EP2814932A1 - Produit de nettoyage liquide contenant un polymère sulfonique et présentant une faible teneur en eau - Google Patents

Produit de nettoyage liquide contenant un polymère sulfonique et présentant une faible teneur en eau

Info

Publication number
EP2814932A1
EP2814932A1 EP12781091.9A EP12781091A EP2814932A1 EP 2814932 A1 EP2814932 A1 EP 2814932A1 EP 12781091 A EP12781091 A EP 12781091A EP 2814932 A1 EP2814932 A1 EP 2814932A1
Authority
EP
European Patent Office
Prior art keywords
cleaning agent
sulfopolymer
agent according
acid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12781091.9A
Other languages
German (de)
English (en)
Other versions
EP2814932B1 (fr
Inventor
Konstantin Benda
Thomas Eiting
Nina Mussmann
Thorsten Bastigkeit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL12781091T priority Critical patent/PL2814932T3/pl
Publication of EP2814932A1 publication Critical patent/EP2814932A1/fr
Application granted granted Critical
Publication of EP2814932B1 publication Critical patent/EP2814932B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2065Polyhydric alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0091Dishwashing tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/043Liquid or thixotropic (gel) compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2041Dihydric alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2041Dihydric alcohols
    • C11D3/2048Dihydric alcohols branched
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/378(Co)polymerised monomers containing sulfur, e.g. sulfonate

Definitions

  • the present invention relates to liquid detergents in a water-soluble packaging containing at least one sulfopolymer and at least one polyhydric alcohol, a process for its preparation and a method of use for automatic dishwashing detergents.
  • Multifunktions are, prepares in formulations that may only have small amounts of water, considerable difficulties.
  • a first subject of the present application is therefore a liquid detergent in a water-soluble packaging containing at least one sulfopolymer and at least one polyhydric alcohol.
  • the cleaning agent according to the invention is preferably a
  • Dishwashing agent in particular a machine dishwashing detergent.
  • Another object of the present invention is also a machine
  • Dishwashing process in which a detergent according to the invention is used.
  • Another object of the present invention is a process for the preparation of liquid detergents in a water-soluble packaging, comprising at least one sulfopolymer and at least one polyhydric alcohol, wherein the sulfopolymer is used in solid form.
  • the amount of polyhydric alcohol or polyhydric alcohols used in detergents according to the invention is preferably at least 20% by weight, in particular at least 25% by weight, more preferably at least 28% by weight, especially at least 30% by weight.
  • Preferred quantitative ranges are in this case from 20 to 50% by weight, in particular from 25 to 45% by weight, in particular from 28 to 40% by weight.
  • the polyhydric alcohol is preferably selected from glycerol, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol and mixtures thereof.
  • a mixture of at least two polyhydric alcohols is used.
  • a polyhydric alcohol which is particularly preferably used according to the invention is 1,2-propylene glycol.
  • 1,2-Propylene glycol is preferably used in inventive compositions in an amount of 1 to 40 wt .-%, in particular in an amount of 15 to 35 wt .-%, particularly preferably in an amount of 20 to 30 wt .-% ,
  • Glycerol is used in inventive compositions preferably in an amount of 0, 1 to 15 wt .-%, in particular in an amount of 1 to 10 wt .-%, particularly preferably in an amount of 3 to 7 wt .-%, is used.
  • a mixture of glycerol and 1, 2-propylene glycol is used.
  • the glycerol is preferably used here in an amount of 0.1 to 15% by weight, in particular in an amount of 1 to 10% by weight, more preferably in an amount of 3 to 7% by weight.
  • the 1, 2-propylene glycol is in this case preferably in an amount of 1 to 40 wt .-%, in particular in an amount of 15 to 35 wt .-%, particularly preferably in an amount of 20 to 30 wt .-%, respectively to the total amount of the cleaning agent, the total amount of glycerol and 1,2-propylene glycol preferably being at least 20% by weight, in particular at least 25% by weight, especially at least 28% by weight, particularly preferably from 25 to 45% by weight, in particular from 28 to 40% by weight, especially from 28.5 to 32.0% by weight, is.
  • the liquid cleaning agent is preferably a water-containing
  • the water content of the composition of the invention is preferably at most 25 wt .-%, preferably below 20 wt .-%. preferred
  • Quantities are here 5 to 25 wt .-%, in particular 15 to 20 wt .-%, especially 18 to 19.8 wt .-%.
  • Cleaning agent is preferably from 0.1 to 20 wt .-%, in particular from 0.5 to 18 wt .-%, particularly preferably 1, 0 to 15 wt .-%, in particular from 4 to 14 wt .-%, especially from 6 to 12% by weight.
  • the sulfopolymer used is preferably a copolymeric polysulfonate, preferably a hydrophobically modified copolymeric polysulfonate.
  • the copolymers may have two, three, four or more different monomer units.
  • Preferred copolymeric polysulfonates contain sulfonic acid group-containing (s)
  • Monomer (s) at least one monomer from the group of unsaturated carboxylic acids.
  • unsaturated carboxylic acids are acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, ⁇ -cyanoacrylic acid, crotonic acid, ⁇ -phenyl-acrylic acid, maleic acid,
  • Particularly preferred monomers containing sulfonic acid groups are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3 Methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3- (2-propenyloxy) propanesulfonic acid, 2-methyl-2-propenylsulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 3-sulfo - Propylmethacrylat, sulfomethacrylamide, sulfomethylmethacrylamide and mixtures of said acids or their water-
  • the sulfonic acid groups may be wholly or partially in neutralized form, i. in that the acidic acid of the sulfonic acid group in some or all sulfonic acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • the monomer distribution of the copolymers preferably used according to the invention in the case of copolymers containing only monomers containing carboxylic acid groups and monomers containing sulfonic acid groups is preferably from 5 to 95% by weight, more preferably from 50 to 90% by weight of the sulfonic acid group-containing monomer. % and the share of
  • the molar mass of the sulfo copolymers preferably used according to the invention can be varied in order to adapt the properties of the polymers to the desired end use.
  • Preferred cleaning agents are characterized in that the copolymers have molar masses of 2000 to 200,000 gmol 1 , preferably from 4000 to 25,000 gmol 1 and in particular from 5000 to 15,000 gmol "1 .
  • the copolymers include besides
  • Carboxyl-containing monomer and sulfonic acid-containing monomer further at least one nonionic, preferably hydrophobic monomer.
  • the use of these hydrophobically modified polymers has made it possible in particular to improve the rinse aid performance of automatic dishwashing detergents according to the invention.
  • agent characterized in that the agent comprises, as anionic copolymer, a copolymer comprising
  • nonionic monomers especially hydrophobic monomers
  • nonionic monomers are preferably monomers of the general formula
  • R (R 2 ) C C (R 3 ) -XR 4 used, in which R to R 3 are independently -H, -CH 3 or -C 2 H 5 , X is an optional spacer group selected is from -CH 2 -, -C (0) 0- and -C (0) -NH-, and R 4 is a straight or branched chain saturated alkyl radical having 2 to 22 carbon atoms or an unsaturated, preferably aromatic radical having 6 to 22 carbon atoms.
  • nonionic monomers are butene, isobutene, pentene, 3-methylbutene, 2-methylbutene, cyclopentene, hexene, hexene-1, 2-methylpentene-1, 3-methylpentene-1, cyclohexene, methylcyclopentene, cycloheptene, methylcyclohexene, 2,4 , 4-trimethylpentene-1, 2,4,4-trimethylpentene-2,3,3-dimethylhexene-1, 2,4-dimethylhexene-1, 2,5-dimethlyhexene-1,3,5-dimethylhexene-1,4 , 4-dimethylhexane-1, ethylcyclohexyne, 1-octene, alpha-olefins of 10 or more Carbon atoms such as 1-decene, 1-dodecene, 1-hexadecene, 1-octadecene and
  • the monomer distribution of the hydrophobically modified copolymers preferably used according to the invention is preferably in each case from 5 to 80% by weight, with respect to the sulfonic acid group-containing monomer, the hydrophobic monomer and the carboxylic acid group-containing monomer, the proportion of the sulfonic acid group-containing monomer and of the each hydrophobic monomer 5 to 30 wt .-% and the proportion of the carboxylic acid group-containing monomer 60 to 80 wt .-%, the monomers are in this case preferably selected from the aforementioned.
  • the liquid and water-containing cleaning agent according to the invention contains water to a maximum of 25 wt .-%, preferably up to 20 wt .-% in combination with sulfopolymer, which was used in the preparation of the agent in solid form. It was found that the homogeneous and stable incorporation of solid
  • Sulfopolymer then succeeds if at least one polyhydric alcohol is present in the agent.
  • liquid and water-containing detergent water to a maximum of 25 wt .-%, sulfopolymer, which was used in the preparation of the agent in solid form, and as a polyhydric alcohol having a mixture of glycerol and propylene glycol.
  • the cleaning agent according to the invention is preferably contained in a water-soluble packaging.
  • the water-soluble packaging allows a portioning of the cleaning agent.
  • the amount of detergent in the sachet is preferably 5 to 50 g, more preferably 10 to 30 g, especially 15 to 25 g.
  • the water-soluble packaging preferably comprises a water-soluble polymer.
  • Some preferred water-soluble polymers which are preferably used as water-soluble packaging are polyvinyl alcohols, acetalated polyvinyl alcohols, polyvinylpyrrolidones, Polyethylene oxides, celluloses and gelatin, wherein polyvinyl alcohols and acetalated polyvinyl alcohols are particularly preferably used.
  • Polyvinyl alcohols (abbreviated PVAL, occasionally PVOH) is the name for polymers of the general structure in small proportions (about 2%) also structural units of the type
  • polyvinyl alcohols which are available as white-yellowish powders or granules with degrees of polymerization in the range of about 100 to 2500 (molar masses of about 4000 to 100,000 g / mol), have degrees of hydrolysis of 87-99 mol%, that is one more
  • the water-soluble packaging at least partly comprises a polyvinyl alcohol whose degree of hydrolysis is preferably 70 to 100 mol%, in particular 80 to 90 mol%, particularly preferably 81 to 89 mol% and especially 82 to 88 mole%.
  • the water-soluble packaging consists of at least 20 wt .-%, more preferably at least 40 wt .-%, most preferably at least 60 wt .-% and in particular at least 80 wt .-% of a polyvinyl alcohol, the Hydrolysis degree 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%, is.
  • Polyvinyl alcohols of a certain molecular weight range are preferably used as materials for the packaging, it being preferred according to the invention that the packaging material comprises a polyvinyl alcohol whose molecular weight is in the range from 5,000 to 100,000 gmol-1, preferably from 10,000 to 90,000 gmol-1, particularly preferably 12,000 to 80,000 gmol-1 and in particular from 15,000 to 70,000 gmol-1.
  • the degree of polymerization of such preferred polyvinyl alcohols is between about 200 to about 2100, preferably between about 220 to about 1890, more preferably between about 240 to about 1680, and more preferably between about 260 to about 1500.
  • the water solubility of polyvinyl alcohol can be altered by post-treatment with aldehydes (acetalization) or ketones (ketalization). As particularly preferred and have particularly advantageous because of their pronounced cold water solubility here
  • Polyvinyl alcohols which are acetalated or ketalized with the aldehyde or keto groups of saccharides or polysaccharides or mixtures thereof.
  • the reaction products of polyvinyl alcohol and starch are particularly advantageous.
  • the water solubility can be changed by complexing with Ni or Cu salts or by treatment with dichromates, boric acid, borax and thus set specifically to desired values.
  • the water-soluble packaging preferably has a thickness of 10 ⁇ to 500 ⁇ , in particular from 20 ⁇ to 400 ⁇ , more preferably from 30 ⁇ to 300 ⁇ , especially from 40 ⁇ to 200 ⁇ , in particular from 50 ⁇ to 150 ⁇ .
  • An especially preferred polyvinyl alcohol is, for example, under the
  • the viscosity of cleaning agents according to the invention is preferably above 4000 mPas (Brookfield Viscometer DV-II + Pro, spindle 25, 30 rpm, 20 ° C.), in particular between 4000 and 7000 mPas, more preferably between 4500 and 6500 mPas, especially between 5000 and 6000 mPas.
  • the pH of cleaning agents according to the invention is preferably between 6 and 10, more preferably between 7 and 9, especially between 7 and 8.
  • Detergents according to the invention preferably further comprise at least one
  • nonionic surfactant As nonionic surfactants, it is possible to use all nonionic surfactants known to the person skilled in the art. Low-foaming nonionic surfactants are preferably used, in particular alkoxylated, especially ethoxylated, low-foaming nonionic surfactants.
  • Preferred nonionic surfactants here are those of the general formula R -CH (OH) CH 2 O- (AO) w - (AO) x - (A "O) y - (A" O) z -R 2 , in which
  • R stands for a straight-chain or branched, saturated or mono- or polyunsaturated C6 -24 alkyl or alkenyl group;
  • R 2 is hydrogen or a linear or branched hydrocarbon radical having 2 to 26 carbon atoms;
  • A, ⁇ ', A "and A'” independently represent a radical from the group -CH 2 CH 2 , -CH 2 CH 2 -CH 2 , -CH 2 "CH (CH 3 ), -CH 2 -CH 2 -CH 2 -CH 2 , -CH 2 -CH (CH 3 ) -CH 2 -, - CH 2 -CH (CH 2 -CH 3 ),
  • w, x, y and z are values between 0.5 and 120, where x, y and / or z can also be 0,
  • nonionic surfactants of the general formula R - CH (OH) CH 2 O- (AO) w - (AO) x - (A "O) y - (A '" O) z -R 2 , hereinafter also As “hydroxymix ether”, surprisingly, the cleaning performance of inventive compositions can be significantly improved both in comparison to surfactant-free system as well as in comparison to systems containing alternative nonionic surfactants, for example from the group of polyalkoxylated fatty alcohols.
  • nonionic surfactants having one or more free hydroxyl groups on one or both terminal alkyl radicals, the stability of the enzymes contained in the detergent formulations according to the invention can be markedly improved.
  • Hydrocarbon radicals having 2 to 30 carbon atoms, preferably 4 to 22
  • Carbon atoms furthermore a linear or branched, saturated or
  • x stands for values between 1 and 90, preferably for values between 30 and 80 and in particular for values between 30 and 60.
  • surfactants of the formula R 0 [CH 2 CH (CH 3) O] x [CH 2 CH 2 O] y CH 2 Cl-1 (OI-l) R 2 in which R is a linear or branched aliphatic hydrocarbon radical 4 to 18 carbon atoms or mixtures thereof, R 2 is a linear or branched
  • Hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1, 5 and y is a value of at least 15 stands.
  • nonionic surfactants include, for example, the C 2 -26 fatty alcohol (PO) i (EO) i 5 . 4o-2-hydroxyalkyl ethers, in particular also the C 8 -io-fatty alcohol (PO) i (EO) 22 -2-hydroxydecyl ethers.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 0 [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 in which R and R 2 for linear or branched, saturated or unsaturated, aliphatic or aromatic
  • R 3 Hydrocarbon radicals having 1 to 30 carbon atoms, R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl or 2-methyl-2-butyl radical, x for values between 1 and 30, k and j for values between 1 and 12, preferably between 1 and 5. If the value x> 2, each R 3 in the above formula
  • R 0 [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 be different.
  • R and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic
  • Hydrocarbon radicals having 6 to 22 carbon atoms with radicals having 8 to 18 carbon atoms being particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x> 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • R 0 [CH 2 CH (R 3 ) O] x CH 2 CH (OH) CH 2 OR 2 simplified.
  • R, R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18.
  • Particularly preferred are surfactants in which the radicals R and R 2 Have 9 to 14 carbon atoms, R 3 is H and x assumes values of 6 to 15.
  • the nonionic surfactants of the general formula R -CH (OH) CH 2 O- (AO) w -R 2 have proved to be particularly effective, in which
  • R for a straight-chain or branched, saturated or on or
  • R 2 is a linear or branched hydrocarbon radical having 2 to 26
  • A is a radical from the group CH 2 CH 2 , CH 2 CH 2 CH 2 , CH 2 CH (CH 3 ),
  • w stands for values between 1 and 120, preferably 10 to 80, in particular 20 to 40.
  • nonionic surfactants include, for example, the C 4-22 fatty alcohol (EO) i 0 -8o-2-hydroxyalkyl ethers, in particular also the C 8 -12 fatty alcohol (EO) 2 2-2-hydroxydecyl ethers and the C 4 . 22 fatty alcohol (EO) 40 -8o-2-hydroxyalkyl ethers.
  • Preferred liquid cleaning agents are characterized in that the cleaning agent contains at least one nonionic surfactant, preferably a nonionic surfactant from the group of hydroxy mixed ethers, wherein the weight fraction of the nonionic surfactant on
  • Total weight of the cleaning agent is preferably 0.5 to 10 wt .-%, preferably 1, 0 to 8.0 wt .-% and in particular 2.0 to 6.0 wt .-%.
  • constituent cleaning agents according to the invention preferably contain one or more builder (s).
  • Inventive agent is preferably 15 to 80 wt .-% and in particular 20 to 70 wt .-%.
  • These builders include in particular carbonates, phosphates, citrates,
  • Phosphonates Phosphonates, MGDA, GLDA, EDDS, organic cobuilders and silicates.
  • phosphate Preference is also the use of phosphate.
  • the alkali metal phosphates have, with particular preference of pentasodium or.
  • Pentakaliumtriphosphat sodium or potassium tripolyphosphate
  • Alkalimetallphosphate is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids in which one Metaphosphoric acids (HP0 3 ) n and orthophosphoric acid H 3 P0 4 can distinguish in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • Particularly preferred phosphates according to the invention are the pentasodium triphosphate, Na 5 P 3 Oi 0 (sodium tripolyphosphate) and the corresponding potassium salt pentapotassium triphosphate, K 5 P 3 Oi 0 (potassium tripolyphosphate).
  • the sodium-potassium tripolyphosphates are also preferably used according to the invention.
  • phosphates are used as cleaning-active substances in the cleaning agents in the context of the present application, these contain phosphate (s), preferably alkali metal phosphate (s), particularly preferably pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), in amounts of 5 to 60 wt .-%, preferably from 15 to 45 wt .-% and in particular from 20 to 40 wt .-%, each based on the weight of the cleaning agent.
  • phosphate preferably alkali metal phosphate (s), particularly preferably pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate)
  • the use of phosphates is largely or completely omitted.
  • the agent in this embodiment preferably contains less than 5% by weight, more preferably less than 3% by weight, in particular less than 1% by weight of phosphate (s).
  • the agent is completely phosphate-free in this embodiment.
  • organic co-builders are polycarboxylates / polycarboxylic acids, polymeric carboxylates, aspartic acid, polyacetals, dextrins and organic cobuilders. These classes of substances are described below.
  • Useful organic builders are, for example, the polycarboxylic acids which can be used in the form of the free acid and / or their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid,
  • NTA nitrilotriacetic acid
  • the free acids typically also have the property of an acidifying component and thus also serve for setting a lower and milder pH of cleaning agents.
  • citric acid is particularly preferred.
  • Particularly preferred cleaning agents according to the invention contain citrate as one of their essential builders.
  • Detergents characterized in that they contain 2 to 40 wt .-%, preferably 5 to 30 wt .-% and in particular 5 to 20 wt .-% citrate, are inventively preferred.
  • Particularly preferred cleaning agents according to the invention are characterized in that the cleaning agent contains at least two builders from the group of phosphates, carbonates and citrates, wherein the proportion by weight of these builders, based on the total weight of the cleaning agent according to the invention, preferably 5 to 60 wt .-%, preferably 15 to 50% by weight and especially 25 to 40% by weight.
  • the combination of two or more builders from the above group has favored the cleaning and rinse performance
  • a mixture of phosphate and citrate or a mixture of GLDA and citrate is used, the amount of phosphate or GLDA preferably being from 10 to 35% by weight and the amount of citrate preferably from 2 to 10% by weight .-%, in each case based on the total amount of the cleaning agent, is, wherein the total amount of these builders is preferably 20 to 35 wt .-%, in particular 25 to 35 wt .-%, is.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those having a relative molecular mass of 500 to 70,000 g / mol.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group.
  • the content of (homo) polymeric polycarboxylates according to the invention is preferably from 0.5 to 20% by weight and in particular from 3 to 10% by weight.
  • the cleaning agents according to the invention can be used as further builder in particular
  • the phosphonate compound used is preferably a hydroxyalkane and / or aminoalkane phosphonate.
  • hydroxyalkane phosphonates the 1-hydroxyethane-1, 1-diphosphonate (HEDP) is of particular importance.
  • Preferred aminoalkanephosphonates are ethylenediamine tetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs.
  • Phosphonates are in agents according to the invention preferably in amounts of 0.1 to 10 wt .-%, in particular in amounts of 0.5 to 8 wt .-%, each based on the total weight of the cleaning agent.
  • At least one compound selected from MGDA, GLDA and EDDS is preferably used, in particular in phosphate-reduced and phosphate-free compositions.
  • MGDA methylglycinediacetic acid
  • GLDA glutamic acid-N, N-diacetic acid
  • EDDS EDDS
  • Agents of the invention can be used as builder also crystalline layered silicates of general formula NaMSi x 0 2x + i ⁇ y H 2 0 wherein M is sodium or hydrogen, x is a number from 1, 9 to 22, preferably from 1: 9 to 4, wherein particularly preferred values for x are 2, 3 or 4, and y is a number from 0 to 33, preferably from 0 to 20. It is also possible to use amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which preferably delayed release and have secondary washing properties.
  • the content of silicates is limited to amounts below 10% by weight, preferably below 5% by weight and in particular below 2% by weight.
  • Particularly preferred cleaning agents according to the invention are silicate-free.
  • the agents according to the invention may contain alkali metal hydroxides.
  • These alkali carriers are preferred in the cleaning agents only in small amounts, preferably in amounts below 10 wt .-%, preferably below 6 wt .-%, preferably below 5 wt .-%, particularly preferably between 0.1 and 5 wt .-% and in particular between 0.5 and 5 wt .-%, each based on the total weight of
  • Alternative cleaning agents according to the invention are free of alkali metal hydroxides.
  • cleaning agents preferably contain enzyme (s). These include in particular proteases, amylases, lipases, hemicellulases, cellulases, perhydrolases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Based on the natural molecules, improved variants are available for use in cleaning agents, which are correspondingly preferred be used.
  • Detergents according to the invention preferably contain enzymes in total amounts of from 1 ⁇ 10 -6 to 5% by weight, based on active protein. The protein concentration can be determined by known methods, for example the BCA method or the biuret method.
  • subtilisin type those of the subtilisin type are preferable.
  • these are the subtilisins BPN 'and Carlsberg and their further developed forms, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase which can no longer be assigned to the subtilisins in the narrower sense, Proteinase K and the proteases TW3 and TW7.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from ⁇ . amyloliquefaciens, from ⁇ . stearothermophilus, from Aspergillus niger and A. oryzae and the improved for use in detergents developments of the aforementioned amylases. Furthermore, for this purpose, the ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and cyclodextrin glucanotransferase (CGTase) from ⁇ . agaradherens
  • lipases or cutinases are also usable according to the invention.
  • lipases or cutinases in particular because of their triglyceride-splitting activities, but also in order to generate in situ peracids from suitable precursors.
  • lipases or cutinases include, for example, those originally from Humicola lanuginosa
  • enzymes can be used which are termed hemicellulases
  • mannanases xanthan lyases
  • pectin lyases pectinases
  • pectin esterases pectate lyases
  • xyloglucanases xylanases
  • pullulanases and ⁇ -glucanases.
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching effect.
  • oxidases oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases
  • organic, more preferably aromatic, enzyme-interacting compounds to enhance the activity of the respective oxidoreductases (enhancers) or to react at greatly varying redox potentials between the oxidizing enzymes and the
  • a protein and / or enzyme may be particularly protected during storage against damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Detergents may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • Cleaning-active proteases and amylases are generally not provided in the form of the pure protein but rather in the form of stabilized, storage and transportable preparations.
  • Such prefabricated preparations include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, low in water and / or added with stabilizers or further auxiliaries.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core with a water, air and / or
  • Chemical-impermeable protective layer is coated.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric
  • Protease and amylase preparations preferably used according to the invention contain between 0.1 and 40% by weight, preferably between 0.2 and 30% by weight, more preferably between 0.4 and 20% by weight and
  • Total weight 0, 1 to 12 wt .-%, preferably 0.2 to 10 wt .-% and in particular 0.5 to 8 wt .-% enzyme preparations.
  • compositions according to the invention preferably comprise at least one further constituent, preferably selected from the group consisting of anionic, cationic and amphoteric surfactants, bleaching agents, bleach activators, bleach catalysts, further solvents, thickeners, sequestering agents, electrolytes, corrosion inhibitors, in particular
  • Silver protectants glass corrosion inhibitors, foam inhibitors, dyes, fragrances and antimicrobial agents.
  • solvent agents according to the invention preferably contain at least one alkanolamine.
  • the alkanolamine here is preferably selected from the group consisting of mono-, di-, triethanol- and -propanolamine and mixtures thereof.
  • the alkanolamine is preferably contained in agents according to the invention in an amount of from 0.5 to 10% by weight, in particular in an amount of from 1 to 6% by weight.
  • Zinc salts are preferably used as glass corrosion inhibitors.
  • Glass corrosion inhibitors are preferably present in agents according to the invention in an amount of from 0.05 to 5% by weight, in particular in an amount of from 0.1 to 2% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne un produit de nettoyage liquide dans un emballage soluble dans l'eau, contenant au moins un polymère sulfonique ainsi qu'au moins un alcool polyvalent.
EP12781091.9A 2012-02-14 2012-11-02 Produit de nettoyage liquide contenant un polymère sulfonique et présentant une faible teneur en eau Active EP2814932B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12781091T PL2814932T3 (pl) 2012-02-14 2012-11-02 Płynny środek czyszczący o niskiej zawartości wody zawierający suifopolimer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012202176A DE102012202176A1 (de) 2012-02-14 2012-02-14 Sulfopolymer-haltiges flüssiges Reinigungsmittel mit geringem Wassergehalt
PCT/EP2012/071716 WO2013120550A1 (fr) 2012-02-14 2012-11-02 Produit de nettoyage liquide contenant un polymère sulfonique et présentant une faible teneur en eau

Publications (2)

Publication Number Publication Date
EP2814932A1 true EP2814932A1 (fr) 2014-12-24
EP2814932B1 EP2814932B1 (fr) 2019-01-02

Family

ID=47137712

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12781091.9A Active EP2814932B1 (fr) 2012-02-14 2012-11-02 Produit de nettoyage liquide contenant un polymère sulfonique et présentant une faible teneur en eau

Country Status (5)

Country Link
US (1) US20140349905A1 (fr)
EP (1) EP2814932B1 (fr)
DE (1) DE102012202176A1 (fr)
PL (1) PL2814932T3 (fr)
WO (1) WO2013120550A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012222266A1 (de) 2012-12-05 2014-06-05 Henkel Ag & Co. Kgaa Verfahren zur Herstellung wasserarmer bis wasserfreier flüssiger Wasch- oder Reinigungsmittel
WO2014086507A1 (fr) * 2012-12-05 2014-06-12 Henkel Ag & Co. Kgaa Portion unique, de dimensions stables, contenant du produit de lavage de vaisselle
DE102012222268A1 (de) * 2012-12-05 2014-06-05 Henkel Ag & Co. Kgaa Wasserarme bis wasserfreie flüssige Reinigungsmittel
EP3004311B1 (fr) * 2013-05-27 2017-04-05 Basf Se Solutions aqueuses contenant un agent complexant en concentration élevée
DE102013226301A1 (de) * 2013-12-17 2015-06-18 Henkel Ag & Co. Kgaa Flüssige Geschirrspülmittel mit optimierter Viskosität
US10450534B2 (en) 2016-07-19 2019-10-22 Ecolab Usa Inc. Methods and cleaning solutions for removing chewing gum and other sticky food substances
DE102019132402A1 (de) * 2019-11-28 2021-06-02 Henkel Ag & Co. Kgaa Verfahren zur erhöhung der stabilität von reinigungsmitteln

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10004677A1 (de) * 2000-02-03 2001-08-09 Cognis Deutschland Gmbh Tensidmischung mit Fettalkoholalkoxylaten aus pflanzlichen Rohstoffen
US6995125B2 (en) * 2000-02-17 2006-02-07 The Procter & Gamble Company Detergent product
GB2355269A (en) * 2000-08-08 2001-04-18 Procter & Gamble Liquid cleaning composition
US6492312B1 (en) * 2001-03-16 2002-12-10 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Water soluble sachet with a dishwashing enhancing particle
DE10153553A1 (de) * 2001-07-07 2003-06-12 Henkel Kgaa Nichtwäßrige "3in1"-Geschirrspülmittel II
CA2463613C (fr) * 2001-11-14 2009-04-07 The Procter & Gamble Company Composition pour lave-vaisselle automatique sous forme de dose unitaire comprenant un polymere anti-tartre
WO2004085599A1 (fr) * 2003-03-25 2004-10-07 Henkel Kommanditgesellschaft Auf Aktien Portion de produit nettoyant a stabilite de forme
GB0507069D0 (en) * 2005-04-07 2005-05-11 Reckitt Benckiser Nv Detergent body
US20080021167A1 (en) * 2006-07-21 2008-01-24 National Starch And Chemical Investment Holding Co Sulfonated graft copolymers
WO2010024468A1 (fr) * 2008-09-01 2010-03-04 The Procter & Gamble Company Copolymères contenant un groupe sulfonate et procédé de fabrication associé
DE102009046240A1 (de) * 2009-10-30 2011-05-12 Henkel Ag & Co. Kgaa Maschinelles Geschirrspülverfahren
ES2527679T5 (es) * 2010-06-24 2022-04-19 Procter & Gamble Artículos solubles de dosis unitaria que comprenden un polímero catiónico

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013120550A1 *

Also Published As

Publication number Publication date
EP2814932B1 (fr) 2019-01-02
US20140349905A1 (en) 2014-11-27
DE102012202176A1 (de) 2013-08-14
WO2013120550A1 (fr) 2013-08-22
PL2814932T3 (pl) 2019-07-31

Similar Documents

Publication Publication Date Title
EP2366010B1 (fr) Produit de lavage pour lave-vaisselle
EP2366007B1 (fr) Agent de lavage pour lave-vaisselle
EP2367920B1 (fr) Détergent pour lave-vaisselle
EP2814932B1 (fr) Produit de nettoyage liquide contenant un polymère sulfonique et présentant une faible teneur en eau
EP2929001B1 (fr) Procédé pour la préparation de détergents ou de produits de nettoyage liquides, pauvres en eau à exempts d'eau
EP3080242A1 (fr) Lessive liquide pour lave-vaisselle, exempte de phosphates
EP2576753B1 (fr) Détergent pour lave-vaisselle
EP3114198B1 (fr) Détergent mis à l'avance sous forme de portions comprenant au moins deux formulations liquides séparées
EP2814930B1 (fr) Produit de nettoyage contenant des enzymes et des alcools polyvalents
DE102016212248A1 (de) Geschirrspülmittel enthaltend Zuckersäure und Aminocarbonsäure
EP3194552B1 (fr) Composition nettoyante
EP2943560B1 (fr) Produits nettoyants liquides contenant peu ou pas d'eau
DE102014202225A1 (de) Vorportioniertes Reinigungsmittel
DE102012222268A1 (de) Wasserarme bis wasserfreie flüssige Reinigungsmittel
DE102012222267A1 (de) Wasserarme bis wasserfreie flüssige Reinigungsmittel
EP3102660A1 (fr) Détergents polyphasiques préportionnés
DE102014202226A1 (de) Verwendung von mindestens einem Polyalkylenglycol mit einem mittleren Molekulargewicht zwischen 1500 und 8000, insbesondere zwischen 2000 und 6000, insbesondere zwischen 3000 und 4500 zur Verbesserung der Brillianz von flüssigen, wasserarmen Wasch- oder Reinigungsmitteln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180620

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1084375

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012014106

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190402

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190502

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012014106

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

26N No opposition filed

Effective date: 20191003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191102

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1084375

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201120

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121102

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231020

Year of fee payment: 12