EP2816135B1 - Procédé d'injection de poudre à plasma pour le revêtement de panneaux pour parois de chaudière en liaison avec un appareil à faisceau laser - Google Patents

Procédé d'injection de poudre à plasma pour le revêtement de panneaux pour parois de chaudière en liaison avec un appareil à faisceau laser Download PDF

Info

Publication number
EP2816135B1
EP2816135B1 EP14001202.2A EP14001202A EP2816135B1 EP 2816135 B1 EP2816135 B1 EP 2816135B1 EP 14001202 A EP14001202 A EP 14001202A EP 2816135 B1 EP2816135 B1 EP 2816135B1
Authority
EP
European Patent Office
Prior art keywords
plasma
powder
spraying device
jet
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14001202.2A
Other languages
German (de)
English (en)
Other versions
EP2816135A1 (fr
Inventor
Bodo Häuser
Hendrik Häuser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hauser&co GmbH
Original Assignee
Hauser&co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hauser&co GmbH filed Critical Hauser&co GmbH
Publication of EP2816135A1 publication Critical patent/EP2816135A1/fr
Application granted granted Critical
Publication of EP2816135B1 publication Critical patent/EP2816135B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/226Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3468Vortex generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid

Definitions

  • the invention relates to a thermal spraying method having the features of the preamble of claim 1, for producing a protective layer in the plasma powder spraying process on hot gases, in particular flue gases acted upon metallic walls.
  • the invention also relates to a thermal spray device for carrying out the method.
  • the EP 0 903 423 A2 discloses a method of applying a coating by plasma spraying.
  • the plasma torch provides the main part of the process heat, wherein the additional material is completely melted in the plasma torch.
  • a continuous laser beam through the spray jet with predeterminable interaction time directly on the surface of the substrate or the surface of a previously applied there layer, these melting is directed.
  • a spray nozzle for a plasma gun known. This consists of a cylindrical nozzle with an axial opening through which plasma gases can be ejected. A flat end face at the end is substantially perpendicular to the nozzle axis. Into the outside of the nozzle are introduced a number of substantially equally spaced helical grooves which terminate at the face of the nozzle to provide for jets of air surrounding and confining the plasma gases.
  • the DE 196 38 228 A1 is concerned with a method for producing a hot gas corrosion resistant connection of pipes protected against corrosion by a thermally sprayed layer, in which the one pipe to be welded, in the region of its abutting edge adjacent to the second pipe, precedes the thermal Spraying, for example, the plasma spraying process by cladding with a corrosion-resistant material is coated.
  • the US 4,192,672 relates to metal alloys which have relatively large, hard precipitates as self-fluxing powders, eg nickel-based, in order to improve the wear resistance of such powders.
  • Such powders are to be sprayed by means of plasma spraying, wherein the addition is melted simultaneously or subsequently.
  • the EP 0 223 135 A1 also deals with self-fluxing metal alloys which can be applied by plasma spraying. If not sprayed by plasma spraying, the layer can be melted on site by means of an autogenous flame.
  • the plasma spraying method discloses EP 0 223 135 A1 a melting temperature in a range of 1100 to 1250 ° C.
  • the invention thus produces a diffusive transition of the base material to the coating material with a thickness of 100 ⁇ m, preferably from 20 ⁇ m to 70 ⁇ m.
  • the protective layer to be applied may have a thickness which is 100% to 200% greater than a layer thickness, which according to the previously known method according to DE 42 20 063 C1 could be applied.
  • the layer thickness according to the invention may have an amount of 0.2 to 0.4 mm, preferably of 0.6 to 1.5 mm.
  • a layer thickness which is high in terms of thickness inevitably leads to a longer service life, which in turn benefits longer plant availability.
  • the coating material that is to say the powder for the process according to the invention, can be coarse-grained and have a grain size of less than 200 .mu.m, preferably less than 125 .mu.m, more preferably between 63 .mu.m and 104 .mu.m. This results in a comparison with fine coating materials Cost savings of approx. 20% regarding the material price.
  • an arc is generated in a known manner, which extends from the anode to the cathode, wherein an arc base point is arranged both at the anode and at the cathode.
  • the respective arc base points static, so that they wear the cathode but also the anode at fixed locations very quickly.
  • the plasma gas is set in the method according to the invention in a rotation, that is rotated about the central longitudinal axis, for example, the anode.
  • the powder feed through both Inner feed openings each separately controllable.
  • the two réellezu technologicalö réelle ⁇ can be fed separately controlled, wherein each réellezu Switzerland can also be assigned a separate powder generator.
  • the amount of powder required in each case can advantageously be set with the invention. It is conceivable that both mecanical
  • the two inner feed openings have a diameter amount of 4.2 mm each, 12 to 14 kg / h of powder could be applied by way of example. So meet both powder beams according to the deflection of a powder jet from the central longitudinal axis also offset from the material to be coated. According to the invention, two different coating materials, ie powders, are passed through both inner feed openings.
  • the powders can not only differ in their (metallurgical) composition, but also in terms of powder morphology (eg agglomerated, melted, atomized in the gas stream ...), the powder form (eg pointed, angular, spherical %), the specific gravity and also, for example, the melting behavior (eg of the white, black or shiny powder) be different.
  • a powder jet can thus produce an intermediate layer corresponding to the alloy of the supplied powder, the other powder jet having, for example, a cover layer with the corresponding properties of the supplied powder alloy.
  • Both powder alloys can be mixed together by the action of the laser or the laser but also according to the desired properties of the protective layer, so be mixed.
  • the composition of the powder can be determined depending on the existing base material and the subsequent operating conditions, in particular the predetermined temperature ranges.
  • the invention is based on the finding that the deflection of the powder jet out of the central longitudinal axis or not actually depends on the morphology, the powder form, the specific weight and the melting behavior of the respectively supplied powder.
  • it can be ascertained which powder jet is deflected in which composition and which powder jet is not deflected. Since two powder jets are produced with the invention, the two powder alloy beads hitting the material to be coated are treated according to the invention, each with a laser, to form the diffusive composite.
  • a double laser beam system so also two lasers are provided, wherein the respective laser according to the invention is associated with the respective impinging powder jet.
  • an 80kW plasma spraying system with internal powder feed can be suitably used.
  • a further advantage of the invention lies in the fact that the laser of the laser beam system, ie the double laser beam system, can have a power of only 2 kW to 10 kW, preferably of 3 kW to 5 kW.
  • the laser of the laser beam system ie the double laser beam system, can have a power of only 2 kW to 10 kW, preferably of 3 kW to 5 kW.
  • the surface should indeed be cleaned, for example, by fat, oil, scale and / or mill scale, but roughening and / or activation can be dispensed with in the invention.
  • the corresponding plasma gas nozzle ie the injector, has at least one combined bore, which is formed by two partial bores introduced into one another. It is provided in purposeful embodiment that one of the partial bores with its central axis is congruent to a central axis of the plasma gas nozzle. The other, second partial bore is arranged at an angle to the central axis of the plasma gas nozzle.
  • the other second partial bore is arranged at an acute angle, preferably at an angle of 10 to 30 °, more preferably 16.5 ° to the central axis of the plasma gas nozzle.
  • the goal is that both partial bores have an identical starting point on an outer periphery of the plasma gas nozzle, and open at an inner periphery.
  • an overall mouth opening is achieved on the inner circumference, which of course is greater than such a mouth opening which can be reached with one of the individual partial bores.
  • the inner total orifice is smaller than both partial boreholes considered together.
  • the combined bore according to the invention has quasi an eccentric profile, wherein the total internal orifice is greater than the inlet of the combined bore on the outer periphery of the plasma gas nozzle.
  • the amount of gas introduced is homogeneously ionizable, since the gas introduced within the plasma torch distributed homogeneously, since a soft plasma gas flow is established by the quasi eccentrically expanding inner total orifice.
  • a favorable embodiment can be provided to provide a plurality of combined holes in the plasma gas nozzle.
  • four combined bores are provided which, viewed in the circumferential direction of the plasma gas nozzle, are equally distributed. It is expedient if in particular the second partial bores are in each case equally oriented.
  • the impact surfaces of the two powder jets can be influenced in such a way via the parameter selection of gas pressure, gas quantity and powder quantity as a function of the abovementioned powder data such that they adjoin one another optimally and thus at a lower power per Laser can be melted down and diffusively connected to the base material.
  • a further advantage is that the impact surfaces of the two powder jets are variable.
  • a device for plasma spraying for producing a protective layer in a plasma spraying process on hot walls, in particular flue gases acted upon metallic walls for carrying out the method according to the invention in its anode two introduced mecaniczu classroomö réelleen, which are arranged opposite to a central axis of the plasma powder injection exactly opposite one another
  • the two inner feed openings have with their central axis to a perpendicular to the central axis of the plasma powder injection device an acute angle, most preferably of 9 °.
  • a plasma gas nozzle has at least one combined bore, preferably a plurality of combined bores, more preferably four combined bores through which the gas to be ionized is introduced into the plasma spraying device.
  • two lasers are combined with the plasma spraying device, which processes the plasma powder merely melted, so heated impinging application powder so that the diffusive composite of the protective layer is formed with the base material.
  • FIG. 1 shows a laser plasma powder injection device 1, which has a plasma powder injection device 2 and a double laser beam system 3.
  • the plasma powder injection device 2 generates two split powder jets 4 and 6 which strike a workpiece 7 to be coated.
  • the workpiece 7 to be coated is, for example, a pipe-web-tube segment 8, as shown by way of example in FIG FIG. 4 is shown.
  • the workpiece 7 is acted upon by aggressive, hot flue gases, which arise, for example, in waste incineration algae.
  • One of the powder jets 4 emerges centrically from the central longitudinal axis X1 of the plasma powder injection device 2.
  • the other plasma powder jet 6 emerges distracted from the central axis X1 of the plasma powder injection device 2 out of this. Both powder jets 4 and 6, however, form a total spray cone 9.
  • the two powder jets 4 and 6 strike the workpiece 7 to be coated, wherein the respective powder of the respective powder jet 4 or 6 is only melted in the plasma powder injection device 2, and is not molten before the exit.
  • the double laser beam system 3 is provided, which generates two laser beams 11 and 12 corresponding to the two powder beams 4 and 6.
  • FIG. 2 a plasma gas nozzle 13 of the plasma powder injection device 2 is shown in a cross section.
  • the plasma gas nozzle 13 can also be referred to below as injector 13.
  • the plasma powder injection device 2 can also be referred to below as the plasma burner 2.
  • the injector 13 has four combined bores 14, which are distributed identically in the circumferential direction of the injector 13.
  • Each of the combined bores 14 is formed from two partial bores 16 and 17.
  • a first partial drilling 16 has a central axis x, which is congruent to a respective center axis of the injector 13.
  • a second partial bore 17 has a central axis y, which is arranged at an angle relative to the central axis x of the first partial bore 16 and thus to the respective central axis of the injector 13.
  • the angle between the two central axes x and y has an amount of 16.5 °.
  • Each of the two partial bores 16 and 17 has a diameter of 1.8 mm by way of example.
  • both partial bores 16 and 17 have a common starting point.
  • the inlet opening 18 on the outer circumference of the injector 13 is identical to the diameter of the two partial bores 16, 17.
  • Both partial bores 16 and 17 form on an inner circumference 18 of the injector 13 an inner total orifice 20. Due to the fact that the second partial bore 17 is introduced at an angle to the first partial bore 16 in the injector 13, the total internal orifice 20 will be larger than the diameter of a single partial bore 16 or 17. At the same time the inner total orifice 20 will be smaller than the sum of the two diameters of the partial bores 16 and 17.
  • a combined bore 14 is produced in each case, which has an eccentric course, with the combined bore 14 starting from the on The outer circumference arranged approach point eccentrically, so quasi semi-conical in the direction of the inner circumference 19 extended. All partial holes 16 and 17 of the four combined holes 14 are each oriented the same.
  • the plasma gas is introduced tangentially to the plasma torch axis (central longitudinal axis X1) in the plasma torch and thus reaches about the central longitudinal axis X1 of the plasma torch 2 rotating an arc 21 between an anode 22 and a cathode 23 (FIGS. FIG. 3 ) of the plasma burner 2.
  • FIG. 3 the anode 22 of the plasma powder injection device 2 is shown.
  • the cathode 23 is accommodated. Both the cathode 23 and the anode 22 are with their central axis X2 and X3 congruent to the central axis X1 of the plasma spraying device 2.
  • the arc 21 is also recognizable, with a representation of the respective arc base points at the anode 22 and the cathode 23 has been omitted.
  • the aim is now that the plasma gas reaches the arc 21 rotating about the central longitudinal axis X1 of the plasma torch 2. This will be Also, the arc 21 is taken to rotate about the central longitudinal axis of the plasma torch 2, which in FIG. 3 is shown by the two arc 21 and 21a.
  • the life of both the anode 22 and the cathode 23 can be extended because the respective arc root points are no longer static fixed, but rotate both at the anode 22 and at the cathode 23. It is in FIG. 3 it can be seen that the arc root point attaches to the anode 22 in an upper tip region and not directly to the tip itself.
  • the plasma burner 2 has an internal powder feed.
  • the réellezu Foodö réelleen 24 and 26 are introduced in the anode. Connections to powder encoders are not shown.
  • the réellezu Foodö réelleen 24 and 26 are simultaneously charged with powder with a respective amount of powder through the respective réellezu Foodö réelle 24 and 26 is separately controllable.
  • the respective inner feed opening 24 and 26 each have a central axis X4, which is arranged at a perpendicular Z to the central axis X1, angularly, most preferably at an angle ⁇ of 9 °.
  • the two réellezu Foodö réelleen 24 and 26 are equally oriented towards a plasma exit side introduced into the anode 22 and open into the interior of the anode 22, and are arranged with their mouth openings 27 relative to the central axis X1 opposite.
  • the laser plasma powder injection device 1 is a protective layer on hot flue gases acted upon metallic walls, for example, on raw web-tube segments 8, as in FIG. 4 can be applied by way of example.
  • an exemplary pipe-web-tube segment 8 is shown in a longitudinal section.
  • a supervision is shown.
  • FIG. 4 intended to represent a respective possible location of the impact surfaces 28 and 29 of the powder jets 4 and 6.
  • the position of the impact surfaces 28 and 29 is dependent on the rotation of the plasma powder injection device 2, ie from the position of the gun. Of course, the laser beams 11 and 12 are aligned accordingly.
  • the landing surfaces 28 and 29 may be arranged side by side, as in the lower part of the figure FIG. 4 recognizable. This position is referred to as a neutral position for the following positions for the sake of simplicity, without this having a limiting effect. It can be seen that the powder jets 4 and 6 are not, as out FIG. 1 could be assumed to be sharply separated, but each have an overlap region 31.
  • the incident surfaces 28 and 29 By rotating the plasma torch 2 out of its neutral position, the incident surfaces 28 and 29 could be offset from one another, so that one of the others is virtually leading the way. This position is in the middle of the FIG. 4 shown. By further turning out of the neutral position, the incident surfaces 28 and 29 can also be arranged directly behind one another, as at the upper region of the FIG. 4 is recognizable. The respectively recognizable overlapping areas 31 can also be variable in their amount, as in FIG FIG. 4 indicated.
  • the two powder jets 4 and 6, so the impact surfaces 28 and 29, can ideally also without overlapping adjoin.
  • the bends of the pipe web segment 8 can be coated with the method according to the invention. Likewise, panels for boiler walls can be coated with the proposed method of the invention.
  • a protective layer having a thickness of, for example, 0.6 to 1.5 mm can be produced.
  • the powder of the respective Powder jets is not molten, but merely melted, that is warmed up.
  • the lasers with a lower power can cause a diffusion-free, diffusive composite of the applied powder, that is to say coating material, to the base material.
  • the plasma gas is introduced tangentially to the central longitudinal axis and rotated about the central longitudinal axis X1, so that, as it were, a rotating ionization of the plasma gas is also generated by the rotating arc.
  • two réellezu Technologyö Anlagen Maschinenen the anode are charged simultaneously with powder, so that the two powder jets 4 and 6 are formed, of which one is still deflected to the central longitudinal axis X1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Coating By Spraying Or Casting (AREA)

Claims (6)

  1. Procédé d'injection thermique, destiné à créer une couche protectrice par procédé d'injection de poudre à plasma sur des parois métalliques exposées à des gaz chauds, notamment des gaz de fumée, un dispositif d'injection de poudre à plasma (2) pourvu d'une cathode (23) et d'une anode (22) et un système à faisceau laser (3) étant prévus, une matière de revêtement incidente sur la paroi métallique étant assemblée au moyen de faisceaux laser (11, 12) du système à faisceau laser (3) sous création d'une liaison diffuse entre la matière de revêtement et la matière de base de la paroi métallique, caractérisé par au moins les étapes, consistant à :
    nettoyer les parois métalliques ;
    mettre en rotation un gaz plasmagène autour de l'axe longitudinal médian (X1) du dispositif d'injection de poudre à plasma (2) à l'intérieur du dispositif d'injection de poudre à plasma (2) en ce qu'une buse à gaz plasmagène (13) du dispositif d'injection de poudre à plasma(2) comporte au moins un perçage mixte (14), welche qui est formé de deux perçages partiels (16, 17) ménagés l'un dans l'autre, qui sur une périphérie extérieure de la buse à gaz plasmagène (13) présentent un point de départ commun, desquels axe médian (y), un perçage partiel (17) est placé avec un angle par rapport à l'axe médian (x) de l'autre perçage partiel (16), de sorte que du gaz plasmagène soit introduit de manière tangentielle à l'axe longitudinal médian (X1) du dispositif d'injection de poudre à plasma (2) dans l'anode (22) du dispositif d'injection de poudre à plasma (2), le gaz plasmagène atteignant un arc électrique (21) en rotation autour de l'axe longitudinal médian (X1) du dispositif d'injection de poudre à plasma (2), par ses pieds d'arc électrique, l'arc électrique (21) étant amené en rotation en fonction de la rotation du gaz plasmagène d'une part sur l'anode (22) et d'autre part sur la cathode (23) ;
    alimenter par l'intérieur la matière de revêtement sous forme de poudre, simultanément à travers deux orifices d'alimentation intérieure (24, 26) ménagés dans anode (22), lesquels orifices d'alimentation intérieure (24, 26) sont placés en vis-à-vis mutuel par leurs orifices d'embouchure, deux jets de poudre (4, 6) étant créés ; et
    mettre en température la matière de revêtement dans le jet de plasma concerné, sans pour autant que la poudre ne se mette en fusion ; chaque jet de poudre (4, 6) est formé d'une matière de revêtement différente et étant usiné avec un faisceau laser (11, 12) associé, pour créer la liaison diffuse, l'un des jets de poudre (4, 6) quittant le dispositif d'injection de poudre à plasma (2) de manière centrée par rapport à son axe médian (X1), l'autre jet de poudre (4, 6) quittant le dispositif d'injection de plasma (2) en déviation par rapport à l'axe médian (X1) le dispositif d'injection de plasma (2) le dispositif d'injection de plasma (2).
  2. Procédé d'injection thermique selon la revendication 1, caractérisé en ce que la liaison diffuse de la matière de revêtement avec la matière de base présente une épaisseur de 100 µm, de préférence de 20 à 70 µm.
  3. Procédé d'injection thermique selon la revendication 1 ou 2, caractérisé en ce qu'après l'application par injection et après la création de la liaison diffuse à l'aide du laser, la couche protectrice présente une épaisseur de couche de 0, 2 à 0, 4 mm, de préférence de 0, 6 à 1, 5 mm.
  4. Procédé d'injection thermique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on applique une poudre d'une granulométrie grossière inférieure à 200 µm, de préférence inférieure à 125 µm, de manière plus préférentielle, comprise entre 63 et 104 µm.
  5. Dispositif d'injection thermique, aménagé pour réaliser le procédé d'injection thermique selon l'une quelconque des revendications précédentes, pour la création d'une couche protectrice par procédé d'injection de poudre à plasma sur des parois métalliques exposées à des gaz chauds, notamment des gaz de fumée, un dispositif d'injection de poudre à plasma (2) pourvu d'une cathode (23) et d'une anode (22) étant introduit sous forme de poudre dans les deux orifices d'alimentation intérieure (24, 26) de la matière de revêtement dont les orifices d'embouchure sont placés en vis-à-vis mutuel et un système à faisceau laser (3) étant prévu dont les faisceaux laser (11, 12) créent une liaison diffuse de la matière de revêtement incidente avec la matière de base, caractérisé en ce qu'on créé deux jets de poudre (4, 6), la matière de revêtement sous forme de poudre étant mise en température dans le jet de plasma concerné, sans pour autant que la poudre ne se mette en fusion, chaque jet de poudre (4, 6) étant formé d'une matière de revêtement différente et étant usiné avec un faisceau laser (11, 12) respectivement associé, pour créer la liaison diffuse, l'un des jets de poudre (4, 6) quittant le dispositif d'injection de poudre à plasma (2) de manière centrale par rapport à son axe médian (X1), l'autre jet de poudre (4, 6) quittant le dispositif d'injection de plasma (2) le dispositif d'injection de plasma (2) en déviation par rapport à l'axe médian (X1), une buse à gaz plasmagène (13) du dispositif d'injection de poudre à plasma (2) comportant au moins un perçage mixte (14), qui est formé de deux perçages partiels (16, 17) ménagés l'un dans l'autre, qui sur une périphérie extérieure de la buse à gaz plasmagène (13) présentent un point de départ commun, dont un perçage partiel (17) est placé par son axe médian (y) avec un angle par rapport à l'axe médian (x) de l'autre perçage partiel (16), de sorte que le gaz plasmagène soit introduit de manière tangentielle à l'axe longitudinal médian (X1) du dispositif d'injection de poudre à plasma (2) dans une anode (22) du dispositif d'injection de poudre à plasma (2), le gaz plasmagène atteignant un arc électrique (21) en rotation autour de l'axe longitudinal médian (X1) du dispositif d'injection de poudre à plasma. (2).
  6. Dispositif d'injection thermique selon la revendication 5, caractérisé en ce que l'axe médian (X4) respectif des orifices d'alimentation intérieure (24, 26) est placé avec un angle, de préférence sous un angle de 9° par rapport à une verticale sur un axe longitudinal médian (X1).
EP14001202.2A 2013-06-18 2014-03-31 Procédé d'injection de poudre à plasma pour le revêtement de panneaux pour parois de chaudière en liaison avec un appareil à faisceau laser Active EP2816135B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013010126.3A DE102013010126B4 (de) 2013-06-18 2013-06-18 Plasmapulverspritzverfahren und Vorrichtung zur Beschichtung von Paneelen für Kesselwände in Verbindung mit einem Laserstrahlgerät

Publications (2)

Publication Number Publication Date
EP2816135A1 EP2816135A1 (fr) 2014-12-24
EP2816135B1 true EP2816135B1 (fr) 2019-03-13

Family

ID=50439114

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14001202.2A Active EP2816135B1 (fr) 2013-06-18 2014-03-31 Procédé d'injection de poudre à plasma pour le revêtement de panneaux pour parois de chaudière en liaison avec un appareil à faisceau laser

Country Status (3)

Country Link
EP (1) EP2816135B1 (fr)
DE (1) DE102013010126B4 (fr)
DK (1) DK2816135T3 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016222872A1 (de) * 2016-11-21 2018-05-24 Siemens Aktiengesellschaft Vorheizung eines Werkstückes beim Vorbeschichten durch einen Laser
CN109536874B (zh) * 2019-01-22 2024-01-09 中国人民解放军陆军装甲兵学院 一种具有偏角喷涂功能的内孔等离子喷涂装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3627204A (en) * 1969-06-18 1971-12-14 Sealectro Corp Spray nozzle for plasma guns
IT1041579B (it) * 1974-09-03 1980-01-10 Cockerill Dispositivo di distribuzione di una polvere metallica in una fiamma per l applicazione di un rivestimento metallico
US4192672A (en) 1978-01-18 1980-03-11 Scm Corporation Spray-and-fuse self-fluxing alloy powders
EP0223135A1 (fr) 1985-11-05 1987-05-27 The Perkin-Elmer Corporation Alliages autofondants résistant à la corrosion pour projection à la flamme
JP2938552B2 (ja) * 1990-10-17 1999-08-23 富士通株式会社 コーティング膜の製造方法およびコーティング膜の製造装置
DE4036858A1 (de) * 1990-11-19 1992-05-21 Alexander W Dr Ing Koch Verfahren und vorrichtung zum beschichten von werkstuecken durch plasmaspritzen
DE4220063C1 (de) * 1992-06-19 1993-11-18 Thyssen Guss Ag Verfahren zur Herstellung einer Schutzschicht auf mit heißen Gasen, insbesondere Rauchgasen beaufschlagten metallischen Wänden
DE19638225C2 (de) 1996-08-22 1999-09-02 Castolin Sa Verfahren zum Herstellen einer korrosionsbeständigen Verbindung von Rohren
DE19740205B4 (de) * 1997-09-12 2004-11-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Aufbringen einer Beschichtung mittels Plasmaspritzens
US6114649A (en) * 1999-07-13 2000-09-05 Duran Technologies Inc. Anode electrode for plasmatron structure
US6933061B2 (en) * 2002-12-12 2005-08-23 General Electric Company Thermal barrier coating protected by thermally glazed layer and method for preparing same
DE10329620A1 (de) * 2003-06-26 2005-01-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Hochtemperaturbeständiges Bauteil und Verfahren zu dessen Herstellung
CH696811A5 (de) * 2003-09-26 2007-12-14 Michael Dvorak Dr Ing Dipl Phy Verfahren zur Beschichtung einer Substratoberfläche unter Verwendung eines Plasmastrahles.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2816135A1 (fr) 2014-12-24
DE102013010126A1 (de) 2014-12-18
DE102013010126B4 (de) 2015-12-31
DK2816135T3 (da) 2019-05-13

Similar Documents

Publication Publication Date Title
EP1999297B1 (fr) Pistolet de projection a gaz froid
EP1844181B1 (fr) Procede de pulverisation par gaz froid
DE10057187B4 (de) Verfahren für die Herstellung von Verbundaufbauten zwischen metallischen und nichtmetallischen Materialien
DE3929960A1 (de) Duese fuer einen plasmabrenner und verfahren zum einbringen eines pulvers in die plasmaflamme eines plasmabrenners
DE102006044906A1 (de) Plasmabrenner
EP2106305B1 (fr) Dispositif de dressage à la flamme
EP1715080B1 (fr) Procédé pour le revêtement de l'intérieur d'un tube d'arme
WO2021047821A1 (fr) Unité de dépôt de matériau ayant une zone de focalisation de matériau multiple et procédé de soudage par rechargement
EP2816135B1 (fr) Procédé d'injection de poudre à plasma pour le revêtement de panneaux pour parois de chaudière en liaison avec un appareil à faisceau laser
DE4112614C2 (de) Dorn zur Kalt- und/oder Warmumformung von metallischem Gut und Verfahren zu seiner Herstellung
DE2028050A1 (de) Verfahren zur Herstellung korrosions- und verschleißfester metallischer Überzüge durch Aufspritzen
EP2127759A1 (fr) Installation de pulvérisation à gaz froid et procédé de pulvérisation à gaz froid
EP2113578B1 (fr) Corps en métal doté d'une couche de protection métallique
WO2017009093A1 (fr) Procédé sls sous vide pour la fabrication additive de pièces métalliques
DE2544847C2 (de) Plasmaspritzvorrichtung
EP2145974A1 (fr) Procédé destiné à l'injection de flammes à vitesse élevée
DE4429142B4 (de) Düsenspritzkopf zum Hochgeschwindigkeitsflammspritzen so wie Verfahren zur Verarbeitung von Beschichtungspulvern
EP0824986A1 (fr) Méthode de fabrication de connexion de tubes, résistant à la corrosion
EP2128300A1 (fr) Procédé destiné à l'injection de flammes à vitesse élevée
DE102016114014B4 (de) Verfahren zur Beschichtung eines Trockenzylinders
WO2009144109A1 (fr) Procédé de projection à la flamme supersonique
DE102009009474B4 (de) Gasspritzanlage und Verfahren zum Gasspritzen
EP3017888B1 (fr) Outil de déformation à chaud
DE102009004201A1 (de) Lichtbogendrahtspritzverfahren
DE112014004111T5 (de) Drahtlegierung für Plasma-Lichtbogen-Beschichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150123

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014011069

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C23C0004060000

Ipc: C23C0024040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05H 1/34 20060101ALI20180924BHEP

Ipc: C23C 4/18 20060101ALI20180924BHEP

Ipc: B05B 7/22 20060101ALI20180924BHEP

Ipc: C23C 4/067 20160101ALI20180924BHEP

Ipc: H05H 1/42 20060101ALI20180924BHEP

Ipc: C23C 4/134 20160101ALI20180924BHEP

Ipc: C23C 24/04 20060101AFI20180924BHEP

INTG Intention to grant announced

Effective date: 20181031

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 4/067 20160101ALI20180924BHEP

Ipc: C23C 4/134 20160101ALI20180924BHEP

Ipc: C23C 24/04 20060101AFI20180924BHEP

Ipc: B05B 7/22 20060101ALI20180924BHEP

Ipc: H05H 1/34 20060101ALI20180924BHEP

Ipc: H05H 1/42 20060101ALI20180924BHEP

Ipc: C23C 4/18 20060101ALI20180924BHEP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1107761

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014011069

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190506

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190313

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014011069

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

26N No opposition filed

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230321

Year of fee payment: 10

Ref country code: FR

Payment date: 20230320

Year of fee payment: 10

Ref country code: DK

Payment date: 20230323

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230315

Year of fee payment: 10

Ref country code: BE

Payment date: 20230321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240318

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240319

Year of fee payment: 11

Ref country code: DE

Payment date: 20240220

Year of fee payment: 11

Ref country code: GB

Payment date: 20240322

Year of fee payment: 11