WO2013135664A1 - Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts on oxidic substrates doped with aluminum, cerium, and/or zirconium - Google Patents

Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts on oxidic substrates doped with aluminum, cerium, and/or zirconium Download PDF

Info

Publication number
WO2013135664A1
WO2013135664A1 PCT/EP2013/054953 EP2013054953W WO2013135664A1 WO 2013135664 A1 WO2013135664 A1 WO 2013135664A1 EP 2013054953 W EP2013054953 W EP 2013054953W WO 2013135664 A1 WO2013135664 A1 WO 2013135664A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
catalyst
oxide
carbon dioxide
heating
Prior art date
Application number
PCT/EP2013/054953
Other languages
German (de)
French (fr)
Inventor
Leslaw Mleczko
Daniel Gordon Duff
Alexander Karpenko
Emanuel Kockrick
Vanessa GEPERT
Albert TULKE
Daniel Wichmann
Original Assignee
Bayer Intellectual Property Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property Gmbh filed Critical Bayer Intellectual Property Gmbh
Publication of WO2013135664A1 publication Critical patent/WO2013135664A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for reducing carbon dioxide comprising the step of reacting carbon dioxide and hydrogen in the presence of a catalyst to form carbon monoxide and water.
  • the invention further relates to the use of such a catalyst in the reduction of carbon dioxide.
  • WGS water gas shift reaction
  • WO 03/082741 A1 discloses a homogeneous ceria-based mixed metal oxide, usable as a catalyst support, a cocatalyst and / or apparatus having a relatively large surface area per unit weight, typically above 150 m 2 / g, of a structure of nanocrystals Diameters less than 4 nm and including pores larger than the nanocrystals with diameters in the range of 4 to 9 nm.
  • the ratio to pore volume, Vp, to framework volume or volume of the skeletal structure, Vs is typically less than 2.5, and the surface area per volume of oxide material is greater than 320 m 2 / cm 3 for low internal resistance to mass transfer and large effective surface area for reaction activity.
  • the mixed metal oxide is ceria-based, comprises Zr and / or I I and is prepared by a co-precipitation process.
  • a fumed catalyst metal typically a noble metal, e.g. 6. Pt, may be loaded onto the mixed metal oxide support from a solution containing catalyst metal following a selected acid surface treatment of the oxide support. Appropriately selecting a ratio of Ce and other metal constituents of the oxide support material contribute. to maintain a cubic phase to increase the catalytic performance.
  • Rhenium is preferably further charged onto the mixed metal oxide support and passivated to increase the activity of the catalyst.
  • the metal-loaded mixed metal oxide catalyst is particularly useful in water-gas shift reactions, in conjunction with fuel treatment systems, e.g. 6. in fuel cells.
  • US 2004/175327 A1 describes a process, catalysts and a fuel processing apparatus for producing a hydrogen-rich gas such as hydrogen-rich synthesis gas.
  • a CO-containing gas contacts a WGS catalyst in the presence of water, preferably at a temperature of less than about 450 ° C, to form a hydrogen-rich gas such as hydrogen-rich synthesis gas.
  • a WGS catalyst which is formulated from the following components: a) at least one member of the group consisting of Rh, Ni, Pt, their oxides and mixtures; b) at least one member of the group Cu, Ag, Au, their oxides and mixtures; and c) at least one of K, Cs, Sc, Y, Ti, Zr, V, Mo, Re, Fe, Ru, Co, Ir, Pd, Cd, In, Ge, Sn, Pb, Sb, Te , La, Ce, Pr, nd. Sm, Eu, their oxides and mixtures.
  • Another disclosed catalyst formulation comprises Rh, its oxides or mixtures, Pt, its oxides and mixtures and Ag, its oxides and mixtures.
  • the WGS catalyst may be supported on, for example, one or more of alumina, zirconia, titania, ceria, magnesia, lanthana, niobia, zeolite, perovskite, silicate-alumina, yttria, and iron oxide, fuel comprising such WGS catalysts Processing devices are also disclosed.
  • WO 2011/056715 A I relates to a catalyst support for use with various catalysts in hydrogenation reactions of carbon dioxide, comprising a catalyst support material and an active material capable of catalyzing the RWGS reaction.
  • a catalyst for hydrogenating carbon dioxide may be disposed on the catalyst carrier.
  • a method of making such a hydrogenation catalyst comprises applying a material capable of catalysing the RWGS reaction to a catalyst support material with optional calcination, and applying a catalyst for the hydrogenation of carbon dioxide to the coated catalyst support material.
  • a process for the hydrogenation of carbon dioxide and for the production of synthesis gas comprises a reforming step of hydrocarbons, in particular methane, and an RWGS step using the described catalyst composition and its products.
  • WO 2008/055776 A1 discloses a process for preparing a catalytic composition comprising a catalytically active metal and a solid support, wherein a portion of the catalytically active metal is distributed on the outer surface of the support and another part in the core structure of the solid support and wherein the solid support is a refractory oxide and ion-conducting oxide.
  • the present invention therefore has the object to provide a method for carrying out the RWGS reaction, which with a cost-effective catalyst with high
  • Activity and selectivity and long-term stability at high temperatures can be operated.
  • This object is achieved by a method for the reduction of carbon dioxide, comprising the step of the reaction of carbon dioxide and hydrogen in the presence of a catalyst to form carbon monoxide and water, wherein the reaction is carried out at a temperature of> 700 ° C and the catalyst Comprising metal oxide, wherein the mixed metal oxide (I) is a mixture of at least two different metals Ml and M2 on a support comprising an oxide of Al, Ce and / or Zr doped with a metal M3; and or
  • (II) a reaction product of (I) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of> 700 ° C;
  • Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt;
  • M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd. Tb. Oy. Ho, he. Tm, Yb and / or Lu. It has surprisingly been found that the catalysts used according to the invention or their conversion products under the prevailing reaction conditions are stable catalysts which are comparable with industrial benchmark systems in at least one respect.
  • the RWGS Reakt ion can be selectively operated at the elevated temperatures according to the invention. It should be noted at this point that the present invention relates to the recovery of CO and III by RWGS reaction. This is in contrast to the WGS reaction, where the reverse reaction may also be to CO and! I) leads.
  • the process according to the invention is preferably carried out such that the conversion of CO 2 after completion of the reaction (in particular after leaving a reactor such as, for example, an axial flow reactor) is more than 35 mol%, preferably more than 40 mol%, more preferably more than 45 mol% and most preferably above 50 mole%.
  • Preferred mixed metal oxides are, for example, those in which the metals M 1 and M 2 are different and M 3 is Ce. Included in the invention is the case that the oxide of Al, Ce and / or Zr doped with a metal M3 is a Ce-Zr-Al oxide (then M3 would be Ce).
  • mixed metal catalysts are supported on high-temperature stable, preferably oxide-conducting, mixed metal oxides (for example cerium-doped zirconium dioxide / aluminum oxide combination) are suitable. In this case, a synergistic effect is achieved in the catalyst by the two-component metal combinations.
  • Mixed metal oxides of the abovementioned type (I) can be prepared, inter alia, by physical (such as PVD) and chemical methods, the latter predominantly in the solid phase or liquid phase. Examples include precipitation, co-precipitation, sol-gel process, impregnation, ignition / combustion methods and further gas phase methods such as CVD.
  • the invention is the one that eliminates the problem
  • reaction products includes the catalyst phases present under reaction conditions.
  • the gas mixture to which the catalyst is exposed during the reaction comprising carbon dioxide, hydrogen, carbon monoxide and water may contain these four components, for example, in a content of> 80% by weight, preferably> 90% by weight and more preferably> 95% by weight ,
  • a reaction temperature of> 700 ° C is provided.
  • the reaction temperature is> 850 ° C, and more preferably> 900 ° C.
  • a hydrocarbon having 1 to 4 C atoms is added during the reaction.
  • Suitable hydrocarbons are, in particular, alkanes having 1 to 4 C atoms, methane being particularly suitable.
  • the addition of the hydrocarbon takes place at arbitrary positions along the longitudinal axis of the reactor.
  • a hydrocarbon addition at the reactor inlet, at the reactor outlet and / or at a position between inlet s and outlet take place.
  • the hydrocarbon may, for example, in a proportion of> 0.01% by volume to ⁇ 20% by volume, preferably> 0.1% by volume to ⁇ 10% by volume and more preferably> 1% by volume to ⁇ 10% by volume , based on the total volume of the reaction gases, are added. Regardless, it is preferred that the concentration of the hydrocarbon after the reaction, especially at the outlet of a reactor in which the reaction is carried out, is ⁇ 20% by volume and preferably ⁇ 10% by volume.
  • the mixed metal oxide comprises Pt-Rh on Ce-Zr-Al oxide, Pi-Ru and / or Rh-Ru on Ce-Zr-Al oxide. It is further preferred that the weight proportion of Pt, Rh and Ru is in each case> 0.01% by weight to ⁇ 10% by weight, based on the total weight of the mixed metal oxide. Preference is given to proportions of> 0.1% by weight to ⁇ 5% by weight.
  • the reaction is carried out at a temperature of> 700 ° C to ⁇ 1300 ° C. More preferred ranges are> 800 ° C to
  • the reaction is carried out at a pressure of> 1 bar to ⁇ 200 bar.
  • the pressure is> 2 bar to ⁇ 50 bar, more preferably> 10 bar to ⁇ 30 bar.
  • the catalyst is applied to a support and the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • An example of this is SiC. Further preferred is cordierite.
  • the reaction is operated in auto thermal mode. This can be achieved, for example, both by the addition of oxygen in the educt gas, as well as that hydrogen-rich residual gases such as anode residual gas, PSA residual gas, natural gas (preferably methane) and / or additional hydrogen in the presence of CO2 fuel gas sources.
  • hydrogen-rich residual gases such as anode residual gas, PSA residual gas, natural gas (preferably methane) and / or additional hydrogen in the presence of CO2 fuel gas sources.
  • Another object of the present invention is the use of a catalyst comprising a mixed metal oxide in the reaction of carbon dioxide and hydrogen to form carbon monoxide and water, the catalyst comprising a mixed metal oxide comprising (I) a mixture of at least two different metals Ml and M2 is on a support comprising an oxide of Al, Ce and / or Zr doped with a metal M3; and or
  • reaction products of (I) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of> 700 ° C comprises;
  • M 1 and M2 are independently selected from the group: Re, Ru. Rh. Ir. Os, Pd and / or Pt; and
  • reaction products includes the catalyst phases present under reaction conditions.
  • the mixed metal oxide (I) comprises Pt-Rh on Ce-Zr-Al oxide, Pt-Ru and or Rh-Ru on Ce-Zr-Al oxide. It is further preferred that the weight proportion of Pt, Rh and Ru is>
  • the catalyst is applied to a support and the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • An example of this is SiC.
  • Further preferred is cordierite.
  • FIG. 1 shows schematically an expanded view of a reactor for carrying out the process according to the invention.
  • FIG. 2-4 show turnover curves for CO2 in various RWGS experiments
  • the reaction can be carried out in a flow reactor which, viewed in the flow direction of the reaction gases, comprises a plurality of heating levels 100, 101, 102, 103, which are electrically heated by means of heating elements 110, 11, 12, 13. wherein the heating levels 100, 101, 102, 100 are flowed through by the reaction gases, wherein at least one heating element 1 10, 1 1 1, 1 12, 1 13, the catalyst is arranged and can be heated there and at least once an intermediate level 200, 201, 202 between two heating levels 100, 101, 102, 103 is arranged, wherein the intermediate level 200, 201, 202 is also permeable by the reaction gases.
  • the reactor has a plurality of (in the present case four) heating levels 1 00, 1 01, 1 02, 103, which are electrically heated by means of respective heating elements 1 10, 1 1 1, 1 12, 1 13 ,
  • the Hei / levels 100, 101, 102, 103 are flowed through during operation of the reactor from the reaction gases and the heating elements 1 10, 1 1 1, 1 12, 1 13 are contacted by the reaction gases.
  • At least one heating element 1 10, III. 1 12, 1 13, the catalyst is arranged and is heated there.
  • the catalyst can directly or indirectly with the heating elements 1 10, 1 1 1, 1 12, I 1 be connected, so that these heating elements represent the catalyst support or a support for the catalyst support.
  • the heat supply of the reaction takes place electrically and is not introduced from the outside by means of radiation through the walls of the reactor, but directly into the interior of the reaction space. It is realized a direct electrical heating of the catalyst.
  • heating conductor alloys such as FeCrAl alloys are preferably used.
  • metallic materials it is also possible to use electrically conductive Si-based materials, particularly preferably SiC, and / or carbon-based materials.
  • an intermediate ceramic level 200, 201, 202 (which is preferably supported by a ceramic or metal support framework / plane) is arranged at least once between two heating levels 100, 101, 102, 103, the intermediate level (FIG. n) 200, 201, 202 or the contents 210, 21 1, 212 of an intermediate level 200, 201, 202 are also flowed through in the operation of the reactor from the reaction gases. This has the effect of homogenizing the fluid flow. It is also possible that additional catalyst is present in one or more intermediate levels 200, 201, 202 or other isolation elements in the reactor. Then an adiabatic reaction can take place.
  • the pressure in the reactor can take place via a pressure-resistant steel jacket.
  • suitable ceramic insulation materials it can be achieved that the pressure-bearing steel is exposed to temperatures of less than 200 ° C and, if necessary, less than 60 ° C.
  • the electrical connections are shown in FIG. 1 only shown very schematically. They can be performed in the cold area of the reactor within an insulation to the ends of the reactor or laterally from the heating elements 110, III. 1 12, 1 13 are performed, so the actual electrical connections can be provided in the cold region of the reactor.
  • the electrical heating is done with direct current or alternating current.
  • the use of the electrically heated elements in the inlet region of the reactor also has a positive effect with regard to the cold start and starting behavior, in particular with regard to rapid heating to the reaction temperature and better controllability.
  • the catalyst can in principle be present as a loose bed, as a washcoat or else as a monolithic shaped body on the heating elements 110, 111, 112, 113. However, it is preferred that the catalyst is directly or indirectly connected to the heating elements 110, 111, 112, 113, so that these heating elements represent the catalyst carrier or a carrier for the catalyst support. It is also possible that additional catalyst is present in one or more intermediate levels 200, 201, 202 or other isolation elements in the reactor.
  • heating levels 100, 101, 102, 103 heating elements 1 10, 1 1 1, 1 12, 1 13 are arranged, which are spirally, meandering, gitt erförmig and / or net-shaped.
  • the 212 comprise a material resistant to the reaction conditions, for example a ceramic foam. They serve for the mechanical support of the heating levels 100, 101, 102, 103 as well as for the mixing and distribution of the gas flow. At the same time an electrical insulation between two heating levels is possible. It is preferred that the material of the content 210, 211, 212 of an intermediate level 200, 201, 202 comprises oxides, carbides, nitrides, phosphides and / or bicycles of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
  • the intermediate level 200, 201, 202 may include, for example, a loose bed of solids. These solids themselves may be porous or solid, so that the fluid flows through gaps between the solids. It is preferred that the material of the solid bodies comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
  • the intermediate level 200, 201, 202 comprises a one-piece porous solid.
  • the fluid flows through the intermediate plane via the pores of the solid.
  • honeycomb monoliths as used for example in the exhaust gas purification of internal combustion engines.
  • the average length of a heating plane 100, 101, 102, 103 in the direction of flow of the fluid and the average length of an intermediate level 200, 201, 202 in the flow direction of the fluid are in a ratio of> 0.01 : 1 to ⁇ 100: 1 to each other. Even more advantageous are ratios of> 0.1: 1 to ⁇ 10: 1 or 0.5: 1 to ⁇ 5: 1.
  • At least one heating element 110, III.112, 113 can have a different amount and / or type of catalyst from the other heating elements 110, III.112, 113.
  • the heating elements 110, 111, 112, 113 are arranged so that they can each be electrically heated independently of each other. Accordingly, in the method according to the invention, the individual heating elements 110, 111, 112, 113 can be operated with a different heating power.
  • the individual heating levels can be individually controlled and regulated.
  • In the reactor inlet area can be dispensed with a catalyst in the heating levels as needed, so that only the heating and no reaction takes place in the inlet area. This is particularly advantageous in terms of starting the reactor.
  • a temperature profile adapted for the respective reaction can be achieved. With regard to the application for endothermic equilibrium reactions, this is, for example, a temperature profile which achieves the highest temperatures and thus the highest conversion at the reactor outlet.
  • the reactor can be modular.
  • a module may include, for example, a heating level, an intermediate level, the electrical contact and the corresponding further insulation materials and thermal insulation materials.
  • the pH of the suspension was adjusted to 6.5 with sodium carbonate solution (concentration see table).
  • the noble metal salt solution was added dropwise at a constant pH of 6.5 (maintained by adding the Na 2 C03 solution) to the carrier suspension.
  • the mixture was then stirred for a further 30 minutes and then cooled to room temperature. Thereafter, the suspension was filtered off and then washed 5-10 times with 200 ml of water (60 ° C) chloride-free (after silver nitrate test).
  • the moist solid was dried at room temperature in a vacuum oven overnight.
  • Ru-Pt 4 0.08 RuCl 3 about 40 0.05
  • Example 2 Empty Measurements The following table summarizes the results of the catalyst comparison in the RWGS reaction.
  • the indication "X7.5h (CC> 2) [%]” means the conversion of CO2, here after 7.5 hours, expressed in mole percent.
  • the term “r eff (C0 2 )” indicates the average reaction rate of CO2 and "X7.5h (C 02) / X 3h (C O 2)” is the quotient of the CC conversion after 7.5 hours and after 3 hours ,
  • FIG. 2 illustrate the CO2 conversion curves over the duration of the reaction.
  • the thermodynamic limitation at about 60% conversion is indicated by "TD".
  • the curves are shown in FIG. 2 indistinguishable, so that was omitted on a curve inscription. There are no or very little activities.
  • Example 3 Comparison between Rh / Pt mixtures and Rh or Pt
  • the following table summarizes the results of the catalyst comparison in the RWGS reaction for the rhodium- and / or platinum-containing catalysts from Example 1 together.
  • the term “7.5h (C02) [%]” means the conversion of CO2, here after 7.5 hours, expressed in mole percent.
  • the term “r e ff; 7,5h (C02)” indicates the corresponding average reaction rate of CO2 and "7,5h (C02) / 3h (C02)” is the quotient of the CC conversion after 7.5 hours and After 3 hours.
  • FIG. 3 shows the CC> 2 conversion curves over the reaction time for the Rh catalyst (curve “Rh / Ce-Zr-A10 x "), the Pt catalyst (curve “Pt / Ce-Zr-A10 x ”) and for the mixed catalyst (curve” Rh-Pt / Ce-Zr-A10 x ").
  • the thermodynamic limitation at about 60% conversion is indicated by "TD”. The highest activity and stability are observed for the deposited Rh-Pt system.
  • Example 4 Comparison between Ru / Pt mixtures and Ru or Pt
  • the following table summarizes the results of the catalyst comparison in the RWGS reaction for the ruthenium- and / or platinum-containing catalysts from Example 1.
  • X7.5h (C02) [%] means the conversion of CO2, here after 7.5 hours, expressed in mole percent.
  • the term "r e ff; 7.5h (CC>2)” indicates the corresponding average reaction rate of CO2 and "X7.5h (CO 2) / X 3h (CO 2)" is the quotient from the CC conversion to 7.5 Hours and after 3 hours.
  • FIG. 4 shows the CO2 conversion curves over the reaction time for the Ru catalyst (curve “Ru / Ce-Zr-A10 x "), the Pt catalyst (curve “Pt / Ce-Zr-A10 x ”) and for the mixed catalyst (curve “Ru-Pt. Ce-Zr-AlO x ").
  • the thermodynamic limitation at about 60% conversion is indicated by "TD”. The highest activity and stability are observed for the supported Ru-Pt system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

A method for reducing carbon dioxide, comprising the step of reacting carbon dioxide and hydrogen in the presence of a catalyst in order to form carbon monoxide and water, is characterized in that the reaction is performed at a temperature ≥ 700 °C and that the catalyst comprises a mixed metal oxide, which is a mixture of at least two different metals M1 and M2 on a substrate, which comprises an oxide of Al, Ce, and/or Zr doped with a metal M3 and/or comprises reaction products of (I) in the presence of carbon dioxide, hydrogen, carbon monoxide, and/or water at a temperature ≥ 700 °C. The following applies: M1 and M2 are selected independently of each other from the group: Re, Ru, Rh, Ir, Os, Pd, and/or Pt; and M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and/or Lu.

Description

V erfahren zur Reduktion von Kohlendiox bei hohen Temperaturen an Mischmetalloxid- katalysatoren auf qxidischen mit Aluminium., Cer und/oder Zirkonium dotierten Trägern  V experience for the reduction of carbon dioxide at high temperatures of Mischmetalloxid- catalysts on qxidischen with aluminum, cerium and / or zirconium doped carriers
Die vorliegende Erfindung betrifft ein Verfahren zur Reduktion von Kohlendioxid, umfassend den Schritt der Reaktion von Kohlendioxid und Wasserstoff in Gegenwart eines Katalysators unter Bildung von Kohlenmonoxid und Wasser. Die Erfindung betrifft weiterhin die Verwendung eines solchen Katalysators in der Reduktion von Kohlendioxid. The present invention relates to a process for reducing carbon dioxide comprising the step of reacting carbon dioxide and hydrogen in the presence of a catalyst to form carbon monoxide and water. The invention further relates to the use of such a catalyst in the reduction of carbon dioxide.
Die sogenannte Was s ergas - Vers chiebungsr eakti on (water gas shift reaction, WGS) wird seit Langem zur Verringerung des CO-Anteils in Synthesegas eingesetzt und beinhaltet die Reaktion von Kohlenmonoxid mit Wasser unter Bildung von Kohlendioxid und Wasserstoff. Diese Reaktion ist eine Gleichgewichtsreaktion. The so-called water gas shift reaction (WGS) has long been used to reduce the CO fraction in synthesis gas and involves the reaction of carbon monoxide with water to form carbon dioxide and hydrogen. This reaction is an equilibrium reaction.
Sofern in einem chemischen Prozess nicht die Verringerung des Kohlenmonoxid-Gehaltes, sondern des Kohlendioxid-Gehaltes erwünscht ist, käme die umgekehrte Was s er gas - Ver s chiebungsre aktion in Frage, welche in der englischsprachigen Literatur auch als reverse water gas shift reaction oderIf the reduction of the carbon monoxide content but of the carbon dioxide content is desired in a chemical process, then the reverse gas-displacement reaction would be considered, which in the English-language literature is also known as the reverse water gas shift reaction or
RWGS bekannt ist. WO 03/082741 AI offenbart ein homogenes Ceroxid-basiertes Mischmetalloxid, verwendbar als Katalysatorträger, ein Co-Katalysator und/oder Gert er mit einem relativ großen Ob er fläch eninhalt pro Gewicht, typischerweise über 150 m2/g, einer Struktur von Nanokristalhten mit Durchmessern von weniger als 4 nm und beinhaltend Poren größer als die Nanokristalhten mit Durchmessern im Bereich von 4 bis 9 nm. Das Verhältnis zu Porenvolumen, Vp, zu Gerüstvolumen bzw. Volumen der skelettartigen Struktur, Vs, ist typisch erweise weniger als 2,5, und der Oberfläch eninhalt pro Volumen des Oxidmaterials ist größer als 320 m2/cm3 für geringen internen Widerstand gegenüber Massetransfer und große effektive Oberfläche für Reaktions akti vit ät . RWGS is known. WO 03/082741 A1 discloses a homogeneous ceria-based mixed metal oxide, usable as a catalyst support, a cocatalyst and / or apparatus having a relatively large surface area per unit weight, typically above 150 m 2 / g, of a structure of nanocrystals Diameters less than 4 nm and including pores larger than the nanocrystals with diameters in the range of 4 to 9 nm. The ratio to pore volume, Vp, to framework volume or volume of the skeletal structure, Vs, is typically less than 2.5, and the surface area per volume of oxide material is greater than 320 m 2 / cm 3 for low internal resistance to mass transfer and large effective surface area for reaction activity.
Das Mischmetalloxid ist Ceroxid-basiert, umfasst Zr und/oder I I und wird durch ein Co- Präzipitations verfahren hergestellt. Ein hochdisperses Katalysatormetall, typischerweise ein Edelmetall, z. 6. Pt, kann auf den Mischmetalloxid-Träger aus einer Katalysatormetall enthaltenden Lösung geladen werden, nach einer ausgewählten Säure-Oberflächenbehandlung des Oxidträgers. Geeignetes Wählen eines Verhältnisses von Ce und anderen Metallbestandteilen des Oxidträgermaterials tragen dazu bei. eine kubische Phase beizubehalten, um die katalytische Leistung zu erhöhen. Rhenium wird vorzugsweise weiter auf das Mischmetalloxid-Trägermaterial geladen und passiviert, um die Aktivität des Katalysators zu erhöhen. The mixed metal oxide is ceria-based, comprises Zr and / or I I and is prepared by a co-precipitation process. A fumed catalyst metal, typically a noble metal, e.g. 6. Pt, may be loaded onto the mixed metal oxide support from a solution containing catalyst metal following a selected acid surface treatment of the oxide support. Appropriately selecting a ratio of Ce and other metal constituents of the oxide support material contribute. to maintain a cubic phase to increase the catalytic performance. Rhenium is preferably further charged onto the mixed metal oxide support and passivated to increase the activity of the catalyst.
Der metallbeladene Mischmetalloxid-Katalysator wird insbesondere angewendet bei Wasser-Gas- Shiftreaktionen, in Verbindung mit Brennstoffaufbereitungssystemen, z. 6. bei Brennstoffzellen. US 2004/175327 AI beschreibt ein Verfahren, Katalysatoren und eine Treibstoff- Verarbeitungsvorrichtung zur Herstellung eines wasserstoffreichen Gases wie wasserstoffreiches Synthesegas. Gemäß dem Verfahren kontaktiert ein CO-haltiges Gas einen WGS-Katalysator in der Gegenwart von Wasser, vorzugsweise bei einer Temperatur von weniger als ungefähr 450 °C unter Bildung eines wasserstoffreichen Gases wie wasserstoffreiches Synthesegas. Weiterhin offenbart wird ein WGS -Kataly s ator , der aus den folgenden Komponenten formuliert wird: a) wenigstens ein Mitglied aus der Gruppe Rh, Ni, Pt, deren Oxide und Mischungen; b) wenigstens ein Mitglied aus der Gruppe Cu, Ag, Au, deren Oxide und Mischungen; und c) wenigstens ein Mitglied aus der Gruppe K, Cs, Sc, Y, Ti, Zr, V, Mo, Re, Fe, Ru, Co, Ir, Pd, Cd, In, Ge, Sn, Pb, Sb, Te, La, Ce, Pr, Nd. Sm, Eu, deren Oxide und Mischungen. Eine weitere offenbarte Katalysatorformulierung umfasst Rh, dessen Oxide oder Mischungen, Pt, dessen Oxide und Mischungen und Ag, dessen Oxide und Mischungen. Der WGS-Katalysator kann auf einem Träger vorliegen, beispielsweise auf einem oder mehreren Mitgliedern der Gruppe Aluminiumoxid, Zirkoniumoxid, Titanoxid, Ceroxid, Magnesiumoxid, Lanthanoxid, Nioboxid, Zeolith, Perowskit, Silikat-Tonerde, Yttriumoxid und Eisenoxid, Solche WGS-Katalysatoren umfassende Treibstoff- Verarbeitungsvorrichtungen werden ebenfalls offenbart. The metal-loaded mixed metal oxide catalyst is particularly useful in water-gas shift reactions, in conjunction with fuel treatment systems, e.g. 6. in fuel cells. US 2004/175327 A1 describes a process, catalysts and a fuel processing apparatus for producing a hydrogen-rich gas such as hydrogen-rich synthesis gas. According to the method, a CO-containing gas contacts a WGS catalyst in the presence of water, preferably at a temperature of less than about 450 ° C, to form a hydrogen-rich gas such as hydrogen-rich synthesis gas. Further disclosed is a WGS catalyst which is formulated from the following components: a) at least one member of the group consisting of Rh, Ni, Pt, their oxides and mixtures; b) at least one member of the group Cu, Ag, Au, their oxides and mixtures; and c) at least one of K, Cs, Sc, Y, Ti, Zr, V, Mo, Re, Fe, Ru, Co, Ir, Pd, Cd, In, Ge, Sn, Pb, Sb, Te , La, Ce, Pr, nd. Sm, Eu, their oxides and mixtures. Another disclosed catalyst formulation comprises Rh, its oxides or mixtures, Pt, its oxides and mixtures and Ag, its oxides and mixtures. The WGS catalyst may be supported on, for example, one or more of alumina, zirconia, titania, ceria, magnesia, lanthana, niobia, zeolite, perovskite, silicate-alumina, yttria, and iron oxide, fuel comprising such WGS catalysts Processing devices are also disclosed.
WO 2011/056715 A I betrifft einen Katalysatorträger zum Einsatz mit verschiedenen Katalysatoren in Hydrierungsreaktionen von Kohlendioxid, umfassend ein Katalysatorträgermaterial und ein aktives Material, welches in der Lage ist, die RWGS-Reaktion zu katalysieren. Ein Katalysator zur Hydrierung von Kohlendioxid kann auf dem Katalysatorträger angeordnet sein. Ein Verfahren zur Herstellung eines solchen Hydrierungskatalysators umfasst das Auftragen eines Materials, das zur Katalyse der RWGS-Reaktion in der Lage ist, auf ein Katalysatorträgermaterial unter optionaler Kalzinierung sowie das Auftragen eines Katalysators für die Hydrierung von Kohlendioxid auf das beschichtete Katalysatorträgermaterial. Ein Verfahren zur Hydrierung von Kohlendioxid und zur Herstellung von Synthesegas umfasst einen Reformierungsschritt von Kohlenwasserstoffen, insbesondere Methan, und einen RWGS-S chritt unter Einsatz der geschilderten Katalysatorzusammens etzung und deren Produkten. WO 2011/056715 A I relates to a catalyst support for use with various catalysts in hydrogenation reactions of carbon dioxide, comprising a catalyst support material and an active material capable of catalyzing the RWGS reaction. A catalyst for hydrogenating carbon dioxide may be disposed on the catalyst carrier. A method of making such a hydrogenation catalyst comprises applying a material capable of catalysing the RWGS reaction to a catalyst support material with optional calcination, and applying a catalyst for the hydrogenation of carbon dioxide to the coated catalyst support material. A process for the hydrogenation of carbon dioxide and for the production of synthesis gas comprises a reforming step of hydrocarbons, in particular methane, and an RWGS step using the described catalyst composition and its products.
WO 2008/055776 A I offenbart ein Verfahren zur Herstellung einer katalytisch en Zusammensetzung umfassend ein katalytisch aktives Metall und einen festen Träger, wobei ein Teil des katalytisch aktiven Metalls auf der äußeren Oberfläche des Trägers verteilt ist und ein weiterer Teil sich in der Kernstruktur des festen Trägers befindet und wobei der feste Träger ein Refraktäroxid und ionenleitendes Oxid ist. WO 2008/055776 A1 discloses a process for preparing a catalytic composition comprising a catalytically active metal and a solid support, wherein a portion of the catalytically active metal is distributed on the outer surface of the support and another part in the core structure of the solid support and wherein the solid support is a refractory oxide and ion-conducting oxide.
Hu et al., Catalysis Today 2007, 125, 103-110 diskutieren eine Katalysatorentwicklung für Mikrokanalreaktoren zur in situ-Erzeugung von Treibstoff für Marsvehikel. Strukturierte Katalysatoren wurden auf FeCrAlY-Substraten hergestellt. Es wurde gefunden, dass 3% Ru/TiC>2 (R/'A = 60:40) und 6%Ru/Ce02-Zr02 aktive Sabatier- und RWGS-Katalysatoren waren. Hu et al., Catalysis Today 2007, 125, 103-110, discuss catalyst development for microchannel reactors for in situ generation of fuel for Martian vehicles. Structured Catalysts were prepared on FeCrAlY substrates. It was found that 3% Ru / TiC> 2 (R / A = 60:40) and 6% Ru / CeO 2 -ZrO 2 were active Sabatier and RWGS catalysts.
Holladay et al., Journal of Propulsion and Power 2008, 24, 578-582 berichten über einen kompakten RWGS-Reaktor zur in situ-Erzeugung von Treibstoff, welcher weniger als 15 cm3 an Volumen einnimmt und weniger als 50 Gramm wiegt. Mit einem Ru/Zr02-CeO-Katalysator produziert der Reaktor über 150 Gramm Wasser pro Stunde bei einer Betriebstemperatur von 800 °C. Dieses ist nahe am Gleichgewichtsumsatz und in ungefähr dem halben Maßstab für eine Marssonden-Rückkehrmission. Selbst bei diesen Temperaturen ist der Druckabfall niedrig (zwischen 1,6 und 7,6 kPa). Verschiedene Trägerkatalysatoren wurden von Wheeler et al. (Journal of Catalysis 223 (2004) 191-199) lür die vorwärts-WGS bei kurzen Kontaktzeiten getestet. Dazu gehören Nickel- sowie Edelmetall-Katalysatoren, die auf Ceroxid getragen sind. Holladay et al., Journal of Propulsion and Power 2008, 24, 578-582 report a compact RWGS reactor for in situ generation of fuel, which is less than 15 cm 3 takes on mass and less than 50 grams. With a Ru / Zr0 2 -CeO catalyst, the reactor produces over 150 grams of water per hour at an operating temperature of 800 ° C. This is close to equilibrium turnover and about half the scale for a Marssonde return mission. Even at these temperatures, the pressure drop is low (between 1.6 and 7.6 kPa). Various supported catalysts have been reported by Wheeler et al. (Journal of Catalysis 223 (2004) 191-199) for the forward WGS at short contact times. These include nickel and noble metal catalysts supported on ceria.
Um mit der RWGS-Reaktion einen wirtschaftlichen Umsatz zu erreichen, sollte sie bei einer deutlich höheren Temperatur betrieben werden (über 700 °C) als in der Literatur üblich, um das Gleichgewicht in Richtung Kohlenmonoxid zu verschieben. To achieve economic conversion with the RWGS reaction, it should be operated at a significantly higher temperature (above 700 ° C) than is conventional in the literature to shift the equilibrium towards carbon monoxide.
Die vorliegende Erfindung hat sich daher die Aufgabe gestellt, ein Verfahren zur Durchführung der RWGS-Reaktion bereitzustellen, welches mit einem kostengünstigen Katalysator mit hoherThe present invention therefore has the object to provide a method for carrying out the RWGS reaction, which with a cost-effective catalyst with high
Aktivität und Selektivität sowie einer Langzeitstabilität bei hohen Temperaturen betrieben werden kann. Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Reduktion von Kohlendioxid, umfassend den Schritt der Reaktion von Kohlendioxid und Wasserstoff in Gegenwart eines Katalysators unter Bildung von Kohlenmonoxid und Wasser, wobei die Reaktion bei einer Temperatur von > 700 °C durchgeführt wird und der Katalysator ein Mis chmetalloxid umfasst, wobei das Mischmetalloxid (I) eine Mischung von wenigstens zwei verschiedenen Metallen Ml und M2 auf einem Träger ist, welcher ein mit einem Metall M3 dotiertes Oxid von AI, Ce und/oder Zr umfasst; und/oder Activity and selectivity and long-term stability at high temperatures can be operated. This object is achieved by a method for the reduction of carbon dioxide, comprising the step of the reaction of carbon dioxide and hydrogen in the presence of a catalyst to form carbon monoxide and water, wherein the reaction is carried out at a temperature of> 700 ° C and the catalyst Comprising metal oxide, wherein the mixed metal oxide (I) is a mixture of at least two different metals Ml and M2 on a support comprising an oxide of Al, Ce and / or Zr doped with a metal M3; and or
(II) ein Reaktionsprodukt von (I) in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C ist; wobei gilt: Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Re, Ru, Rh, Ir, Os, Pd und/oder Pt; und (II) a reaction product of (I) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of> 700 ° C; where: Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt; and
M3 ist ausgewählt aus der Gruppe: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd. Tb. Oy. Ho, Er. Tm, Yb und/oder Lu. Es wurde überraschenderweise gefunden, dass die erfindungsgemäß eingesetzten Katalysatoren beziehungsweise deren Umwandlungsprodukte unter den herrschenden Reaktionsbedingungen stabile Katalysatoren sind, welche mit industriellen Benchmarksystemen mindestens in einer Hinsicht vergleichbar sind. Die RWGS-Reakt ion kann bei den erfindungsgemäß erhöhten Temperaturen selektiv betrieben werden. Es sei an dieser Stelle ausdrücklich festgehalten, dass die vorliegende Erfindung die Gewinnung von CO und I !.;() durch RWGS-Reaktion betrifft. Dieses ist im Gegensatz zur WGS-Reaktion, in der möglicherweise die Rückreaktion auch zu CO und ! I ) führt. Vorzugsweise wird das erfindungsgemäße Verfahren so durchgeführt, dass der Umsatz von CO2 nach Beendigung der Reaktion (insbesondere nach Verlassen eines Reaktors wie beispielsweise eines axialen Strömungsreaktors) über 35 Mol-%, bevorzugt über 40 Mol-%, mehr bevorzugt über 45 Mol-% und am meisten bevorzugt über 50 Mol-% liegt. M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd. Tb. Oy. Ho, he. Tm, Yb and / or Lu. It has surprisingly been found that the catalysts used according to the invention or their conversion products under the prevailing reaction conditions are stable catalysts which are comparable with industrial benchmark systems in at least one respect. The RWGS Reakt ion can be selectively operated at the elevated temperatures according to the invention. It should be noted at this point that the present invention relates to the recovery of CO and III by RWGS reaction. This is in contrast to the WGS reaction, where the reverse reaction may also be to CO and! I) leads. The process according to the invention is preferably carried out such that the conversion of CO 2 after completion of the reaction (in particular after leaving a reactor such as, for example, an axial flow reactor) is more than 35 mol%, preferably more than 40 mol%, more preferably more than 45 mol% and most preferably above 50 mole%.
Bevorzugte Mischmetalloxide sind zum Beispiel solche, in denen die Metalle M l und M2 verschieden sind und M3 Ce ist. Erfindungsgemäß mit eingeschlossen ist der Fall, dass das mit einem Metall M3 dotiertes Oxid von AI, Ce und/oder Zr ein Ce-Zr-Ai-Oxid ist (dann wäre M3 Ce). Ohne auf eine Theorie beschränkt zu sein wird angenommen, dass als aktive und stabile Katalysatoren für die Hochtemperatur-RWGS Mis chm etallkataly s ator en auf hochtemperatur- stabilen, vorzugsweise oxidleitenden Mischmetall oxiden (zum Beispiel Cer-dotierte Zirkondioxid/ Aluminiumoxid-Kombination) als Träger geeignet sind. Dabei wird durch die Zweierkombinationen aus Metall eine synergistische Wirkung beim Katalysator erzielt. Das bedeutet, dass die Aktivität und/oder die Stabilität jeweils besser ist als die additive Kombination der reinen Monometallkatalysatoren. Dies ist vermutlich auf die Ausbildung einer stabilen und aktiven intermetallischen Phase und/oder komplexe metallische Phase umfassend aus Ml und M2 unter den Reaktionsbedingungen zurückzuführen. Preferred mixed metal oxides are, for example, those in which the metals M 1 and M 2 are different and M 3 is Ce. Included in the invention is the case that the oxide of Al, Ce and / or Zr doped with a metal M3 is a Ce-Zr-Al oxide (then M3 would be Ce). Without being limited to a theory, it is assumed that as active and stable catalysts for the high-temperature RWGS, mixed metal catalysts are supported on high-temperature stable, preferably oxide-conducting, mixed metal oxides (for example cerium-doped zirconium dioxide / aluminum oxide combination) are suitable. In this case, a synergistic effect is achieved in the catalyst by the two-component metal combinations. This means that the activity and / or the stability is in each case better than the additive combination of the pure monometallic catalysts. This is presumably due to the formation of a stable and active intermetallic phase and / or complex metallic phase comprising Ml and M2 under the reaction conditions.
Mischmetalloxide des vorgenannten Typs (I) lassen sich unter anderem durch physikalische (wie PVD) sowie chemische Methoden herstellen, letztere vorwiegend in der Festphase oder Flüssigphase. Als Beispiele genannt seien Fällung, Co-Fällung, Sol-Gel-Verfahren, Imprägnierung, Zündungs -/Verbrennungsmethoden und weiterhin Gasphasenmethoden wie CVD. Erfindungsgemäß mit einges chlos s en ist d er F all, das s unter d en herrs c hen denMixed metal oxides of the abovementioned type (I) can be prepared, inter alia, by physical (such as PVD) and chemical methods, the latter predominantly in the solid phase or liquid phase. Examples include precipitation, co-precipitation, sol-gel process, impregnation, ignition / combustion methods and further gas phase methods such as CVD. In accordance with the invention, the invention is the one that eliminates the problem
Reaktions edingungen eine Umwandlung des Mischmetalloxids (I) zu Reaktionsprodukten (II) Desselben stattfindet. Der Begriff "Reaktionsprodukte" schließt die unter Reaktionsbedingungen vorliegenden Katalysatorphasen mit ein. Das Gasgemisch, dem der Katalysator während der Reaktion ausgesetzt wird, umfassend Kohlendioxid, Wasserstoff, Kohlenmonoxid und Wasser kann diese vier Komponenten beispielsweise in einem Gehalt von > 80 Gewichts-%, vorzugsweise > 90 Gewichts-% und mehr bevorzugt > 95 Gewichts-% enthalten. Reaction conditions a conversion of the mixed metal oxide (I) to reaction products (II) Desselben takes place. The term "reaction products" includes the catalyst phases present under reaction conditions. The gas mixture to which the catalyst is exposed during the reaction comprising carbon dioxide, hydrogen, carbon monoxide and water may contain these four components, for example, in a content of> 80% by weight, preferably> 90% by weight and more preferably> 95% by weight ,
Erfindungsgemäß vorgesehen ist eine Reaktionstemperatur von > 700 °C. Vorzugsweise beträgt die Reaktionstemperatur > 850 °C und mehr bevorzugt > 900 °C. According to the invention, a reaction temperature of> 700 ° C is provided. Preferably, the reaction temperature is> 850 ° C, and more preferably> 900 ° C.
Bevorzugte Ausführungsformen der vorliegenden Erfindung werden nachfolgend beschrieben. Sie können beliebig miteinander kombiniert werden, sofern sich aus dem Zusammenhang nicht eindeutig das Gegenteil ergibt. Preferred embodiments of the present invention will be described below. They can be combined with each other as long as the context does not clearly indicate the opposite.
In einer Ausführungsform des erfindungsgemäßen Verfahrens wird weiterhin während der Reaktion ein Kohlenwasserstoff mit 1 bis 4 C -Atomen hinzugefügt. Geeignete Kohlenwasserstoffe sind insbesondere Alkane mit 1 bis 4 C-Atomen, besonders geeignet ist Methan. Auf diese Weise lässt sich zusätzlich zur RWGS-Reaktion auch eine Reformierung durchführen. Wenn die Reaktion in einem axialen Strömungsreaktor durchgeführt wird, ist es möglich, dass die Zugabe des Kohlenwasserstoffs an beliebigen Stellen entlang der Längsachse des Reaktors stattfindet. So kann beispielsweise eine Kohlenwasserstoffzugabe am Reaktoreinlass, am Reaktorauslass und/oder an einer Position zwischen Einlas s und Auslass erfolgen. Der Kohlenwasserstoff kann beispielsweise in einem Anteil von > 0,01 Volumen-% bis < 20 Volumen-%, vorzugsweise > 0,1 Volumen-% bis < 10 Volumen-% und besonders bevorzugt > 1 Volumen-% bis < 10 Volumen-%, bezogen auf das Gesamtvolumen der Reaktionsgase, hinzugefügt werden. Unabhängig davon ist es bevorzugt, dass die Konzentration des Kohlenwasserstoffs nach der Reaktion, insbesondere am Ausgang eines Reaktors, in dem die Reaktion durchgeführt wird, < 20 Volumen-% und vorzugsweise < 10 Volumen-% beträgt. In one embodiment of the process according to the invention, furthermore, a hydrocarbon having 1 to 4 C atoms is added during the reaction. Suitable hydrocarbons are, in particular, alkanes having 1 to 4 C atoms, methane being particularly suitable. In this way, in addition to the RWGS reaction can also perform a reforming. When the reaction is carried out in an axial flow reactor, it is possible that the addition of the hydrocarbon takes place at arbitrary positions along the longitudinal axis of the reactor. Thus, for example, a hydrocarbon addition at the reactor inlet, at the reactor outlet and / or at a position between inlet s and outlet take place. The hydrocarbon may, for example, in a proportion of> 0.01% by volume to <20% by volume, preferably> 0.1% by volume to <10% by volume and more preferably> 1% by volume to <10% by volume , based on the total volume of the reaction gases, are added. Regardless, it is preferred that the concentration of the hydrocarbon after the reaction, especially at the outlet of a reactor in which the reaction is carried out, is <20% by volume and preferably <10% by volume.
In einer weiteren Ausführungsform des erfindungsgemäß en Verfahrens umfasst das Mischmetalloxid Pt-Rh auf Ce-Zr-Al-Oxid, Pi-Ru und/oder Rh-Ru auf Ce-Zr-Al-Oxid. Es ist ferner bevorzugt, dass der Gewichtsanteil von Pt, Rh und Ru jeweils > 0,01 Gewichts-% bis < 10 Gewichts-%, bezogen auf das Gesamtgewicht des Mischmetalloxids, beträgt. Bevorzugt sind Anteile von > 0,1 Gewichts-% bis < 5 Gewichts-%. In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird die Reaktion bei einer Temperatur von > 700 °C bis < 1300 °C durchgeführt. Mehr bevorzugte Bereiche sind > 800 °C bisIn a further embodiment of the process according to the invention, the mixed metal oxide comprises Pt-Rh on Ce-Zr-Al oxide, Pi-Ru and / or Rh-Ru on Ce-Zr-Al oxide. It is further preferred that the weight proportion of Pt, Rh and Ru is in each case> 0.01% by weight to <10% by weight, based on the total weight of the mixed metal oxide. Preference is given to proportions of> 0.1% by weight to <5% by weight. In a further embodiment of the process according to the invention, the reaction is carried out at a temperature of> 700 ° C to <1300 ° C. More preferred ranges are> 800 ° C to
< 1200 °C und > 900 °C bis < 1100 °C, insbesondere > 850 °C bis < 1050 °C. <1200 ° C and> 900 ° C to <1100 ° C, in particular> 850 ° C to <1050 ° C.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird die Reaktion bei einem Druck von > 1 bar bis < 200 bar durchgeführt. Vorzugsweise beträgt der Druck > 2 bar bis < 50 bar, mehr bevorzugt > 10 bar bis < 30 bar. In a further embodiment of the process according to the invention, the reaction is carried out at a pressure of> 1 bar to <200 bar. Preferably, the pressure is> 2 bar to <50 bar, more preferably> 10 bar to <30 bar.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens ist der Katalysator auf einem Träger aufgebracht und der Träger ausgewählt ist aus der Gruppe umfassend Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit. In a further embodiment of the process according to the invention, the catalyst is applied to a support and the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird die Reaktion in auto thermaler Fahrweise betrieben. Diese lässt sich beispielsweise sowohl durch das Hinzufügen von Sauerstoff in das Eduktgas erreichen, als auch dadurch, dass wasserstoffreiche Restgase wie Anodenrestgas, PSA-Restgas, Erdgas (vorzugsweise Methan) und/oder zusätzlicher Wasserstoff in der Gegenwart von CO2 Brenngasquellen sind. In a further embodiment of the method according to the invention, the reaction is operated in auto thermal mode. This can be achieved, for example, both by the addition of oxygen in the educt gas, as well as that hydrogen-rich residual gases such as anode residual gas, PSA residual gas, natural gas (preferably methane) and / or additional hydrogen in the presence of CO2 fuel gas sources.
Ein weiterer Gegenstand d er vorliegenden Erfindung ist di e Verwendung eines ein Mischmetalloxid umfassenden Katalysators in der Reaktion von Kohlendioxid und Wasserstoff, wobei Kohlenmonoxid und Wasser gebildet werden, wobei der Katalysator ein Mischmetalloxid umfasst, welches (I) eine Mischung von wenigstens zwei verschiedenen Metallen Ml und M2 auf einem Träger ist, welcher ein mit einem Metall M3 dotiertes Oxid von AI, Ce und/oder Zr umfasst; und/oder Another object of the present invention is the use of a catalyst comprising a mixed metal oxide in the reaction of carbon dioxide and hydrogen to form carbon monoxide and water, the catalyst comprising a mixed metal oxide comprising (I) a mixture of at least two different metals Ml and M2 is on a support comprising an oxide of Al, Ce and / or Zr doped with a metal M3; and or
(II) Reaktionsprodukte von (I) in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C umfasst; wobei gilt: (II) reaction products of (I) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of> 700 ° C comprises; where:
M 1 und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Re, Ru. Rh. Ir. Os, Pd und/oder Pt; und M 1 and M2 are independently selected from the group: Re, Ru. Rh. Ir. Os, Pd and / or Pt; and
M3 ist ausgewählt aus der Gruppe: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und oder Lu. Der Begriff "Reaktionsprodukte" schließt die unter Reaktionsbedingungen vorliegenden Katalysatorphasen mit ein. M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and or Lu. The term "reaction products" includes the catalyst phases present under reaction conditions.
Hinsichtlich weiterer Erläuterungen und Details wird zur Vermeidung von Wiederholungen auf die Ausführungen im Zusammenhang mit dem erfindungs gemäßen Verfahren verwiesen. Vorzugsweise umfasst das Mischmetalloxid (I) Pt-Rh auf Ce-Zr-Al-Oxid, Pt-Ru und oder Rh-Ru auf Ce-Zr-Al-Oxid. Es ist ferner bevorzugt, dass der Gewichtsanteil von Pt, Rh und Ru jeweils >For further explanation and details reference is made to avoid repetition on the statements in connection with the inventive method. Preferably, the mixed metal oxide (I) comprises Pt-Rh on Ce-Zr-Al oxide, Pt-Ru and or Rh-Ru on Ce-Zr-Al oxide. It is further preferred that the weight proportion of Pt, Rh and Ru is>
0,01 Gewichts-% bis < 10 Gewichts-%, bezogen auf das Gesamtgewicht des Mischmetalloxids (I), beträgt. Bevorzugt sind Anteile von > 0,1 Gewichts-% bis < 5 Gewichts-%. 0.01% by weight to <10% by weight based on the total weight of the mixed metal oxide (I). Preference is given to proportions of> 0.1% by weight to <5% by weight.
Es ist weiterhin bevorzugt, dass der Katalysator auf einem Träger aufgebracht ist und der Träger ausgewählt ist aus der Gruppe umfassend Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit. It is furthermore preferred that the catalyst is applied to a support and the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
Weitere Ausführungsformen des erfindungsgemäßen Verfahrens werden in Verbindung mit den nachfolgenden Figuren erläutert, ohne hi erauf b es ehr änkt zu sein. F I G. 1 zeigt schematisch eine expandierte Ansicht eines Reaktors zur Durchführung des erfindungsgemäßen Verfahrens. Further embodiments of the method according to the invention are explained in conjunction with the following figures, without being limited to them. FIG. 1 shows schematically an expanded view of a reactor for carrying out the process according to the invention.
FIG. 2-4 zeigen Umsatzkurven für CO2 in verschiedenen RWGS-Experimenten FIG. 2-4 show turnover curves for CO2 in various RWGS experiments
Im erfindungsgemäßen Verfahren kann die Reaktion in einem Strömungsreaktor durchgeführt werden, welcher in Strömungsrichtung der Reaktionsgase gesehen eine Mehrzahl von Heizebenen 100, 101, 102, 103 umfasst, welche mittels Heizelementen 1 10, 1 1 1 , 1 12, 1 13 elektrisch beheizt werden, wobei die Heizebenen 100, 101, 102, 100 von den Reaktionsgasen durchströmbar sind, wobei an mindestens einem Heizelement 1 10, 1 1 1 , 1 12, 1 13 der Katalysator angeordnet ist und dort beheizbar ist und mindestens einmal eine Zwischenebene 200, 201 , 202 zwischen zwei Heizebenen 100, 101, 102, 103 angeordnet ist, wobei die Zwischenebene 200, 201, 202 ebenfalls von den Reaktions gasen durchströmbar ist. In the process according to the invention, the reaction can be carried out in a flow reactor which, viewed in the flow direction of the reaction gases, comprises a plurality of heating levels 100, 101, 102, 103, which are electrically heated by means of heating elements 110, 11, 12, 13. wherein the heating levels 100, 101, 102, 100 are flowed through by the reaction gases, wherein at least one heating element 1 10, 1 1 1, 1 12, 1 13, the catalyst is arranged and can be heated there and at least once an intermediate level 200, 201, 202 between two heating levels 100, 101, 102, 103 is arranged, wherein the intermediate level 200, 201, 202 is also permeable by the reaction gases.
In Strömungsrichtung der Reaktions gase gesehen weist der Reaktor eine Mehrzahl von (im vorliegenden Fall vier) Heizebenen 1 00, 1 01 , 1 02, 103 auf, welche mittels entsprechender Heizelemente 1 10, 1 1 1 , 1 12, 1 13 elektrisch beheizt werden. Die Hei/ebenen 100, 101 , 102, 103 werden im Betrieb des Reaktors von den Reaktionsgasen durchströmt und die Heizelemente 1 10, 1 1 1 , 1 12, 1 13 werden von den Reaktionsgasen kontaktiert. Seen in the direction of flow of the reaction gases, the reactor has a plurality of (in the present case four) heating levels 1 00, 1 01, 1 02, 103, which are electrically heated by means of respective heating elements 1 10, 1 1 1, 1 12, 1 13 , The Hei / levels 100, 101, 102, 103 are flowed through during operation of the reactor from the reaction gases and the heating elements 1 10, 1 1 1, 1 12, 1 13 are contacted by the reaction gases.
An mindestens einem Heizelement 1 10, I I I . 1 12, 1 13 ist der Katalysator angeordnet und ist dort beheizbar. Der Katalysator kann direkt oder indirekt mit den Heizelementen 1 10, 1 1 1 , 1 12, I 1 verbunden sein, so dass diese Heizelemente den Katalysatorträger oder einen Träger für den Katalysatorträger darstellen. At least one heating element 1 10, III. 1 12, 1 13, the catalyst is arranged and is heated there. The catalyst can directly or indirectly with the heating elements 1 10, 1 1 1, 1 12, I 1 be connected, so that these heating elements represent the catalyst support or a support for the catalyst support.
In dem Reaktor erfolgt somit die Wärmeversorgung der Reaktion elektrisch und wird nicht von Außen mittels Strahlung durch die Wandungen des Reaktors eingebracht, sondern direkt in das Innere des Reaktionsraumes. Es wird eine direkte elektrische Beheizung des Katalysators realisiert. In the reactor, therefore, the heat supply of the reaction takes place electrically and is not introduced from the outside by means of radiation through the walls of the reactor, but directly into the interior of the reaction space. It is realized a direct electrical heating of the catalyst.
Für die Heizelemente 110, 1 11 , 1 12, 113 kommen bevorzugt Heizleiterlegierungen wie FeCrAl- Legierungen zum Einsatz. Alternativ zu metallischen Werkstoffen können zudem auch elektrisch leitfähige Si-basierte Materialien, besonders bevorzugt SiC, und/oder kohlenstoffbasierte Materialien eingesetzt werden. Im erfindungsgemäßen einzusetzenden Reaktor ist weiterhin mindestens einmal eine zum Beispiel keramische Zwischenebene 200, 201 , 202 (die vorzugsweise von einem keramischen oder metallischen Traggerüst/'-ebene getragen wird) zwischen zwei Heizebenen 100, 101, 102, 103 angeordnet, wobei die Zwischenebene(n) 200, 201 , 202 beziehungsweise der Inhalt 210, 21 1 , 212 einer Zwischenebene 200, 201 , 202 ebenfalls im Betrieb des Reaktors vom den Reaktionsgasen durchströmt werden. Dieses hat den Effekt einer Homogenisierung der Fluids trömung Es ist auch möglich, dass zusätzlicher Katalysator in einer oder mehreren Zwischen ebenen 200, 201 , 202 oder weiteren Isolationselementen im Reaktor vorhanden ist. Dann kann eine adiabatische Reaktion ablaufen. For the heating elements 110, 11, 12, 113, heating conductor alloys such as FeCrAl alloys are preferably used. In addition to metallic materials, it is also possible to use electrically conductive Si-based materials, particularly preferably SiC, and / or carbon-based materials. Furthermore, in the reactor to be used according to the invention, an intermediate ceramic level 200, 201, 202 (which is preferably supported by a ceramic or metal support framework / plane) is arranged at least once between two heating levels 100, 101, 102, 103, the intermediate level (FIG. n) 200, 201, 202 or the contents 210, 21 1, 212 of an intermediate level 200, 201, 202 are also flowed through in the operation of the reactor from the reaction gases. This has the effect of homogenizing the fluid flow. It is also possible that additional catalyst is present in one or more intermediate levels 200, 201, 202 or other isolation elements in the reactor. Then an adiabatic reaction can take place.
Bei der Verwendung von FeCrAl-Heizleitern kann die Tatsache ausgenutzt werden, dass das Material durch Tem eratur ein Wirkung in Gegenwart von Luft/Sauerstoff eine AkOj-Schutzschicht ausbildet. Diese Passivierungsschicht kann als Grundlage eines Washcoats dienen, welcher als katalytisch aktive Beschichtung fungiert. Damit ist die direkte Widerstandsbeheizung des Katalysators beziehungsweise die Wärmeversorgung der Reaktion direkt über die katalytische Struktur realisiert. Es ist auch, bei Verwendung anderer Heizleiter, die Bildung anderer Schutzschichten wie beispielsweise von Si-O-C-Systemen möglich. When using FeCrAl heating conductors, the fact that the material forms an effect in the presence of air / oxygen by means of temperature can form an AkOj protective layer can be exploited. This passivation layer can serve as the basis of a washcoat which acts as a catalytically active coating. Thus, the direct resistance heating of the catalyst or the heat supply of the reaction is realized directly through the catalytic structure. It is also possible, when using other heating conductors, the formation of other protective layers such as Si-O-C systems.
Die Druckaufnahme im Reaktor kann über einen druckfesten Stahlmantel erfolgen. Unter Verwendung geeigneter keramischer Isolationsmaterialien kann erreicht werden, dass der drucktragende Stahl Temperaturen von weniger als 200 °C und, wo notwendig, auch weniger als 60 °C ausgesetzt wird. Durch entsprechende Vorrichtungen kann dafür gesorgt werden, dass bei Taupunktsunterschreitung keine Auskondensation von Wasser am Stahlmantel erfolgt. The pressure in the reactor can take place via a pressure-resistant steel jacket. Using suitable ceramic insulation materials it can be achieved that the pressure-bearing steel is exposed to temperatures of less than 200 ° C and, if necessary, less than 60 ° C. By means of appropriate devices, it can be ensured that, when the dew point is undershot, there is no condensation of water on the steel jacket.
Die elektrischen Anschlüsse sind in FIG. 1 nur sehr schematisch dargestellt. Sie können im kalten Bereich des Reaktors innerhalb einer Isolierung zu den Enden des Reaktors geführt oder seitlich aus den Heizelementen 110, I I I . 1 12, 1 13 durchgeführt werden, so dass die eigentlichen elektrischen Anschlüsse im kalten Bereich des Reaktors vorgesehen sein können. Die elektrische Beheizung erfolgt mit Gleichstrom oder Wechselstrom. The electrical connections are shown in FIG. 1 only shown very schematically. They can be performed in the cold area of the reactor within an insulation to the ends of the reactor or laterally from the heating elements 110, III. 1 12, 1 13 are performed, so the actual electrical connections can be provided in the cold region of the reactor. The electrical heating is done with direct current or alternating current.
Der Einsatz der elektrisch beheizten Elemente im Eintrittsbereich des Reaktors wirkt sich auch positiv im Hinblick auf das Kaltstart- und Anfahrverhalten aus, insbesondere in Hinblick auf das rasche Aufheizen auf Reaktionstemperatur und die bessere Kontrollierbarkeit. The use of the electrically heated elements in the inlet region of the reactor also has a positive effect with regard to the cold start and starting behavior, in particular with regard to rapid heating to the reaction temperature and better controllability.
Der Katalysator kann prinzipiell als lose Schüttung, als Washcoat oder auch als monolithischer Formkörper auf den Heizelementen 110, 111, 112, 113 vorliegen. Es ist jedoch bevorzugt, dass der Katalysator direkt oder indirekt mit den Heizelementen 110, 111, 112, 113 verbunden ist, so dass diese Heizelemente den Kataly s atorträger oder einen Träger für den Katalysatorträger darstellen. Es ist auch möglich, dass zusätzlicher Katalysator in einer oder mehreren Zwischenebenen 200, 201, 202 oder weiteren Isolationselementen im Reaktor vorhanden ist. The catalyst can in principle be present as a loose bed, as a washcoat or else as a monolithic shaped body on the heating elements 110, 111, 112, 113. However, it is preferred that the catalyst is directly or indirectly connected to the heating elements 110, 111, 112, 113, so that these heating elements represent the catalyst carrier or a carrier for the catalyst support. It is also possible that additional catalyst is present in one or more intermediate levels 200, 201, 202 or other isolation elements in the reactor.
Durch geeignete Formgebung kann eine Oberflächenvergrößerung erreicht werden. Es ist möglich, dass in den Heizebenen 100, 101, 102, 103 Heizelemente 1 10, 1 1 1 , 1 12, 1 13 angeordnet sind, welche spiralförmig, mäanderförmig, gitt erförmig und/oder netzförmig aufgebaut sind. Die (beispielsweise keramischen) Zwischenebenen 200, 201, 202 respektive ihr Inhalt 210, 211,By appropriate shaping an increase in surface area can be achieved. It is possible that in the heating levels 100, 101, 102, 103 heating elements 1 10, 1 1 1, 1 12, 1 13 are arranged, which are spirally, meandering, gitt erförmig and / or net-shaped. The (for example ceramic) intermediate levels 200, 201, 202 or their contents 210, 211,
212 umfassen ein gegenüber den Reaktionsbedingungen beständiges Material, beispielsweise einen keramischen Schaum. Sie dienen zur mechanischen Ab Stützung der Heizebenen 100, 101, 102, 103 sowie zur Durchmischung und Verteilung des Gasstroms. Gleichzeitig ist so eine elektrische Isolierung zwischen zwei Heizebenen möglich. Es ist bevorzugt, dass das Material des Inhalts 210, 211, 212 einer Zwischenebene 200, 201, 202 Oxide, Carbide, Nitride, Phosphide und/oder B ride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit. 212 comprise a material resistant to the reaction conditions, for example a ceramic foam. They serve for the mechanical support of the heating levels 100, 101, 102, 103 as well as for the mixing and distribution of the gas flow. At the same time an electrical insulation between two heating levels is possible. It is preferred that the material of the content 210, 211, 212 of an intermediate level 200, 201, 202 comprises oxides, carbides, nitrides, phosphides and / or bicycles of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
Die Zwischenebene 200, 201 , 202 kann beispielsweise eine lose Schüttung von Festkörpern umfassen. Diese Festkörper selbst können porös oder massiv sein, so dass das Fluid durch Lücken zwischen den Festkörpern hindurchströmt. Es ist bevorzugt, dass das Material der Festkörper Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit. The intermediate level 200, 201, 202 may include, for example, a loose bed of solids. These solids themselves may be porous or solid, so that the fluid flows through gaps between the solids. It is preferred that the material of the solid bodies comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
Es ist ebenfalls möglich, dass die Zwischen ebene 200, 201 , 202 einen einstückigen porösen Festkörper umfasst. I diesem Fall durchströmt das Fluid die Zwischenebene über die Poren des Festkörpers. Bevorzugt sind Wabenmonolithe, wie sie beispielsweise bei der Abgasreinigung von Verbrennungsmotoren eingesetzt werden. Hinsichtlich der baulichen Abmessungen ist bevorzugt, dass die durch schnittliche Länge einer Heizebene 100, 101, 102, 103 in Strömungsrichtung des Fluids gesehen und die durchschnittliche Länge einer Zwischenebene 200, 201, 202 in Strömungsrichtung des Fluids gesehen in einem Verhältnis von > 0,01:1 bis < 100:1 zueinander stehen. Noch vorteilhafter sind Verhältnisse von > 0,1:1 bis < 10:1 oder 0,5:1 bis < 5:1. It is also possible that the intermediate level 200, 201, 202 comprises a one-piece porous solid. In this case, the fluid flows through the intermediate plane via the pores of the solid. Preference is given to honeycomb monoliths, as used for example in the exhaust gas purification of internal combustion engines. With regard to the structural dimensions, it is preferred that the average length of a heating plane 100, 101, 102, 103 in the direction of flow of the fluid and the average length of an intermediate level 200, 201, 202 in the flow direction of the fluid are in a ratio of> 0.01 : 1 to <100: 1 to each other. Even more advantageous are ratios of> 0.1: 1 to <10: 1 or 0.5: 1 to <5: 1.
Es ist weiterhin möglich, dass an zumindest einem Heizelement 110, III.112, 113 eine von den übrigen Heizelementen 110, III.112, 113 verschiedene Menge und/oder Art des Katalysators vorliegt. Vorzugsweise sind die Heizelemente 110, 111, 112, 113 so eingerichtet, dass sie jeweils unabhängig voneinander elektrisch beheizt werden können. Entsprechend können im erfindungsgemäßen Verfahren die einzelnen Heizelemente 110, 111, 112, 113 mit einer unterschiedlichen Heizleistung betrieben werden. It is also possible for at least one heating element 110, III.112, 113 to have a different amount and / or type of catalyst from the other heating elements 110, III.112, 113. Preferably, the heating elements 110, 111, 112, 113 are arranged so that they can each be electrically heated independently of each other. Accordingly, in the method according to the invention, the individual heating elements 110, 111, 112, 113 can be operated with a different heating power.
Im Endergebnis können die einzelnen Heizebenen einzeln gesteuert und geregelt werden. Im Reaktoreintrittsbereich kann nach Bedarf auch auf einen Katalysator in den Heizebenen verzichtet werden, so dass ausschließlich die Aufheizung und keine Reaktion im Eintrittsbereich erfolgt. Dieses ist insbesondere im Hinblick auf das Anfahren des Reaktors von Vorteil. Wenn sich die einzelnen Heizelemente 110, 111.112, 113 in Leistungseintrag, Katalysatorbeladung und/oder Katalysatorart unterscheiden, kann ein für die jeweilige Reaktion angepasstes Temperaturprofil erreicht werden. In Hinblick auf die Anwendung für endotherme Gleichgewichtsreaktionen ist dieses beispielsweise ein Temperaturprofil, das die höchsten Temperaturen und damit den höchsten Umsatz am Reaktoraustritt erreicht. As a result, the individual heating levels can be individually controlled and regulated. In the reactor inlet area can be dispensed with a catalyst in the heating levels as needed, so that only the heating and no reaction takes place in the inlet area. This is particularly advantageous in terms of starting the reactor. If the individual heating elements 110, 111, 112, 113 differ in power input, catalyst charge and / or type of catalyst, a temperature profile adapted for the respective reaction can be achieved. With regard to the application for endothermic equilibrium reactions, this is, for example, a temperature profile which achieves the highest temperatures and thus the highest conversion at the reactor outlet.
Der Reaktor kann modular aufgebaut sein. Ein Modul kann beispielsweise eine Heizebene, eine Zwischenebene, die elektrische Kontaktierung und die entsprechenden weiteren Isolationsmaterialien und Wärmedämmstoffe enthalten. The reactor can be modular. A module may include, for example, a heating level, an intermediate level, the electrical contact and the corresponding further insulation materials and thermal insulation materials.
Die vorliegende Erfindung wird anhand der nachfolgenden Beispiele noch näher beschrieben, ohne jedoch hierauf beschränkt zu sein. The present invention will be described in more detail with reference to the following examples, but without being limited thereto.
Synthese der Katalysatoren Synthesis of the catalysts
Beispiel 1 : Synthese verschiedener edelmetallsubstituierter Katalysatoren Example 1: Synthesis of various noble metal-substituted catalysts
Eine Portion (2 g) eines C er-Zirkonium- Aluminium oxid-Trägers (Gewichtsanteil Cer:Zr:Al = 37,5:12,5:50) wurde in warmem Wasser (0,5 L, 60 °C) suspendiert. Der pH-Wert der Suspension wurde mit Natriumcarbonatlösung (Konzentration siehe Tabelle) auf 6,5 eingestellt. Eine Menge Edelmetallsalz, oder alternativ einer Kombination unterschiedlicher Edelmetallsalze, wie in der nachstehenden Tabelle erläutert, wurde in 100 ml Wasser gelöst. Anschließend wurde die Edelmetallsalzlösung bei konstantem pH-Wert von 6,5 (gehalten durch Zugabe der Na2C03- Lösung) zur Trägersuspension hinzugetropft. Danach wurde noch 30 Minuten weitergerührt und anschließend auf Raumtemperatur abgekühlt. Danach wurde die Suspension ab filtriert und anschließend 5 bis 10-mal mit 200 ml Wasser (60 °C) chloridfrei (nach Silbernitrat-Test) gewaschen. Der feuchte Feststoff wurde bei Raumtemperatur im Vakuumtrockenschrank über Nacht getrocknet. A portion (2 g) of a cerium-zirconium-aluminum oxide carrier (weight fraction Cer: Zr: Al = 37.5: 12.5: 50) was suspended in warm water (0.5 L, 60 ° C). The pH of the suspension was adjusted to 6.5 with sodium carbonate solution (concentration see table). An amount of noble metal salt, or alternatively a combination of different noble metal salts, as illustrated in the table below, was dissolved in 100 ml of water. Subsequently, the noble metal salt solution was added dropwise at a constant pH of 6.5 (maintained by adding the Na 2 C03 solution) to the carrier suspension. The mixture was then stirred for a further 30 minutes and then cooled to room temperature. Thereafter, the suspension was filtered off and then washed 5-10 times with 200 ml of water (60 ° C) chloride-free (after silver nitrate test). The moist solid was dried at room temperature in a vacuum oven overnight.
EdelKatalyse- Konzentration Edelmeta!lsalz(e) Gewic ts- Menge metall Beispiel- Na2C03- anteil (%) (g) Noble catalysis concentration Precious metal salt (s) Weight Quantity metal Example Na 2 C0 3 - fraction (%) (g)
\ ummer Lösung (mol/L) Edelmetall  Solution (mol / L) precious metal
in Salz  in salt
Pt 3; 4 0,16 H2PtCl6.xH20 ca. 40 0,1 Pt 3; 4 0.16 H 2 PtCl 6 .xH 2 O ca. 40 0.1
Rh 3 0,08 RhCl3 ca. 37,5 0,1065 Rh 3 0.08 RhCl 3 ca. 37.5 0.1065
Rh-Pt 3 0,08 RhCi3 ca. 37,5 0,0533 Rh-Pt 3 0.08 RhCi 3 ca. 37.5 0.0533
H2PtCl6.xH20 ca. 40 0,05 H 2 PtCl 6 .xH 2 O approx. 40 0.05
Ru 4 0,08 RuCb ca. 40 0,1 Ru 4 0.08 RuCb ca. 40 0.1
Ru-Pt 4 0,08 RuCl3 ca. 40 0,05 Ru-Pt 4 0.08 RuCl 3 about 40 0.05
H2PtCl6.xH20 ca. 40 0,05 RWC.S-Rcaktioncn: H 2 PtCl 6 .xH 2 O approx. 40 0.05 RWC.S-Rcaktioncn:
Allgemeine Versuchsbeschreibung: im Rahmen der katalytischen Tests wurden zunächst jeweils von 0,5 bis 4 mg des Katalysators mit 210 mg eines SiC -Verdünnungsmaterials jeweils in der Siebgrößenfraktion von 100-200 μτη beziehungsweise 125-185 μιτι miteinander intensiv vermischt. Die katalytischen Untersuchungen wurden in einem U-rohrförmigen Festbettreaktor aus Quarzglas bei einer Ofentemperatur von 850 °C (mit einer Raumgeschwindigkeit von 100000 1 /h) durchgeführt. Hierbei wurde die Probe im Stickstofffluss (250 Nml/min) auf die Zieltemperatur von 850 °C aufgeheizt. Anschließend wurden die Reaktivgase Wasserstoff (75 Nml/min) und Kohlenstoff dioxid (50 Nml/min) unter gleichzeitiger Reduktion des Stickstoffflusses auf 125 Nml min im Bypass zudosiert. Nach einer Mischdauer von 30 min wurden diese auf das sich im Reaktor befindliche Katalysatorsystem beaufschlagt. Nach einer Reaktionsdauer von bis zu 65 h wurde der Katalysator unter Inertbedingungen auf Raumtemperatur abgekühlt. Die Analyse des Produktgasgemisches erfolgte mithilfe eines Multikanalinfrarotanalysators. General description of the experiment: in the catalytic tests, in each case from 0.5 to 4 mg of the catalyst with 210 mg of a SiC diluent material in each case in the sieve size fraction of 100-200 μτη or 125-185 μιτι were intensively mixed. The catalytic tests were carried out in a fused silica U-tube fixed bed reactor at an oven temperature of 850 ° C (at a space velocity of 100,000 1 / h). The sample was heated to the target temperature of 850 ° C in a nitrogen flow (250 Nml / min). Subsequently, the reactive gases hydrogen (75 Nml / min) and carbon dioxide (50 Nml / min) were added with simultaneous reduction of the nitrogen flow to 125 Nml min in the bypass. After a mixing time of 30 min, these were applied to the catalyst system in the reactor. After a reaction time of up to 65 hours, the catalyst was cooled to room temperature under inert conditions. The analysis of the product gas mixture was carried out using a multi-channel infrared analyzer.
Beispiel 2: Leermessungen Die nachfolgende Tabelle fasst die Ergebnisse des Katalysatorvergleiches in der RWGS-Reaktion zusammen. Die Angabe "X7,5h(CC>2) [%]" bedeutet den Umsatz an CO2, hier nach 7,5 Stunden, ausgedrückt in Mol-Prozent. Die Angabe "reff(C02)" gibt die mittlere Reaktionsgeschwindigkeit von CO2 an und "X7,5h(C 02)/X3h(C O2) " ist der Quotient aus dem CC -Umsatz nach 7,5 Stunden und nach 3 Stunden. Example 2: Empty Measurements The following table summarizes the results of the catalyst comparison in the RWGS reaction. The indication "X7.5h (CC> 2) [%]" means the conversion of CO2, here after 7.5 hours, expressed in mole percent. The term "r eff (C0 2 )" indicates the average reaction rate of CO2 and "X7.5h (C 02) / X 3h (C O 2)" is the quotient of the CC conversion after 7.5 hours and after 3 hours ,
Figure imgf000014_0001
Figure imgf000014_0001
Di e E rgebni sse di eser Experimente sind weiterhin in F I G . 2 dargestellt, welche di e CO2- Ums atzkurven über der Reaktionsdauer dargestellt. Die thermodynamische Limitierung bei ca. 60% Umsatz ist durch "TD" gekennzeichnet. Die Kurven sind in FIG. 2 nicht unterscheidbar, so dass auf eine Kurvenbeschriftung verzichtet wurde. Es resultieren keine oder sehr geringe Aktivitäten. Beispiel 3 : Vergleich zwischen Rh/Pt-Mischungen und Rh oder Pt The advantages of these experiments are further illustrated in FIG. 2, which illustrate the CO2 conversion curves over the duration of the reaction. The thermodynamic limitation at about 60% conversion is indicated by "TD". The curves are shown in FIG. 2 indistinguishable, so that was omitted on a curve inscription. There are no or very little activities. Example 3: Comparison between Rh / Pt mixtures and Rh or Pt
Die nachfolgende Tabelle fasst die Ergebnisse des Katalysatorvergleiches in der RWGS-Reaktion für die Rhodium- und/oder Platin-haltigen Katalysatoren aus Beispiel 1 zusammen. Die Angabe " 7,5h(C02) [%]" bedeutet den Umsatz an CO2, hier nach 7,5 Stunden, ausgedrückt in Mol-Prozent. Die Angabe "reff;7,5h(C02)" gibt die entsprechende mittlere Reaktionsgeschwindigkeit von CO2 an und " 7,5h(C02)/ 3h(C02)" ist der Quotient aus dem CC -Umsatz nach 7,5 Stunden und nach 3 Stunden. The following table summarizes the results of the catalyst comparison in the RWGS reaction for the rhodium- and / or platinum-containing catalysts from Example 1 together. The term "7.5h (C02) [%]" means the conversion of CO2, here after 7.5 hours, expressed in mole percent. The term "r e ff; 7,5h (C02)" indicates the corresponding average reaction rate of CO2 and "7,5h (C02) / 3h (C02)" is the quotient of the CC conversion after 7.5 hours and After 3 hours.
Katalysator X7.5h(CO:) [% | r,-rr; ?.5i.(C02) X7,5h(C02)/X3h(C02) Catalyst X 7 .5h (CO :) [% | r, -rr ; ? .5i. (C0 2 ) X7.5h (C0 2 ) / X3h (C0 2 )
[mol/s/g*10'6] [mol / s / g * 10'6 ]
Rh auf Ce-Zr-Al- 3,9 363 0,72  Rh on Ce-Zr-Al 3.9 363.72
Oxid oxide
Pt auf Ce-Zr-Al- 38,3 3235 0,91  Pt on Ce-Zr-Al 38.3 3235 0.91
Oxid oxide
Rh-Pt auf Ce-Zr-Al- 58,4 5163 0,98  Rh-Pt on Ce-Zr-Al-58.4 5163 0.98
Oxid  oxide
Die Ergebnisse dieser Experimente sind weiterhin in FIG. 3 dargestellt, welche die CC>2-Umsatz- kurven über der Reaktionsdauer für den Rh-Katalysator (Kurve "Rh/Ce-Zr-A10x"), den Pt-Kataly- sator (Kurve "Pt/Ce-Zr-A10x") sowie für den gemischten Katalysator (Kurve "Rh-Pt/Ce-Zr-A10x") dargestellt. Die thermodynamische Limitierung bei ca. 60% Umsatz ist durch "TD" gekennzeichnet. Man beobachtet die höchste Aktivität und Stabilität für das get ragen e Rh-Pt-System. The results of these experiments are further shown in FIG. 3, which shows the CC> 2 conversion curves over the reaction time for the Rh catalyst (curve "Rh / Ce-Zr-A10 x "), the Pt catalyst (curve "Pt / Ce-Zr-A10 x ") and for the mixed catalyst (curve" Rh-Pt / Ce-Zr-A10 x "). The thermodynamic limitation at about 60% conversion is indicated by "TD". The highest activity and stability are observed for the deposited Rh-Pt system.
Beispiel 4: Vergleich zwischen Ru/Pt-Mischungen und Ru oder Pt Die nachfolgende Tabelle fasst die Ergebnisse des Katalysatorvergleiches in der RWGS-Reaktion für die Ruthenium- und/ oder Platin-haltigen Katalysatoren aus Beispiel 1 zusammen. Die Angabe "X7,5h(C02) [%]" bedeutet den Umsatz an CO2, hier nach 7,5 Stunden, ausgedrückt in Mol-Prozent. Die Angabe "reff;7,5h(CC>2)" gibt die entsprechende mittlere Reaktionsgeschwindigkeit von CO2 an und "X7,5h(C02)/X3h(C02)" ist der Quotient aus dem CC -Umsatz nach 7,5 Stunden und nach 3 Stunden. Example 4: Comparison between Ru / Pt mixtures and Ru or Pt The following table summarizes the results of the catalyst comparison in the RWGS reaction for the ruthenium- and / or platinum-containing catalysts from Example 1. The term "X7.5h (C02) [%]" means the conversion of CO2, here after 7.5 hours, expressed in mole percent. The term "r e ff; 7.5h (CC>2)" indicates the corresponding average reaction rate of CO2 and "X7.5h (CO 2) / X 3h (CO 2)" is the quotient from the CC conversion to 7.5 Hours and after 3 hours.
Katalysator 7. h(C()2) [ | reff; ?.5h(C02) X7,5h(C02)/X3h(C02) Catalyst 7. h (C () 2 ) [| r e ff; ? 5h (C0 2 ) X7,5h (C0 2 ) / X3h (C0 2 )
| mol/s/»* l ü""| | mol / s / »* l ü " "|
Ru auf Ce-Zr-Al- 20,0 l "6S 0,91 Ru on Ce-Zr-Al-20.0 l " 6S 0.91
Oxid oxide
Pt auf Ce-Zr-Al- 38,3 3235 0,91  Pt on Ce-Zr-Al 38.3 3235 0.91
Oxid Ru-Pt auf Ce-Zr-Al- 57,0 10082 0,98 oxide Ru-Pt on Ce-Zr-Al-57.0 10082 0.98
Oxid  oxide
Die Ergebnisse dieser Experimente sind weiterhin in FIG. 4 dargestellt, welche die CO2- Ums atzkurven über der Reaktionsdauer für den Ru-Katalysator (Kurve "Ru/Ce-Zr-A10x"), den Pt- Katalysator (Kurve "Pt/Ce-Zr-A10x") sowie für den gemischten Katalysator (Kurve "Ru-Pt. Ce-Zr- AlOx") dargestellt. Die thermodynamische Limitierung bei ca. 60% Umsatz ist durch "T D" gekennzeichnet. Man beobachtet die höchste Aktivität und Stabilität für das geträgerte Ru-Pt - System. The results of these experiments are further shown in FIG. 4, which shows the CO2 conversion curves over the reaction time for the Ru catalyst (curve "Ru / Ce-Zr-A10 x "), the Pt catalyst (curve "Pt / Ce-Zr-A10 x ") and for the mixed catalyst (curve "Ru-Pt. Ce-Zr-AlO x "). The thermodynamic limitation at about 60% conversion is indicated by "TD". The highest activity and stability are observed for the supported Ru-Pt system.

Claims

Patentansprüche claims
1. Verfahren zur Reduktion von K ohlendioxid, umfassend den Schritt der Reaktion von Kohl endi ox id und Wasserstoff in Gegenwart eines Katalysators unter Bildung von Kohlenmonoxid und Wasser, dadurch gekennzeichnet, dass d i e Reaktion bei einer Temperatur von > 700 °C durchgeführt wird und der Katalysator ein Mischmetalloxid umfasst, welches A process for the reduction of carbon dioxide, comprising the step of reacting carbon dioxide and hydrogen in the presence of a catalyst to form carbon monoxide and water, characterized in that the reaction is carried out at a temperature of> 700 ° C and the Catalyst comprises a mixed metal oxide, which
(I) eine Mischung von wenigstens zwei verschiedenen Metallen Ml und M2 auf einem Träger ist, welcher ein mit einem Metall M3 dotiertes Oxid von AI, Ce und/oder Zr umfasst; und/oder (I) is a mixture of at least two different metals Ml and M2 on a support comprising an oxide of Al, Ce and / or Zr doped with a metal M3; and or
(ΪΙ) Reaktionsprodukte von (Ϊ) in Gegenwart von Kohlendioxid, Was serstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C umfasst; wobei gilt: (ΪΙ) reaction products of (Ϊ) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of> 700 ° C comprises; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Re, Ru, Rh, Ir, Os, Pd und/oder Pt; und Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt; and
M3 ist ausgewählt aus der Gruppe: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tin.M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tin.
Yb und oder Lu, Yb and or Lu,
2. Verfahren gemäß Anspruch 1, wobei weiterhin während der Reaktion ein Kohlenw as s ersto ff mit 1 bis 4 C -Atomen hinzugefügt wird. 2. A process according to claim 1, further wherein a carbon monoxide is added first with 1 to 4 C atoms during the reaction.
3. Verfahren gemäß Anspruch 1 oder 2, wobei das Mischmetalloxid (I) Pi-Rh auf Ce-Zr-Al- Oxid. Pt-Ru und/oder Rh-Ru auf Ce-Zr-Al-Oxid umfasst. 3. The method according to claim 1 or 2, wherein the mixed metal oxide (I) Pi-Rh on Ce-Zr-Al oxide. Pt-Ru and / or Rh-Ru on Ce-Zr-Al oxide.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, wobei die Reaktion bei einer Temperatur von > 700 °C bis < 1300 °C durchgeführt wird. 4. The method according to any one of claims 1 to 3, wherein the reaction at a temperature of> 700 ° C to <1300 ° C is performed.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, wobei die Reaktion bei einem Druck von > 1 bar bis < 200 bar durchgeführt wird. 5. The method according to any one of claims 1 to 4, wherein the reaction is carried out at a pressure of> 1 bar to <200 bar.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, wobei der Katalysator auf einem Träger aufgebracht ist und der Träger ausgewählt ist aus der Gruppe umfassend Oxide, Carbide, Nitride, Phosphide und oder Boride von Aluminium, Silizium und/oder Zirkonium. 6. The method according to any one of claims 1 to 5, wherein the catalyst is applied to a support and the support is selected from the group comprising oxides, carbides, nitrides, phosphides and or borides of aluminum, silicon and / or zirconium.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, wobei die Reaktion in autothermaler Fahrweise betrieben wird. 7. The method according to any one of claims 1 to 6, wherein the reaction is operated in autothermal mode.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, wob ei die Reaktion in e i n e m Strömungsreaktor durchgeführt werden, welcher in Strömungsrichtung der Reaktionsgase gesehen eine Mehrzahl von Heizebenen ( 100, 101 , 102, 103) umfasst, welche mittels8. The process as claimed in claim 1, wherein the reaction is carried out in a flow reactor which, viewed in the direction of flow of the reaction gases, comprises a plurality of heating levels (100, 101, 102, 103) which by means of
Heizelementen (110, 1 11 , 1 12, 113) elektrisch beheizt werden, wobei die Heizebenen (100, 101 , 102, 100) von den Reaktions gasen durchströmbar sind, wobei an mindestens einem Heizelement (1 10, I I I . 1 12, 113) der Katalysator angeordnet ist und dort beheizbar ist und mindestens einmal eine Zwischenebene (200, 201, 202) zwischen zwei Heizebenen (100, 101 , 102, 103) angeordnet ist, wobei die Zwischenebene (200, 201 , 202) ebenfalls von denHeating elements (110, 1 11, 1 12, 113) are electrically heated, wherein the heating levels (100, 101, 102, 100) of the reaction gases are flowed through, wherein at least one heating element (1 10, III ) the catalyst is arranged and there is heatable and at least once an intermediate level (200, 201, 202) between two heating levels (100, 101, 102, 103) is arranged, wherein the intermediate level (200, 201, 202) also from the
Reaktions gasen durchströmbar ist. Reaction gas is flowed through.
9. Verfahren gemäß Anspruch 8, wobei in den Heizebenen (100, 101 , 102, 103) Heizelemente (1 10, 11 1 , 112, 1 13) angeordnet sind, welche spiralförmig, mäanderförmig, gitt erförmig und/oder netzförmig aufgebaut sind. 9. The method according to claim 8, wherein in the heating levels (100, 101, 102, 103) heating elements (1 10, 11 1, 112, 1 13) are arranged, which are spirally, meandering, gitt erförmig and / or net-shaped.
10. Verfahren gemäß Anspruch 8 oder 9, wobei das Material des Inhalts (210, 21 1 , 212) einer10. The method according to claim 8 or 9, wherein the material of the content (210, 21 1, 212) of a
Zwischenebene (200, 201 , 202) Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Intermediate layer (200, 201, 202) comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
11. Verfahren gemäß einem der Ansprüche 8 bis 10, wobei an zumindest einem Heizelement (1 10, 11 1 , 1 12, 1 13) eine von den übrigen Heizelementen (1 10, 1 1 1. 112, 1 13) verschiedene Menge und/oder Art des Katalysators vorliegt. 11. The method according to any one of claims 8 to 10, wherein at least one heating element (1 10, 11 1, 1 12, 1 13) one of the other heating elements (1 10, 1 1 1. 112, 1 13) different amount and / or type of catalyst is present.
12. Verfahren gemäß einem der Ansprüche 8 bis 1 1, wobei die einzelnen Heizelemente ( 1 10, 1 11 , 112, 1 13) mit einer unterschiedlichen Heizleistung betrieben werden. 12. The method according to any one of claims 8 to 1 1, wherein the individual heating elements (1 10, 1 11, 112, 1 13) are operated with a different heating power.
13. Verwendung eines ein Mischmetalloxid umfassenden Katalysators in der Reaktion von Kohlendioxid und Wasserstoff, wobei Kohlenmonoxid und Wasser gebildet werden, dadurch gekennzeichnet, dass der Katalysator ein Mischmetalloxid umfasst welches 13. Use of a catalyst comprising a mixed metal oxide in the reaction of carbon dioxide and hydrogen, whereby carbon monoxide and water are formed, characterized in that the catalyst comprises a mixed metal oxide
(I) eine Mischung von wenigstens zwei verschiedenen Metallen Ml und M2 auf einem Träger ist, welcher ein mit einem Metall M3 dotiertes Oxid von AI, Ce und/oder Zr umfasst; und/oder (I) is a mixture of at least two different metals Ml and M2 on a support comprising an oxide of Al, Ce and / or Zr doped with a metal M3; and or
(II) Reaktionsprodukte von (I) in Gegenwart von Kohlendioxid, Was serstoff, Kohlenmonoxid und/ oder Wasser bei einer Temperatur von > 700 °C umfasst; wobei gilt: (II) reaction products of (I) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of> 700 ° C comprises; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Re, Ru, Rh, Ir, Os, Pd und/oder Pt; und Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt; and
M3 ist ausgewählt aus der Gruppe: Sc, Y, La, Ce, Pr. Nd, Sin. Eu, Gd. Tb. Dy. Ho, Er, Tm, Yb und/oder Lu. M3 is selected from the group: Sc, Y, La, Ce, Pr. Nd, Sin. Eu, Gd. Tb. Dy. Ho, Er, Tm, Yb and / or Lu.
Verwendung gemäß Anspruch 13, wobei das Mischmetalloxid Pt-Rh auf Ce-Zr-Al-Oxid, Pt- Ru und/oder Rh-Ru auf Ce-Zr-Al-Oxid umfasst. Use according to claim 13, wherein the mixed metal oxide comprises Pt-Rh on Ce-Zr-Al oxide, Pt-Ru and / or Rh-Ru on Ce-Zr-Al oxide.
Verwendung gemäß Anspruch 13 oder 14, wobei der Katalysator auf einem Träger aufgebracht ist und der Träger ausgewählt ist aus der Gruppe umfassend Oxide, Carbide, Nitride, Phosphide und/ oder Boride von Aluminium, Silizium und/oder Zirkonium. Use according to claim 13 or 14, wherein the catalyst is supported on a support and the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
PCT/EP2013/054953 2012-03-13 2013-03-12 Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts on oxidic substrates doped with aluminum, cerium, and/or zirconium WO2013135664A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012203917 2012-03-13
DE102012203917.1 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013135664A1 true WO2013135664A1 (en) 2013-09-19

Family

ID=47884318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/054953 WO2013135664A1 (en) 2012-03-13 2013-03-12 Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts on oxidic substrates doped with aluminum, cerium, and/or zirconium

Country Status (1)

Country Link
WO (1) WO2013135664A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017067648A1 (en) * 2015-10-22 2017-04-27 Linde Aktiengesellschaft Method for generating syngas
CN113117663A (en) * 2021-04-21 2021-07-16 上海交通大学 Porous cerium oxide doped zirconia material and preparation method and application thereof
WO2021244975A1 (en) 2020-06-01 2021-12-09 Shell Internationale Research Maatschappij B.V. A process and reactor for converting carbon dioxide into carbon monoxide, involving a catalyst
US11964872B2 (en) 2018-12-03 2024-04-23 Shell Usa, Inc. Process and reactor for converting carbon dioxide into carbon monoxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10023410A1 (en) * 2000-05-12 2001-11-15 Linde Gas Ag Production of carbon monoxide- and hydrogen-containing treatment gas comprises forming treatment gas for catalytically converting hydrocarbon gas in catalyst retort to which heat can be fed and varied over its length
WO2002046676A1 (en) * 2000-12-05 2002-06-13 Texaco Development Corporation Apparatus and method for heating catalyst for start-up of a compact fuel processor
WO2003082741A1 (en) 2002-03-28 2003-10-09 Utc Fuel Cells, Llc Ceria-based mixed-metal oxide structure, including method of making and use
US20040175327A1 (en) 2002-12-20 2004-09-09 Alfred Hagemeyer Catalyst formulations containing group 11 metals for hydrogen generation
WO2008055776A1 (en) 2006-11-08 2008-05-15 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the preparation of a supported noble metal catalyst and its use in sythesis gas production
WO2011056715A1 (en) 2009-11-04 2011-05-12 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Catalytic support for use in carbon dioxide hydrogenation reactions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10023410A1 (en) * 2000-05-12 2001-11-15 Linde Gas Ag Production of carbon monoxide- and hydrogen-containing treatment gas comprises forming treatment gas for catalytically converting hydrocarbon gas in catalyst retort to which heat can be fed and varied over its length
WO2002046676A1 (en) * 2000-12-05 2002-06-13 Texaco Development Corporation Apparatus and method for heating catalyst for start-up of a compact fuel processor
WO2003082741A1 (en) 2002-03-28 2003-10-09 Utc Fuel Cells, Llc Ceria-based mixed-metal oxide structure, including method of making and use
US20040175327A1 (en) 2002-12-20 2004-09-09 Alfred Hagemeyer Catalyst formulations containing group 11 metals for hydrogen generation
WO2008055776A1 (en) 2006-11-08 2008-05-15 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the preparation of a supported noble metal catalyst and its use in sythesis gas production
WO2011056715A1 (en) 2009-11-04 2011-05-12 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Catalytic support for use in carbon dioxide hydrogenation reactions

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HAMIDEH ELTEJAEI ET AL: "Methane dry reforming on Ni/Ce0.75Zr0.25O2-MgAl2O4 and Ni/Ce0.75Zr0.25O2-[gamma]-alumina: Effects of support composition and water addition", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 37, no. 5, 1 March 2012 (2012-03-01), pages 4107 - 4118, XP055064720, ISSN: 0360-3199, DOI: 10.1016/j.ijhydene.2011.11.128 *
HOLLADAY ET AL., JOURNAL OF PROPULSION AND POWER, vol. 24, 2008, pages 578 - 582
HU ET AL., CATALYSIS TODAY, vol. 125, 2007, pages 103 - 110
JIANGUO ZHANG ET AL: "Kinetic Studies of Carbon Dioxide Reforming of Methane over Ni-Co/Al-Mg-O Bimetallic Catalyst", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 48, no. 2, 21 January 2009 (2009-01-21), pages 677 - 684, XP055064671, ISSN: 0888-5885, DOI: 10.1021/ie801078p *
LANZA R ET AL: "Methane partial oxidation over PtRu catalyst: An investigation on the mechanism", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 375, no. 1, 26 February 2010 (2010-02-26), pages 92 - 100, XP026878434, ISSN: 0926-860X, [retrieved on 20100129] *
WHEELER ET AL., JOURNAL OF CATALYSIS, vol. 223, 2004, pages 191 - 199

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017067648A1 (en) * 2015-10-22 2017-04-27 Linde Aktiengesellschaft Method for generating syngas
US11964872B2 (en) 2018-12-03 2024-04-23 Shell Usa, Inc. Process and reactor for converting carbon dioxide into carbon monoxide
WO2021244975A1 (en) 2020-06-01 2021-12-09 Shell Internationale Research Maatschappij B.V. A process and reactor for converting carbon dioxide into carbon monoxide, involving a catalyst
CN113117663A (en) * 2021-04-21 2021-07-16 上海交通大学 Porous cerium oxide doped zirconia material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2013135707A1 (en) Method for producing a carbon monoxide-containing gas mixture at high temperatures on mixed metal oxide catalysts comprising noble metals
DE69913037T2 (en) reforming reactor
EP1063011B1 (en) Use of a catalyst for the steam reforming of methanol
EP2033943B1 (en) Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
EP1136441A2 (en) Method for the catalytic conversion of carbon monoxide in a hydrogen containing gas mixture
EP1136442A2 (en) Method for the catalytic conversion of carbon monoxide in a hydrogen containing gas mixture with improved cold start and catalyst therefor
EP1157968B2 (en) Process for the autothermal catalytic steam reforming of hydrocarbons
US20130183221A1 (en) Preparation of copper oxide-cerium oxide-supported nano-gold catalysts and its application in removal of carbon monoxide in hydrogen stream
DE60225404T2 (en) Process for the catalytic autothermal steam reforming of mixtures of higher alcohols, in particular ethanol with hydrocarbons
KR20030055252A (en) Process for generating hydrogen-rich gas
CN101314128A (en) Self-heating reforming hydrogen production catalyst and preparation method thereof
DE10392445T5 (en) Catalyst for the production of hydrogen
EP1500433A1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
JP5096712B2 (en) Carbon monoxide methanation method
WO2013135664A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts on oxidic substrates doped with aluminum, cerium, and/or zirconium
JP2005529824A (en) Suppression of methanation activity of platinum group metal catalysts for water-gas conversion
EP1249275B1 (en) Catalyst and method for the removal of carbon monoxide from a reformate gas and method for the preparation of the catalyst
WO2013135673A1 (en) Method for reducing carbon dioxide at high temperatures on catalysts especially carbide supported catalysts
EP3274088A1 (en) Ruthenium-rhenium-based catalyst and a method for the selective methanation of carbon monoxide
US7632778B2 (en) Device for the generation of hydrogen
WO2013135660A1 (en) Axial flow reactor having heating planes and intermediate planes
WO2013135668A1 (en) Chemical reactor system, comprising an axial flow reactor with heating levels and intermediate levels
WO2013135662A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts
WO2013135665A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts in the form of partially substituted hexaaluminates
WO2013135663A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts comprising noble metal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13709413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13709413

Country of ref document: EP

Kind code of ref document: A1