EP2815455A1 - Coupling structure for the crossing of transfer lines - Google Patents

Coupling structure for the crossing of transfer lines

Info

Publication number
EP2815455A1
EP2815455A1 EP12813791.6A EP12813791A EP2815455A1 EP 2815455 A1 EP2815455 A1 EP 2815455A1 EP 12813791 A EP12813791 A EP 12813791A EP 2815455 A1 EP2815455 A1 EP 2815455A1
Authority
EP
European Patent Office
Prior art keywords
cross
input
coupling structure
coupler
couplers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12813791.6A
Other languages
German (de)
French (fr)
Other versions
EP2815455B1 (en
Inventor
Oliver BRUEGGMANN
Juan Pontes
Mattias STEINHAUER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2815455A1 publication Critical patent/EP2815455A1/en
Application granted granted Critical
Publication of EP2815455B1 publication Critical patent/EP2815455B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • H01P5/22Hybrid ring junctions
    • H01P5/22790° branch line couplers

Definitions

  • the invention relates to a coupling structure for crossing transmission lines in a signal conductor layer of a circuit substrate, in particular a coupling structure for crossing transmission lines for millimeter wave or centimeter wave signals.
  • the coupling structure consists of a planar cross-coupler, also referred to as O-dB coupler, which allows an intersection of two transmission lines with minimal coupling between them.
  • the planar cross-coupler is a cascade of two 90 ° hybrid couplers. Such a 90 ° hybrid coupler, which is known per se, generates at its starting points two signals which are phase-shifted by 90 ° from an input signal at one of two input points.
  • the object of the invention is to provide a coupling structure for crossing three transmission lines, in particular for signals in the range of 76 to 77 GHz in a signal conductor layer of a circuit substrate.
  • a contribution towards achieving this object is made according to the invention by a coupling structure for crossing three transmission lines for millimeter-wave or centimeter-wave signals in a signal conductor layer of a circuit substrate comprising three planar cross-couplers, two of each of the three cross-couplers in the clockwise direction in the plane of the cross-coupler successive input / output points of the cross-coupler are connected to a respective input / output point of a respective other of the three cross-couplers.
  • the signal conductor layer is preferably a metallization layer of the circuit substrate.
  • This coupling structure makes it possible, in particular, that the mentioned clockwise successive input / output points of a respective cross-coupler in the same signal conductor layer are each connected to an input / output point of a respective other one of the three cross couplers.
  • a coupling structure for crossing three transmission lines can be realized within a single signal conductor layer, in which the coupling structure has no components arranged outside the signal conductor layer, in particular no discrete components.
  • Such a coupling structure can be advantageously used, for example, in analog and / or digital circuits for radar sensors, in which signals in the corresponding frequency range within a metallization layer are to intersect.
  • Fig. 1 is a schematic representation of a coupling structure according to the invention
  • FIG. 2 shows a schematic representation of a further example of a coupling structure according to the invention
  • FIG. 3 shows a schematic representation of a cross-coupler in the form of a 90 ° hybrid coupler
  • Fig. 4 is a schematic representation of three by an inventive
  • FIG. 5 is a schematic representation of a layer structure of a circuit substrate.
  • FIGS. 1 and 2 show different examples of coupling structures 10, 10 'for crossing three transmission lines 1 1, 12, 13 for signals S1, S2 and S3 in the range from 76 to 77 GHz according to the schematic illustration in FIG. 4.
  • signal lines 11, 12, 13 (FIG. 4) arranged side by side for three signals S1, S2, S3 are each provided with one Entry / exit points 21, 22, 23 connected.
  • the coupling structure 10 consists of three planar cross-couplers 30, 40, 50, which are connected to each other in a star shape and are arranged in a same signal conductor layer of a circuit substrate.
  • Two adjacent first input / output points 31, 32 of a first cross-coupler 30 form the input / output points 21, 22 of the coupling structure
  • two adjacent first input / output points 41, 42 of a second cross-coupler 40 form the input / output points 23, 24 of Coupling structure
  • two adjacent first input / output points 51, 52 of a third cross-coupler 50 form input / output points 25, 26 of the coupling structure 10.
  • second input / output points 33, 34 of the first cross-coupler at circuit points B, A each having a second input / output point 44 and 53 of a respective other cross-coupler 40, 50 of the three cross-couplers connected directly in the same signal conductor position, and another second input / output points 43 of the second cross-coupler at a circuit point C with another second input / output point 54 of the third cross-coupler 50 directly connected in the same signal conductor layer.
  • first input / output points 31, 32; 41, 42; or 51; 52 of a respective cross-coupler 30, 40, 50 input / output points 21 to 26 of the coupling structure, and on an opposite side of the respective cross-coupler 30, 40, 50 adjacent second input / output points 33, 34; 43, 44; or 53, 54 of the cross-coupler are each provided with a second input / output point 44, 53; 54, 33; or 34, 43 of a respective other of the three cross-couplers 30, 40, 50 connected directly in the same signal conductor layer.
  • the coupling structure 10 formed thereby couples the signals S 1, S 2, S 3 supplied in this order on the first side via the input / output points 21, 22, 23 to the input / output points 26, 25, 24 on the opposite side of the coupling structure 10 in reverse order.
  • the geometry of the coupling structure and the individual cross-couplers 30, 40, 50 are optimized so that superimpose the components of the respective desired signal S3, S2 and S1 constructively to the input / output points used as output 26, 25, 24 and the shares of each destructively overlay other signals.
  • the electrical lengths and line impedance are set appropriately. This can be achieved for a given substrate by adjusting line lengths and line widths. In this way, a crossing of the three signal lines 1 1, 12, 13 can be achieved with the lowest possible mutual interference of the signals.
  • FIG. 2 shows a second example of a coupling structure 10 'according to the invention, which likewise comprises three planar cross-couplers 30, 40, 50.
  • the cross-couplers are arranged one behind the other, wherein a first cross-coupler 30 on the first side of the coupling structure 10 'two first input / output points 31, 32 of the cross coupler 30 for signals S1, S2, the input / output points 21, 22 of the coupling structure 10' , coupled with arranged in reverse order second input / output points 33, 34 of the cross coupler 30.
  • a second input / output point 33 of the first cross-coupler 30 is connected at a circuit point D directly to a first input / output point 41 of a second, subsequent cross coupler 40 whose other first input / output point 42 is assigned to the signal S3 and the input / Starting point 23 of the coupling structure 10 'corresponds.
  • the second cross-coupler 40 is connected to that second input / output point 33 of the first cross-coupler 30, which is opposite to the first input / output point 31 for the signal S1 diagonally. Accordingly, on the described side of the coupling structure 10 ', the signals S1, S2, S3 are supplied side by side in this order.
  • the circuit point D is coupled via the second cross-coupler 40 with a diagonally opposite second input / output point 43 of the second cross-coupler 40 for the signal S1, which corresponds to the input / output point 24 of the coupling structure 10 '. Accordingly, via the second cross-coupler 40, the signal S3 present at the other first input / output point 42 of the second cross-coupler 40 is connected directly to a second input / output point 54 of the third cross-coupler 50 at a diagonally opposite circuit point E in the same signal conductor position.
  • the other second input / output point 53 of the third cross-coupler 50 is connected at a node F directly in the same signal conductor position via a signal line 58 in the form of a conductor section to the other second input / output point 34 of the first cross-coupler 30.
  • This connection thus runs parallel to the second cross-coupler 40.
  • the two circuit points E, F are in turn coupled to respectively diagonally opposite first input / output points 52, 51 of the third cross-coupler 50, which correspond to the input / output points 26, 25 of the coupling structure 10 'correspond, so that in total by the coupling structure 10', the order of arrangement of the signals S1, S2, S3 is reversed.
  • Fig. 3 shows schematically on the basis of the cross-coupler 30, the structure of one of the cross-couplers 30, 40, 50 of FIG. 1 or 2.
  • the other cross-couplers 40, 50 are constructed accordingly.
  • the cross-coupler 30 is constructed as a cascade of two 90 ° hybrid couplers 60, 62, wherein at a first end of the cascading, the first input / output points 31, 32 of the cross coupler are arranged directly next to one another and at a second end of the cascading second input / output points 34, 33 are arranged directly next to each other. In the plane of the cross coupler 30, the input / output points follow each other clockwise in the order of 31, 32, 33, 34, 31,.
  • the cross coupler 30 comprises two longitudinal connections 64, 66, which connect the input / output points 31 and 34 or 32 and 33 directly and rectilinearly, and which are interconnected by three cross-connections 68, so that a rung-shaped structure is formed with three transversal rungs ,
  • the length of the cross connections 68 is approximately one quarter of a signal wavelength in the signal line.
  • the length of the respective sections of the longitudinal connections 64, 66 between two cross connections 68 likewise corresponds approximately to one quarter of a signal wavelength.
  • At least two cross-couplers 30, 50 of the three cross-couplers always have two adjacent input / output points 31, 32 at one end of the relevant cascade of their 90 ° hybrid couplers 60, 62 or 51, 52 which form input / output points 21, 22 or 25, 26 of the coupling structure 10, 10 '. In the example of FIG. 1, this applies to each of the three cross-couplers.
  • the circuit substrate 70 comprises a signal conductor layer 72 in the form of a correspondingly structured metallization layer, in which the respective coupling structure 10, 10 'is formed. Further, the circuit substrate 70 includes a carrier plate 74 in the form of a dielectric and a ground layer 76. The signal conductor layer 72 and the ground layer 76 are disposed on opposite sides of the carrier plate 74.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguides (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

A coupling structure for the crossing of three transfer lines (11; 12; 13) for millimetre-wave or centimetre-wave signals (S1; S2; S3) in a signal conductor layer (72) of a circuit substrate (70), wherein the coupling structure (10) comprises three planar cross couplers (30; 40; 50), and wherein from each of the three cross couplers (30; 40; 50), two successive input/output points (33; 34; 41; 43; 44; 53; 54) of the three cross couplers (30; 40; 50) in the clockwise direction are each connected in the plane of the cross couplers (30; 40; 50) to an input/output point (33; 34; 41; 43; 44; 53; 54) of a respective other of the three cross couplers (30; 40; 50).

Description

KOPPELSTRUKTUR ZUM KREUZEN VON ÜBERTRAGUNGSLEITUNGEN  COUPLING STRUCTURE FOR CROSSING TRANSMISSION LINES
Die Erfindung betrifft eine Koppelstruktur zum Kreuzen von Übertragungsleitungen in einer Signalleiterlage eines Schaltungssubstrates, insbesondere eine Koppelstruktur zum Kreuzen von Übertragungsleitungen für Millimeterwellen- oder Zentimeterwellen- Signale. The invention relates to a coupling structure for crossing transmission lines in a signal conductor layer of a circuit substrate, in particular a coupling structure for crossing transmission lines for millimeter wave or centimeter wave signals.
STAND DER TECHNIK STATE OF THE ART
Um Übertragungsleitungen für hochfrequente Signale zu kreuzen, ist es bekannt, ein Schaltungssubstrat mit mehreren Metallisierungslagen zur Verfügung zu stellen, auf dem in unterschiedlichen Metallisierungslagen ausgebildete Übertragungsleitungen sich kreuzen können. Eine Übertragungsleitung in einer Metallisierungslage kann dabei einen Kreuzungsbereich über einen Umweg über eine andere Metallisierungslage überbrücken. Nachteilig ist dabei der zusätzliche Aufwand für das Vorsehen einer zweiten oder weiteren Metallisierungslage. In order to cross transmission lines for high-frequency signals, it is known to provide a circuit substrate with a plurality of metallization layers on which transmission lines formed in different metallization layers can intersect. A transmission line in a metallization layer can bridge an intersection region via a detour via another metallization layer. The disadvantage here is the additional effort for the provision of a second or further metallization.
Bekannt ist auch die Realisierung einer Kreuzung zweier Übertragungsleitungen der- selben Metallisierungsebene mittels einer Brücke aus einem diskreten Bauteil. Hier kann es jedoch je nach Anforderungen zu nachteiligen Leistungsverlusten kommen. Also known is the realization of an intersection of two transmission lines of the same metallization level by means of a bridge of a discrete component. Depending on the requirements, however, this can lead to disadvantageous power losses.
J.-S. Neron, G.-Y. Delisle, "Microstrip EHF Butler Matrix Design and Realization", ETRI Journal, Volume 27, Number 6, December 2005, beschreibt eine Koppelstruktur zum Kreuzen von zwei Übertragungsleitungen für ein 36 GHz Signal. Die Koppelstruktur besteht aus einem planaren Kreuzkoppler, auch als O-dB-Koppler bezeichnet, der eine Kreuzung zweier Übertragungsleitungen mit minimaler Kopplung zwischen denselben ermöglicht. Der planare Kreuzkoppler ist als Kaskade von zwei 90°-Hybrid-Kopplern ausgeführt. Ein solcher, an sich bekannter 90°-Hybrid-Koppler erzeugt aus einem Eingangssignal an einem von zwei Eingangspunkten zwei um 90° phasenversetzte Signa- le an seinen Ausgangspunkten. OFFENBARUNG DER ERFINDUNG J.-S. Neron, G.-Y. Delisle, "Microstrip EHF Butler Matrix Design and Realization", ETRI Journal, Volume 27, Number 6, December 2005, describes a coupling structure for crossing two transmission lines for a 36 GHz signal. The coupling structure consists of a planar cross-coupler, also referred to as O-dB coupler, which allows an intersection of two transmission lines with minimal coupling between them. The planar cross-coupler is a cascade of two 90 ° hybrid couplers. Such a 90 ° hybrid coupler, which is known per se, generates at its starting points two signals which are phase-shifted by 90 ° from an input signal at one of two input points. DISCLOSURE OF THE INVENTION
Aufgabe der Erfindung ist es, eine Koppelstruktur zum Kreuzen von drei Übertragungsleitungen insbesondere für Signale im Bereich von 76 bis 77 GHz in einer Signalleiterlage eines Schaltungssubstrates zu schaffen. Ein Beitrag zur Lösung dieser Aufgabe wird erfindungsgemäß durch eine Koppelstruktur zum Kreuzen von drei Übertragungsleitungen für Millimeterwellen- oder Zentimeterwellen-Signale in einer Signalleiterlage eines Schaltungssubstrates geleistet, die drei planare Kreuzkoppler umfasst, wobei von jedem der drei Kreuzkoppler zwei in der Ebene des Kreuzkopplers im Uhrzeigersinn aufeinanderfolgende Ein-/Ausgangspunkte des Kreuzkopplers verbunden sind mit jeweils einem Ein-/Ausgangspunkt eines jeweiligen anderen der drei Kreuzkoppler. Die Signalleiterlage ist vorzugsweise eine Metallisierungslage des Schaltungssubstrates. The object of the invention is to provide a coupling structure for crossing three transmission lines, in particular for signals in the range of 76 to 77 GHz in a signal conductor layer of a circuit substrate. A contribution towards achieving this object is made according to the invention by a coupling structure for crossing three transmission lines for millimeter-wave or centimeter-wave signals in a signal conductor layer of a circuit substrate comprising three planar cross-couplers, two of each of the three cross-couplers in the clockwise direction in the plane of the cross-coupler successive input / output points of the cross-coupler are connected to a respective input / output point of a respective other of the three cross-couplers. The signal conductor layer is preferably a metallization layer of the circuit substrate.
Diese Koppel struktur ermöglicht es insbesondere, dass die genannten, im Uhrzeigersinn aufeinanderfolgenden Ein-/Ausgangspunkte eines jeweiligen Kreuzkopplers in derselben Signalleiterlage mit jeweils einem Ein-/Ausgangspunkt eines jeweiligen anderen der drei Kreuzkoppler verbunden sind. Somit kann eine Koppelstruktur zum Kreuzen von drei Übertragungsleitungen innerhalb einer einzigen Signalleiterlage realisiert werden, bei der die Koppelstruktur keine außerhalb der Signalleiterlage angeordneten Bauteile aufweist, insbesondere keine diskreten Bauteile. Eine solche Koppelstruktur kann beispielsweise vorteilhaft eingesetzt werden in analogen und/oder digitalen Schaltungen für Radarsensoren, in denen Signale im entsprechenden Frequenzbereich innerhalb einer Metallisierungslage sich kreuzen sollen. This coupling structure makes it possible, in particular, that the mentioned clockwise successive input / output points of a respective cross-coupler in the same signal conductor layer are each connected to an input / output point of a respective other one of the three cross couplers. Thus, a coupling structure for crossing three transmission lines can be realized within a single signal conductor layer, in which the coupling structure has no components arranged outside the signal conductor layer, in particular no discrete components. Such a coupling structure can be advantageously used, for example, in analog and / or digital circuits for radar sensors, in which signals in the corresponding frequency range within a metallization layer are to intersect.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben. KURZE BESCHREIBUNG DER ZEICHNUNGEN Further advantageous embodiments of the invention are specified in the subclaims. BRIEF DESCRIPTION OF THE DRAWINGS
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen: Embodiments of the invention are illustrated in the drawings and explained in more detail in the following description. Show it:
Fig. 1 eine schematische Darstellung einer erfindungsgemäßen Koppelstruktur; Fig. 1 is a schematic representation of a coupling structure according to the invention;
Fig. 2 eine schematische Darstellung eines weiteren Beispiels einer erfin- dungsgemäßen Koppelstruktur; FIG. 2 shows a schematic representation of a further example of a coupling structure according to the invention; FIG.
Fig. 3 eine schematische Darstellung eines Kreuzkopplers in Form eines 90°- Hybrid-Kopplers; 3 shows a schematic representation of a cross-coupler in the form of a 90 ° hybrid coupler;
Fig. 4 eine schematische Darstellung dreier durch eine erfindungsgemäße Fig. 4 is a schematic representation of three by an inventive
Koppelstruktur gekreuzter Übertragungsleitungen; und Fig. 5 eine schematische Darstellung eines Schichtaufbaus eines Schaltungssubstrates.  Coupling structure of crossed transmission lines; and FIG. 5 is a schematic representation of a layer structure of a circuit substrate.
DETAILLIERTE BESCHREIBUNG VON AUSFÜHRUNGSBEISPIELEN DETAILED DESCRIPTION OF EMBODIMENTS
Fig. 1 und Fig. 2 zeigen unterschiedliche Beispiele von Koppelstrukturen 10, 10' zum Kreuzen von drei Übertragungsleitungen 1 1 , 12, 13 für Signale S1 , S2 und S3 im Be- reich von 76 bis 77 GHz gemäß der schematischen Darstellung in Fig. 4. Von einer ersten Schaltungsseite, in Fig. 1 , Fig. 2 und Fig. 4 jeweils links, sind für drei Signale S1 , S2, S3 in dieser Reihenfolge nebeneinander angeordnete Signalleitungen 11 , 12, 13 (Fig. 4) mit jeweils einem Ein-/Ausgangspunkt 21 , 22, 23 verbunden. Auf der entgegengesetzten Seite der Koppelstruktur 10 sind in umgekehrter Reihenfolge Fortset- zungen der drei Signalleitungen 13', 12', 11 ', für die Signale S3, S2, S1 mit jeweils einem Ein-/Ausgangspunkt 26, 25, 24 der Koppelstruktur 10 verbunden. Die an den Ein-/Ausgangspunkten 21 , 22, 23 der einen Seite der Koppelstruktur anliegenden Signale werden so auf die Ein-/Ausgangspunkte 26, 25, 24 der anderen Seite der Koppelstruktur 10 übertragen, dass die Reihenfolge der Signale (i.e. die Reihenfolge in der Anordnung der Signalpfade nebeneinander) vertauscht wird. In den Fig. 1 , 2 und 4 sind die entsprechenden Seiten der Koppelstruktur 10 bzw. 10' durch eine gestrichelte Linie voneinander abgegrenzt. Fig. 1 zeigt ein erstes Beispiel einer Koppelstruktur 10 entsprechend Fig. 4. Die Koppelstruktur 10 besteht aus drei planaren Kreuzkopplern 30, 40, 50, die sternförmig miteinander verbunden sind und in einer selben Signalleiterlage eines Schaltungssubstrates angeordnet sind. Zwei nebeneinanderliegende erste Ein-/Ausgangspunkte 31 , 32 eines ersten Kreuzkopplers 30 bilden die Ein-/Ausgangspunkte 21 , 22 der Koppelstruktur, zwei nebeneinanderliegende erste Ein-/Ausgangspunkte 41 , 42 eines zweiten Kreuzkopplers 40 bilden die Ein-/Ausgangspunkte 23, 24 der Koppelstruktur, und zwei nebeneinanderliegende erste Ein-/Ausgangspunkte 51 , 52 eines dritten Kreuzkopplers 50 bilden Ein-/Ausgangspunkte 25, 26 der Koppelstruktur 10. Auf einer entgegengesetzten Seite der jeweiligen Kreuzkoppler 30, 40, 50 sind nebeneinanderliegende zweite Ein-/Ausgangspunkte 33, 34 des ersten Kreuzkopplers an Schaltungspunkten B, A mit jeweils einem zweiten Ein-/Ausgangspunkt 44 bzw. 53 eines jeweiligen anderen Kreuzkopplers 40, 50 der drei Kreuzkoppler direkt in derselben Signalleiterlage verbunden, und ein weiterer zweiter Ein-/Ausgangspunkte 43 des zweiten Kreuzkopplers ist an einem Schaltungspunkt C mit einem weiteren zweiten Ein-/Ausgangspunkt 54 des dritten Kreuzkopplers 50 direkt in derselben Signalleiterlage verbunden. FIGS. 1 and 2 show different examples of coupling structures 10, 10 'for crossing three transmission lines 1 1, 12, 13 for signals S1, S2 and S3 in the range from 76 to 77 GHz according to the schematic illustration in FIG. 4. From a first circuit side, in each case on the left in FIGS. 1, 2 and 4, signal lines 11, 12, 13 (FIG. 4) arranged side by side for three signals S1, S2, S3 are each provided with one Entry / exit points 21, 22, 23 connected. On the opposite side of the coupling structure 10, continuations of the three signal lines 13 ', 12', 11 ', for the signals S3, S2, S1, are connected in reverse order to an input / output point 26, 25, 24 of the coupling structure 10 , The signals applied to the input / output points 21, 22, 23 of one side of the coupling structure are transmitted to the input / output points 26, 25, 24 of the other side of the coupling structure 10 in such a way that the order of the signals (ie the order in FIG the arrangement of the signal paths next to each other) is reversed. In FIGS. 1, 2 and 4, the corresponding sides of the coupling structure 10 and 10 'are delimited from one another by a dashed line. 1 shows a first example of a coupling structure 10 according to FIG. 4. The coupling structure 10 consists of three planar cross-couplers 30, 40, 50, which are connected to each other in a star shape and are arranged in a same signal conductor layer of a circuit substrate. Two adjacent first input / output points 31, 32 of a first cross-coupler 30 form the input / output points 21, 22 of the coupling structure, two adjacent first input / output points 41, 42 of a second cross-coupler 40 form the input / output points 23, 24 of Coupling structure, and two adjacent first input / output points 51, 52 of a third cross-coupler 50 form input / output points 25, 26 of the coupling structure 10. On an opposite side of the respective cross-couplers 30, 40, 50 are adjacent second input / output points 33, 34 of the first cross-coupler at circuit points B, A, each having a second input / output point 44 and 53 of a respective other cross-coupler 40, 50 of the three cross-couplers connected directly in the same signal conductor position, and another second input / output points 43 of the second cross-coupler at a circuit point C with another second input / output point 54 of the third cross-coupler 50 directly connected in the same signal conductor layer.
Somit bilden jeweils zwei nebeneinanderliegende erste Ein-/Ausgangspunkte 31 , 32; 41 , 42; bzw. 51 ; 52 eines jeweiligen Kreuzkopplers 30, 40, 50 Ein-/Ausgangspunkte 21 bis 26 der Koppelstruktur, und auf einer entgegengesetzten Seite des jeweiligen Kreuzkopplers 30, 40, 50 nebeneinanderliegende zweite Ein-/Ausgangspunkte 33, 34; 43, 44; bzw. 53, 54 des Kreuzkopplers sind mit jeweils einem zweiten Ein- /Ausgangspunkt 44, 53; 54, 33; bzw. 34, 43 eines jeweiligen anderen der drei Kreuzkoppler 30, 40, 50 direkt in derselben Signalleiterlage verbunden. Die dadurch gebildete Koppelstruktur 10 koppelt die in dieser Reihenfolge an der ersten Seite über die Ein-/Ausgangspunkte 21 , 22, 23 zugeführten Signale S1 , S2, S3 mit den Ein-/Ausgangspunkten 26, 25, 24 an der entgegengesetzten Seite der Koppelstruktur 10 in umgekehrter Reihenfolge. Durch eine geeignete Auslegung der einzelnen Teilstücke oder Leiterabschnitte der Koppelstruktur 10 und der einzelnen Teilstücke oder Leiterabschnitte der Kreuzkoppler 30, 40, 50 kann die Geometrie der Koppelstruk- tur 10 und der einzelnen Kreuzkoppler 30, 40, 50 so optimiert werden, dass sich an den als Ausgang verwendeten Ein-/Ausgangspunkten 26, 25, 24 die Anteile des jeweils gewünschten Signals S3, S2 bzw. S1 sich konstruktiv überlagern und die Anteile der jeweils anderen Signale destruktiv überlagern. Insbesondere werden die elektrischen Längen und Leitungswellenwiderstände geeignet eingestellt. Dies kann für ein gegebenes Substrat durch Anpassung der Leitungslängen und Leitungsbreiten erreicht werden. Auf diese Weise kann eine Kreuzung der drei Signalleitungen 1 1 , 12, 13 mit möglichst geringer gegenseitiger Störung der Signale erreicht werden. Thus, in each case two adjacent first input / output points 31, 32; 41, 42; or 51; 52 of a respective cross-coupler 30, 40, 50 input / output points 21 to 26 of the coupling structure, and on an opposite side of the respective cross-coupler 30, 40, 50 adjacent second input / output points 33, 34; 43, 44; or 53, 54 of the cross-coupler are each provided with a second input / output point 44, 53; 54, 33; or 34, 43 of a respective other of the three cross-couplers 30, 40, 50 connected directly in the same signal conductor layer. The coupling structure 10 formed thereby couples the signals S 1, S 2, S 3 supplied in this order on the first side via the input / output points 21, 22, 23 to the input / output points 26, 25, 24 on the opposite side of the coupling structure 10 in reverse order. By a suitable design of the individual sections or conductor sections of the coupling structure 10 and the individual sections or conductor sections of the cross-couplers 30, 40, 50, the geometry of the coupling structure and the individual cross-couplers 30, 40, 50 are optimized so that superimpose the components of the respective desired signal S3, S2 and S1 constructively to the input / output points used as output 26, 25, 24 and the shares of each destructively overlay other signals. In particular, the electrical lengths and line impedance are set appropriately. This can be achieved for a given substrate by adjusting line lengths and line widths. In this way, a crossing of the three signal lines 1 1, 12, 13 can be achieved with the lowest possible mutual interference of the signals.
Fig. 2 zeigt ein zweites Beispiel einer erfindungsgemäßen Koppelstruktur 10', die eben- falls drei planare Kreuzkoppler 30, 40, 50 umfasst. Die Kreuzkoppler sind hintereinander angeordnet, wobei ein erster Kreuzkoppler 30 auf der ersten Seite der Koppelstruktur 10' zwei erste Ein-/Ausgangspunkte 31 , 32 des Kreuzkopplers 30 für Signale S1 , S2, die den Ein-/Ausgangspunkten 21 , 22 der Koppelstruktur 10' entsprechen, mit in umgekehrter Reihenfolge angeordneten zweiten Ein-/Ausgangspunkten 33, 34 des Kreuzkopplers 30 koppelt. Ein zweiter Ein-/Ausgangspunkt 33 des ersten Kreuzkopplers 30 ist an einem Schaltungspunkt D direkt mit einem ersten Ein-/Ausgangspunkt 41 eines zweiten, nachfolgenden Kreuzkopplers 40 verbunden, dessen anderer erster Ein- /Ausgangspunkt 42 dem Signal S3 zugeordnet ist und dem Ein-/Ausgangspunkt 23 der Koppelstruktur 10' entspricht. Der zweite Kreuzkoppler 40 ist dabei mit demjenigen zweiten Ein-/Ausgangspunkt 33 des ersten Kreuzkopplers 30 verbunden, der dem ersten Ein-/Ausgangspunkt 31 für das Signal S1 diagonal gegenüberliegt. Dementsprechend werden auf der beschriebenen Seite der Koppelstruktur 10' die Signale S1 , S2, S3 in dieser Reihenfolge nebeneinander zugeführt. FIG. 2 shows a second example of a coupling structure 10 'according to the invention, which likewise comprises three planar cross-couplers 30, 40, 50. The cross-couplers are arranged one behind the other, wherein a first cross-coupler 30 on the first side of the coupling structure 10 'two first input / output points 31, 32 of the cross coupler 30 for signals S1, S2, the input / output points 21, 22 of the coupling structure 10' , coupled with arranged in reverse order second input / output points 33, 34 of the cross coupler 30. A second input / output point 33 of the first cross-coupler 30 is connected at a circuit point D directly to a first input / output point 41 of a second, subsequent cross coupler 40 whose other first input / output point 42 is assigned to the signal S3 and the input / Starting point 23 of the coupling structure 10 'corresponds. The second cross-coupler 40 is connected to that second input / output point 33 of the first cross-coupler 30, which is opposite to the first input / output point 31 for the signal S1 diagonally. Accordingly, on the described side of the coupling structure 10 ', the signals S1, S2, S3 are supplied side by side in this order.
Der Schaltungspunkt D ist über den zweiten Kreuzkoppler 40 mit einem diagonal ge- genüberliegenden zweiten Ein-/Ausgangspunkt 43 des zweiten Kreuzkopplers 40 für das Signal S1 gekoppelt, der dem Ein-/Ausgangspunkt 24 der Koppelstruktur 10' entspricht. Entsprechend ist über den zweiten Kreuzkoppler 40 das am anderen ersten Ein-/Ausgangspunkt 42 des zweiten Kreuzkopplers 40 anliegende Signal S3 an einem diagonal gegenüberliegenden Schaltungspunkt E direkt in derselben Signalleiterlage mit einem zweiten Ein-/Ausgangspunkt 54 des dritten Kreuzkopplers 50 verbunden. Der andere zweite Ein-/Ausgangspunkt 53 des dritten Kreuzkopplers 50 ist an einem Schaltungspunkt F direkt in derselben Signalleiterlage über eine Signalleitung 58 in Form eines Leiterabschnitts mit dem anderen zweiten Ein-/Ausgangspunkt 34 des ersten Kreuzkopplers 30 verbunden. Diese Verbindung verläuft somit parallel zu dem zweiten Kreuzkoppler 40. Über den dritten Kreuzkoppler 50 sind die beiden Schaltungspunkte E, F wiederum mit jeweils diagonal gegenüberliegenden ersten Ein- /Ausgangspunkten 52, 51 des dritten Kreuzkopplers 50 gekoppelt, die den Ein- /Ausgangspunkten 26, 25 der Koppelstruktur 10' entsprechen, so dass insgesamt durch die Koppelstruktur 10' die Reihenfolge der Anordnung der Signale S1 , S2, S3 umgekehrt wird. The circuit point D is coupled via the second cross-coupler 40 with a diagonally opposite second input / output point 43 of the second cross-coupler 40 for the signal S1, which corresponds to the input / output point 24 of the coupling structure 10 '. Accordingly, via the second cross-coupler 40, the signal S3 present at the other first input / output point 42 of the second cross-coupler 40 is connected directly to a second input / output point 54 of the third cross-coupler 50 at a diagonally opposite circuit point E in the same signal conductor position. The other second input / output point 53 of the third cross-coupler 50 is connected at a node F directly in the same signal conductor position via a signal line 58 in the form of a conductor section to the other second input / output point 34 of the first cross-coupler 30. This connection thus runs parallel to the second cross-coupler 40. Via the third cross-coupler 50, the two circuit points E, F are in turn coupled to respectively diagonally opposite first input / output points 52, 51 of the third cross-coupler 50, which correspond to the input / output points 26, 25 of the coupling structure 10 'correspond, so that in total by the coupling structure 10', the order of arrangement of the signals S1, S2, S3 is reversed.
Fig. 3 zeigt schematisch anhand des Kreuzkopplers 30 den Aufbau eines der Kreuzkoppler 30, 40, 50 der Fig. 1 oder 2. Die übrigen Kreuzkoppler 40, 50 sind entsprechend aufgebaut. Fig. 3 shows schematically on the basis of the cross-coupler 30, the structure of one of the cross-couplers 30, 40, 50 of FIG. 1 or 2. The other cross-couplers 40, 50 are constructed accordingly.
Der Kreuzkoppler 30 ist als Kaskade zweier 90°-Hybrid-Koppler 60, 62 aufgebaut, wo- bei an einem ersten Ende der Kaskadierung die ersten Ein-/Ausgangspunkte 31 , 32 des Kreuzkopplers unmittelbar nebeneinander angeordnet sind und an einem zweiten Ende der Kaskadierung die zweiten Ein-/Ausgangspunkte 34, 33 unmittelbar nebeneinander angeordnet sind. In der Ebene des Kreuzkopplers 30 folgen die Ein- /Ausgangspunkte im Uhrzeigersinn in der Reihenfolge 31 , 32, 33, 34, 31 , ... usw. auf- einander. Der Kreuzkoppler 30 umfasst zwei Längsverbindungen 64, 66, welche die Ein-/Ausgangspunkte 31 und 34 bzw. 32 und 33 direkt und geradlinig miteinander verbinden, und die durch drei Querverbindungen 68 miteinander verbunden sind, so dass eine sprossenleiterförmige Struktur mit drei Quersprossen gebildet ist. Die Länge der Querverbindungen 68 beträgt annähernd ein Viertel einer Signalwellenlänge in der Signalleitung. Die Länge der jeweiligen Abschnitte der Längsverbindungen 64, 66 zwischen zwei Querverbindungen 68 entspricht ebenfalls annähernd einem Viertel einer Signalwellenlänge. The cross-coupler 30 is constructed as a cascade of two 90 ° hybrid couplers 60, 62, wherein at a first end of the cascading, the first input / output points 31, 32 of the cross coupler are arranged directly next to one another and at a second end of the cascading second input / output points 34, 33 are arranged directly next to each other. In the plane of the cross coupler 30, the input / output points follow each other clockwise in the order of 31, 32, 33, 34, 31,. The cross coupler 30 comprises two longitudinal connections 64, 66, which connect the input / output points 31 and 34 or 32 and 33 directly and rectilinearly, and which are interconnected by three cross-connections 68, so that a rung-shaped structure is formed with three transversal rungs , The length of the cross connections 68 is approximately one quarter of a signal wavelength in the signal line. The length of the respective sections of the longitudinal connections 64, 66 between two cross connections 68 likewise corresponds approximately to one quarter of a signal wavelength.
Bei den Fig. 1 und 2 dargestellten Beispielen weisen stets wenigstens zwei Kreuzkoppler 30, 50 der drei Kreuzkoppler jeweils an einem Ende der betreffenden Kaskade ihrer 90°-Hybrid-Koppler 60, 62 zwei nebeneinanderliegende Ein-/Ausgangspunkte 31 , 32 bzw. 51 , 52 auf, welche Ein-/Ausgangspunkte 21 , 22 bzw. 25, 26 der Koppelstruktur 10, 10' bilden. Bei dem Beispiel der Fig. 1 trifft dies für jeden der drei Kreuzkoppler zu. In the examples illustrated in FIGS. 1 and 2, at least two cross-couplers 30, 50 of the three cross-couplers always have two adjacent input / output points 31, 32 at one end of the relevant cascade of their 90 ° hybrid couplers 60, 62 or 51, 52 which form input / output points 21, 22 or 25, 26 of the coupling structure 10, 10 '. In the example of FIG. 1, this applies to each of the three cross-couplers.
Fig. 5 zeigt schematisch einen Aufbau eines Schaltungssubstrates 70, auf dem beispielsweise die Koppelstruktur 10 oder 10' realisiert ist. Das Schaltungssubstrat 70 umfasst eine Signalleiterlage 72 in Form einer entsprechend strukturierten Metallisierungsschicht, in der die jeweilige Kopplungsstruktur 10, 10' ausgebildet ist. Weiter umfasst das Schaltungssubstrat 70 eine Trägerplatte 74 in Form eines Dielektrikums und eine Masselage 76. Die Signalleiterlage 72 und die Masselage 76 sind auf entgegengesetzten Seiten der Trägerplatte 74 angeordnet. 5 schematically shows a structure of a circuit substrate 70 on which, for example, the coupling structure 10 or 10 'is realized. The circuit substrate 70 comprises a signal conductor layer 72 in the form of a correspondingly structured metallization layer, in which the respective coupling structure 10, 10 'is formed. Further, the circuit substrate 70 includes a carrier plate 74 in the form of a dielectric and a ground layer 76. The signal conductor layer 72 and the ground layer 76 are disposed on opposite sides of the carrier plate 74.

Claims

PATENTANSPRÜCHE
1. Koppelstruktur zum Kreuzen von drei Übertragungsleitungen (11 ; 12; 13) für Millimeterwellen- oder Zentimeterwellen-Signale (S1 ; S2; S3) in einer Signalleiterlage (72) eines Schaltungssubstrates (70), A coupling structure for crossing three transmission lines (11, 12, 13) for millimeter-wave or centimeter-wave signals (S1, S2, S3) in a signal conductor layer (72) of a circuit substrate (70),
wobei die Koppelstruktur (10) drei planare Kreuzkoppler (30; 40; 50) umfasst, und  wherein the coupling structure (10) comprises three planar cross-couplers (30; 40; 50), and
wobei von jedem der drei Kreuzkoppler (30; 40; 50) zwei in der Ebene des Kreuzkopplers (30; 40; 50) im Uhrzeigersinn aufeinanderfolgende Ein- /Ausgangspunkte (33; 34; 41 ; 43; 44; 53; 54) des Kreuzkopplers (30; 40; 50) verbunden sind mit jeweils einem Ein-/Ausgangspunkt (33; 34; 41 ; 43; 44; 53; 54) eines jeweiligen anderen der drei Kreuzkoppler (30; 40; 50).  wherein each of the three cross-couplers (30; 40; 50) has two input / output points (33; 34; 41; 43; 44; 53; 54) of the cross-coupler which follow one another in the plane of the cross-coupler (30; 40; 50) in the clockwise direction (30; 40; 50) are each connected to an input / output point (33; 34; 41; 43; 44; 53; 54) of a respective other of the three cross-couplers (30; 40; 50).
2. Koppelstruktur nach Anspruch 1 , bei dem die Kreuzkoppler (30; 40; 50) jeweils als Kaskade von 90°-Hybrid-Kopplern (60; 62) ausgebildet sind. A coupling structure according to claim 1, wherein the cross couplers (30; 40; 50) are each formed as a cascade of 90 ° hybrid couplers (60; 62).
3. Koppelstruktur nach Anspruch 2, bei der wenigstens zwei Kreuzkoppler (30; 50) der drei genannten Kreuzkoppler (30; 40; 50) jeweils an einem Ende der betreffenden Kaskade zwei nebeneinanderliegende Ein-/Ausgangspunkte (31 ; 32; 51 ; 52) aufwei- sen, welche Ein-/Ausgangspunkte (21 ; 22; 25; 26) der Koppelstruktur (10) bilden. 3. Coupling structure according to claim 2, in which at least two cross-couplers (30; 50) of the three crosstalk couplers (30; 40; 50) each have at one end of the relevant cascade two adjacent input / output points (31; 32; 51; 52). which input / output points (21, 22, 25, 26) form the coupling structure (10).
4. Koppelstruktur nach einem der Ansprüche 1 bis 3, bei der von jedem der drei genannten Kreuzkoppler (30; 40; 50) zwei in der Ebene des Kreuzkopplers (30; 40; 50) im Uhrzeigersinn aufeinanderfolgende Ein-/Ausgangspunkte (33; 34; 41 ; 43; 44; 53; 54) des Kreuzkopplers (30; 40; 50) direkt und in derselben Signalleiterlage (32) verbunden sind mit jeweils einem Ein-/Ausgangspunkt (33; 34; 41 ; 43; 44; 53; 54) eines jeweiligen anderen der drei Kreuzkoppler (30; 40; 50). A coupling structure as claimed in any one of claims 1 to 3, wherein two input / output points (33, 34, 34) following each other clockwise in the plane of the cross coupler (30; 40; 50) of each of said three cross couplers (30; 40; 50) 41; 43; 44; 53; 54) of the cross-coupler (30; 40; 50) are connected directly and in the same signal conductor layer (32), each having an input / output point (33; 34; 41; 43; 44; 53; 54) of a respective other of the three cross-couplers (30; 40; 50).
5. Koppelstruktur nach einem der Ansprüche 1 bis 4, bei der die drei Kreuzkoppler (30; 40; 50) sternförmig angeordnet sind. 5. Coupling structure according to one of claims 1 to 4, wherein the three cross-couplers (30; 40; 50) are arranged in a star shape.
6. Koppelstruktur nach einem der Ansprüche 1 bis 4, bei der die drei Kreuzkoppler (30; 40; 50) sequentiell hintereinander angeordnet sind, wobei ein zweiter, mittlerer Kreuzkoppler (40) seitlich versetzt zu einem ersten und einem dritten Kreuzkoppler (30; 50) angeordnet ist und eine neben dem mittleren Kreuzkoppler (40) verlaufende Sig- nalleitung (58) einen Ein-/Ausgangspunkt (34) des ersten Kreuzkopplers (30) mit einem Ein-/Ausgangspunkt (53) des dritten Kreuzkopplers (50) verbindet. A coupling structure according to any one of claims 1 to 4, wherein the three cross couplers (30; 40; 50) are arranged sequentially one behind the other, with a second, middle cross coupler (40) laterally offset from a first and a third cross coupler (30; ) and a signal line (58) extending next to the central cross-coupler (40) connects an input / output point (34) of the first cross-coupler (30) to an input / output point (53) of the third cross-coupler (50).
EP12813791.6A 2012-02-13 2012-12-17 Coupling structure for the crossing of transfer lines Active EP2815455B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012202097A DE102012202097A1 (en) 2012-02-13 2012-02-13 COUPLING STRUCTURE FOR CROSSING TRANSMISSION LINES
PCT/EP2012/075711 WO2013120561A1 (en) 2012-02-13 2012-12-17 Coupling structure for the crossing of transfer lines

Publications (2)

Publication Number Publication Date
EP2815455A1 true EP2815455A1 (en) 2014-12-24
EP2815455B1 EP2815455B1 (en) 2019-11-20

Family

ID=47557036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12813791.6A Active EP2815455B1 (en) 2012-02-13 2012-12-17 Coupling structure for the crossing of transfer lines

Country Status (6)

Country Link
US (1) US10062945B2 (en)
EP (1) EP2815455B1 (en)
JP (1) JP5931221B2 (en)
CN (1) CN104137330B (en)
DE (1) DE102012202097A1 (en)
WO (1) WO2013120561A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220254A1 (en) * 2013-10-08 2015-04-09 Robert Bosch Gmbh High frequency circuit with crossed lines
JP6022129B1 (en) * 2016-01-12 2016-11-09 三菱電機株式会社 Feed circuit and antenna device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621400A (en) * 1969-04-17 1971-11-16 Anaren Microwave Inc Alternating current signal-combining apparatus
JPS4921974B1 (en) * 1969-06-30 1974-06-05
JPS5223539B2 (en) * 1971-10-11 1977-06-24
US4127831A (en) * 1977-02-07 1978-11-28 Riblet Gordon P Branch line directional coupler having an impedance matching network connected to a port
JPS61172407A (en) * 1984-12-25 1986-08-04 Fujitsu Ltd Branch coupling type hybrid
US4679010A (en) * 1985-12-20 1987-07-07 Itt Gallium Arsenide Technology Center, A Division Of Itt Corporation Microwave circulator comprising a plurality of directional couplers connected together by isolation amplifiers
JPS63294103A (en) * 1987-05-27 1988-11-30 Fujitsu Ltd Three-branch line 3db hybrid circuit
US4810982A (en) * 1987-10-23 1989-03-07 Hughes Aircraft Company Coaxial transmission-line matrix including in-plane crossover
GB2257841B (en) * 1991-07-18 1994-12-21 Matra Marconi Space Uk Ltd Multi-port microwave coupler
JPH0738301A (en) 1993-07-23 1995-02-07 Nec Corp Cross circuit of strip line
US5883552A (en) * 1997-11-04 1999-03-16 Hughes Electronics Corporation Microwave power divider/combiner structures
US6522218B1 (en) * 2000-03-17 2003-02-18 Hughes Electronics Corporation Symmetric N×N branch-line hybrid power divider/combiner
JP5243821B2 (en) 2007-03-26 2013-07-24 富士フイルム株式会社 Inorganic film and manufacturing method thereof, piezoelectric element, and liquid ejection apparatus
US7541890B2 (en) 2007-10-29 2009-06-02 Applied Radar, Inc. Quasi active MIMIC circulator
JP2011041137A (en) * 2009-08-17 2011-02-24 Mitsubishi Electric Corp Power distribution/synthesis circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013120561A1 *

Also Published As

Publication number Publication date
WO2013120561A1 (en) 2013-08-22
JP5931221B2 (en) 2016-06-08
US10062945B2 (en) 2018-08-28
JP2015511442A (en) 2015-04-16
DE102012202097A1 (en) 2013-08-14
US20150035616A1 (en) 2015-02-05
CN104137330A (en) 2014-11-05
CN104137330B (en) 2018-03-30
EP2815455B1 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
DE69832228T2 (en) balun
DE2631026C2 (en)
DE602006000890T2 (en) Multi-layer planar balun transformer, mixer and amplifier
DE1964412A1 (en) Coupling link
EP1867003B1 (en) High-frequency coupler or power splitter, especially a narrow-band 3db coupler or power splitter
DE60037550T2 (en) Broadband balancing circuit for wireless and high-frequency applications
DE4120521C2 (en) Microwave flat antenna for two orthogonal polarizations with a pair of orthogonal radiator slots
DE2523525C3 (en) Switching unit and switching matrix for high-frequency signals
DE3340566C2 (en)
DE102006046728A1 (en) Directional coupler e.g. rat-race coupler, for use in micro-chip, has gates electrically connected with each other by line branches, where all line branches are formed as symmetric line pairs
EP2815455B1 (en) Coupling structure for the crossing of transfer lines
DE3517010A1 (en) BROADBAND TEM-FASHION HYBRID WITH FOUR CONNECTIONS
DE60223479T2 (en) Adapted broadband switching matrix with active diode isolation
DE102009011870A1 (en) High frequency device with several rectangular waveguides
EP3449528B1 (en) Circuit board assembly for supplying signals to radiators
DE60031399T2 (en) Symmetriereinrichtung, mixer and thus provided down converter
DE19851740C1 (en) Monolithic integrated inter digital coupler for millimeter waves
DE2723384A1 (en) HIGH FREQUENCY COUPLER
EP1702386B1 (en) Stripline directional coupler having a wide coupling gap
DE102013220254A1 (en) High frequency circuit with crossed lines
DE3924426C2 (en)
DE10348722B4 (en) Electrical matching network with a transformation line
DE60311476T2 (en) Signal switching device
EP0317718B1 (en) Planar branch line coupler
EP1253669B1 (en) Array antenna with a number of resonant radiating elements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180517

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 5/02 20060101ALI20190725BHEP

Ipc: H01P 5/12 20060101ALI20190725BHEP

Ipc: H01P 5/22 20060101AFI20190725BHEP

INTG Intention to grant announced

Effective date: 20190812

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PONTES, JUAN

Inventor name: BRUEGGMANN, OLIVER

Inventor name: STEINHAUER, MATTIAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012015552

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1205235

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191120

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012015552

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1205235

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211220

Year of fee payment: 10

Ref country code: SE

Payment date: 20211220

Year of fee payment: 10

Ref country code: GB

Payment date: 20211222

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221218

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240227

Year of fee payment: 12