EP2825379A1 - Thermally conductive composite element based on expanded graphite - Google Patents

Thermally conductive composite element based on expanded graphite

Info

Publication number
EP2825379A1
EP2825379A1 EP13709828.1A EP13709828A EP2825379A1 EP 2825379 A1 EP2825379 A1 EP 2825379A1 EP 13709828 A EP13709828 A EP 13709828A EP 2825379 A1 EP2825379 A1 EP 2825379A1
Authority
EP
European Patent Office
Prior art keywords
composite element
thermally conductive
expanded graphite
conductive composite
textile fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13709828.1A
Other languages
German (de)
French (fr)
Inventor
Werner Langer
Michael Steinrotter
Robert Michels
Werner Guckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Carbon SE
Original Assignee
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGL Carbon SE filed Critical SGL Carbon SE
Publication of EP2825379A1 publication Critical patent/EP2825379A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/632Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings
    • E05F15/643Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings operated by flexible elongated pulling elements, e.g. belts, chains or cables
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/665Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings
    • E05F15/668Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings for overhead wings
    • E05F15/681Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings for overhead wings operated by flexible elongated pulling elements, e.g. belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • F24D3/148Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor with heat spreading plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/04Inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0869Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements having conduits for fluids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/14Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/60Suspension or transmission members; Accessories therefor
    • E05Y2201/622Suspension or transmission members elements
    • E05Y2201/658Members cooperating with flexible elongated pulling elements
    • E05Y2201/672Tensioners, tension sensors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2600/00Mounting or coupling arrangements for elements provided for in this subclass
    • E05Y2600/10Adjustable
    • E05Y2600/30Adjustment motion
    • E05Y2600/31Linear motion
    • E05Y2600/312Horizontal motion
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/10Application of doors, windows, wings or fittings thereof for buildings or parts thereof
    • E05Y2900/106Application of doors, windows, wings or fittings thereof for buildings or parts thereof for garages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a thermally conductive composite element based on expanded graphite, a process for its production and its use.
  • thermally conductive composite elements are used, for example, as heat-conducting in surface cooling and surface heating, such as floor, wall and ceiling heating, to distribute the votes of the surface cooling cold or the heat emitted by the surface heating heat in the area evenly and to this leave surrounding space to achieve a pleasant indoor climate.
  • such composite elements usually comprise a heat conduction plate, in which a through-flow of a heat transfer medium tubular body, such as a coil or a Rohrmäander embedded.
  • heat conduction plates can also be used without embedded therein tubular body, such as in the concrete core activation, in which heat conducting plates are arranged below a concrete ceiling, in which the Maschinenschömbare by the heat transfer medium tubular body is arranged.
  • Expanded graphite is prepared by expansion of natural graphite by first intercalating graphite into an intercalating compound, such as sulfuric acid, before the graphite so treated is expanded by heating by a factor of 200 to 500.
  • Graphite is known to consist of individual graphene layers in which carbon atoms are covalently bonded together, whereas the individual Layers are only weakly interconnected. Due to this structure, graphite has anisotropic properties and in particular an anisotropic thermal conductivity, wherein the thermal conductivity in the plane of the graphene layers is greater than in the direction perpendicular thereto.
  • the graphite After expansion, the graphite is recompressed but at a lower density than the starting density such that the graphene layers of the graphite preferentially align perpendicular to the direction of pressure and the individual graphite aggregates formed in the expansion interlock, thereby eliminating the additive make of binders self-supporting, flat plates.
  • Such plates have a high degree of anisotropy with regard to the thermal conductivity and a high thermal conductivity in the plane or surface of the plate.
  • expanded graphite due to its high thermal conductivity and high porosity on a certain heat storage capacity.
  • expanded graphite is comparatively soft, which is why expanded graphite heat conducting plates have a low material strength and low rigidity. Therefore, although they are basically self-supporting, these plates are not suitable for use in the construction sector without additional stiffeners.
  • a heat conduction plate which comprises a solidified mixture of graphite contains phit particles and plastic particles, wherein the graphite particles are preferably made of expanded graphite.
  • the mixture preferably contains 20 to 50 wt .-% plastic particles, such as polyvinyl chloride particles.
  • plastic particles such as polyvinyl chloride particles.
  • this object is achieved by the provision of a thermally conductive composite element which comprises at least one expanded graphite-containing molded body and at least one textile sheet arranged on at least one side of the molded body, wherein the at least one textile fabric is bonded to the molded body via an inorganic adhesive.
  • the heat-conductive composite element of the present invention By thus considerably increasing the rigidity of the molded article by providing the fabric on at least one side of the expanded graphite-based molded article, in the heat-conductive composite element of the present invention, addition of organic fillers having a high fire load as set forth can be applied expanded graphite are dispensed with. Furthermore, since an inorganic adhesive which has no fire load is used for bonding the textile fabric to the expanded graphite molding, a thermally conductive composite element is obtained which has no fire load or at most a very low fire load.
  • the composite element according to the invention is characterized by an excellent thermal conductivity, in particular in the plane and due to the comparatively low density of expanded graphite due to the expanded graphite contained in the molded body by a comparatively low weight.
  • textile fabrics are understood as meaning all fabrics which contain fibers.
  • the heat-conductive composite element according to the invention is particularly suitable for use in a surface cooling or in a surface heating, in particular in a floor, wall or ceiling heating.
  • the composite element according to the invention according to a preferred embodiment of the present invention comprises one of a heat Transfermediunn, ie heating medium or cooling medium, flow-through tubular body, which is preferably embedded in the at least one expanded graphite-containing molded body.
  • the tubular body may be partially or completely embedded in the at least one expanded graphite-containing shaped body, but it is particularly preferred that the tubular body is embedded completely and at least substantially centrally in the molded body containing at least one expanded graphite.
  • the tubular body can also be embedded between the two shaped bodies, which can be achieved, for example, by virtue of the high compressibility of expanded graphite, in that the tubular body contains between the two expanded graphite Molded bodies is arranged and the structure thus produced is then pressed to compress the expanded graphite contained in the moldings and thus simultaneously embed the tubular body in the expanded graphite.
  • the tubular body can be any tube body commonly used in surface cooling and surface heating, such as, for example, a meander-shaped or spiral-shaped tubular body. Regardless of the specific configuration of the tubular body contains the or one of the tubular body surrounding moldings two holes, one of which acts as an input for one end of the tubular body and the other as an output for the other end of the tubular body. To ensure good heat conduction between the pipe body and the expanded
  • the tubular body made of plastic, ceramic, graphite or metal, such as copper is particularly preferred.
  • the tubular body is purely optional, since the composite element according to the invention can also be used for room air conditioning without tubular bodies embedded therein, for example for concrete core activation, by arranging the composite element below a concrete ceiling, in which case the cold - or heat transfer medium flow through tubular body is arranged.
  • the at least one shaped body is bonded to the textile fabric via an inorganic adhesive, because inorganic adhesives have the advantage of having a high bond strength, but no fire load or at most a low fire load.
  • inorganic adhesives As inorganic fillers, it is possible to use all known ones, in particular inorganic adhesives selected from the group consisting of silicates, colloidal silicic acid, phosphates, oxides, sulfates, borates and any mixtures of two or more of the aforementioned types of adhesives.
  • the inorganic adhesive between the molded article and the fabric is in an amount of from 10 to 1,000 g / m 2 , more preferably from 100 to 500 g / m 2, and most preferably from 200 to 300 g / m 2 for example, about 250 g / m 2 , provided.
  • Geopolymers are generally silicate-based adhesives and, in the case of water glass, amorphous and water-soluble sodium, lithium and potassium silicates which have solidified from a melt, so that the term geopolymer comprises water glass.
  • Water glass is particularly preferred for the composite element of the present invention, because water glass in addition to a high wettability on almost all surfaces and in particular by a high strength, high heat resistance and a fast curing is characterized. Apart from that, water glass is comparatively inexpensive.
  • the rigidity of the molded body is considerably increased.
  • the at least one textile fabric is selected from the group consisting of nonwovens, laid, woven, knitted, crocheted, felted, paper, paperboard and any mixtures of two or more of the aforementioned types of sheet.
  • a textile fabric is understood to mean any fabric containing fibers, including paper and cardboard containing cellulose fibers. Good results are obtained, in particular, with fabrics and nonwovens, which is why they are particularly preferred according to the present invention as a textile fabric.
  • the textile fabric provided in the composite element according to the invention may comprise fibers of all materials known to the person skilled in the art. Good results are obtained particularly with textile fabrics based on fibers selected from the group consisting of glass fibers, carbon fibers, hemp fibers, mineral fibers, cement-coated mineral fiber structures, cellulosic fibers and any mixtures of two or more of the aforementioned types of fibers. Due to their excellent tensile strength, glass fibers, carbon fibers and mineral fibers are particularly preferred, and because of their comparatively low price, glass fibers are very particularly preferred.
  • the at least one textile fabric contained in the composite element according to the invention is a glass fiber fabric or a glass fiber nonwoven.
  • the at least one textile fabric contained in the composite element according to the invention is constructed from fibers having a length of 0.1 to 100 mm, preferably of 1 to 50 mm and particularly preferably of 5 to 20 mm.
  • the at least one textile fabric is made up of fibers which have a diameter of 1 to 100 ⁇ m, preferably of 5 to 50 ⁇ m and more preferably of 10 to 15 m.
  • Thickness of 0.1 to 1, 0 mm, preferably from 0.2 to 0.8 mm and particularly preferably from 0.4 to 0.6 mm.
  • the shaped body containing at least one expanded graphite which determines the shape of the composite element according to the invention, is at least substantially plate-shaped, wherein the at least one textile fabric on the top and / or bottom of the plate-shaped molding, So on one or the two largest surfaces of the molding is arranged.
  • the at least one shaped body of the composite element according to the invention contains expanded graphite because it has a good thermal conductivity, in particular in the surface or plane, and also a certain heat storage capacity.
  • expanded graphite is understood to mean graphite which is resistant to untreated natural graphite has expanded.
  • such an expanded graphite is prepared by first intercalating a graphite in graphite, such as sulfuric acid, before the graphite thus treated is expanded by heating, for example by a factor of 200 to 500 and then back to a lower density than the initial density is compressed so as to produce a self-supporting, flat shaped body without the addition of binder.
  • the expanded graphite is actually compressed, expanded graphite.
  • this graphite is commonly referred to as expanded graphite.
  • the at least one shaped body contains expanded graphite having a weight per unit area of 100 to 4,000 g / cm 2 , preferably 350 to 3,500 g / cm 2 and more preferably 500 to 2,000 g / cm 2 . According to a most preferred embodiment of the present invention
  • the invention consists of at least one shaped body made of expanded graphite, ie this contains except expanded graphite no further components, ie in particular no components with high fire load, such as organic fillers.
  • the shaped body containing at least one expanded graphite preferably has a thickness of 8 to 80 mm, preferably 10 to 50 mm and particularly preferably 12 to 25 mm.
  • the composite element according to the invention comprises a tubular body, it is preferred that the composite element according to the invention comprises two moldings each containing expanded graphite and particularly preferably two expanded graphite moldings which are joined together by an inorganic adhesive.
  • the composite element according to the invention has an edge protection.
  • an edge protector is not only preferred to protect the edges of the composite element from mechanical damage, but also, in particular, to protect the composite element from the ingress of moisture.
  • condensed water can form on the composite element, in particular in the case of rapid and large temperature changes, which can penetrate into the sides of the molded article without such edge protection, where it can lead to an undesirable loss of strength of the expanded graphite.
  • a textile fabric, a L-shaped ausgestaltetes component, which preferably consists of metal or plastic, a U-shaped ausgestaltetes component, which preferably consists of metal or plastic, and / or a Painting to be provided.
  • edge protection agents can be connected to the molding (s) in any desired manner and can preferably be plugged or glued onto the composite element, in which case, in particular, a hydrophobizing adhesive is used as the adhesive in order to place the molded article (s) in front of the latter Ingress of moisture over its edges to protect.
  • a hydrophobic adhesive for example, an adhesive based on fluorine-containing acrylic can be used.
  • a coating can be applied to one or more outer sides of the composite element and in particular to the at least one textile fabric in order to adapt the composite element to customer requirements.
  • Suitable coating agents are primarily paints, varnishes, hydrophobizing agents, fire retardants and the like.
  • Another object of the present invention is a method for producing a heat-conductive composite element according to at least one of the preceding claims, comprising the following steps: i) providing a first and a second plate-shaped preform, wherein the two preforms each contain expanded graphite and preferably consist of expanded graphite,
  • step i) at least one textile fabric is applied to at least one of the later composite element opposite sides of the preforms and / or after step iii) at least one fabric on the top and / or bottom of the in step iii ) is applied.
  • step d) applying a textile fabric to the adhesive-providing top or bottom side of the second preform, e) arranging the second preform obtained in step d) with its side facing the textile fabric downwards onto the tubular body of the structure obtained in step b) and
  • step f pressing the structure obtained in step e).
  • the inorganic adhesive is preferably applied over the whole area to the corresponding sides of the preforms.
  • a preform is understood as meaning an expanded graphite molding, wherein the expanded graphite has a lower density than that of the expanded graphite in the final molding.
  • the preform is transferred by pressing in step f) in the final molding.
  • step b) and / or in step c) a preform is used which has two holes, one of which as an input for one end of the tubular body and the other as an output for the other end of the
  • Tubular body acts. These holes may be introduced into the preform in any manner known to those skilled in the art, such as by punching.
  • step i) two preforms are used, each consisting of expanded graphite having a density between 0.02 and 0.05 g / cm 3 .
  • water glass is used as the inorganic adhesive in process steps a) and c).
  • the structure is preferably pressed at a pressure of 0.02 to 5 MPa and preferably from 0.1 to 1 MPa.
  • Another object of the present invention is the use of the previously described thermally conductive composite element in a surface cooling or in a surface heating and preferably in a floor, wall or ceiling heating.
  • the heat-conductive composite elements described can be used for the planar cooling and heating of machines and apparatus, such as photovoltaic cells, temperature control chambers, power electronics housing, battery cells, in particular battery packs containing lithium-ion battery cells, for cooling medical equipment, such as Computed tomography and magnetic resonance tomographs, for the air conditioning of motor vehicles, such as buses, trucks and the like, for the air conditioning of ships and aircraft cabins, for tempering pools in swimming pools and the like.
  • Figure 1 shows a schematic cross section of a composite element according to an embodiment of the present invention.
  • the composite element 10 shown in the figure comprises two molded bodies 12, 12 ', each of which consists of expanded graphite, ie, which contain no further constituents other than expanded graphite, and in particular no organic fillers.
  • the two shaped bodies 12, 12 ' are connected to one another via an inorganic adhesive 14, wherein the adhesive layer 14 in the figure is drawn thicker for reasons of clarity than it is in reality.
  • a machine anderförmiger tubular body 16 is provided and embedded in the two moldings 12, 12 ', wherein of the tubular body 16 in the figure a total of 6 turns 18, 18' are shown.
  • the tubular body is hollow on the inside and can therefore be flowed through by a heat transfer medium.
  • Two plate-shaped preforms of expanded graphite were provided, each having an area of 625 x 625 mm 2 , a thickness of 15 mm, and a basis weight of 1, 000 g / m 2 .
  • the above-mentioned commercial product having an application amount of 100 g applied and then punched in this Vorfornnling two holes, which serve as an input and output of the applied Rohrköpers.
  • a glass fiber fleece having a basis weight of 60 g / m 2 and a thickness of 0.6 mm made of glass fibers with a diameter of 13 ⁇ was applied to the adhesive-coated side of the preform, pressed and allowed to dry the adhesive.
  • a meander-shaped copper tube body was placed on the side of the first preform opposite the glass fiber fleece, and the preform with its side opposite the fiberglass fleece was placed downward thereon.
  • This structure was then pressed in a mold with inserted spacers to the desired height.
  • the residence time was 5 to 10 seconds.
  • the composite element thus produced was stiff and had no fire load.
  • Both the individual components of the composite element, ie adhesive, graphite and fleece, as well as the entire composite element were not flammable or flammable.
  • samples of the produced composite element having a diameter of 45 mm and a height of 40 mm and 60 mm respectively did not burn when they were heat-treated at 800 ° C in a muffle furnace.
  • the composite element showed no deflection when placed on a wooden frame with a bridge width of 2 cm. At a loading of the 10 kg composite element on an area of 70.9 cm 2 in the center of the panel, the measurable deflection was only 2 mm.
  • a composite element was prepared as described in Example 1, except that an organic adhesive was used instead of the water glass adhesive and the preforms were made of a mixture of expanded Graphite and 20 wt .-% polyvinyl chloride particles as organic filler passed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

The invention relates to a thermally conductive composite element for use, in particular, in a surface heating system or in a surface cooling system, comprising at least one main part which contains expanded graphite and comprising at least one flat textile structure which is arranged on at least one face of the main part. The at least one flat textile structure is connected to the main part via an inorganic adhesive.

Description

WÄRMELEITENDES VERBUNDELEMENT AUF BASIS VON EXPANDIERTEM  HEAT-RELATED COMPOSITE ELEMENT BASED ON EXPANDED
GRAPHIT  GRAPHITE
Die vorliegende Erfindung betrifft ein wärmeleitendes Verbundelement auf Basis von expandiertem Graphit, ein Verfahren zu dessen Herstellung sowie dessen Verwendung. Derartige wärmeleitende Verbundelemente werden beispielsweise als Wärmeleitelemente in Flächenkühlungen und Flächenheizungen, wie beispielsweise in Fußboden-, Wand- und Deckenheizungen, eingesetzt, um die von der Flächenkühlung abgegebene Kälte bzw. die von der Flächenheizung abgegebene Wärme in der Fläche gleichmäßig zu verteilen und an den diese umgebenden Raum abzugeben, um so ein angenehmes Raumklima zu erzielen. Dabei umfassen solche Verbundelemente üblicherweise eine Wärmeleitplatte, in welche ein von einem Wärmetransfermedium durchströmbarer Rohrkörper, wie beispielsweise eine Rohrschlange bzw. ein Rohrmäander, eingebettet ist. Alternativ dazu können derartige Wärmeleitplatten auch ohne darin eingebettete Rohrkörper eingesetzt werden, wie beispielsweise bei der Betonkernaktivierung, bei welcher Wärmeleitplatten unterhalb einer Betondecke angeordnet sind, in welcher der von dem Wärmetransfermedium durchströmbare Rohrkörper angeordnet ist. The present invention relates to a thermally conductive composite element based on expanded graphite, a process for its production and its use. Such thermally conductive composite elements are used, for example, as heat-conducting in surface cooling and surface heating, such as floor, wall and ceiling heating, to distribute the votes of the surface cooling cold or the heat emitted by the surface heating heat in the area evenly and to this leave surrounding space to achieve a pleasant indoor climate. In this case, such composite elements usually comprise a heat conduction plate, in which a through-flow of a heat transfer medium tubular body, such as a coil or a Rohrmäander embedded. Alternatively, such heat conduction plates can also be used without embedded therein tubular body, such as in the concrete core activation, in which heat conducting plates are arranged below a concrete ceiling, in which the durchschömbare by the heat transfer medium tubular body is arranged.
Um eine gute Wärmeverteilung in der Fläche zu erreichen, enthalten solche Wär- meleitplatten häufig expandierten Graphit. Expandierter Graphit wird durch Expansion von Naturgraphit hergestellt, indem in Graphit zunächst eine interkalierende Verbindung, wie beispielswiese Schwefelsäure, eingelagert wird, bevor der so behandelte Graphit durch Erhitzen um einen Faktor von 200 bis 500 expandiert wird. Graphit besteht bekanntermaßen aus einzelnen Graphenschichten, in denen Kohlenstoffatome kovalent miteinander verbunden sind, wohingegen die einzelnen Schichten nur schwach miteinander verbunden sind. Aufgrund dieses Aufbaus weist Graphit anisotrope Eigenschaften und insbesondere eine anisotrope Wärmeleitfähigkeit auf, wobei die Wärmeleitfähigkeit in der Ebene der Graphenschichten größer ist als in der dazu senkrechten Richtung. Nach der Expansion wird der Graphit wieder verdichtet, aber auf eine geringere Dichte als die Ausgangsdichte, so dass sich die Graphenschichten des Graphits bevorzugt senkrecht zu der Einwirkungsrichtung des Drucks anordnen und sich die einzelnen bei der Expansion gebildeten Graphitaggregate miteinander verhaken, um dadurch ohne den Zusatz von Bindemitteln selbsttragende, flächige Platten herzustellen. Derartige Platten weisen einen hohen Anisotropiegrad bezüglich der Wärmeleitfähigkeit und eine hohe Wärmeleitfähigkeit in der Ebene bzw. Fläche der Platte auf. Zudem weist expandierter Graphit aufgrund seiner hohen Wärmeleitfähigkeit und hohen Porosität eine gewisse Wärmespeicherkapazität auf. Aufgrund ihrer hohen Wärmeleitfähigkeit in der Ebene und ihrer Wärmespeicherkapazität erreichen solche über einem von einem Wärmetransfermedium durchströmten Rohrkörper, wie Rohrmäander bzw. Rohrschlange, angeordnete Wärmeleitplatten aus expandiertem Graphit selbst über große Flächen hinweg eine gleichmäßige Wärmeverteilung und geben die ihnen von dem Rohrkörper zugeführte Wärme gleichmäßig an den diese umgebenden Raum ab. In order to achieve a good heat distribution in the surface, such heat conducting plates often contain expanded graphite. Expanded graphite is prepared by expansion of natural graphite by first intercalating graphite into an intercalating compound, such as sulfuric acid, before the graphite so treated is expanded by heating by a factor of 200 to 500. Graphite is known to consist of individual graphene layers in which carbon atoms are covalently bonded together, whereas the individual Layers are only weakly interconnected. Due to this structure, graphite has anisotropic properties and in particular an anisotropic thermal conductivity, wherein the thermal conductivity in the plane of the graphene layers is greater than in the direction perpendicular thereto. After expansion, the graphite is recompressed but at a lower density than the starting density such that the graphene layers of the graphite preferentially align perpendicular to the direction of pressure and the individual graphite aggregates formed in the expansion interlock, thereby eliminating the additive make of binders self-supporting, flat plates. Such plates have a high degree of anisotropy with regard to the thermal conductivity and a high thermal conductivity in the plane or surface of the plate. In addition, expanded graphite due to its high thermal conductivity and high porosity on a certain heat storage capacity. Because of their high in-plane heat conductivity and their heat storage capacity, such over a large heat transfer medium flowed through tubular body, such as Rohrmäander or coil, arranged expanded-graphite heat transfer even over large areas across a uniform heat distribution and indicate the heat supplied to them from the tubular body evenly the surrounding space.
Allerdings ist expandierter Graphit vergleichsweise weich, weswegen aus expandiertem Graphit bestehende Wärmeleitplatten materialbedingt eine geringe Festigkeit sowie eine geringe Steifigkeit aufweisen. Diese Platten sind daher, obwohl sie grundsätzlich selbstragend sind, ohne zusätzliche Versteifungen nicht für die Ver- wendung im Baubereich geeignet. However, expanded graphite is comparatively soft, which is why expanded graphite heat conducting plates have a low material strength and low rigidity. Therefore, although they are basically self-supporting, these plates are not suitable for use in the construction sector without additional stiffeners.
Um die Steifigkeit von Wärmeleitplatten aus expandiertem Graphit zu erhöhen, ist es bereits vorgeschlagen worden, dem expandierten Graphit einen oder mehrere organische Füllstoffe zuzusetzen. Aus der DE 10 2009 055 442 A1 ist beispiels- weise eine Wärmeleitplatte bekannt, welche ein verfestigtes Gemisch aus Gra- phitpartikeln und Kunststoffpartikeln enthält, wobei die Graphitpartikel vorzugsweise aus expandiertem Graphit bestehen. Um eine ausreichende Steifigkeit zu erreichen, enthält das Gemisch vorzugsweise 20 bis 50 Gew.-% Kunststoffpartikel, wie beispielsweise Polyvinylchloridpartikel. Aufgrund des hohen Anteils von organi- sehen Füllstoffpartikeln weisen diese Wärmeleitplatten jedoch eine hohe Brandlast auf, so dass diese aus sicherheitstechnischen Gründen unbefriedigend sind. In order to increase the stiffness of expanded graphite heat conducting plates, it has already been proposed to add one or more organic fillers to the expanded graphite. From DE 10 2009 055 442 A1, for example, a heat conduction plate is known, which comprises a solidified mixture of graphite contains phit particles and plastic particles, wherein the graphite particles are preferably made of expanded graphite. In order to achieve sufficient rigidity, the mixture preferably contains 20 to 50 wt .-% plastic particles, such as polyvinyl chloride particles. However, due to the high proportion of organic filler particles, these heat-conducting plates have a high fire load, so that they are unsatisfactory for safety reasons.
Es ist daher eine Aufgabe der vorliegenden Erfindung, ein plattenförmiges wärmeleitendes Bauelement bereitzustellen, welches eine hervorragende Wärmeleitfä- higkeit insbesondere in der Ebene, eine hohe Festigkeit sowie eine hohe Steifigkeit aufweist, so dass dieses als Wärmleitelement in Flächenkühlungen und Flächenheizungen, wie beispielsweise in Fußboden-, Wand- und Deckenheizungen, eingesetzt werden kann. Erfindungsgemäß wird diese Aufgabe gelöst durch die Bereitstellung eines wärmeleitenden Verbundelements, welches wenigstens einen expandierten Graphit enthaltenden Formkörper sowie wenigstens ein auf wenigstens einer Seite des Formkörpers angeordnetes textiles Flächengebilde umfasst, wobei das wenigstens eine textile Flächengebilde mit dem Formkörper über einen anorganischen Klebstoff verbunden ist. It is therefore an object of the present invention to provide a plate-shaped heat-conducting component which has excellent heat conductivity, in particular in the plane, high strength and high rigidity, so that it can be used as a heat-conducting element in surface cooling systems and surface heating systems, such as floor heating systems. , Wall and ceiling heating, can be used. According to the invention, this object is achieved by the provision of a thermally conductive composite element which comprises at least one expanded graphite-containing molded body and at least one textile sheet arranged on at least one side of the molded body, wherein the at least one textile fabric is bonded to the molded body via an inorganic adhesive.
Diese Lösung basiert auf der überraschenden Erkenntnis, dass durch das Aufkleben eines textilen Flächengebildes auf wenigstens eine Seite eines Formkörpers auf Basis von expandiertem Graphit die Steifigkeit des Formkörpers aus expan- diertem Graphit beträchtlich erhöht werden kann, ohne dass dem expandierten Graphit ein versteifendes Material, wie beispielsweise ein organischer Füllstoff, zugesetzt werden muss. Dies beruht darauf, dass aufgrund der niedrigen Elastizität bei gleichzeitig hoher Zugfestigkeit der in dem textilen Flächengebilde enthaltenen Fasern die Biegefestigkeit des Formkörpers erheblich erhöht wird, weil bei der Einwirkung von Biegekräften auf das Verbundelement die Fasern in dem texti- len Flächengebilde auf Zug beansprucht werden und wegen ihrer niedrigen Elastizität und hohen Zugfestigkeit die Biegekräfte aufnehmen, ohne sich signifikant auszudehnen. Indem so durch das Vorsehen des textilen Flächengebildes auf wenigstens einer Seite des Formkörpers auf Basis von expandiertem Graphit die Steifigkeit des Formkörpers beträchtlich erhöht wird, kann bei dem erfindungsgemäßen wärmeleitenden Verbundelement auf den Zusatz von organischen Füllstoffen, welche wie dargelegt eine hohe Brandlast aufweisen, zu dem expandierten Graphit verzichtet werden. Da ferner zum Verkleben des textilen Flächengebildes mit dem Formkörper aus expandiertem Graphit ein anorganischer Klebstoff einge- setzt wird, welcher keine Brandlast aufweist, wird ein wärmeleitendes Verbundelement erhalten, welches keine Brandlast oder allenfalls eine sehr niedrige Brandlast aufweist. Zudem zeichnet sich das erfindungsgemäße Verbundelement aufgrund des in dem Formkörper enthaltenden expandierten Graphits durch eine hervorragende Wärmeleitfähigkeit insbesondere in der Ebene und aufgrund der vergleichsweise geringen Dichte von expandiertem Graphit durch ein vergleichsweise geringes Gewicht aus. Aufgrund seiner geringen Brandlast, seiner hervorragenden Wärmeleitfähigkeit insbesondere in der Ebene, seiner hohen Festigkeit, seinem geringen Gewicht sowie seiner hohen Steifigkeit eignet sich das erfindungsgemäße Verbundelement unter anderem hervorragend zur Verwendung als Wärmleitelement in Flächenkühlungen und Flächenheizungen, wie beispielsweise in Fußboden-, Wand- und Deckenheizungen. This solution is based on the surprising finding that by adhering a textile fabric to at least one side of a shaped body based on expanded graphite, the stiffness of the shaped body of expanded graphite can be considerably increased without the stiffening graphite having a stiffening material, such as For example, an organic filler must be added. This is due to the fact that the flexural strength of the molded body is considerably increased due to the low elasticity combined with high tensile strength of the fibers contained in the fabric, because the effect of bending forces on the composite element, the fibers in the textiles. len fabrics are subjected to train and take because of their low elasticity and high tensile strength, the bending forces without significantly expand. By thus considerably increasing the rigidity of the molded article by providing the fabric on at least one side of the expanded graphite-based molded article, in the heat-conductive composite element of the present invention, addition of organic fillers having a high fire load as set forth can be applied expanded graphite are dispensed with. Furthermore, since an inorganic adhesive which has no fire load is used for bonding the textile fabric to the expanded graphite molding, a thermally conductive composite element is obtained which has no fire load or at most a very low fire load. In addition, the composite element according to the invention is characterized by an excellent thermal conductivity, in particular in the plane and due to the comparatively low density of expanded graphite due to the expanded graphite contained in the molded body by a comparatively low weight. Due to its low fire load, its excellent thermal conductivity in particular in the plane, its high strength, its low weight and high rigidity composite element of the invention is, inter alia, ideal for use as a heat conducting in surface cooling and surface heating, such as in floor, wall and ceiling heating.
Unter textilen Flächengebilden werden im Sinne der vorliegenden Erfindung alle Flächengebilde verstanden, welche Fasern enthalten. In the context of the present invention, textile fabrics are understood as meaning all fabrics which contain fibers.
Wie dargelegt, eignet sich das erfindungsgemäße wärmeleitende Verbundelement insbesondere zur Verwendung in einer Flächenkühlung oder in einer Flächenheizung, wie insbesondere in einer Fußboden-, Wand- oder Deckenheizung. Zu diesem Zweck umfasst das erfindungsgemäße Verbundelement gemäß einer bevor- zugten Ausführungsform der vorliegenden Erfindung einen von einem Wärme- transfermediunn, also Heizmedium oder Kühlmedium, durchströmbaren Rohrkörper, welcher vorzugsweise in den wenigstens einen expandierten Graphit enthaltenden Formkörper eingebettet ist. Dabei kann der Rohrkörper teilweise oder vollständig in den wenigstens einen expandierten Graphit enthaltenden Formkör- per eingebettet sein, wobei es jedoch besonders bevorzugt ist, dass der Rohrkörper vollständig und zumindest im Wesentlichen mittig in dem wenigstens einen expandierten Graphit enthaltenden Formkörper eingebettet ist. Wenn das Verbundelement mehrere expandierten Graphit enthaltende Formkörper enthält, wie beispielsweise zwei solche Formkörper, kann der Rohrkörper auch zwischen den beiden Formkörpern eingebettet sein, was aufgrund der hohen Komprimierbarkeit von expandiertem Graphit beispielsweise dadurch erreicht werden kann, dass der Rohrkörper zwischen den beiden expandierten Graphit enthaltenden Formkörpern angeordnet wird und der so hergestellte Aufbau dann verpresst wird, um den in den Formkörpern enthaltenen expandierten Graphit zu verdichten und so gleich- zeitig den Rohrkörper in dem expandierten Graphit einzubetten. As stated, the heat-conductive composite element according to the invention is particularly suitable for use in a surface cooling or in a surface heating, in particular in a floor, wall or ceiling heating. For this purpose, the composite element according to the invention according to a preferred embodiment of the present invention comprises one of a heat Transfermediunn, ie heating medium or cooling medium, flow-through tubular body, which is preferably embedded in the at least one expanded graphite-containing molded body. In this case, the tubular body may be partially or completely embedded in the at least one expanded graphite-containing shaped body, but it is particularly preferred that the tubular body is embedded completely and at least substantially centrally in the molded body containing at least one expanded graphite. If the composite element contains a plurality of expanded graphite-containing shaped bodies, such as two such shaped bodies, the tubular body can also be embedded between the two shaped bodies, which can be achieved, for example, by virtue of the high compressibility of expanded graphite, in that the tubular body contains between the two expanded graphite Molded bodies is arranged and the structure thus produced is then pressed to compress the expanded graphite contained in the moldings and thus simultaneously embed the tubular body in the expanded graphite.
Bei dem Rohrkörper kann es sich um jeden in Flächenkühlungen und Flächenheizungen üblicherweise eingesetzten Rohrkörper handeln, wie beispielsweise um einen mäanderförmig oder spiralförmig ausgestalteten Rohrkörper. Unabhängig von der konkreten Ausgestaltung des Rohrkörpers enthält der bzw. einer der den Rohrkörper umgebenden Formkörper zwei Löcher, von denen eines als Eingang für ein Ende des Rohrkörpers und das andere als Ausgang für das andere Ende des Rohrkörpers fungiert. Um eine gute Wärmeleitung zwischen dem Rohrkörper und dem expandiertenThe tubular body can be any tube body commonly used in surface cooling and surface heating, such as, for example, a meander-shaped or spiral-shaped tubular body. Regardless of the specific configuration of the tubular body contains the or one of the tubular body surrounding moldings two holes, one of which acts as an input for one end of the tubular body and the other as an output for the other end of the tubular body. To ensure good heat conduction between the pipe body and the expanded
Graphit des wenigstens einen Formkörpers zu erreichen, wird es in Weiterbildung des Erfindungsgedankens vorgeschlagen, dass der Rohrkörper aus Kunststoff, Keramik, Graphit oder Metall, wie besonders bevorzugt Kupfer, besteht. Wie vorstehend dargelegt ist der Rohrkörper rein optional, da das erfindungsge- mäße Verbundelement auch ohne darin eingebetteten Rohrkörper zur Raumklima- tisierung verwendet werden kann, wie beispielsweise zur Betonkernaktivierung, indem das Verbundelement unterhalb einer Betondecke angeordnet wird, in wel- eher der von dem Kälte- oder Wärmetransfermedium durchströmbare Rohrkörper angeordnet ist. To achieve graphite of at least one shaped body, it is proposed in development of the invention that the tubular body made of plastic, ceramic, graphite or metal, such as copper is particularly preferred. As stated above, the tubular body is purely optional, since the composite element according to the invention can also be used for room air conditioning without tubular bodies embedded therein, for example for concrete core activation, by arranging the composite element below a concrete ceiling, in which case the cold - or heat transfer medium flow through tubular body is arranged.
Erfindungsgemäß ist der wenigstens eine Formkörper mit dem textilen Flächengebilde über einen anorganischen Klebstoff verbunden, weil anorganische Klebstoffe den Vorteil aufweisen, eine hohe Klebkraft, aber keine Brandlast oder allenfalls eine geringe Brandlast aufzuweisen. Als anorganische Füllstoffe können alle bekannten verwendet werden, wie insbesondere anorganische Klebstoffe, welche aus der Gruppe ausgewählt sind, welche aus Silikaten, kolloidaler Kieselsäure, Phosphaten, Oxiden, Sulfaten, Boraten und beliebigen Mischungen von zwei oder mehr der vorgenannten Klebstoffarten besteht. According to the invention, the at least one shaped body is bonded to the textile fabric via an inorganic adhesive, because inorganic adhesives have the advantage of having a high bond strength, but no fire load or at most a low fire load. As inorganic fillers, it is possible to use all known ones, in particular inorganic adhesives selected from the group consisting of silicates, colloidal silicic acid, phosphates, oxides, sulfates, borates and any mixtures of two or more of the aforementioned types of adhesives.
Vorzugsweise ist der anorganische Klebstoff zwischen dem Formkörper und dem textilen Flächengebilde in einer Menge von 10 bis 1 .000 g/m2, besonders bevorzugt von 100 bis 500 g/m2 und ganz besonders bevorzugt von 200 bis 300 g/m2, wie beispielsweise etwa 250 g/m2, vorgesehen. Preferably, the inorganic adhesive between the molded article and the fabric is in an amount of from 10 to 1,000 g / m 2 , more preferably from 100 to 500 g / m 2, and most preferably from 200 to 300 g / m 2 for example, about 250 g / m 2 , provided.
Besonders gute Ergebnisse werden erhalten, wenn der anorganische Klebstoff ein Geopolymer und/oder Wasserglas ist. Bei Geopolymeren handelt es sich allgemein um silikatbasierte Klebstoffe und bei Wasserglas um aus einer Schmelze erstarrte, amorphe und wasserlösliche Natrium-, Lithium- und Kaliumsilicate, so dass der Begriff Geopolymer Wasserglas umfasst. Wasserglas ist dabei für das Verbundelement der vorliegenden Erfindung besonders bevorzugt, weil sich Wasserglas neben einer hohen Benetzbarkeit auf fast allen Oberflächen auch und insbesondere durch eine hohe Festigkeit, eine hohe Hitzebeständigkeit und eine schnelle Härtung auszeichnet. Abgesehen davon ist Wasserglas vergleichsweise kostengünstig. Particularly good results are obtained when the inorganic adhesive is a geopolymer and / or water glass. Geopolymers are generally silicate-based adhesives and, in the case of water glass, amorphous and water-soluble sodium, lithium and potassium silicates which have solidified from a melt, so that the term geopolymer comprises water glass. Water glass is particularly preferred for the composite element of the present invention, because water glass in addition to a high wettability on almost all surfaces and in particular by a high strength, high heat resistance and a fast curing is characterized. Apart from that, water glass is comparatively inexpensive.
Wie vorstehend dargelegt, wird durch das Aufkleben des wenigstens einen textilen Flächengebildes auf wenigstens eine Seite des wenigstens einen Formkörpers auf Basis von expandiertem Graphit die Steifigkeit des Formkörpers beträchtlich erhöht. Dieser Effekt wird insbesondere gut erreicht, wenn das wenigstens eine textile Flächengebilde aus der Gruppe ausgewählt ist, welche aus Vliesen, Gelegen, Geweben, Gewirken, Gestricken, Filzen, Papier, Karton und beliebigen Mi- schungen von zwei oder mehr der vorgenannten Flächengebildearten besteht. Wie vorstehend dargelegt wird gemäß der vorliegenden Erfindung unter einem textilen Flächengebilde jedes Flächengebilde verstanden, welches Fasern enthält, also auch Papier und Karton, welche Cellulosefasern enthalten. Gute Ergebnisse werden insbesondere mit Geweben und Vliesen erhalten, weswegen diese gemäß der vorliegenden Erfindung als textiles Flächengebilde besonders bevorzugt sind. As stated above, by adhering the at least one fabric to at least one side of the at least one expanded graphite-shaped body, the rigidity of the molded body is considerably increased. This effect is particularly well achieved when the at least one textile fabric is selected from the group consisting of nonwovens, laid, woven, knitted, crocheted, felted, paper, paperboard and any mixtures of two or more of the aforementioned types of sheet. As stated above, according to the present invention, a textile fabric is understood to mean any fabric containing fibers, including paper and cardboard containing cellulose fibers. Good results are obtained, in particular, with fabrics and nonwovens, which is why they are particularly preferred according to the present invention as a textile fabric.
Grundsätzlich kann das in dem erfindungsgemäßen Verbundelement vorgesehene textile Flächengebilde Fasern aus allen dem Fachmann bekannten Materialien enthalten. Gute Ergebnisse werden insbesondere mit textilen Flächengebilden auf Basis von Fasern erhalten, welche aus der Gruppe ausgewählt sind, welche aus Glasfasern, Carbonfasern, Hanffasern, Mineralfasern, zementbeschichteten Mineralfaserstrukturen, Cellulosefasern und beliebigen Mischungen von zwei oder mehr der vorgenannten Faserarten besteht. Dabei sind aufgrund ihrer hervorragenden Zugfestigkeit Glasfasern, Carbonfasern und Mineralfasern besonders bevorzugt, wobei aufgrund ihres vergleichsweise niedrigen Preises Glasfasern ganz besonders bevorzugt sind. In principle, the textile fabric provided in the composite element according to the invention may comprise fibers of all materials known to the person skilled in the art. Good results are obtained particularly with textile fabrics based on fibers selected from the group consisting of glass fibers, carbon fibers, hemp fibers, mineral fibers, cement-coated mineral fiber structures, cellulosic fibers and any mixtures of two or more of the aforementioned types of fibers. Due to their excellent tensile strength, glass fibers, carbon fibers and mineral fibers are particularly preferred, and because of their comparatively low price, glass fibers are very particularly preferred.
Gemäß einer weiteren besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das wenigstens eine in dem erfindungsgemäßen Verbundelement enthaltene textile Flächengebilde ein Glasfasergewebe oder ein Glasfaservlies. Vorzugsweise ist das wenigstens eine in dem erfindungsgemäßen Verbundele- ment enthaltene textile Flächengebilde aus Fasern aufgebaut, welche eine Länge von 0,1 bis 100 mm, bevorzugt von 1 bis 50 mm und besonders bevorzugt von 5 bis 20 mm aufweisen. According to a further particularly preferred embodiment of the present invention, the at least one textile fabric contained in the composite element according to the invention is a glass fiber fabric or a glass fiber nonwoven. Preferably, the at least one textile fabric contained in the composite element according to the invention is constructed from fibers having a length of 0.1 to 100 mm, preferably of 1 to 50 mm and particularly preferably of 5 to 20 mm.
Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist das wenigstens eine textile Flächengebilde aus Fasern aufgebaut ist, welche einen Durchmesser von 1 bis 100 μιτι, bevorzugt von 5 bis 50 μιτι und besonders bevorzugt von 10 bis 15 m aufweisen. According to a further preferred embodiment of the present invention, the at least one textile fabric is made up of fibers which have a diameter of 1 to 100 μm, preferably of 5 to 50 μm and more preferably of 10 to 15 m.
Um eine ausreichende Erhöhung der Steifigkeit des wenigstens einen in dem erfindungsgemäßen Verbundelement vorgesehenen Formkörpers auf Basis von expandiertem Graphit zu erreichen, wird es in Weiterbildung des Erfindungsge- dankens vorgeschlagen, dass das wenigstens eine textile Flächengebilde eineIn order to achieve a sufficient increase in the rigidity of the at least one provided in the composite element according to the invention based on expanded graphite moldings, it is proposed in development of Erfindungsgebanke that the at least one textile fabric a
Dicke von 0,1 bis 1 ,0 mm, bevorzugt von 0,2 bis 0,8 mm und besonders bevorzugt von 0,4 bis 0,6 mm aufweist. Thickness of 0.1 to 1, 0 mm, preferably from 0.2 to 0.8 mm and particularly preferably from 0.4 to 0.6 mm.
Um als Wärmeleitelement eingesetzt werden zu können, ist der wenigstens eine expandierten Graphit enthaltende Formkörper, welcher die Form des erfindungsgemäßen Verbundelements bestimmt, zumindest im Wesentlichen plattenförmig ausgebildet ist, wobei das wenigstens eine textile Flächengebilde auf der Ober- und/oder Unterseite des plattenformigen Formkörpers, also auf einer der oder den beiden größten Flächen des Formkörpers, angeordnet ist. In order to be able to be used as a heat-conducting element, the shaped body containing at least one expanded graphite, which determines the shape of the composite element according to the invention, is at least substantially plate-shaped, wherein the at least one textile fabric on the top and / or bottom of the plate-shaped molding, So on one or the two largest surfaces of the molding is arranged.
Erfindungsgemäß enthält der wenigstens eine Formkörper des erfindungsgemäßen Verbundelements expandierten Graphit, weil dieser eine gute Wärmeleitfähigkeit insbesondere in der Fläche bzw. Ebene sowie eine gewisse Wärmespeicherkapazität aufweist. Unter expandiertem Graphit wird im Rahmen der vorliegenden Erfindung Graphit verstanden, welcher gegenüber unbehandeltem Naturgraphit expandiert ist. Wie vorstehend dargelegt, wird ein solcher expandierter Graphit hergestellt, indem in Graphit zunächst eine interkalierende Verbindung, wie bei- spielswiese Schwefelsäure, eingelagert wird, bevor der so behandelte Graphit durch Erhitzen beispielsweise um einen Faktor von 200 bis 500 expandiert wird und danach wieder auf eine geringere Dichte als die Ausgangsdichte verdichtet wird, um so ohne den Zusatz von Bindemittel einen selbsttragenden, flächigen Formkörper herzustellen. Mithin handelt es sich bei dem expandiertem Graphit genau genommen um komprimierten, expandierten Graphit. Da jedoch die Dichte des komprimierten, expandierten Graphits geringer als die von Naturgraphit ist, wird dieser Graphit allgemein als expandierter Graphit bezeichnet. According to the invention, the at least one shaped body of the composite element according to the invention contains expanded graphite because it has a good thermal conductivity, in particular in the surface or plane, and also a certain heat storage capacity. In the context of the present invention, expanded graphite is understood to mean graphite which is resistant to untreated natural graphite has expanded. As explained above, such an expanded graphite is prepared by first intercalating a graphite in graphite, such as sulfuric acid, before the graphite thus treated is expanded by heating, for example by a factor of 200 to 500 and then back to a lower density than the initial density is compressed so as to produce a self-supporting, flat shaped body without the addition of binder. Thus, the expanded graphite is actually compressed, expanded graphite. However, since the density of the compressed, expanded graphite is less than that of natural graphite, this graphite is commonly referred to as expanded graphite.
Gute Ergebnisse werden insbesondere erhalten, wenn der wenigstens eine Formkörper expandierten Graphit mit einer Dichte von 0,02 bis 0,5 g/cm3, bevorzugt von 0,04 bis 0,3 g/cm3 und besonders bevorzugt von 0,05 bis 0,2 g/cm3 enthält. Wenn die Dichte des expandierten Graphits zu gering ist, weist dieser keine Eigenfestigkeit auf, so dass der daraus hergestellte Formkörper nicht formstabil ist. Wenn die Dichte des expandierten Graphits hingegen zu groß ist, ist der daraus hergestellte Formkörper nicht komprimierbar. In Weiterbildung des Erfindungsgedankens wird es vorgeschlagen, dass der wenigstens eine Formkörper expandierten Graphit mit einem Flächengewicht von 100 bis 4.000 g/cm2, bevorzugt von 350 bis 3.500 g/cm2 und besonders bevorzugt von 500 bis 2.000 g/cm2 enthält. Gemäß einer ganz besonders bevorzugten Ausführungsform der vorliegendenGood results are obtained, in particular, when the at least one shaped body expanded graphite having a density of 0.02 to 0.5 g / cm 3 , preferably from 0.04 to 0.3 g / cm 3 and particularly preferably from 0.05 to Contains 0.2 g / cm 3 . If the density of the expanded graphite is too low, it has no intrinsic strength, so that the molded body produced therefrom is not dimensionally stable. On the other hand, if the density of the expanded graphite is too large, the molded article produced therefrom will be incompressible. In a further development of the inventive concept, it is proposed that the at least one shaped body contains expanded graphite having a weight per unit area of 100 to 4,000 g / cm 2 , preferably 350 to 3,500 g / cm 2 and more preferably 500 to 2,000 g / cm 2 . According to a most preferred embodiment of the present invention
Erfindung besteht der wenigstens eine Formkörper aus expandiertem Graphit, d.h. dieser enthält außer expandiertem Graphit keine weiteren Bestandteile, also insbesondere auch keine Bestandteile mit hoher Brandlast, wie organische Füllstoffe. Vorzugsweise weist der wenigstens eine expandierten Graphit enthaltende Form- körper eine Dicke von 8 bis 80 mm, bevorzugt von 10 bis 50 mm und besonders bevorzugt von 12 bis 25 mm auf. Insbesondere, wenn das erfindungsgemäße Verbundelement einen Rohrkörper umfasst, ist es bevorzugt, dass das erfindungsgemäße Verbundelement zwei jeweils expandierten Graphit enthaltende Formkörper und besonders bevorzugt zwei aus expandiertem Graphit bestehende Formkörper aufweist, welche miteinander über einen anorganischen Klebstoff verbunden sind. Aufgrund der hohen Komprimierbarkeit von expandiertem Graphit kann durch Anordnen eines von einem Wärmetransfermedium durchströmbaren Rohrkörpers zwischen den beiden Formkörpern und Verpressen des so hergestellten Aufbaus einfach ein Einbetten des Rohrkörpers in den diesen umgebenden expandierten Graphit erreicht werden, wobei der Rohrkörper vorzugsweise mittig, d.h. an der Grenzfläche zwischen den beiden Formkörpern, angeordnet ist. Bei dieser Ausführungsform ist es bevorzugt, dass auf der dem Rohrkörper gegenüberliegenden Seite jedes der beiden Formkörper ein textiles Flächengebilde vorgesehen ist, welches mit dem jeweiligen Formkörper über einen anorganischen Füllstoff verbunden ist. Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung weist das erfindungsgemäße Verbundelement einen Kantenschutz auf. Das Vorsehen eines solchen Kantenschutzes ist nicht nur bevorzugt, um die Kanten des Verbundelements vor mechanischer Beschädigung zu schützen, sondern insbesondere auch, um das Verbundelement gegenüber dem Eindringen von Feuchtig- keit zu schützen. Bei dessen Verwendung kann sich an dem Verbundelement insbesondere bei schnellen und großen Temperaturänderungen Kondenswasser bilden, welches ohne einen solchen Kantenschutz in die Seiten des bzw. der Formkörper eindringen kann und dort zu einem unerwünschten Festigkeitsverlust des expandierten Graphits führen kann. Als Kantenschutz kann auf wenigstens einer der Kantenseiten des Verbundele- ments ein textiles Flächengebilde, ein L-förmig ausgestaltetes Bauteil, welches bevorzugt aus Metall oder Kunststoff besteht, ein U-förmig ausgestaltetes Bauteil, welches bevorzugt aus Metall oder Kunststoff besteht, und/oder ein Anstrich vor- gesehen sein. Diese Kantenschutzmittel können mit dem bzw. den Formkörper(n) auf jede beliebige Weise verbunden werden und vorzugsweise auf das Verbundelement aufgesteckt oder geklebt sein, wobei in dem letztgenannten Fall als Klebstoff insbesondere ein hydrophobierender Klebstoff eingesetzt wird, um den bzw. die Formkörper vor dem Eindringen von Feuchtigkeit über dessen Kanten zu schützen. Als hydrophobierender Klebstoff kann beispielsweise ein Klebstoff auf Basis von fluorhaltigem Acryl eingesetzt werden. Obwohl ein solcher organischer Klebstoff eine geringfügige Brandlast aufweist, muss dieser als Kantenschutz nur in einer sehr geringen Menge eingesetzt werden, so dass durch dessen Einsatz die Gesamtbrandlast des Verbundelements kaum verändert wird. The invention consists of at least one shaped body made of expanded graphite, ie this contains except expanded graphite no further components, ie in particular no components with high fire load, such as organic fillers. The shaped body containing at least one expanded graphite preferably has a thickness of 8 to 80 mm, preferably 10 to 50 mm and particularly preferably 12 to 25 mm. In particular, when the composite element according to the invention comprises a tubular body, it is preferred that the composite element according to the invention comprises two moldings each containing expanded graphite and particularly preferably two expanded graphite moldings which are joined together by an inorganic adhesive. Due to the high compressibility of expanded graphite can be achieved by placing a permeable by a heat transfer medium tubular body between the two moldings and compression of the structure thus produced embedding the tubular body in the surrounding expanded graphite, wherein the tubular body preferably centrally, ie at the interface between the two moldings, is arranged. In this embodiment, it is preferred that on the opposite side of the tube body of each of the two shaped bodies, a textile fabric is provided, which is connected to the respective shaped body via an inorganic filler. According to a further preferred embodiment of the present invention, the composite element according to the invention has an edge protection. The provision of such an edge protector is not only preferred to protect the edges of the composite element from mechanical damage, but also, in particular, to protect the composite element from the ingress of moisture. When it is used, condensed water can form on the composite element, in particular in the case of rapid and large temperature changes, which can penetrate into the sides of the molded article without such edge protection, where it can lead to an undesirable loss of strength of the expanded graphite. As an edge protection on at least one of the edge sides of the composite element, a textile fabric, a L-shaped ausgestaltetes component, which preferably consists of metal or plastic, a U-shaped ausgestaltetes component, which preferably consists of metal or plastic, and / or a Painting to be provided. These edge protection agents can be connected to the molding (s) in any desired manner and can preferably be plugged or glued onto the composite element, in which case, in particular, a hydrophobizing adhesive is used as the adhesive in order to place the molded article (s) in front of the latter Ingress of moisture over its edges to protect. As a hydrophobic adhesive, for example, an adhesive based on fluorine-containing acrylic can be used. Although such an organic adhesive has a low fire load, it must be used as edge protection only in a very small amount, so that by its use, the overall fire load of the composite element is hardly changed.
Alternativ dazu oder zusätzlich dazu ist es auch möglich, das Verbundelement in einen Rahmen aus Metall und/oder Vlies, insbesondere Glasfaser- oder Carbonfaservlies, einzulegen oder einzukleben. Insbesondere bei der letztgenannten Alternative wird zusätzlich zu dem Kantenschutz auch ein Schallschutz erreicht. Alternatively or additionally, it is also possible to insert or glue the composite element in a frame made of metal and / or non-woven, in particular glass fiber or carbon fiber fleece. In particular, in the latter alternative sound insulation is achieved in addition to the edge protection.
Ferner kann auf eine oder mehrere außen liegende Seiten des Verbundelements und insbesondere auf das wenigstens eine textile Flächengebilde eine Beschich- tung aufgebracht werden, um das Verbundelement an die Kundenbedürfnisse anzupassen. Als Beschichtungsmittel kommen hier in erster Linie Farben, Lacke, hydrophobierende Mittel, Brandschutzmittel und dergleichen in Betracht. Furthermore, a coating can be applied to one or more outer sides of the composite element and in particular to the at least one textile fabric in order to adapt the composite element to customer requirements. Suitable coating agents are primarily paints, varnishes, hydrophobizing agents, fire retardants and the like.
Ein weiterer Gegentand der vorliegenden Erfindung ist ein Verfahren zum Herstellen eines wärmeleitenden Verbundelements nach zumindest einem der vorstehenden Ansprüche, welches die nachfolgenden Schritte umfasst: i) Bereitstellen eines ersten und eines zweiten plattenförmigen Vorformlings, wobei die beiden Vorformlinge jeweils expandierten Graphit enthalten und bevorzugt aus expandiertem Graphit bestehen, Another object of the present invention is a method for producing a heat-conductive composite element according to at least one of the preceding claims, comprising the following steps: i) providing a first and a second plate-shaped preform, wherein the two preforms each contain expanded graphite and preferably consist of expanded graphite,
ii) Anordnen eines von einem Wärmetransfermedium durchströmbaren Rohr- körpers zwischen der Oberseite des ersten Vorformlings und der Unterseite des zweiten Vorformlings, ii) arranging a tube body through which a heat transfer medium can flow between the upper side of the first preform and the lower side of the second preform,
iii) Pressen des in dem Schritt ii) erhaltenen Aufbaus, iii) pressing the structure obtained in step ii),
wobei in dem Schritt i) wenigstens ein textiles Flächengebilde auf wenigstens eine der in dem späteren Verbundelement dem Rohrkörper gegenüberliegenden Seiten der Vorformlinge aufgebracht wird und/oder nach dem Schritt iii) wenigstens ein textiles Flächengebilde auf die Oberseite und/oder Unterseite des in dem Schritt iii) erhaltenen Ausbaus aufgebracht wird. wherein in step i) at least one textile fabric is applied to at least one of the later composite element opposite sides of the preforms and / or after step iii) at least one fabric on the top and / or bottom of the in step iii ) is applied.
Um eine besonders gute Verbindung der Vorformlinge untereinander und mit dem wenigstens einen textilen Flächengebilde zu erreichen, wird es in Weiterbildung des Erfindungsgedankens vorgeschlagen, das erfindungsgemäße Verfahren so auszuführen, dass dieses zusätzlich zu den vorstehend beschriebenen die nachfolgenden Schritte umfasst: In order to achieve a particularly good connection of the preforms with each other and with the at least one textile fabric, it is proposed in a further development of the inventive idea to carry out the method according to the invention in such a way that it comprises the following steps in addition to those described above:
a) Aufbringen eines anorganischen Klebstoffs auf die Oberseite und die Un- terseite des ersten Vorformlings, a) applying an inorganic adhesive to the upper side and the lower side of the first preform,
b) Aufbringen eines textiles Flächengebildes auf die mit Klebstoff versehende Oberseite oder Unterseite des ersten Vorformlings und Anordnen eines Rohrkörpers auf der dem textilen Flächengebilde gegenüberliegenden Seite des ersten Vorformlings, b) applying a textile fabric to the adhesive-providing upper side or underside of the first preform and arranging a tubular body on the side of the first preform opposite the textile fabric,
c) Aufbringen eines anorganischen Klebstoffs auf die Oberseite oder die Unterseite des zweiten Vorformlings, c) applying an inorganic adhesive to the top or bottom of the second preform,
d) Aufbringen eines textiles Flächengebildes auf die mit Klebstoff versehende Oberseite oder Unterseite des zweiten Vorformlings, e) Anordnen des in dem Schritt d) erhaltenen zweiten Vorformlings mit seiner dem textilen Flächengebilde gegenüberliegenden Seite nach unten auf den Rohrkörper des in dem Schritt b) erhaltenen Aufbaus und d) applying a textile fabric to the adhesive-providing top or bottom side of the second preform, e) arranging the second preform obtained in step d) with its side facing the textile fabric downwards onto the tubular body of the structure obtained in step b) and
f) Pressen des in dem Schritt e) erhaltenen Aufbaus. f) pressing the structure obtained in step e).
Bei der vorgenannten Ausführungsform wird der anorganische Klebstoff bevorzugt vollflächig auf die entsprechenden Seiten der Vorformlinge aufgebracht. Unter Vorformling wird in diesem Zusammenhang ein Formkörper aus expandiertem Graphit verstanden, wobei der expandierte Graphit eine geringere Dichte als die des expandierten Graphit in dem endgültigen Formkörper aufweist. Der Vorkörper wird durch das Pressen in dem Schritt f) in den endgültigen Formkörper überführt. In the aforementioned embodiment, the inorganic adhesive is preferably applied over the whole area to the corresponding sides of the preforms. In this context, a preform is understood as meaning an expanded graphite molding, wherein the expanded graphite has a lower density than that of the expanded graphite in the final molding. The preform is transferred by pressing in step f) in the final molding.
Vorzugsweise wird in dem Schritt b) und/oder in dem Schritt c) ein Vorformling eingesetzt, welcher zwei Löcher aufweist, von denen eines als Eingang für ein Ende des Rohrkörpers und das andere als Ausgang für das andere Ende desPreferably, in step b) and / or in step c) a preform is used which has two holes, one of which as an input for one end of the tubular body and the other as an output for the other end of the
Rohrkörpers fungiert. Diese Löcher können in den Vorformling auf alle dem Fachmann bekannten Weisen, wie beispielsweise durch Stanzen, eingebracht werden. Tubular body acts. These holes may be introduced into the preform in any manner known to those skilled in the art, such as by punching.
Gute Ergebnisse werden insbesondere erhalten, wenn in dem Schritt i) zwei Vor- formlinge eingesetzt werden, welche jeweils aus expandiertem Graphit mit einer Dichte zwischen 0,02 und 0,05 g/cm3 bestehen. Good results are obtained, in particular, if in step i) two preforms are used, each consisting of expanded graphite having a density between 0.02 and 0.05 g / cm 3 .
Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird in den Verfahrensschritten a) und c) als anorganischer Klebstoff jeweils Was- serglas eingesetzt. According to a further preferred embodiment of the present invention, water glass is used as the inorganic adhesive in process steps a) and c).
In Weiterbildung des Erfindungsgedankens wird es vorgeschlagen, in den Verfahrensschritten b) und d) als textiles Flächengebilde jeweils ein Glasfaservlies einzusetzen. In dem Verfahrensschritt f) wird der Aufbau vorzugsweise bei einem Druck von 0,02 bis 5 MPa und bevorzugt von 0,1 bis 1 MPa gepresst. In a further development of the inventive concept, it is proposed to use in each case a glass fiber fleece in process steps b) and d) as the textile fabric. In the process step f), the structure is preferably pressed at a pressure of 0.02 to 5 MPa and preferably from 0.1 to 1 MPa.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung des zu- vor beschriebenen wärmeleitenden Verbundelements in einer Flächenkühlung oder in einer Flächenheizung und vorzugsweise in einer Fußboden-, Wand- oder Deckenheizung. Außerdem können die beschriebenen wärmeleitenden Verbundelemente für die flächige Kühlung und Heizung von Maschinen und Apparaten eingesetzt werden, wie beispielsweise Photovoltaik-Zellen, Temperierkammern, Gehäuse für Leistungselektronik, Batteriezellen, insbesondere Batteriepacks, die Lithium-Ionen Batteriezellen enthalten, zur Kühlung von medizinischen Anlagen, wie Computertomographen und Magnetresonanztomographen, zur Klimatisierung von Kraftfahrzeugen, wie Bussen, Lastkraftwagen und dergleichen, zur Klimatisierung von Schiffen und Flugzeugkabinen, für Temperierbecken in Schwimmbädern und dergleichen. Another object of the present invention is the use of the previously described thermally conductive composite element in a surface cooling or in a surface heating and preferably in a floor, wall or ceiling heating. In addition, the heat-conductive composite elements described can be used for the planar cooling and heating of machines and apparatus, such as photovoltaic cells, temperature control chambers, power electronics housing, battery cells, in particular battery packs containing lithium-ion battery cells, for cooling medical equipment, such as Computed tomography and magnetic resonance tomographs, for the air conditioning of motor vehicles, such as buses, trucks and the like, for the air conditioning of ships and aircraft cabins, for tempering pools in swimming pools and the like.
Nachfolgend wird die vorliegende Erfindung rein beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die nachfolgende Figur beschrieben, wobei die Hereinafter, the present invention will be described purely by way of example with reference to advantageous embodiments with reference to the following figure, wherein
Figur einen schematischen Querschnitt eines Verbundelements gemäß eines Ausführungsbeispiels der vorliegenden Erfindung zeigt. Figure 1 shows a schematic cross section of a composite element according to an embodiment of the present invention.
Das in der Figur gezeigte Verbundelement 10 umfasst zwei Formkörper 12, 12', welche jeweils aus expandiertem Graphit bestehen, d.h., welche außer expandiertem Graphit keine weiteren Bestandteile und insbesondere keine organische Füllstoffe enthalten. Dabei sind die beiden Formkörper 12, 12' über einen anorganischen Klebstoff 14 miteinander verbunden, wobei die Klebstoffschicht 14 in der Figur aus Anschaulichkeitsgründen dicker eingezeichnet ist als sie in Realität ist. Zudem ist an der Grenzfläche zwischen den beiden Formkörpern 12, 12' ein mä- anderförmiger Rohrkörper 16 vorgesehen und in die beiden Formkörper 12, 12' eingebettet, wobei von dem Rohrkörper 16 in der Figur insgesamt 6 Windungen 18, 18' gezeigt sind. Der Rohrkörper ist innen hohl ausgestaltet und mithin von einem Wärmetransfermedium durchströmbar. Auf der Oberseite des oberen Formkörpers 12 und auf der Unterseite des unteren Formkörpers 12' ist jeweils ein Glasfaservlies als textiles Flächengebilde 20, 20' vorgesehen, wobei die beiden textilen Flächengebilde 20, 20' mit den jeweiligen Formkörpern 12, 12' jeweils über einen anorganischen Klebstoff 14', 14" verbunden sind. Dabei sind die Klebstoffschichten 14', 14" in der Figur wiederum aus Anschaulichkeitsgründen dicker eingezeichnet ist als sie in Realität sind. The composite element 10 shown in the figure comprises two molded bodies 12, 12 ', each of which consists of expanded graphite, ie, which contain no further constituents other than expanded graphite, and in particular no organic fillers. In this case, the two shaped bodies 12, 12 'are connected to one another via an inorganic adhesive 14, wherein the adhesive layer 14 in the figure is drawn thicker for reasons of clarity than it is in reality. In addition, at the interface between the two moldings 12, 12 ', a machine anderförmiger tubular body 16 is provided and embedded in the two moldings 12, 12 ', wherein of the tubular body 16 in the figure a total of 6 turns 18, 18' are shown. The tubular body is hollow on the inside and can therefore be flowed through by a heat transfer medium. On the upper side of the upper mold body 12 and on the underside of the lower mold body 12 'is in each case a glass fiber fleece as a textile fabric 20, 20' is provided, wherein the two textile fabrics 20, 20 'with the respective moldings 12, 12' each have an inorganic The adhesive layers 14 ', 14 "in the figure are in turn drawn thicker for reasons of clarity than they are in reality.
Nachfolgend wird die vorliegende Erfindung anhand eines die Erfindung erläuternden, aber diese nicht einschränkenden Beispiels beschrieben. Beispiel Hereinafter, the present invention will be described by way of an illustrative but not limiting example of the invention. example
Es wurden zwei plattenförmige Vorformlinge aus expandiertem Graphit bereitgestellt, welche jeweils eine Fläche von 625 x 625 mm2, eine Dicke von 15 mm sowie ein Flächengewicht von 1 .000 g/m2 aufwiesen. Two plate-shaped preforms of expanded graphite were provided, each having an area of 625 x 625 mm 2 , a thickness of 15 mm, and a basis weight of 1, 000 g / m 2 .
Auf die Ober- und Unterseite eines ersten der beiden Vorformlinge wurde Wasserglas mit einer Auftragsmenge von 60 g pro Seite als Klebstoff aufgetragen, wobei als Wasserglas ein Handelsprodukt der Firma Merck eingesetzt wurde. Danach wurde auf eine der beiden mit Klebstoff beschichteten Seiten des Vor- formlings ein Glasfaservlies mit einem Flächengewicht von 60 g/m2 und mit einer Dicke von 0,6 mm aus Glasfasern mit einem Durchmesser von 13 μιτι aufgebracht, angedrückt und der Klebstoff trocknen gelassen. On the top and bottom of a first of the two preforms water glass was applied with an application amount of 60 g per page as an adhesive, using as water glass, a commercial product from Merck. Thereafter, a glass fiber fleece having a weight per unit area of 60 g / m 2 and a thickness of 0.6 mm made of glass fibers with a diameter of 13 μιτι was applied to one of the two adhesive-coated sides of the preform, pressed and allowed to dry the adhesive ,
Zudem wurden auf eine der Ober- und Unterseiten des zweiten Vorformlings als Klebstoff das vorgenannte Handelsprodukt mit einer Auftragsmenge von 100 g aufgetragen und anschließend in diesen Vorfornnling zwei Löcher gestanzt, welche als Ein- und Ausgang des aufzubringenden Rohrköpers dienen. Danach wurde auf die mit Klebstoff beschichtete Seite des Vorformlings ein Glasfaservlies mit einem Flächengewicht von 60 g/m2 und mit einer Dicke von 0,6 mm aus Glasfasern mit einem Durchmesser von 13 μιτι aufgebracht, angedrückt und der Klebstoff trocknen gelassen. In addition, on one of the upper and lower surfaces of the second preform as an adhesive, the above-mentioned commercial product having an application amount of 100 g applied and then punched in this Vorfornnling two holes, which serve as an input and output of the applied Rohrköpers. Thereafter, a glass fiber fleece having a basis weight of 60 g / m 2 and a thickness of 0.6 mm made of glass fibers with a diameter of 13 μιτι was applied to the adhesive-coated side of the preform, pressed and allowed to dry the adhesive.
Anschließend wurde auf die dem Glasfaservlies gegenüberliegende Seite des ersten Vorformlings ein mäanderförmiger Kupferrohrkörper und darauf der Vor- formling mit seiner dem Glasfaservlies gegenüberliegende Seite nach unten angeordnet. Dieser Aufbau wurde dann in einer Pressform mit eingelegten Abstandshaltern auf die gewünschte Höhe verpresst. Dabei betrug die Verweildauer 5 bis 10 Sekunden. Das so hergestellte Verbundelement war steif und wies keine Brandlast auf. Sowohl die einzelnen Bauteile des Verbundelements, also Klebstoff, Graphit und Vlies, als auch das gesamte Verbundelement waren nicht brennbar bzw. entflammbar. Insbesondere brannten Muster des hergestellten Verbundelements mit einem Durchmesser von 45mm und mit einer Höhe von 40 mm bzw. 60 mm nicht, wenn diese bei 800°C in einen Muffelofen wärmebehandelt wurden. Das Verbundelement zeigte keine Durchbiegung bei einer Auflage auf einen Holzrahmen mit einer Stegbreite von 2 cm. Bei einer Belastung des Verbundelements mit 10 kg auf einer Fläche von 70.9 cm2 in der Mitte der Platte betrug die messbare Durchbiegung nur 2 mm. Subsequently, a meander-shaped copper tube body was placed on the side of the first preform opposite the glass fiber fleece, and the preform with its side opposite the fiberglass fleece was placed downward thereon. This structure was then pressed in a mold with inserted spacers to the desired height. The residence time was 5 to 10 seconds. The composite element thus produced was stiff and had no fire load. Both the individual components of the composite element, ie adhesive, graphite and fleece, as well as the entire composite element were not flammable or flammable. In particular, samples of the produced composite element having a diameter of 45 mm and a height of 40 mm and 60 mm respectively did not burn when they were heat-treated at 800 ° C in a muffle furnace. The composite element showed no deflection when placed on a wooden frame with a bridge width of 2 cm. At a loading of the 10 kg composite element on an area of 70.9 cm 2 in the center of the panel, the measurable deflection was only 2 mm.
Vergleichsbeispiel Comparative example
Es wurde ein Verbundelement wie in dem Beispiel 1 beschrieben hergestellt, ausgenommen dass anstelle des Wasserglasklebstoffs ein organischer Klebstoff eingesetzt wurde und die Vorformlinge aus einer Mischung aus expandiertem Graphit und 20 Gew.-% Polyvinylchloridpartikeln als organischer Füllstoff bestanden. A composite element was prepared as described in Example 1, except that an organic adhesive was used instead of the water glass adhesive and the preforms were made of a mixture of expanded Graphite and 20 wt .-% polyvinyl chloride particles as organic filler passed.
Muster des so hergestellte Verbundelements mit den in dem Beispiel 1 genannten Dimensionen brannten 26 Sekunden mit offenen Flammen, wenn diese bei 800°C in einen Muffelofen wärmebehandelt wurden. Samples of the thus prepared composite member having the dimensions given in Example 1 burned with open flames for 26 seconds when heat treated at 800 ° C in a muffle furnace.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
10 Verbundelement 10 composite element
12, 12' Form körper aus expandiertem Graphit 12, 12 'shaped body made of expanded graphite
14, 14', 14" Klebstoff/Klebstoffschicht 14, 14 ', 14 "adhesive / adhesive layer
16 Mäanderförmiger Rohrkörper  16 Meander-shaped tubular body
18, 18' Windungen des Rohrkörpers  18, 18 'turns of the tubular body
20, 20' Textiles Flächengebilde 20, 20 'textile fabric

Claims

Patentansprüche: claims:
Wärmeleitendes Verbundelement (10) insbesondere zur Verwendung in einer Flächenkühlung oder in einer Flächenheizung umfassend wenigstens einen expandierten Graphit enthaltenden Formkörper (12, 12') sowie wenigstens ein auf wenigstens einer Seite des Formkörpers (12, 12') angeordnetes textiles Flächengebilde (20, 20'), wobei das wenigstens eine textile Flächengebilde (20, 20') mit dem Formkörper (12, 12') über einen anorganischen Klebstoff (14', 14") verbunden ist. Thermally conductive composite element (10) in particular for use in a surface cooling or in a surface heating comprising at least one expanded graphite-containing molded body (12, 12 ') and at least one on at least one side of the shaped body (12, 12') arranged textile fabric (20, 20 '), wherein the at least one textile fabric (20, 20') with the shaped body (12, 12 ') via an inorganic adhesive (14', 14 ") is connected.
Wärmeleitendes Verbundelement (10) nach Anspruch 1, Thermally conductive composite element (10) according to claim 1,
dadurch g e k e n n z e i c h n e t , dass By doing so, that is
in dem wenigstens einen expandierten Graphit enthaltenden Formkörperin the at least one expanded graphite-containing molded body
(12, 12') ein von einem Wärmetransfermedium durchströmbarer Rohrkörper(12, 12 ') a through-flow of a heat transfer medium tubular body
(16) eingebettet ist. (16) is embedded.
Wärmeleitendes Verbundelement (10) nach Anspruch 2, Thermally conductive composite element (10) according to claim 2,
dadurch g e k e n n z e i c h n e t , dass By doing so, that is
der Rohrkörper (16) mäanderförmig oder spiralförmig ausgestaltet ist. the tubular body (16) is configured in a meandering or spiral shape.
Wärmeleitendes Verbundelement (10) nach zumindest einem der vorstehenden Ansprüche, Thermally conductive composite element (10) according to at least one of the preceding claims,
dadurch g e k e n n z e i c h n e t , dass By doing so, that is
der wenigstens eine expandierten Graphit enthaltende Formkörper (12, 12') zumindest im Wesentlichen plattenförmig ausgebildet ist und das wenigstens eine textile Flächengebilde (20, 20') auf der Ober- und/oder Unterseite des plattenförmigen Formkörpers (12, 12') angeordnet ist. the at least one expanded graphite-containing molded body (12, 12 ') is at least substantially plate-shaped and the at least one textile fabric (20, 20') on the top and / or bottom of the plate-shaped molding (12, 12 ') is arranged ,
5. Wärmeleitendes Verbundelement (10) nach zumindest einem der vorstehenden Ansprüche, 5. Thermally conductive composite element (10) according to at least one of the preceding claims,
dadurch g e k e n n z e i c h n e t , dass  By doing so, that is
der wenigstens eine Formkörper (12, 12') expandierten Graphit mit einer Dichte von 0,02 bis 0,5 g/cm3, bevorzugt von 0,04 bis 0,3 g/cm3 und besonders bevorzugt von 0,05 bis 0,2 g/cm3 enthält. the at least one shaped body (12, 12 ') expanded graphite with a density of 0.02 to 0.5 g / cm 3 , preferably from 0.04 to 0.3 g / cm 3 and particularly preferably from 0.05 to 0 Contains 2 g / cm 3 .
6. Wärmeleitendes Verbundelement (10) nach zumindest einem der vorstehenden Ansprüche, 6. thermally conductive composite element (10) according to at least one of the preceding claims,
dadurch g e k e n n z e i c h n e t , dass  By doing so, that is
der wenigstens eine Formkörper (12, 12') expandierten Graphit mit einem Flächengewicht von 100 bis 4.000 g/cm2, bevorzugt von 350 bis 3.500 g/cm2 und besonders bevorzugt von 500 bis 2.000 g/cm2 enthält. the at least one shaped body (12, 12 ') contains expanded graphite having a weight per unit area of 100 to 4,000 g / cm 2 , preferably 350 to 3,500 g / cm 2 and more preferably 500 to 2,000 g / cm 2 .
7. Wärmeleitendes Verbundelement (10) nach zumindest einem der vorstehenden Ansprüche, 7. thermally conductive composite element (10) according to at least one of the preceding claims,
dadurch g e k e n n z e i c h n e t , dass  By doing so, that is
dieses zwei jeweils aus expandiertem Graphit bestehenden Formkörper (12, 12') aufweist, welche miteinander über einen anorganischen Klebstoff (14) verbunden sind.  this two each consisting of expanded graphite moldings (12, 12 '), which are connected to each other via an inorganic adhesive (14).
8. Wärmeleitendes Verbundelement (10) nach Anspruch 7, 8. Thermally conductive composite element (10) according to claim 7,
dadurch g e k e n n z e i c h n e t , dass  By doing so, that is
zwischen den beiden Formkörpern (12, 12') ein von einem Wärmetransfermedium durchströmbarer Rohrkörper (16) eingebettet ist.  between the two moldings (12, 12 ') is embedded by a heat transfer medium flow-through tubular body (16).
9. Wärmeleitendes Verbundelement (10) nach zumindest einem der vorstehenden Ansprüche, 9. thermally conductive composite element (10) according to at least one of the preceding claims,
dadurch g e k e n n z e i c h n e t , dass  By doing so, that is
dieses einen Kantenschutz aufweist. Wärmeleitendes Verbundelement (10) nach Anspruch 9, this has an edge protection. Thermally conductive composite element (10) according to claim 9,
dadurch g e k e n n z e i c h n e t , dass By doing so, that is
als Kantenschutz auf wenigstens einer der Kantenseiten des Verbundelements (10) ein textiles Flächengebilde, ein L-förmig ausgestaltetes Bauteil bevorzugt aus Metall oder Kunststoff, ein U-förmig ausgestaltetes Bauteil bevorzugt aus Metall oder Kunststoff oder ein Anstrich vorgesehen ist. as edge protection on at least one of the edge sides of the composite element (10) a textile fabric, a L-shaped ausgestaltetes component preferably made of metal or plastic, a U-shaped ausgestaltetes component preferably of metal or plastic or a paint is provided.
Wärmeleitendes Verbundelement (10) nach zumindest einem der vorstehenden Ansprüche, Thermally conductive composite element (10) according to at least one of the preceding claims,
dadurch g e k e n n z e i c h n e t , dass By doing so, that is
dieses in einen Rahmen aus Metall und/oder Vlies eingelegt oder eingeklebt ist. this is inserted or glued into a frame made of metal and / or non-woven.
Verfahren zum Herstellen eines wärmeleitenden Verbundelements (10) nach zumindest einem der vorstehenden Ansprüche, welches die nachfolgenden Schritte umfasst: A method of producing a thermally conductive composite element (10) according to at least one of the preceding claims, comprising the following steps:
i) Bereitstellen eines ersten und eines zweiten plattenförmigen Vor- formlings (12, 12'), wobei die beiden Vorformlinge (12, 12') jeweils expandierten Graphit enthalten, i) providing a first and a second plate-shaped preform (12, 12 '), the two preforms (12, 12') each containing expanded graphite,
ii) Anordnen eines von einem Wärmetransfermedium durchströmbaren Rohrkörpers (16) zwischen der Oberseite des ersten Vorformlings (12') und der Unterseite des zweiten Vorformlings (12) und ii) arranging a tubular body (16) through which a heat transfer medium can flow between the upper side of the first preform (12 ') and the lower side of the second preform (12) and
iii) Pressen des in dem Schritt ii) erhaltenen Aufbaus, iii) pressing the structure obtained in step ii),
wobei in dem Schritt i) wenigstens ein textiles Flächengebilde (20, 20') auf wenigstens eine der in dem späteren Verbundelement (10) dem Rohrkörper (16) gegenüberliegenden Seiten der Vorformlinge (12, 12') aufgebracht wird und/oder nach dem Schritt iii) wenigstens ein textiles Flächengebilde (20, 20') auf die Oberseite und/oder Unterseite des in dem Schritt iii) erhaltenen Ausbaus aufgebracht wird. Verfahren nach Anspruch 12, wherein in step i) at least one textile fabric (20, 20 ') is applied to at least one of the sides of the preforms (12, 12') opposite the tubular body (16) in the later composite element (10) and / or after the step iii) at least one textile fabric (20, 20 ') is applied to the top and / or bottom of the construction obtained in step iii). Method according to claim 12,
dadurch g e k e n n z e i c h n e t , dass dieses ferner die nachfolgenden Schritte umfasst:  in that it further comprises the following steps:
a) Aufbringen eines anorganischen Klebstoffs (14, 14") auf die Oberseite und die Unterseite des ersten Vorformlings (12'),  a) applying an inorganic adhesive (14, 14 ") to the top and the bottom of the first preform (12 '),
b) Aufbringen eines textiles Flächengebildes (20') auf die mit Klebstoff (14, 14") versehende Oberseite oder Unterseite des ersten Vorformlings und Anordnen eines Rohrkörpers (16) auf der dem textilen Flächengebilde (20') gegenüberliegenden Seite des ersten Vorformlings (12'),  b) applying a textile fabric (20 ') to the top or bottom of the first preform provided with adhesive (14, 14 ") and arranging a tubular body (16) on the side of the first preform (12) opposite the textile fabric (20') '),
c) Aufbringen eines anorganischen Klebstoffs (14') auf die Oberseite oder die Unterseite des zweiten Vorformlings (12),  c) applying an inorganic adhesive (14 ') to the top or bottom of the second preform (12),
d) Aufbringen eines textiles Flächengebildes (20) auf die mit Klebstoff (14') versehende Oberseite oder Unterseite des zweiten Vorformlings (12),  d) applying a textile fabric (20) to the adhesive (14 ') provided top or bottom of the second preform (12),
e) Anordnen des in dem Schritt d) erhaltenen zweiten Vorformlings (12) mit seiner dem textilen Flächengebilde (20) gegenüberliegenden Seite nach unten auf den Rohrkörper (16) des in dem Schritt b) erhaltenen Aufbaus und  e) arranging the second preform (12) obtained in step d) with its side facing the textile fabric (20) downwards onto the tubular body (16) of the construction obtained in step b) and
f) Pressen des in dem Schritt e) erhaltenen Aufbaus.  f) pressing the structure obtained in step e).
Verfahren nach zumindest einem der Ansprüche 12 oder 13, Method according to at least one of claims 12 or 13,
dadurch g e k e n n z e i c h n e t , dass  By doing so, that is
der Aufbau in dem Schritt f) bei einem Druck von 0,02 bis 5 MPa und bevorzugt von 0,1 bis 1 MPa gepresst wird.  the structure in step f) is pressed at a pressure of 0.02 to 5 MPa, and preferably from 0.1 to 1 MPa.
15. Verwendung eines wärmeleitenden Verbundelements (10) nach zumindest einem der Ansprüche 1 bis 1 1 in einer Flächenkühlung oder in einer Flächenheizung und vorzugsweise in einer Fußboden-, Wand- oder Decken- heizung, für die flächige Kühlung und Heizung von Maschinen und Apparaten, wie beispielsweise Photovoltaik-Zellen, Tempe erkannnnern, Gehäuse für Leistungselektronik, Batteriezellen, insbesondere Batteriepacks, die Lithium-Ionen Batteriezellen enthalten, zur Kühlung von medizinischen Anla- gen, wie Computertomographen und Magnetresonanztomographen, zur15. Use of a thermally conductive composite element (10) according to at least one of claims 1 to 1 1 in a surface cooling or in a surface heating and preferably in a floor, wall or ceiling heating, for the surface cooling and heating of machines and apparatus, such as photovoltaic cells, Tempe detectors, housing for power electronics, battery cells, especially battery packs containing lithium-ion battery cells, for cooling of medical equipment, such as computed tomography and magnetic resonance imaging , to
Klimatisierung von Kraftfahrzeugen, wie Bussen, Lastkraftwagen und dergleichen, zur Klimatisierung von Schiffen und Flugzeugkabinen oder für Temperierbecken in Schwimmbädern. Air conditioning of motor vehicles, such as buses, trucks and the like, for the air conditioning of ships and aircraft cabins or for tempering pools in swimming pools.
EP13709828.1A 2012-03-15 2013-03-04 Thermally conductive composite element based on expanded graphite Withdrawn EP2825379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012204124A DE102012204124A1 (en) 2012-03-15 2012-03-15 Thermally conductive composite element based on expanded graphite
PCT/EP2013/054273 WO2013135515A1 (en) 2012-03-15 2013-03-04 Thermally conductive composite element based on expanded graphite

Publications (1)

Publication Number Publication Date
EP2825379A1 true EP2825379A1 (en) 2015-01-21

Family

ID=47891645

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13709828.1A Withdrawn EP2825379A1 (en) 2012-03-15 2013-03-04 Thermally conductive composite element based on expanded graphite

Country Status (8)

Country Link
US (1) US9612064B2 (en)
EP (1) EP2825379A1 (en)
AU (1) AU2013231509B2 (en)
CA (1) CA2866607C (en)
DE (2) DE202012003810U1 (en)
MY (1) MY166331A (en)
SG (1) SG11201405674VA (en)
WO (1) WO2013135515A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206185A1 (en) * 2012-04-16 2013-10-17 Lindner Ag Plate element for a heating or cooling surface and method for its manufacture
DE102014002205A1 (en) 2014-02-21 2015-08-27 Sgl Lindner Gmbh & Co. Kg Composite element for temperature control of rooms and method for producing such an element
DE102014004770A1 (en) * 2014-04-01 2015-10-01 Adam Opel Ag battery pack
DE112016001679T5 (en) * 2015-05-08 2017-12-21 Ningbo Sinyuan Industry Group Co., Ltd. Wave heat conversion structure and its application
RU2637531C2 (en) * 2015-07-06 2017-12-05 Акционерное общество "УНИХИМТЕК" (АО "УНИХИМТЕК") Heat spreading plate and method of its manufacture
RU2637532C2 (en) * 2015-07-06 2017-12-05 Акционерное общество "УНИХИМТЕК" (АО "УНИХИМТЕК") Heat spreading plate and method of its manufacture
JP3224671U (en) * 2016-12-06 2020-01-16 ネオグラフ ソリューションズ,リミティド ライアビリティ カンパニー Electric vehicle with energy conditioning system and thermally conditioned article
EP3956136A1 (en) * 2019-04-18 2022-02-23 Secvel Technologies GmbH Bag
US11376812B2 (en) 2020-02-11 2022-07-05 Helicoid Industries Inc. Shock and impact resistant structures
US11428476B2 (en) * 2020-09-04 2022-08-30 Photon Vault, Llc Thermal energy storage and retrieval system
CN113766685A (en) * 2020-10-15 2021-12-07 杨应斌 High-efficiency energy-saving electric heating element
US11852297B2 (en) 2021-06-01 2023-12-26 Helicoid Industries Inc. Containers and methods for protecting pressure vessels
US11346499B1 (en) 2021-06-01 2022-05-31 Helicoid Industries Inc. Containers and methods for protecting pressure vessels
DE202022101316U1 (en) * 2022-03-10 2022-04-05 Lindner Se Plate element for surface heating and cooling with heating or cooling register
US11952103B2 (en) 2022-06-27 2024-04-09 Helicoid Industries Inc. High impact-resistant, reinforced fiber for leading edge protection of aerodynamic structures
WO2024050211A1 (en) * 2022-08-29 2024-03-07 Photon Vault, Llc Thermal energy storage and retrieval system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1512933A2 (en) * 2003-09-04 2005-03-09 Sgl Carbon Ag Heat conduction plate made of expanded graphite and method of fabrication thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576845A (en) * 1983-12-15 1986-03-18 Krc Inc. Thermally conductive base layers for cast polyurethane roll covers
JP2989953B2 (en) * 1992-02-10 1999-12-13 富士ゼロックス株式会社 Fixing device and fixing endless belt
US6442365B1 (en) * 1998-04-08 2002-08-27 Xerox Corporation Thermally conductive fuser belt
US8382004B2 (en) 2001-04-04 2013-02-26 Graftech International Holdings Inc. Flexible graphite flooring heat spreader
US20100326645A1 (en) * 2004-01-21 2010-12-30 Wei Fan Thermal pyrolytic graphite laminates with vias
ES2295722T3 (en) 2004-04-16 2008-04-16 Sgl Carbon Ag PROCEDURE FOR MANUFACTURING EXPANDED GRAPHITE MOLDED BODIES.
DE202005009254U1 (en) * 2005-06-13 2005-10-27 Gabo Systemtechnik Gmbh Air- handling ceiling, has gross register with sand receding structure consisting of heat exchanging pipe, which is embedded in one layer, where register is arranged in framework
DE502006003010D1 (en) 2006-05-04 2009-04-16 Sgl Carbon Ag High temperature resistant composite material
DE102007037435B4 (en) 2007-08-08 2012-03-22 Sgl Carbon Se laminate
DE102009055441A1 (en) * 2009-12-31 2011-07-07 Sgl Carbon Se, 65203 Device for controlling temperature in room of building, has thermally coupled pipes embedded in plate, which contains expanded graphite, where plate is thermal-contacted with surface area of structural element
DE202009018618U1 (en) 2009-12-31 2012-12-11 Sgl Carbon Se Graphite-containing plate
DE102010002000A1 (en) 2010-02-16 2011-09-08 Sgl Carbon Se Heat sink and electrical energy storage
ES2641013T3 (en) 2009-12-31 2017-11-07 Sgl Carbon Se Stratified composite material for use in a redox flow battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1512933A2 (en) * 2003-09-04 2005-03-09 Sgl Carbon Ag Heat conduction plate made of expanded graphite and method of fabrication thereof

Also Published As

Publication number Publication date
CA2866607C (en) 2018-01-02
CN104245304A (en) 2014-12-24
DE102012204124A1 (en) 2013-09-19
SG11201405674VA (en) 2014-10-30
DE202012003810U1 (en) 2013-02-08
MY166331A (en) 2018-06-25
US20150000888A1 (en) 2015-01-01
CA2866607A1 (en) 2013-09-19
WO2013135515A1 (en) 2013-09-19
AU2013231509A1 (en) 2014-10-23
US9612064B2 (en) 2017-04-04
AU2013231509B2 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
EP2825379A1 (en) Thermally conductive composite element based on expanded graphite
DE10341255B4 (en) Heat conducting plates made of expanded graphite and process for their preparation
EP0963358B1 (en) Multilayer composite materials with at least one aerogel-containing layer and at least one other layer, process for producing the same and their use
EP0954438B1 (en) Multilayer composite materials with at least one aerogel-containing layer and at least one layer containing polyethylene terephthalate fibres, process for producing the same and their use
EP1582646B2 (en) Insulation panel made of a mixture of wood and fibre binder and a method of manufacture of the panel
DE102011119029B4 (en) Process for producing an insulating molding, insulating molding, its use and insulating element, produced using the insulating molding
DE102005029051A1 (en) Heat conductive device for heating floor, wall or ceiling of building has heat conductive layer, which is arranged in between the pipe and the part of the plate surface facing towards the pipe
DE102009055441A1 (en) Device for controlling temperature in room of building, has thermally coupled pipes embedded in plate, which contains expanded graphite, where plate is thermal-contacted with surface area of structural element
DE102007041767A1 (en) One-man plate for use with electrical resistance heating and rigid fiber-reinforced fiber board for air conditioning in apartment and building, has electrically conductive heating layer that is heated by current
EP2257506B1 (en) Method for producing a flat or profiled component, and flat or profiled component
EP2130985A2 (en) Sound absorbing panel
AT15679U1 (en) wall system
DE102009055443A1 (en) Ceiling or wall element
EP2749711A2 (en) Multifunctional fibrous fabric
EP2250137B1 (en) Method for producing a flat or profiled component, and flat or profiled component
EP2799639A1 (en) Insulation panel for insulation of a building façade
DE202012104480U1 (en) Wood veneer and veneered building board
EP2386697A2 (en) Thermal insulation panels, thermal insulation systems comprising such thermal insulation panels and method for producing such thermal insulation panels
EP0922563B1 (en) Method of making sound dampening elements
DE102005028465A1 (en) Material for sound insulation consists of layer of leather fiber material coated on at least one side with layer of water-insoluble polymer material
EP2794970B1 (en) Thermally conductive molded body and method for the production thereof
DE19749615C2 (en) Insulation hose
DE202009018618U1 (en) Graphite-containing plate
DE102014002205A1 (en) Composite element for temperature control of rooms and method for producing such an element
DE29719855U1 (en) Insulation hose

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151009

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210331

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210811