Xcce) über der normierten Reaktorlänge, FIG. 9 zeigt das Temperaturproiii der Gas- und Feststoffphase und FIG. 1 0 zeigt die relative Heizleistung pro Heizelement. Ramp over the reactor length is impressed with the highest temperature is reached at the reactor outlet. In contrast to the mode of operation I, a longer reactor is required for this mode of operation, but the heating elements are loaded significantly less, which can lead to longer service lives. FIG. 8 shows the conversion (XCH4, Xcce) over the normalized reactor length, FIG. 9 shows the temperature profile of the gas and solid phase and FIG. 1 0 shows the relative heating power per heating element.

Claims

Patentansprüche claims
1. Strömungsreaktor zur Reaktion eines Reaktanden umfassenden Fluids, umfassend in Strömungsrichtung des Fluids gesehen eine Mehrzahl von Heizebenen (100, 101, 102, 103), welche mittels Heizelementen (110, 111, 112, 113) elektrisch beheizt werden und wobei die Heizebenen (100, 101, 102, 103) von dem Fluid durchströmbar sind, wobei an mindestens einem Heizelement (110, I I I . 112, 113) ein Katalysator angeordnet ist und dort beheizbar ist; dadurch gekennzeichnet, dass mindestens einmal eine Zwischenebene (200, 201, 202) zwischen zwei Heizebenen (100, 101, 102, 103) angeordnet ist, wobei die Zwischenebene (200, 201, 202) ebenfalls von dem Fluid durchströmbar ist. 1. flow reactor for the reaction of a fluid comprising reactants, comprising a plurality of heating levels (100, 101, 102, 103) as seen in the direction of flow of the fluid, which are electrically heated by means of heating elements (110, 111, 112, 113) and wherein the heating levels ( 100, 101, 102, 103), wherein a catalyst is arranged on at least one heating element (110, III, 112, 113) and can be heated there; characterized in that at least once an intermediate level (200, 201, 202) between two heating levels (100, 101, 102, 103) is arranged, wherein the intermediate level (200, 201, 202) can also be traversed by the fluid.
2. Str ömungsr eakt or gemäß Anspruch 1, wobei in den Heizebenen ( 100, 101 , 102, 103) Heizelemente (110, I I I . 112, 113) angeordnet sind, welche spiralförmig, mäanderförmig, gitterförmig und/oder netzförmig aufgebaut sind. 2. flow reactor according to claim 1, wherein in the heating levels (100, 101, 102, 103) heating elements (110, I I I 112, 113) are arranged, which are constructed in a spiral, meandering, lattice-shaped and / or net-shaped.
3. Strömungsreaktor gemäß Anspruch 1 oder 2, wobei an zumindest einem Heizelement (110,3. flow reactor according to claim 1 or 2, wherein on at least one heating element (110,
1 1 1. 1 12, 1 13) eine von den übrigen Heizelementen (1 10, 1 1 1 , 1 12, 1 13) verschiedene Menge und/oder Art des Katalysators vorliegt. 1 1 1. 1 12, 1 13) one of the other heating elements (1 10, 1 1 1, 1 12, 1 13) different amount and / or type of catalyst is present.
4. Str ömungsr eakt or gemäß einem der Ansprüche 1 bis 3, wobei die Heizelemente (110, 1 11,4. Str ömungsr orkt or according to one of claims 1 to 3, wherein the heating elements (110, 1 11,
112, 113) so eingerichtet sind, dass sie jeweils unabhängig voneinander elektrisch beheizt werden können. 112, 113) are arranged so that they can each be electrically heated independently.
5. Str ömungsr eakt or gemäß einem der Ansprüche 1 bis 4, wobei das Material des Inhalts (210, 211, 212) einer Zwischen ebene (200, 201, 202) Oxide, Carbide, Nitride, Phosphide und/oder5. flow reactor according to one of claims 1 to 4, wherein the material of the content (210, 211, 212) of an intermediate level (200, 201, 202) oxides, carbides, nitrides, phosphides and / or
Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Boride of aluminum, silicon and / or zirconium includes.
6. Strömungsreaktor gemäß einem der Ansprüche 1 bis 5, wobei die Zwischenebene (200, 201, 202) eine lose Schüttung von Festkörpern umfasst. 6. Flow reactor according to one of claims 1 to 5, wherein the intermediate level (200, 201, 202) comprises a loose bed of solids.
7. Str ömungsr eakt or gemäß einem der Ansprüche 1 bis 5, wobei die Zwischenebene (200, 201, 202) einen einstückigen porösen Festkörper umfasst. A flow director according to any one of claims 1 to 5, wherein the intermediate plane (200, 201, 202) comprises a one-piece porous solid.
8. Strömungsr eakt or gemäß einem der Ansprüche 1 bis 7, wobei die durchschnittliche Länge einer Heizebene (100, 101 , 102, 103) in Strömungsrichtung des Fluids gesehen und die durchschnittliche Länge einer Zwischen ebene (200, 201 , 202) in Strömungsrichtung des8. flow reactor according to one of claims 1 to 7, wherein the average length of a heating plane (100, 101, 102, 103) seen in the flow direction of the fluid and the average length of an intermediate level (200, 201, 202) in the flow direction of the
Fluids gesehen in einem Verhältnis von > 0,01 : 1 bis < 100:1 zueinander stehen. Seen in a ratio of> 0.01: 1 to <100: 1 to each other.
9. Str ömungsr eakt or gemäß einem der Ansprüche 1 bis 8, wobei der Katalysator ausgewählt ist aus der Gruppe bestehend aus: (I) Mischmetalloxide der Formel A (i-w-x)A' wA"xB(i.y.z)B'yB"z03-deita wobei hier gilt; 9. streaming agent according to any one of claims 1 to 8, wherein the catalyst is selected from the group consisting of: (I) mixed metal oxides of the formula A (i-w-x) A 'wA "x B (i y, z..) B' y B" z 03-Deita which applies here;
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na. K. Rh. Cs, Sn, Sc, Y, La, Ce, Fr. Nd. Pm, Sm, Eu, ( id. Tb. Dy, Ho, Er. Tin, Yb, Tl , Lu, Ni, Co, Pb. Bi und/oder Cd; A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na.K. Rh. Cs, Sn, Sc, Y, La, Ce, Fr. Nd. Pm, Sm , Eu, (id. Tb. Dy, Ho, Er. Tin, Yb, Tl, Lu, Ni, Co, Pb. Bi and / or Cd;
B, B' und B" sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn. AI, Ga, Sc, Ti, V, Nb, Ta, Mo. Pb. I I f. Zr. Tb. W. Gd, Yb, Mg, Li, Na, K. Ce und/oder Zn; und B, B 'and B "are independently selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn. Al, Ga, Sc, Ti, V, Nb, Ta, Mo. Pb II for Zrb Tb.W. Gd, Yb, Mg, Li, Na, K. Ce and / or Zn; and
0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < delta < 1 ; (II) Mischmetalloxide der Formel A (i-w-x) wA"xB(i-y-z)B'yB"z03-deita wobei hier gilt: 0 <w <0.5; 0 <x <0.5; 0 <y <0.5; 0 <z <0.5 and -1 <delta <1; (II) mixed metal oxides of the formula A (i-w-x) wA "x B (Iy z) B 'y B" z 03-Deita which applies here:
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na. K. Rh. Cs, Sn, Sc, Y. La, Ce, Pr, Nd, Sm, Eu, Gd. Tb. Dy. Ho. Er, Tm, Yb. Tl , Lu. Ni, Co, Pb und/oder Cd; B ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi. Cd, Co, Cu, Ni, Sn, AI, Ga. Sc, Ti,A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na.K. Rh.Cs, Sn, Sc, Y. La, Ce, Pr, Nd, Sm, Eu Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb and / or Cd; B is selected from the group: Cr, Mn, Fe, Bi. Cd, Co, Cu, Ni, Sn, Al, Ga. Sc, Ti,
V, Nb. Ta, Mo, Pb. H f. Zr. Tb. W. Gd. Yb. Mg, Cd, Zn. Re. Ru. Rh. Pd. Os, I r und/oder Pt; V, Nb. Ta, Mo, Pb. H f. Zr. Tb. W. Gd. Yb. Mg, Cd, Zn. Re. Ru. Rh. Pd. Os, Ir and / or Pt;
B' ist ausgewählt aus der Gruppe: Re, Ru, Rh, Pd, Os, Ir und/oder Pt; B 'is selected from the group: Re, Ru, Rh, Pd, Os, Ir and / or Pt;
B" ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo. Pb, 1 ΙΓ, Zr, Tb. W, Gd. Yb, Mg, Cd und/oder Zn; und B "is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo. Pb, 1 ΙΓ, Zr, Tb W, Gd, Yb, Mg, Cd and / or Zn; and
0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < delta < 1 ; 0 <w <0.5; 0 <x <0.5; 0 <y <0.5; 0 <z <0.5 and -1 <delta <1;
(III) Mischungen von wenigstens zwei verschiedenen Metallen Mi und M2 auf ei nem(III) Mixtures of at least two different metals Mi and M2 on a nem
Träger, welcher ein mit einem Metall M3 dotiertes Oxid von AI, Ce und/oder Zr umfasst; wobei hier gilt: I und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Re. Ru. Rh, Ir.A carrier comprising an oxide of Al, Ce and / or Zr doped with a metal M3; where: I and M2 are independently selected from the group: Re. Ru. Rh, Ir.
Os, Pd und/oder Pt; und M3 ist ausgewählt aus der Gruppe: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; Os, Pd and / or Pt; and M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and / or Lu;
(IV) Mischmetalloxide der Formel LOx(M(y z)Al(2-y/z)03)z; wobei hier gilt: (IV) mixed metal oxides of the formula LO x (M ( yz ) Al (2-y / z) 03) z; where:
L ist ausgewählt aus der Gruppe: Na, K. Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In. Tl, La, Ce, Pr. Nd, Sm, Eu, Gd, Tb. Dy. Ho, Er. Tm, Yb und/oder Lu; L is selected from the group: Na, K. Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In. Tl, La, Ce, Pr. Nd, Sm, Eu, Gd, Tb. Dy. Ho, he. Tm, Yb and / or Lu;
M ist ausgewählt aus der Gruppe: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re. Fe, Ru.M is selected from the group: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re. Fe, Ru.
Os, Co, Rh, Ir, Ni, Pd. Pt, Zn, Cu, Ag und/oder Au; und Os, Co, Rh, Ir, Ni, Pd. Pt, Zn, Cu, Ag and / or Au; and
1 < x < 2; 0 < y < 12; und 4 < z < 9; 1 <x <2; 0 <y <12; and 4 <z <9;
(V) Mischmetalloxide der Formel L0(A1203)Z; wobei hier gilt: (V) mixed metal oxides of the formula L0 (Al 2 O 3 ) Z ; where:
L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y. Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu. Gd, Tb. Dy. Ho, Er. Tin. Yb und/oder Lu; und L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y. Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu. Gd, Tb. Dy. Ho, he. Tin. Yb and / or Lu; and
4 < z < 9; 4 <z <9;
(VI) oxidischer Katalysator, der Ni und Ru umfasst. (VI) Oxide catalyst comprising Ni and Ru.
(VII) Metall Ml und/oder wenigstens zwei verschiedene Metalle I und M2 auf und/oder in einem Träger, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selenid der Metalle A und/oder 6 ist; wobei hier gilt: (VII) metal Ml and / or at least two different metals I and M2 on and / or in a carrier, wherein the carrier is a carbide, oxycarbide, carbonitride, nitride, boride, silicide, germanide and / or selenide of the metals A and / or 6 is; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Co, Ni, Re. Ru. Rh. Ir. Os, Pd. Pt, Zn, Cu, La, Ce, Pr, Nd. Sm, Eu. Gd. Tb, Dy. Ho, Er. Tm, Yb, und/oder Lu; und Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re. Ru. Rh. Ir. Os, Pd. Pt, Zn, Cu, La, Ce, Pr, Nd. Sm, Eu. Gd. Tb, Dy. Ho, he. Tm, Yb, and / or Lu; and
A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe. Co, Ni, Y. Zr. Nb. Mo. Hf, Ta. W. La, Ce, Pr. Nd, Sm. Eu. Gd. Tb, Dy. Ho, Er. Tm, Yb, und/oder Lu; und/oder Reaktionsprodukte von (I), (II), (III), (IV), (V), (VI) und/oder (VII) in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C. A and B are independently selected from the group: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe. Co, Ni, Y. Zr. Nb. Mo. Hf, Ta. W. La, Ce, Pr. Nd, Sm. Eu. Gd. Tb, Dy. Ho, he. Tm, Yb, and / or Lu; and or Reaction products of (I), (II), (III), (IV), (V), (VI) and / or (VII) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of> 700 ° C.
10. Verfahren zum Betreiben eines Strömungsreaktors, umfassend die Schritte: a) Bereitstellen eines Strömungsreaktors gemäß einem der Ansprüche 1 bis 9; b) Elektrisches Beheizen wenigstens eines der Heizelemente (1 10, 1 1 1, 1 12, 113); und c) Durchströmen eines Reaktanden umfassenden Fluids durch den Strömungsreaktor unter zumindest teilweiser Reaktion der Reaktanden des Fluids. 10. A method for operating a flow reactor, comprising the steps of: a) providing a flow reactor according to one of claims 1 to 9; b) electrically heating at least one of the heating elements (1 10, 1 1 1, 1 12, 113); and c) passing a reactant-comprising fluid through the flow reactor with at least partial reaction of the reactants of the fluid.
1 1 . Verfahren gemäß Anspruch 10, wobei die einzelnen Heizelemente (110, 1 11 , 1 12, 113) mit einer j eweils unterschiedlichen Heizleistung betrieben werden. 1 1. A method according to claim 10, wherein the individual heating elements (110, 11, 12, 113) are each operated at a different heat output.
12. Verfaliren gemäß Anspruch 10 oder 11 , wobei die Reaktionstemperatur im Reaktor wenigstens stellenweise > 700 °C bis < 1300 °C beträgt. 12. Verfaliren according to claim 10 or 11, wherein the reaction temperature in the reactor at least in places> 700 ° C to <1300 ° C.
13. Verfahren gemäß einem der Ansprüche 10 bis 12, wobei die durchschnittliche Kontaktzeit des Fluids zu einem Heizelement (1 10, 1 1 1, 1 12, 113) > 0,01 Sekunden bis < I Sekunde beträgt und/oder die durchschnittliche Kontaktzeit des Fluids zum Inhalt (210, 21 1 , 212) einer Zwischenebene (200, 201, 201) > 0,001 Sekunden bis < 5 Sekunden beträgt. 13. The method according to any one of claims 10 to 12, wherein the average contact time of the fluid to a heating element (1 10, 1 1 1, 1 12, 113)> 0.01 seconds to <I second and / or the average contact time of the Fluids to the content (210, 21 1, 212) of an intermediate level (200, 201, 201)> 0.001 seconds to <5 seconds.
14. Verfaliren gemäß einem der Ansprüche 10 bis 13, wobei die Reaktion bei einem Druck von > I bar bis < 200 bar durchgeführt wird. 14. Verfaliren according to any one of claims 10 to 13, wherein the reaction at a pressure of> I bar to <200 bar is performed.
15. Verfaliren gemäß einem der Ansprüche 10 bis 14, wobei die Reaktanden im Fluid ausgewählt sind aus der Gruppe umfassend Alkane, Alkene, Alkine, Alkanole, Alkenole,15. Verfaliren according to any one of claims 10 to 14, wherein the reactants in the fluid are selected from the group comprising alkanes, alkenes, alkynes, alkanols, alkenols,
Alkinole, Kohlenmonoxid, Kohlendioxid, Wasser, Ammoniak, Wasserstoff und/oderAlkynols, carbon monoxide, carbon dioxide, water, ammonia, hydrogen and / or
Sauerstoff. Oxygen.
PCT/EP2013/054947 2012-03-13 2013-03-12 Axial flow reactor having heating planes and intermediate planes WO2013135660A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012203911 2012-03-13
DE102012203911.2 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013135660A1 true WO2013135660A1 (en) 2013-09-19

Family

ID=47844366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/054947 WO2013135660A1 (en) 2012-03-13 2013-03-12 Axial flow reactor having heating planes and intermediate planes

Country Status (1)

Country Link
WO (1) WO2013135660A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014112436A1 (en) 2014-08-29 2016-03-03 Bayer Technology Services Gmbh Process for the preparation of aromatic hydrocarbons
CN110860268A (en) * 2018-08-28 2020-03-06 美国分子工程股份有限公司 Structural material hydrothermal growth reactor
EP4249428A1 (en) 2022-03-21 2023-09-27 Linde GmbH Method and installation for producing a product gas containing at least hydrogen by steam reforming
US11958047B2 (en) 2018-06-29 2024-04-16 Shell Usa, Inc. Electrically heated reactor and a process for gas conversions using said reactor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913357A1 (en) * 1997-10-28 1999-05-06 Ngk Insulators, Ltd. Reformer and method for operation thereof
DE19960521A1 (en) 1999-12-15 2001-12-20 Gwp Ges Fuer Werkstoffpruefung Directly-heated catalyst, for removing oil mists and odors by oxidation, comprises electrically-heated metallic substrate with noble metal coating
WO2002046676A1 (en) * 2000-12-05 2002-06-13 Texaco Development Corporation Apparatus and method for heating catalyst for start-up of a compact fuel processor
DE10317197A1 (en) 2003-04-15 2004-11-04 Degussa Ag Electrically heated reactor and method for carrying out gas reactions at high temperature using this reactor
WO2007042279A1 (en) * 2005-10-13 2007-04-19 Bayerische Motoren Werke Aktiengesellschaft Reformer system comprising electrical heating devices
WO2009065559A1 (en) * 2007-11-23 2009-05-28 Eni S.P.A. Process for the production of synthesis gas and hydrogen starting from liquid or gaseous hydrocarbons
DE102008027882A1 (en) 2008-06-11 2009-12-17 Linde Ag Preparing carbon monoxide rich, methane-poor gas, comprises autothermal reforming of hydrocarbon-containing fuel with carbon dioxide, steam and an oxidant
DE102010033316A1 (en) 2009-08-07 2011-04-28 GM Global Technology Operations, Inc., Detroit Control system and method for electrically heated catalyst

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913357A1 (en) * 1997-10-28 1999-05-06 Ngk Insulators, Ltd. Reformer and method for operation thereof
DE19960521A1 (en) 1999-12-15 2001-12-20 Gwp Ges Fuer Werkstoffpruefung Directly-heated catalyst, for removing oil mists and odors by oxidation, comprises electrically-heated metallic substrate with noble metal coating
WO2002046676A1 (en) * 2000-12-05 2002-06-13 Texaco Development Corporation Apparatus and method for heating catalyst for start-up of a compact fuel processor
DE10317197A1 (en) 2003-04-15 2004-11-04 Degussa Ag Electrically heated reactor and method for carrying out gas reactions at high temperature using this reactor
WO2007042279A1 (en) * 2005-10-13 2007-04-19 Bayerische Motoren Werke Aktiengesellschaft Reformer system comprising electrical heating devices
WO2009065559A1 (en) * 2007-11-23 2009-05-28 Eni S.P.A. Process for the production of synthesis gas and hydrogen starting from liquid or gaseous hydrocarbons
DE102008027882A1 (en) 2008-06-11 2009-12-17 Linde Ag Preparing carbon monoxide rich, methane-poor gas, comprises autothermal reforming of hydrocarbon-containing fuel with carbon dioxide, steam and an oxidant
DE102010033316A1 (en) 2009-08-07 2011-04-28 GM Global Technology Operations, Inc., Detroit Control system and method for electrically heated catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DIE PUBLIKATION GUO ET AL., CHEMICAL ENGINEERING SCIENCE, vol. 66, 2011, pages 6287 - 6296
ZHANG ET AL., INTERNATIONAL JOURNAL OFHYDROGEN ENERGY, vol. 32, 2007, pages 3870 - 3879

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014112436A1 (en) 2014-08-29 2016-03-03 Bayer Technology Services Gmbh Process for the preparation of aromatic hydrocarbons
US11958047B2 (en) 2018-06-29 2024-04-16 Shell Usa, Inc. Electrically heated reactor and a process for gas conversions using said reactor
CN110860268A (en) * 2018-08-28 2020-03-06 美国分子工程股份有限公司 Structural material hydrothermal growth reactor
CN110860268B (en) * 2018-08-28 2021-10-08 美国分子工程股份有限公司 Structural material hydrothermal growth reactor
EP4249428A1 (en) 2022-03-21 2023-09-27 Linde GmbH Method and installation for producing a product gas containing at least hydrogen by steam reforming

Similar Documents

Publication Publication Date Title
DE69908242T2 (en) reformer
WO2013135699A1 (en) Method for producing synthesis gas in alternating operation between two operating modes
DE69830222T2 (en) Reformer and method of its operation
DE69913037T2 (en) reforming reactor
DE19603222C1 (en) Method and device for obtaining a hydrogen-rich, low-carbon monoxide gas
DE69924682T2 (en) Apparatus for producing hydrogen
WO2013135667A1 (en) Method for producing synthesis gas
DE69702190T2 (en) SYSTEM FOR PARTIAL OXIDATION REACTIONS
DE19804286C2 (en) Reactor for a catalytic chemical reaction, in particular a methanol reforming reactor
DE10127199A1 (en) Operating device for reacting hydrocarbon fuel with water and air comprises feeding first stream through reactor, and reacting to heat catalyst beds
WO2006066545A1 (en) Reformer for a fuel cell
WO2013135660A1 (en) Axial flow reactor having heating planes and intermediate planes
DE10120097B4 (en) Emission control system and method for operating the system
WO2013135668A1 (en) Chemical reactor system, comprising an axial flow reactor with heating levels and intermediate levels
WO2013135673A1 (en) Method for reducing carbon dioxide at high temperatures on catalysts especially carbide supported catalysts
DE10147368A1 (en) Fuel cell system for vehicle, has reaction vessel with catalyser carried that delivers endothermic reaction and arranged so that endothermic reactants can be supplied to vessel.
EP1977822B1 (en) Reaction vessel and reaction device
DE60010555T2 (en) Hydrogen generator
DE10010009B4 (en) Hydrocarbon fuel reformer
WO2013135664A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts on oxidic substrates doped with aluminum, cerium, and/or zirconium
DE10136970A1 (en) Device for generating hydrogen-containing gas for a fuel cell system
CH696014A5 (en) Fuel cell system with two forming units for catalytic decomposition.
WO2013135666A1 (en) Axial flow reactor based on an fe-cr-al alloy
DE10109983A1 (en) Hydrogen-rich synthesis gas production for use in vehicle fuel cells is effected on an electrically-conductive heated surface, especially of a metal alloy or silicon ceramic, to overcome cold-start and cold spot problems
WO2013135657A1 (en) Method for producing synthesis gas in alternating operation between two operating modes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13708473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13708473

Country of ref document: EP

Kind code of ref document: A1