EP2815088A1 - Agencement de soupape hydraulique pour actionner de façon commandée une soupape d'échange de gaz d'un moteur à combustion interne à piston - Google Patents
Agencement de soupape hydraulique pour actionner de façon commandée une soupape d'échange de gaz d'un moteur à combustion interne à pistonInfo
- Publication number
- EP2815088A1 EP2815088A1 EP13712817.9A EP13712817A EP2815088A1 EP 2815088 A1 EP2815088 A1 EP 2815088A1 EP 13712817 A EP13712817 A EP 13712817A EP 2815088 A1 EP2815088 A1 EP 2815088A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- piston
- fluid
- valve
- fluid chamber
- gas exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 14
- 239000012530 fluid Substances 0.000 claims abstract description 119
- 230000007423 decrease Effects 0.000 claims abstract description 14
- 230000000694 effects Effects 0.000 description 5
- 238000003825 pressing Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/10—Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
Definitions
- the present invention relates to a hydraulic valve arrangement for controllably operating a gas exchange valve of an internal combustion piston engine, the arrangement comprising a body part having a working space into which an operating piston is arranged, which operating piston comprises at least a first and a second concentric piston parts, and in which body part a first fluid chamber is arranged bordered by radial surfaces of both the first and the second piston parts and having a volume that increases in response to the piston parts moving relative to the body part in a first direction, and a second fluid chamber is arranged bordered by radial surface of the second piston part having a volume that decreases in response to the second piston part moving relative to the body part in a first direction.
- An internal combustion engine typically includes a plurality of gas exchange valves. These valves control the intake and exhaust gas flow through the combustion chamber(s) of the engine.
- a typical engine will include at least one intake valve and at least one exhaust valve for each cylinder or combustion chamber of the engine.
- the opening of each valve is timed to occur at a predetermined cam or crank shaft angle in the operating cycle of the engine. It's well known that it is beneficial to control the time that gas exchange valves of engine are open while the engine is running.
- the maximum capacity of the engine may be effected by prolonging the time valves are open when running speed is high and when the maximum capacity is needed, for example.
- the available engine torque can be increased at partial load and lower revolutions, for example, by choosing suitable opening times for the valves.
- EP 140347381 B1 discloses an actuation assembly having a body, a valve moving piston arranged slidable relative to the body, and first, sec- ond, and third hydraulic chambers defined between the piston and the body, wherein the first and second chambers have volumes that decrease and the third chamber has a volume that increases in response to the piston moving relative to the body in a first direction.
- US 2004055547 A1 shows a hydraulic actuator in which an operat- ing piston is designed in such a way that the areal surface of at least one of the two effective areas changes along the sliding path of the operating piston. Specifically it shows an arrangement in which the piston has a plurality of parts and has two partial pistons which have different axial lengths and they are concentrically inserted inside each other so as to be movable rela- tive to each another.
- gas exchange valve may be rapidly opened with great displacement force, which then rapidly drops and remains constant over the rest of the valve lift by means of the inner piston only.
- Hydraulic actuators provide extensive possibilities for controlling and adjusting the valve opening and closing during the operation of the engine.
- a challenge of hydraulic gas exchange valve actuation is energy efficiency due to considerably high flow rates of hydraulic fluid.
- a hydraulic valve arrangement for controllably operating a gas exchange valve of an internal combustion piston engine, the arrangement comprising a body part having a working space into which an operating piston is arranged, which operating piston comprises at least a first and a second concentric piston parts arranged slidably in respect to each other, and in which body part a first fluid chamber is arranged bordered by radial surfaces of both the first and the second piston parts and having a volume that increases in response to the piston parts moving relative to the body part in a first direc- tion, and a second fluid chamber is arranged bordered by radial surface of the second piston part having a volume that decreases in response to the second piston part moving relative to the body part in a first direction. It is characteristic to the invention that the movement of the second piston part in the first direction relative to the body part is arranged independently from the first piston part controllable by a fluid control system arranged in connection with the hydraulic valve arrangement.
- the fluid control system comprises a pressure line connected to a source of pressurized fluid and to the first fluid chamber and being provided with a pressure valve, and each of the fluid chambers having a volume that decreases in response to at least one of the piston parts moving relative to the body part in a first direction, is in controllable fluid communication with the pressure line.
- the fluid control system comprises a fluid line connecting the second fluid chamber controllably to a low pressure part of the fluid control system.
- a third fluid chamber is arranged being bordered by radial surfaces of at least the first piston part having a volume that decreases in response to the first piston part moving relative to the body part in a first direction.
- the first and the third fluid chambers are selectively connectable to a pressurized hydraulic fluid source.
- the radial surface of the first piston part bordering the first fluid chamber is smaller than the radial surface of the first piston part bordering the third fluid chamber and the radial surface of the first piston part bordering the third fluid chamber is smaller than the radial surface of the second piston part bordering the sec- ond fluid chamber.
- first piston part is arranged freely movable in respect to the second piston part in the first direction and it is provided with a mechanical stop which delimits the movement of the second piston part in respect to the first piston part.
- Figure 1 illustrates a hydraulic valve arrangement for controllably operating a gas exchange valve of an internal combustion piston engine according to an embodiment of the invention
- Figure 2 illustrates a hydraulic valve arrangement for controllably operating a gas exchange valve of an internal combustion piston engine according to another embodiment of the invention
- Figure 3 illustrates a hydraulic valve arrangement for controllably operating a gas exchange valve of an internal combustion piston engine according to still another embodiment of the invention.
- FIG 1 there is schematically shown a hydraulic valve arrangement 10 for an internal combustion piston engine according to an embodiment of the invention.
- the arrangement comprises a body part 12 into which a working space 14 is arranged.
- the arrangement comprises further an operating piston 16 which is arranged into the working space.
- the operating piston is in force transmission con- nection with a gas exchange valve 18 of the engine.
- the operating piston 16 is arranged movably in the working space 14 so that it may move in first direction which causes opening movement of the gas exchange valve 18 and respectively in second direction opposite to the first direction which causes closing movement of the gas exchange valve 18.
- the working space 14 is arranged rotationally symmetrical manner in respect to its central axis 20.
- the working space extends as a guiding section 22 at its one end which has inner diameter selected in respective to the outer diameter of the operating piston 16 at corresponding area so that desired guiding effect for the piston 16 is achieved.
- the operating piston 16 comprises at least a first 16.1 and a second 16.2 concentric piston parts.
- the first and the second piston parts 16.1 , 16.2 are arranged slidably in respect to each other so that the movement of the second piston part 16.2 in the first direction relative to the first part is delimited by a mechanical stop 50 arranged to the first piston part 16.1 .
- a mechanical stop 50 arranged to the first piston part 16.1 .
- the second stop limits the movement of the second piston part 16.2 in the second direction to a predetermined position in respect to the body part 12.
- the second stop defines the initial position of the second piston part 16.2.
- the piston parts are arranged controllable by a fluid control system 24 arranged in connection with the hydraulic valve arrangement.
- FIG 2 there is shown a valve arrangement 10 which identical to that shown in figure 1 described above but which is controllable by a fluid control system 24 which allow more sophisticated control of the valve ar- rangement.
- the second piston part 16.2 is assisting the movement of the first piston part 16.1 in the first direction when the valve 18 is to be opened.
- the first piston part 16.1 pushes the second piston part back to its initial position against the second mechanical stop 51 .
- first fluid chamber 14.1 arranged in the working space partially bordered by radial surfaces 16.1 ', 16.2' of both the first and the second piston parts 16.1 16.2 at their first ends and having a volume that increases in response to either or both of the piston parts 16.1 , 16.2 moving relative to the body part 14 in the first direction, that is downwards in the figures 1 and 2.
- the working space includes also a second fluid chamber 14.2 which is arranged in the working space partially bordered at least by radial surface 16.2" of the second piston part at its second end having a volume that decreases in response to the second piston part moving relative to the body part in the first direction being downwards direction in the figuresl and 2.
- radial surfaces 16.1 ', 16.2', 16.2" define effective areas so that 16.1 ' defines the area of the first end of the first piston part 16.1 , 16.2' defines the area of the first end of the second piston part 16.2 and 16.2" defines the area of the second end of the second piston part when being against the mechanical stop 50 arranged to the first piston part in a form of shoulder.
- the fluid control system 24 comprises a pressure line 26 connected to a source of pressurized fluid 28 and also to the first fluid chamber 14.1 and is provided with a pressure valve 30.
- a pressure line 26 connected to a source of pressurized fluid 28 and also to the first fluid chamber 14.1 and is provided with a pressure valve 30.
- the fluid control system 24 comprises a fluid line 38 having a valve 40 connecting the second fluid chamber 14.2 controllably to the low pressure part 36.
- the valve 40 in the flu- id line it is possible to control the flow of fluid from the second fluid chamber 14.2.
- the fluid flow out from the second chamber defines the state of moving of the second piston part 16.2.
- the second piston part 16.2 may not move even if the valve 30 is open. In that case only the piston part 16.1 moves and the piston part 16.2 substantially remains its current position representing to position when the valve 30 is closed.
- the valve 30 may be controlled to be closed at any suitable moment during the movement of the piston 16 so that the movement of the second piston part 16.2 is moved along the first piston part 16.1 only to a desired extent.
- the second fluid chamber 14.2 is additionally in controllable fluid communication 32 with the first fluid chamber 14.1 .
- this has been realized by controllable fluid communication 32 with pressure line 26 downstream the pressure valve 30 having a valve 31 .
- the pressurized fluid may be caused to effect on both ends of the second piston part 16.2. Since the radial surface 16.2' at the first end of the second piston part is bigger than the radial surface 16.2" at the second end of the second piston part at the initial position shown in figure 2 the force subjected by the second piston part 16.2 to the first piston part 16.1 is defined by the difference of the surface areas 16,2' and 16,2".
- the effect of the second piston part 16.2 is controlled by opening the fluid flow communication from the second fluid chamber 14.2 to either to pressure line or the low pressure part 36 of the system or closing the fluid flow communication from the second fluid chamber 14.2.
- the control valve 31 is open and the control valve 40 is closed and hydraulic fluid is fed to the first fluid chamber 14.1 hydraulic fluid is returned from the second fluid chamber 14.2 to the pressure line 26, and thus the needed flow rate from the pressurized hydraulic fluid source is smaller.
- the stopping of the movement of the second piston part in the first direction relative to the body part is arranged independently from the first piston part. This also means stopping of the trans- mitting force from the second piston part to the first piston part. This feature is shown in all figures 1 - 3.
- the working space 14 and the first piston part 16.1 delimit a third fluid chamber 14.3 which is arranged partially bordered by radial surface 16.1 " of at least the first piston part 16.1 the chamber having a volume that decreases in response to the first piston part moving relative to the body part in a first direction.
- the third fluid chamber is selectively connectable by means of a fluid line 46 having a valve 42 to a pressurized hydraulic fluid source 28 which facilitates the movement of the piston in the second direction i.e. the direction causing the movement of the gas exchange valve 18 in its closing direction.
- the pressure line i.e. the first chamber 14.1 is also selectively connectable by means of a fluid line having a valve 62 to the low pressure part 36 of the system.
- the third fluid chamber 14.3 is also in controllable fluid communication 44 with the first fluid chamber 14.1 .
- this has been realized by controllable fluid communication 44 with the pressure line 26 downstream the pressure valve 30 having a valve 43.
- the pressurized hydraulic fluid may be caused to effect on first end of the first piston part 16.1 and its radial surface 16.1 ". Since the radial surface 16.1 ' at the first end of the first piston part is bigger than the radial surface 16.1 " bordering the third chamber the force subjected to the first piston part 16.1 is defined by the difference of the surface areas when the communication from the third chamber to the pressure line 26 is open.
- the effect of the first piston part 16.1 is controlled by opening the fluid flow communication from the third fluid chamber 14.3 to either to pressure line or the low pressure part 36 of the system.
- the third chamber 14.3 connected to the low pressure part 36 by a line 46 provided with a control valve 48.
- the second chamber 14.2 is controllably connected to the low pressure part 36 by a fluid line 38 provided with a control valve 40.
- each of the fluid chambers which has a volume that decreases in response to at least one of the piston parts moving relative to the body part in a first direction is in controllable fluid communication with the pressure line downstream the pressure valve, that is at the side of the first fluid chamber.
- the arrangement of figure 1 and figure 2 includes two piston parts, and it is possible to select the way their effective areas are utilized in applying different forces to the piston 16 by several combinations of suitably opened and closed control valves. In practise the benefit in this arrangement is to have selectable effective area i.e. combined radial surfaces in the working space 14. This way, depending e.g. on the engine load, the engine automation may select what effective area is used.
- the effective area is chosen so that the force produced by the hydraulic pressure equals the restricting forces, the required hydraulic flow is minimized, thus saving energy. If the effective area is bigger than what is required by the forces, the needed hydraulic flow is also bigger and the system consumes extra energy, which is minimized by the present invention.
- the hydraulic cylinder has at least three fluid chambers 14.1 , 14.2, 14.3.
- the chamber 14.1 on top in the figure 1 and figure 2 is for pressing the piston 16 down which movement opens the gas exchange valve 18.
- the third chamber 14.3 in the figure is used also for pressing the piston up which closes the gas exchange valve.
- the second i.e. middle chamber 14.2 is a control volume.
- the hydraulic fluid e.g. oil
- the hydraulic fluid in the second chamber 14.2 may not flow out while the inner piston tends to move down.
- the second piston part 16.2 cannot move, and so the only member doing the work is the first piston part 16.1 .
- the force obtained in this manner is adequate less flow rate of the fluid is required.
- the produced force is the surface area 16.1 ' hydraulic pressure in the chamber 14.1 .
- the third chamber 14.3 volume is connected to the low pressure part 36 (tank).
- the second volume 14.2 control valve 40 is opened connecting the second volume 14.2 to the low pressure part 36 and both piston parts move down, the outer piston part 16.2 press- ing the inner piston part 16.1 .
- the effective force is obtained by the combined piston areas 16.1 ' and 16.2'.
- the system may be provided with more pistons part and radial surfaces than two.
- the third chamber 14.3 is pressurized when the piston is returned to the initial position. Now the first chamber 14.1 is connected to the low pressure part 36 (tank). According to an embodiment of the invention also the valve 31 is opened. This makes is possible that fluid from both chambers 14.1 and 14.2 may flow to the low pressure part 36 either through the valve 62 or the valve 40 (or both), This way the piston 16 may be return back to its initial position even if either of the valve 62 or 40 is inoperative. Generally, the first chamber 14.1 and the second chamber 14.2 are selectably and/or controllably connected the low pressure part 36 because operational selections may be made by means of the control valve 31 . [0033] .
- the returning of the gas exchange valve requires much less force because there isn't an engine pressure restricting the movement. Because of that, the area causing the return movement may be smaller than the area causing the movement in the first direction. [0034]
- the arrangement of the figure 1 and figure 2 allows adjusting the actuator effective area for each load case. [0035] In the following table there are shown possible force combinations obtainable by the arrangement of figure 1 and figure 2 with a predetermined pressure.
- Valve 30 is open in all combinations. Available forces depend on the actual dimensioning of the areas and also hydraulic pressure used.
- FIG 2 there is also shown pressure accumulator system 55 selectively connectable by means of valve 56 and 57 to the pressure line 26 and the line 46 in connection with the low pressure part 36 of the system.
- pressure accumulator system 55 selectively connectable by means of valve 56 and 57 to the pressure line 26 and the line 46 in connection with the low pressure part 36 of the system.
- FIG 3 there is shown another embodiment of the invention where three piston parts, the first part 16.1 , the second piston part 16.2, and a third piston part 16.3, are arranged in coaxial manner.
- corresponding reference numbering to those in figure 1 and figure 2 for corresponding elements.
- Each of the fluid chambers 14.2, 14.3 and 14.4 which have a volume that decreases in response to at least one of the piston parts moving relative to the body part in a first direction is in controllable fluid communication 27,32,44 having a control valve 29,31 ,43 with the pressure line 26 downstream the pressure valve.
- the fluid control system 24 comprises a fluid line 23 having a valve 25 connecting also the fourth fluid chamber 14.4 controllably to the low pressure part 36.
- An inner coaxial piston part and an outer coaxial piston part are so arranged that the movement of the outer coaxial piston part is limited to a predetermined longitudinal position in respect to the inner coaxial piston part.
- the movement of the outer coaxial piston part is limited preferably by the form of the opposing surfaces of the inner coaxial piston part and the outer coaxial piston part.
- the arrangement may be provided with a spring element 60 urging the piston to move in the second direction for example in the third fluid chamber.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15200820.7A EP3045689A3 (fr) | 2012-02-16 | 2013-02-11 | Agencement de soupape hydraulique pour faire fonctionner de manière commandée une soupape d'échange gazeux d'un moteur à combustion interne à piston |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20125181A FI124245B (en) | 2012-02-16 | 2012-02-16 | Hydraulic valve arrangement for controlled actuation of the gas exchange valve of the reciprocating internal combustion engine |
PCT/FI2013/050146 WO2013121100A1 (fr) | 2012-02-16 | 2013-02-11 | Agencement de soupape hydraulique pour actionner de façon commandée une soupape d'échange de gaz d'un moteur à combustion interne à piston |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15200820.7A Division-Into EP3045689A3 (fr) | 2012-02-16 | 2013-02-11 | Agencement de soupape hydraulique pour faire fonctionner de manière commandée une soupape d'échange gazeux d'un moteur à combustion interne à piston |
EP15200820.7A Division EP3045689A3 (fr) | 2012-02-16 | 2013-02-11 | Agencement de soupape hydraulique pour faire fonctionner de manière commandée une soupape d'échange gazeux d'un moteur à combustion interne à piston |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2815088A1 true EP2815088A1 (fr) | 2014-12-24 |
EP2815088B1 EP2815088B1 (fr) | 2016-02-10 |
Family
ID=48014031
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15200820.7A Withdrawn EP3045689A3 (fr) | 2012-02-16 | 2013-02-11 | Agencement de soupape hydraulique pour faire fonctionner de manière commandée une soupape d'échange gazeux d'un moteur à combustion interne à piston |
EP13712817.9A Active EP2815088B1 (fr) | 2012-02-16 | 2013-02-11 | Agencement de soupape hydraulique pour actionner de façon commandée une soupape d'échange de gaz d'un moteur à combustion interne à piston |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15200820.7A Withdrawn EP3045689A3 (fr) | 2012-02-16 | 2013-02-11 | Agencement de soupape hydraulique pour faire fonctionner de manière commandée une soupape d'échange gazeux d'un moteur à combustion interne à piston |
Country Status (5)
Country | Link |
---|---|
EP (2) | EP3045689A3 (fr) |
KR (1) | KR101946098B1 (fr) |
CN (1) | CN104169532B (fr) |
FI (1) | FI124245B (fr) |
WO (1) | WO2013121100A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3126643B1 (fr) * | 2014-03-06 | 2018-01-03 | Wärtsilä Finland Oy | Agencement de soupape d'échange de gaz |
CN104632317A (zh) * | 2015-01-30 | 2015-05-20 | 哈尔滨工程大学 | 一种大功率船用低速柴油机排气阀装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3209737A (en) * | 1962-06-27 | 1965-10-05 | Mitsubishi Shipbuilding & Eng | Valve operating device for internal combustion engine |
JP2664986B2 (ja) * | 1989-04-03 | 1997-10-22 | 三菱重工業株式会社 | 内燃機関の動弁装置 |
DE19826045A1 (de) * | 1998-06-12 | 2000-01-13 | Bosch Gmbh Robert | Verfahren zur Steuerung eines Gaswechselventils für Brennkraftmaschinen |
US6223846B1 (en) * | 1998-06-15 | 2001-05-01 | Michael M. Schechter | Vehicle operating method and system |
DE10024268B4 (de) * | 2000-05-17 | 2012-11-29 | Robert Bosch Gmbh | Vorrichtung zur Benzindirekteinspritzung in einer Kolbenbrennkraftmaschine |
DE10127205A1 (de) * | 2001-06-05 | 2002-09-05 | Bosch Gmbh Robert | Nockenwellenlose Steuerung eines Gaswechselventils einer Brennkraftmaschine |
DE10134644A1 (de) * | 2001-07-17 | 2003-02-06 | Bosch Gmbh Robert | Elektrohydraulische Ventilsteuerung |
DE10143959A1 (de) | 2001-09-07 | 2003-03-27 | Bosch Gmbh Robert | Hydraulisch gesteuerter Aktuator zur Betätigung eines Ventils |
DE10147299A1 (de) * | 2001-09-26 | 2003-04-24 | Bosch Gmbh Robert | Vorrichtung zur Steuerung eines Öffnungsquerschnitts in einem Verbrennungszylinder einer Brennkraftmaschine |
US6899068B2 (en) | 2002-09-30 | 2005-05-31 | Caterpillar Inc | Hydraulic valve actuation system |
DE10310300A1 (de) * | 2003-03-10 | 2004-09-23 | Robert Bosch Gmbh | Verfahren zum Betreiben eines hydraulischen Aktors, insbesondere eines Gaswechselventils einer Brennkraftmaschine |
DE102004022447A1 (de) * | 2004-05-06 | 2005-12-01 | Robert Bosch Gmbh | Hydraulischer Steller und Verfahren zum Betreiben eines hydraulischen Stellers |
DE102005025879A1 (de) * | 2005-06-06 | 2006-12-07 | Robert Bosch Gmbh | Verfahren zur Angabe eines Druckverlaufs |
DE102007025619B4 (de) * | 2007-06-01 | 2012-11-15 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung eines hydraulischen Stellers |
DE102008040840A1 (de) | 2008-07-29 | 2010-02-04 | Robert Bosch Gmbh | Hydraulisch gesteuerter Aktor |
-
2012
- 2012-02-16 FI FI20125181A patent/FI124245B/en active IP Right Grant
-
2013
- 2013-02-11 KR KR1020147025565A patent/KR101946098B1/ko active IP Right Grant
- 2013-02-11 EP EP15200820.7A patent/EP3045689A3/fr not_active Withdrawn
- 2013-02-11 EP EP13712817.9A patent/EP2815088B1/fr active Active
- 2013-02-11 WO PCT/FI2013/050146 patent/WO2013121100A1/fr active Application Filing
- 2013-02-11 CN CN201380009436.0A patent/CN104169532B/zh active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2013121100A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP2815088B1 (fr) | 2016-02-10 |
EP3045689A2 (fr) | 2016-07-20 |
CN104169532A (zh) | 2014-11-26 |
WO2013121100A1 (fr) | 2013-08-22 |
FI124245B (en) | 2014-05-15 |
FI20125181A (fi) | 2013-08-17 |
KR20140125431A (ko) | 2014-10-28 |
CN104169532B (zh) | 2016-06-22 |
KR101946098B1 (ko) | 2019-02-08 |
EP3045689A3 (fr) | 2016-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2817544B1 (fr) | Système de moteur et procédé de fonctionnement utilisant des mécanismes de frein moteur pour permettre une ouverture de soupape d'échappement précoce | |
WO2004085858A8 (fr) | Systeme de soupape variable d'un moteur a combustion interne et actionneur hydraulique | |
AU2008259733A1 (en) | Hydroelectric device for closed-loop driving the control jack of a variable compression rate engine | |
US9194264B2 (en) | Systems and methods for variable valve actuation | |
CN109339896A (zh) | 全可变电液气门装置 | |
EP2452054B1 (fr) | Dispositif de commande de soupape d'admission pour moteur à pistons | |
EP2917516B1 (fr) | Agencement de soupape d'échange de gaz | |
CN209053651U (zh) | 全可变电液气门装置 | |
US6595170B2 (en) | Hydraulic valve-operating mechanism | |
EP2474714B1 (fr) | Moteur à combustion interne doté d'une paroi masquant la zone de rideau des vannes d'admission | |
EP2815088A1 (fr) | Agencement de soupape hydraulique pour actionner de façon commandée une soupape d'échange de gaz d'un moteur à combustion interne à piston | |
US20040168660A1 (en) | Apparatus for an internal combustion engine | |
JP6786954B2 (ja) | 内燃エンジンのエンジンバルブの可変的な作動のためのシステム、および当該システムを制御するための方法 | |
US10738665B2 (en) | Sliding cam system | |
EP2941545B1 (fr) | Agencement de soupape d'échappement et procédé de commande de fermeture de soupape d'échappement | |
EP3901426B1 (fr) | Dispositif de commande des soupapes et moteur | |
EP3126643B1 (fr) | Agencement de soupape d'échange de gaz | |
RU2774747C2 (ru) | Система кулачков с регулируемым положением | |
KR101657752B1 (ko) | 내연 기관의 가스 교환 밸브를 작동시키는 장치 및 방법, 실린더 헤드, 및 내연 기관을 업그레이드하는 방법 | |
WO2024134333A1 (fr) | Système d'actionnement d'une soupape d'admission d'un moteur à combustion interne | |
AU2006202437A1 (en) | Hydraulic valve control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140729 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150825 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 774769 Country of ref document: AT Kind code of ref document: T Effective date: 20160215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013005027 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160210 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 774769 Country of ref document: AT Kind code of ref document: T Effective date: 20160210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160510 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160613 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160610 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013005027 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
26N | No opposition filed |
Effective date: 20161111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160211 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160510 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160211 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160229 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013005027 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F01L0009020000 Ipc: F01L0009100000 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240219 Year of fee payment: 12 |