EP2809129B1 - Schutzvorrichtungen zum Schutz von LED-Leuchtmitteln gegen Störimpulse - Google Patents

Schutzvorrichtungen zum Schutz von LED-Leuchtmitteln gegen Störimpulse Download PDF

Info

Publication number
EP2809129B1
EP2809129B1 EP14170431.2A EP14170431A EP2809129B1 EP 2809129 B1 EP2809129 B1 EP 2809129B1 EP 14170431 A EP14170431 A EP 14170431A EP 2809129 B1 EP2809129 B1 EP 2809129B1
Authority
EP
European Patent Office
Prior art keywords
led
protection
protection component
connection
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14170431.2A
Other languages
English (en)
French (fr)
Other versions
EP2809129A3 (de
EP2809129A2 (de
Inventor
Reinhard Schauerte
Tobias Specht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bag Electronics GmbH
Original Assignee
Bag Electronics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bag Electronics GmbH filed Critical Bag Electronics GmbH
Publication of EP2809129A2 publication Critical patent/EP2809129A2/de
Publication of EP2809129A3 publication Critical patent/EP2809129A3/de
Application granted granted Critical
Publication of EP2809129B1 publication Critical patent/EP2809129B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/24Circuit arrangements for protecting against overvoltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/54Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a series array of LEDs

Definitions

  • the invention relates generally to protective devices for the protection of LED-based bulbs against glitches.
  • interference pulses are understood here any kind of voltage or current surges, which can have a detrimental effect, in particular on the LED.
  • the invention relates in particular to an operating device for LED lighting means with a protective device against such interference pulses, an LED lighting module with a corresponding protection device and finally also a corresponding protection module as such, for example for retrofitting known operating devices or LED lighting modules.
  • an operating device for LED bulbs with an input-side protection device comprises input-side mains connections for the power supply and an LED driver circuit having a first and second output-side LED connection for providing a supply voltage for the LED lighting means.
  • An overvoltage stage is provided either on the input side to the mains connections or between the rectifier stage and the actual LED driver.
  • a similar structure is also from the international patent application WO 2012/143871 A1 or from the US patent application US 2010/0127625 A1 known.
  • the circuit off US 2010/0127625 A1 is provided on the input side between the network terminals and the supply circuit.
  • eg (cf. 3a ) proposed an arrangement with three varistors, wherein a first and a second varistor in series connect the phase and the neutral conductor and the node of the two varistors is connected to the ground conductor.
  • a third varistor directly connects the phase and neutral conductors.
  • An embodiment (see. FIG.2 ) has four varistors, wherein two varistors in parallel connect the phase and the neutral conductor, the junction of the two varistors of a third varistor is connected to the ground conductor and a fourth varistor directly connects phase and ground conductors.
  • LED bulbs are much more sensitive to glitches such as voltage or current spikes.
  • Reliable protection in particular against asymmetrical interference pulses, however, can not be guaranteed in practice by the previously known input-side protection devices.
  • a protective device especially for the protection of LED bulbs against overvoltage is known from the international patent application WO 2011/158196 known.
  • an LED lighting module is proposed, which includes a protection device for the protection of the individual LED components.
  • a plurality of series-connected LEDs are connectable via a first and second LED terminal to the LED driver circuit.
  • a protective capacitor is provided for each node between two LEDs, which connects this node to the first or second LED terminal to protect the individual LED.
  • the capacitance of the capacitors is in this case chosen so that their impedance is less than the impedance between the respective node and the ground potential, ie less than the impedance of the parasitic capacitance between the track between the LED and the metal core of the LED carrier board.
  • the protection device off WO 2011/158196 Although it allows a protection of the individual LED bulbs against certain interference voltages, but brings with it certain disadvantages.
  • the protective capacitors For control gear, which have no high common mode rejection between the input and output side, the protective capacitors must be relatively large, which leads on the one hand to high costs and on the other hand to increased leakage currents.
  • suitable protection can only be achieved with a very precise design of the overall system, and n-1 protection capacitors are required for n LED. Finally, it can lead to unwanted leakage currents.
  • An object of the present invention is therefore to propose a protective device for the protection of LED bulbs, which at the same time, despite simple implementation improved protection of the LED bulb against glitches, in particular asymmetric glitches at the power input achieved.
  • the protective device should in particular be integrable in an operating device or in an LED lighting module, or be produced as a separate module. This object is achieved by an operating device with a protective device according to claim 1, by an LED lighting module with a corresponding protective device according to claim 4 and by a producible as a separate module protection module for protecting an LED illuminant according to claim 6.
  • the protection device is characterized in that a protection circuit connected to the first and the second LED connection, which serve to supply an LED light source, is provided.
  • the protection circuit is provided with a first protection component, which preferably has a voltage-limiting effect, and with a second protection component, which connects the first protection component to an LED connection.
  • the first protective component preferably directly or via another protective component, is also connected to the other LED connection.
  • the protective device according to the invention is characterized by an additional protective connection or a conductive connection. This or this is provided with the purpose, via the first protection component to connect a part in or on a support of the LED light source, in particular a metal core or heat sink, with the protection circuit.
  • the protection circuit comprises a first voltage-limiting protection component and a second voltage-limiting protection component, which are connected in series.
  • the node between the first and the second protection component is connected or connectable to the part in or on the carrier of the LED light source.
  • the voltage-limiting first protection component or the node of the protective components is preferably connected to a part which is coupled via parasitic capacitance to the individual nodes between the LED, which in typical substrates in the range of 5-200pF, ie is on the order of 10 to 100pF.
  • the parasitic capacitance increases with the area of the tracks Supply of the LED.
  • the protection circuit can be integrated on the one hand in the operating device or on the other hand also in the LED lighting module.
  • a protective circuit having the same effect can also be embodied as part of a separately designed protective module for protecting the LED illuminant.
  • the latter variant is particularly suitable for retrofitting existing operating devices or LED bulbs.
  • LED bulbs includes bulbs with one or more LEDs. LEDs are diodes that emit light in response to a current, regardless of the technology chosen, including those based on conventional semiconductors or organic LEDs (OLEDs). Likewise, all suitable operating devices and LED driver circuits are within the scope of the invention. As voltage-limiting protective components are specifically designed to limit to a predetermined range of allowable voltages components, such as spark gaps, gas-filled surge, TVS diodes, varistors, etc. understood, especially those which remain undamaged in a typical voltage breakdown, ie, if necessary, are multi-effective.
  • Protection components in general are all components which can be used in circuit technology, which, if appropriate, can ensure, by means of suitable circuitry, that only minor additional voltage drops at the LED connections in the case of interference pulses.
  • resistors and capacitors instead of an actual voltage-limiting protective component.
  • a relatively large capacitor can be used, the protective effect being that the voltage of the interference pulse is divided such that a small voltage between the LED terminals and the protection terminal drops and the majority of the voltage drops above the high common mode impedance.
  • the voltage-limiting first protection component or the node between the first and second protection component is connected to an additional protection terminal. About this protection connection can then connect the part in or on the support of the LED bulb with the protection circuit.
  • the protective circuit is implemented as an integrated component of an LED lighting module, then the voltage-limiting first protective component or the node between the first and the second protective component without external connection can directly contact the neutral potential or the part in or on the carrier of the LED lighting device get connected.
  • a neutral potential for example, the LED heat sink or the metal core of a single LED-carrying metal core board can be used. In certain cases, a connection with the housing of the LED bulb is also considered.
  • the proposed protection circuit is suitable for luminaires of protection classes I, II and III or for SELV control gear.
  • the protection circuit is embodied as part of the operating device, it is particularly expedient if the output side of the LED driver has a high common-mode impedance with respect to the input-side network connections.
  • This can be carried out for example by a galvanic isolation in the transformer of the switching power supply.
  • the operating device comprises a switched-mode power supply, in particular a switched-mode power supply with a transformer, which separates the LED connections galvanically from the mains connections.
  • the galvanic isolation is also useful in devices where the output voltages exceed the permitted SELV protective extra-low voltages.
  • the higher common mode impedance already reduces the risk of destruction of the LEDs. Supplemented by the protection circuit according to the invention can be ensured that the LEDs are not charged with a surge, which destroys them.
  • the protective circuit is manufactured as part of a separately executed protection module, it is expedient to provide in this protection module, a further protection circuit for the power supply side overvoltage protection of the operating device.
  • the further protective circuit high impedance, e.g. by another high-impedance surge arrester, which fulfills the requirement of increased and double insulation (for example in the sense of protection class II), to be separated from the protection circuit at the first and second LED connection.
  • the first and the second protection component are realized by means of identical component types in order to be able to dissipate asymmetrical interference pulses of both polarities in the same way. It is expedient, for example, to execute the first and second protection components as suppressor diodes or TVS diodes.
  • the protective components can alternatively also be designed as varistors, in particular as metal oxide varistors. It is also conceivable, for example, an embodiment based on gas gaps or gas-filled surge arresters.
  • only the first protection component can be designed as a voltage-limiting protective component and connected to the neutral potential.
  • a voltage-limiting protective component is already sufficient to prevent unwanted leakage currents, for example, to earth potential and at the same time to derive interference pulse energy.
  • the second protection component is designed as a pulse-solid capacitor, wherein either this second protection component or possibly a series circuit of the second protection component with a further protective component also designed as a pulse-resistant capacitor, the connection to the first and second LED connection represents.
  • Due to the frequency-dependent impedance capacitors act against the present at pulse-like disturbances high-frequency components as a low-resistance connection between the voltage-limiting protective component and the respective LED connection.
  • pulse-resistant capacitors are cheaper and can at least partially absorb time-limited overvoltages and thus also develop a certain protective effect similar to that of a smoothing or blocking capacitor.
  • the energy to be dissipated during glitches can be picked up by a common mode impedance at the output of the LED driver, such as a transformer coil.
  • the first and the second protection component each have a forward or breakdown voltage which is several tens of volts greater than half the LED supply voltage.
  • the Breakdown voltage is expediently several tens of volts greater than the sum of the peak-to-peak voltage of the mains supply and half the LED supply voltage.
  • a protective effect can be achieved by suitably selecting the capacitance, even with lower forward or breakdown voltages of the voltage-limiting protective component.
  • This embodiment is particularly advantageous at high source impedance.
  • the protective device has a first and a second impedance component.
  • the first impedance component connects a protection component to the first LED terminal.
  • the second impedance component connects another protection component to the second LED terminal.
  • a third and a fourth impedance component can furthermore be provided in the protective device.
  • the third impedance component is connected to the node between the first protection component and the first impedance component and, in particular, connects the one protection component to the third connection for the LED driver circuit.
  • the fourth impedance component is connected to the node between the other protection component and the second impedance component and, in particular, connects the second protection component to a fourth terminal for the LED drive circuit.
  • the first and second and / or third and fourth impedance components are preferably designed with a mainly inductive component (up to a few MHz). These can be carried out particularly expediently as air coils and / or coils with ferrite core, whereby pulse-like impulses are attenuated without appreciable losses in the LED operating current cause. As a result, the requirements regarding the load capacity of the voltage-limiting protective components are reduced.
  • Particularly suitable is the invention for use with or retrofitting street lights in LED technology.
  • the invention also relates to a method according to claim 17 for the protection of LED bulbs using a protective device according to the invention.
  • an operating device 10 for supplying power to an LED lighting module 2 is illustrated schematically or in block form.
  • the operating device 10 is connected via the input side power connections 3, here phase, neutral and earth conductors to the supply network.
  • the operating device 10 of most known type and typically includes a switching power supply with high common mode impedance between the power terminals 3 and output side LED terminals 5, 6.
  • the simplified illustrated operating device 10 includes, inter alia, an LED driver 4, for example, a constant current driver, to provide a suitable Supply voltage for the series connection of multiple LEDs 7 in the LED light module 2, which is connected via the LED terminals 5, 6 to the LED driver 4 and the output side to the operating device 10.
  • a protective circuit 11 is provided in the operating device 10, which is connected downstream of the LED driver 4 and connected to the two LED terminals 5, 6 is.
  • the protection circuit 11 may, for example according to FIG.4 be executed and includes a series circuit of a first and a second voltage-limiting protective component 12, 14.
  • a protective circuit 51, 61 according to FIG.5-6 or FIG. 8-9 can be provided.
  • the protection circuits described herein protect not only the LEDs 7 but also other components such as the insulation in the metal core board (see below).
  • the protection circuit 11 On the output side of the operating device 10, the protection circuit 11 according to FIG.1 a separate protection terminal 16.
  • the protective terminal 16 is connected to the node 15 between the two protective components 12, 14.
  • a suitable part 18 in or on the carrier 17 of the LED lighting module 2 with the protection circuit 11 are connected to surge impulse overvoltages on LED light-emitting means 2, in particular at the LED terminal 5 and / or at the LED terminal 6 to limit to a desired level.
  • asymmetrical interference charges can likewise be dissipated to one of the LED terminals 5 or to the other LED terminal 6 to a neutral potential.
  • the heat sink 18 of the LEDs 7 comes into consideration, especially in LEDs 7 with a carrier 17 made of ceramic or FR4.
  • the protection circuit 11 can be connected via the protective terminal 16 also with the metal core of the metal core board. It is also a conductive connection with the housing of the lamp 9 into consideration, especially when designed as a street lamp.
  • the protection circuit 11 is not integrated in the operating device 1, but in an LED lighting module 22.
  • no separate, externally accessible protection terminal is provided, but a protective conductor 26 within the LED lighting module 22 connects the node 15 between the two protective components 12, 14 directly to the metal core or the heat sink.
  • FIG.2 electrically and circuitally equivalent to FIG.1 and can after with one of the protection circuits FIG.4-6 be executed.
  • the protection circuit 11 is integrated into a separately manufactured protection module 30 for retrofitting existing operating devices 1 or LED lighting modules 2. Due to the small size of this protection module 30 can be easily retrofitted into the housing of a lamp 9, for example, an LED street light installed. Accordingly, the protection module further connections, namely a third and a fourth terminal 33, 34 for connection to the output-side terminals of LED driver circuit 4 on.
  • the LED lighting module 2 is in turn connected to the LED terminals 5, 6, with which the protection circuit 11 is connected. Via the protective terminal 16, for example, the heat sink 18 is conductively connected to the node 15 of the protection circuit 11. Otherwise, the execution is after FIG.3 equivalent to FIG.1 or FIG.2 ,
  • FIG.4 shows a protective device according to the invention in the form of a protective circuit 11 with a total of six double poles in the form of an H-circuit.
  • the cross connection or the bridge branch forms the series connection of two preferably identical protective components 12, 14, for example gas-filled surge arresters.
  • a first impedance component 41 for example an air or ferrite core coil, connects the first protection component 12 to the first LED connection 5.
  • a second impedance component 42 for example an air or ferrite core coil, connects the second protection component 14 to the second LED connection 6.
  • third and fourth impedance components 43 and 44 respectively connect the first protection component 12 and the second protection component 14 to a corresponding terminal directly to the LED driver circuit.
  • the breakdown voltage is predetermined as a function of the LED lighting module 2 to be protected, so that it is at least greater than half the LED supply voltage VS to supply the LED lighting module 2.
  • the breakdown voltage Accordingly, be in the range of a few tens to a few hundred volts.
  • the breakdown voltage should be increased according to the peak-to-peak voltage of the mains supply and may well be in the range of 700-1000V.
  • the protective circuit 11 shown in FIG.4 can be provided instead of four only two or no impedance components in the circuit of the LED 7. Also possible is an arrangement of the impedance components in the cross connection or in the bridge branch in series with the protective components 12, 14.
  • FIG.5 shows a variant of a protective circuit 51 without impedance components, in particular suitable for operating devices with high common mode rejection.
  • protection components TVS diodes 52, 54 are provided, for example suppressor diodes of the type P6KE.
  • FIG.6 shows a further variant of a protection circuit 61 without impedance components.
  • protection components here voltage-dependent resistors or varistors 62, 64 are provided, in particular metal oxide varistors. Not shown in detail, but also possible, would be a protection circuit with gas gaps as protective components.
  • FIG.7 shows, finally, a development of a separate protection module 70.
  • This includes, in addition to the protection circuit 11, a further protection circuit 71 for the power supply side overvoltage protection of the operating device 1 against overvoltages> 1500V.
  • the input side protection circuit 71 is galvanically isolated from the output side protection circuit 11.
  • the protection circuit 71 has a construction which is known per se and connects the network connections 3 of the operating device 1 to the network.
  • FIG.8 shows as a variant of the protection circuit according to FIG.4 a protection circuit 81.
  • the optional impedance components off FIG.4 not shown in detail.
  • the protection circuit 81 only one voltage-limiting (first) protection component 12 is provided which is connected to the two LED connections 5, 6 via a second and a further, third protection component 13A, 13B.
  • the protective components 13A, 13B are - unlike FIG.4 or FIG.5-6 - designed as a pulse-resistant capacitors.
  • the protective components 13A, 13B are preferably self-healing, ie do not cause a short circuit in internal electrical breakdowns.
  • the protective components 13A, 13B have a low impedance due to the impedance falling with increasing frequency against pulse-like interference edges and thus enable a derivation of pulse energy via only one voltage-limiting protective component 12 to the neutral potential.
  • the protective component 12 can be embodied as a varistor, as a suppressor diode, as a gas spark gap or other suitable component acting as an overvoltage dissipation.
  • FIG.9 shows as a further variant of a protection circuit 91 to a modification FIG.8 with only one voltage-limiting (first) protective component 12 and only one second second protective component designed as a capacitor.
  • the second protective component 13 is connected directly to the LED terminals 5, 6 with both poles.
  • the voltage-limiting protective component is not as in FIG.8 to a center tap, but directly connected to one of the two LED terminals 5, 6.
  • the execution after FIG.9 is particularly useful when a capacitor is already integrated on the output side in the LED driver 4 and can be used as a second protection component 13, ie, does not have to be provided as an additional component.
  • a capacitor preferably with high capacity or low impedance, can be used as a protective component. This can be advantageous for compliance with certain standards.
  • the embodiments according to FIG.8 and FIG.9 are cost-saving, since at most one voltage-limiting protective component 12 is used.
  • the preferred protective circuits connected to the first and second LED terminals FIG.4-6 By contrast, a first and a second voltage-limiting protective component 12, 14, which are connected in series, and an additional protective terminal 16, which is connected to a node 15 between the first and the second protective component and by means of which a part 18 in or on a support 17 of the LED light source, in particular a metal core or heat sink, with the protective circuit 11 is connected to limit glitches due to glitches on the LED light-emitting means 2.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Description

  • Die Erfindung betrifft allgemein Schutzvorrichtungen zum Schutz von LED-basierten Leuchtmitteln gegen Störimpulse. Unter Störimpulsen werden hierbei jede Art Spannungs- oder Stromstöße verstanden, welche sich schädlich auswirken können, insbesondere auf die LED. Die Erfindung betrifft insbesondere ein Betriebsgerät für LED-Leuchtmittel mit einer Schutzvorrichtung gegen solche Störimpulse, ein LED-Leuchtmodul mit einer entsprechenden Schutzvorrichtung und schließlich auch ein entsprechendes Schutzmodul als solches, zum Beispiel zum Nachrüsten bekannter Betriebsgeräte oder LED-Leuchtmodule.
  • Bei konventionellen Betriebsgeräten für herkömmliche Lampen wie beispielsweise Leuchtstoffröhren wird ein hinreichender Schutz der Leuchtmittel bereits durch den eingangsseitigen Schutz des Betriebsgeräts selbst gewährleistet. So ist es bereits bekannt, Betriebsgeräte für Leuchtmittel, wie beispielsweise elektronische Vorschaltgeräte für Entladungslampen oder Betriebsgeräte für LED-Leuchtmittel, gegen Überspannungen aus dem Stromversorgungsnetz zu schützen. Dies geschieht in der Regel durch spannungsfeste Bauweise oder zusätzliche spannungsbegrenzende Bauelemente, wie gasgefüllte Überspannungsableiter, Varistoren oder Suppressordioden. Hierdurch werden Überspannungen an den Netzanschlüssen auf unschädliche Pegel begrenzt. Dies gilt sowohl für Störimpulse zwischen den stromführenden Leitern (symmetrische Störimpulse) als auch für Störimpulse zwischen mindestens einem dieser Leiter und dem Erdpotential (asymmetrische Störimpulse).
  • Aus der europäischen Patentanmeldung EP2290777A1 ist beispielsweise ein Betriebsgerät für LED-Leuchtmittel mit einer eingangsseitigen Schutzvorrichtung bekannt. Dieses Betriebsgerät umfasst eingangsseitige Netzanschlüsse für die Energieversorgung sowie eine LED-Treiberschaltung mit einem ersten und zweiten ausgangsseitigen LED-Anschluss zum Bereitstellen einer Versorgungsspannung für das LED-Leuchtmittel. Beim Betriebsgerät gemäß EP2290777A1 ist eine Überspannungsstufe entweder eingangsseitig an den Netzanschlüssen oder zwischen der Gleichrichterstufe und dem eigentlichen LED-Treiber vorgesehen. Ein ähnlicher Aufbau ist auch aus der internationalen Patentanmeldung WO 2012/143871 A1 oder aus der US-Patentanmeldung US 2010/0127625 A1 bekannt.
  • Die Schaltung aus US 2010/0127625 A1 wird eingangsseitig zwischen den Netzanschlüssen und der Versorgungsschaltung vorgesehen. Es wird dazu z.B. (vgl. FIG.3A) eine Anordnung mit drei Varistoren vorgeschlagen, wobei ein erster und ein zweiter Varistor in Serie den Phasen- und den Nullleiter verbinden und der Knotenpunkt der beiden Varistoren mit dem Erdleiter verbunden wird. Ein dritter Varistor verbindet unmittelbar den Phasen- und den Nullleiter miteinander.
  • Bei der Schaltung aus WO 2012/143871 A1 wird die Schutzschaltung zwischen der Gleichrichterstufe und dem eigentlichen LED-Treiber angeordnet. Ein Ausführungsbeispiel (vgl. FIG.2) hat vier Varistoren, wobei zwei Varistoren in Parallelschaltung den Phasen- und den Nullleiter verbinden, den Knotenpunkt der beiden Varistoren von einem dritten Varistor mit dem Erdleiter verbunden ist und ein vierter Varistor unmittelbar Phasen- und Erdleiter verbindet.
  • Durch einen entsprechenden Schutz des Eingangskreises der Betriebsgeräte wird neben dem Hauptziel, das Betriebsgerät selbst zu schützen, auch ein gewisser Schutz der LED-Leuchtmittel erzielt.
  • Im Vergleich zu konventionellen Leuchtmitteln, wie etwa Gasentladungslampen, sind LED-Leuchtmittel jedoch deutlich empfindlicher gegenüber Störimpulsen wie Spannungs- oder Stromspitzen. Ein zuverlässiger Schutz, insbesondere gegenüber asymmetrischen Störimpulsen kann jedoch in der Praxis durch die vorbekannten eingangsseitigen Schutzvorrichtungen nicht gewährleistet werden.
  • Eine Schutzvorrichtung speziell zum Schutz der LED-Leuchtmittel gegen Überspannung ist aus der internationalen Patentanmeldung WO 2011/158196 bekannt. Hier wird ein LED-Leuchtmodul vorgeschlagen, welches eine Schutzvorrichtung zum Schutz der einzelnen LED-Komponenten umfasst. Beim LED-Leuchtmodul gemäß WO 2011/158196 sind mehrere in Reihe geschaltete LEDs über einen ersten und zweiten LED-Anschluss mit der LED-Treiberschaltung verbindbar. Auf der LED-Trägerplatine des Leuchtmoduls ist zum Schutz der einzelnen LED jeweils für jeden Knotenpunkt zwischen zwei LED ein Schutzkondensator vorgesehen, welcher diesen Knotenpunkt mit dem ersten oder zweiten LED-Anschluss verbindet. Die Kapazität der Kondensatoren ist hierbei so gewählt, dass ihre Impedanz geringer ist als die Impedanz zwischen dem jeweiligen Knotenpunkt und dem Erdpotential, d.h. geringer als die Impedanz der parasitären Kapazität zwischen der Leiterbahn zwischen den LED und dem Metallkern der LED-Trägerplatine.
  • Die Schutzvorrichtung aus WO 2011/158196 gestattet zwar einen Schutz der einzelnen LED-Leuchtmittel gegen bestimmte Störspannungen, bringt jedoch gewisse Nachteile mit sich. Bei Betriebsgeräten, die keine hohe Gleichtaktunterdrückung zwischen Eingangs- und Ausgangsseite aufweisen, müssen die Schutzkondensatoren relativ groß dimensioniert sein, was einerseits zu hohen Kosten und andererseits zu erhöhten Ableitströmen führt. Zudem ist ein geeigneter Schutz nur bei sehr präziser Auslegung des Gesamtsystems zu erzielen und es werden bei n LED n-1 Schutzkondensatoren benötigt. Schließlich kann es zu unerwünschten Ableitströmen kommen.
  • Eine Aufgabe der vorliegenden Erfindung ist es mithin, eine Schutzvorrichtung zum Schutz von LED-Leuchtmitteln vorzuschlagen, welche trotz einfacher Umsetzung zugleich einen verbesserten Schutz des LED-Leuchtmittels gegen Störimpulse, insbesondere asymmetrische Störimpulse am Netzeingang, erzielt. Die Schutzvorrichtung soll insbesondere in ein Betriebsgerät oder in ein LED-Leuchtmodul integrierbar sein, oder aber als separates Modul herstellbar sein. Diese Aufgabe wird gelöst durch ein Betriebsgerät mit einer Schutzvorrichtung gemäß Anspruch 1, durch ein LED-Leuchtmodul mit einer entsprechenden Schutzvorrichtung gemäß Anspruch 4 sowie durch ein als separate Baugruppe herstellbares Schutzmodul zum Schutz eines LED-Leuchtmittels gemäß Anspruch 6.
  • Erfindungsgemäß zeichnet sich die Schutzvorrichtung dadurch aus, dass eine mit dem ersten und dem zweiten LED-Anschluss, welche zur Speisung eines LED-Leuchtmittels dienen, verbundene Schutzschaltung vorgesehen ist. Erfindungsgemäß ist die Schutzschaltung mit einer ersten Schutzkomponente, welche vorzugsweise spannungsbegrenzend wirkt, und mit einer zweiten Schutzkomponente versehen, welche die erste Schutzkomponente mit einem LED-Anschluss verbindet. Mit dem anderen LED-Anschluss ist die erste Schutzkomponente, vorzugsweise unmittelbar oder über eine weitere Schutzkomponente, ebenfalls verbunden. Ferner zeichnet sich die erfindungsgemäße Schutzvorrichtung durch einen zusätzlichen Schutzanschluss bzw. eine leitende Verbindung aus. Dieser bzw. diese ist mit dem Zweck vorgesehen, über die erste Schutzkomponente einen Teil in oder an einem Träger des LED-Leuchtmittels, insbesondere einen Metallkern oder Kühlkörper, mit der Schutzschaltung zu verbinden. Hierdurch können störimpulsbedingte Überspannungen am LED-Leuchtmittel effektiv begrenzt werden bzw. auf ein neutrales Potential abgeleitet werden.
  • In einer bevorzugten Ausführung umfasst die Schutzschaltung eine erste spannungsbegrenzende Schutzkomponente und eine zweite spannungsbegrenzende Schutzkomponente, welche in Reihe geschaltet sind. Hierbei ist der Knotenpunkt zwischen der ersten und der zweiten Schutzkomponente mit dem Teil im oder am Träger des LED-Leuchtmittels verbunden bzw. verbindbar.
  • Um die Schutzwirkung zu erhöhen, wird die spannungsbegrenzende erste Schutzkomponente bzw. der Knotenpunkt der Schutzkomponenten bevorzugt mit einem Teil verbunden, welches über parasitäre Kapazität mit den einzelnen Knotenpunkten zwischen den LED gekoppelt ist, wobei diese bei typischen Substraten im Bereich von 5-200pF, d.h. in der Größenordnung von 10 bis 100pF liegt. Grundsätzlich steigt die parasitäre Kapazität mit der Fläche der Leiterbahnen zur Versorgung der LED.
  • Die Schutzschaltung kann einerseits in das Betriebsgerät oder andererseits auch in das LED-Leuchtmodul integriert werden. Alternativ kann auch eine gleich wirkende Schutzschaltung als Bestandteil eines separat ausgeführten Schutzmoduls zum Schutz des LED-Leuchtmittels ausgeführt werden. Letztgenannte Variante eignet sich insbesondere zum Nachrüsten bestehender Betriebsgeräte oder LED-Leuchtmittel.
  • Der Begriff "LED-Leuchtmittel" umfasst Leuchtmittel mit einer oder mehreren LED. LED sind hierbei Dioden, die in Antwort auf einen Strom Licht emittieren, unabhängig von der gewählten Technologie, inklusive solche auf konventioneller Halbleiterbasis oder auch organische LEDs (OLEDs). Ebenso liegen alle geeigneten Betriebsgeräte und LED-Treiberschaltungen im Rahmen der Erfindung. Als spannungsbegrenzende Schutzkomponenten werden speziell zur Begrenzung auf einen vorbestimmten Bereich von zulässigen Spannungen hergestellte Komponenten, wie z.B. Funkenstrecken, gasgefüllte Überspannungsableiter, TVS-Dioden, Varistoren usw. verstanden, insbesondere solche welche bei einem typischen Spannungsdurchbruch unbeschadet bleiben, d.h. gegebenenfalls mehrfachwirksam sind. Schutzkomponenten allgemein sind alle schaltungstechnisch verwendbare Komponenten, welche ggf. durch geeignete Beschaltung sicherstellen können, dass bei Störimpulsen nur geringfügige zusätzliche Spannung an den LED-Anschlüssen abfällt. Aus Normgründen können, anstelle einer eigentlichen spannungsbegrenzenden Schutzkomponente, auch Widerstände und Kondensatoren eingesetzt werden. Beispielsweise kann ein relativ großer Kondensator eingesetzt werden, wobei die Schutzwirkung dadurch entsteht, dass die Spannung des Störimpulses sich derart aufteilt, dass eine kleine Spannung zwischen den LED- Anschlüssen und dem Schutzanschluß abfällt und der größte Teil der Spannung über der hohen Gleichtaktimpedanz abfällt.
  • Bei Integration in das Betriebsgerät oder bei Ausführung als separates Schutzmodul wird die spannungsbegrenzende erste Schutzkomponente bzw. der Knotenpunkt zwischen der ersten und zweiten Schutzkomponente mit einem zusätzlichen Schutzanschluss verbunden. Über diesen Schutzanschluss lässt sich dann das Teil im oder am Träger des LED-Leuchtmittels mit der Schutzschaltung verbinden. Wird die Schutzschaltung hingegen als integrierter Bestandteil eines LED-Leuchtmoduls ausgeführt, so kann die spannungsbegrenzende erste Schutzkomponente bzw. der Knotenpunkt zwischen der ersten und der zweiten Schutzkomponente ohne externen Anschluss unmittelbar mit dem neutralen Potential bzw. dem Teil im oder am Träger des LED-Leuchtmittels verbunden werden. Als neutrales Potential kann beispielsweise der LED-Kühlkörper oder der Metallkern einer die einzelnen LED-tragende Metallkernplatine genutzt werden. In bestimmten Fällen kommt auch eine Verbindung mit dem Gehäuse des LED-Leuchtmittels in Betracht. Die vorgeschlagene Schutzschaltung eignet sich für Leuchten der Schutzklassen I, II und III bzw. auch für SELV Betriebsgeräte.
  • Bei Ausführungsformen, in welchen die Schutzschaltung als Bestandteil des Betriebsgeräts ausgeführt ist, ist es besonders zweckmäßig, wenn die Ausgangsseite des LED-Treibers gegenüber den eingangsseitigen Netzanschlüssen eine hohe Gleichtaktimpedanz aufweist. Dies kann beispielsweise durch eine galvanische Trennung im Transformator des Schaltnetzteils ausgeführt sein. Dementsprechend sind Ausführungsformen zweckmäßig, bei welchen das Betriebsgerät ein Schaltnetzteil, insbesondere ein Schaltnetzteil mit einem Transformator, umfasst, welches die LED-Anschlüsse galvanisch von den Netzanschlüssen trennt. Dies kann z.B. ohne weiteres mit einem SELV-Treiber erzielt werden. Diese gewährleisten typisch eine Spannungsfestigkeit zwischen Eingang und Ausgang in der Größenordnung von 4kV. Die galvanische Trennung ist jedoch auch sinnvoll bei Geräten, bei welchen die Ausgangsspannungen die erlaubten SELV-Schutzkleinspannungen überschreiten. Die höhere Gleichtaktimpedanz verringert bereits die Gefahr der Zerstörung der LEDs. Ergänzt durch die erfindungsgemäße Schutzschaltung kann sichergestellt werden, dass die LEDs nicht mit einem Stromstoß belastet werden, der diese zerstört.
  • Falls die Schutzschaltung als Bestandteil eines separat ausgeführten Schutzmoduls hergestellt wird, ist es zweckmäßig, in dieses Schutzmodul eine weitere Schutzschaltung zum netzanschlussseitigen Überspannungsschutz des Betriebsgeräts vorzusehen. Zur zusätzlichen Sicherheit ist es in diesem Fall zweckmäßig, die weitere Schutzschaltung hochohmig, z.B. durch einen weiteren hochohmigen Überspannungsableiter, der die Anforderung einer erhöhten und doppelten Isolierung (z.B. im Sinne der Schutzklasse II) erfüllt, von der Schutzschaltung am ersten und zweiten LED-Anschluss zu trennen.
  • Sekundärseitige Störspannungen, welche die LEDs beeinträchtigen könnten, können durch unterschiedliche spannungsbegrenzende Bauteile auf unschädliche Pegel begrenzt werden. Vorzugsweise werden die erste und die zweite Schutzkomponente mittels identischer Bauteiltypen realisiert, um asymmetrische Störimpulse beider Polaritäten auf gleiche Weise abführen zu können. Zweckmäßig ist es beispielsweise, die erste und zweite Schutzkomponente als Suppressordioden bzw. TVS-Dioden auszuführen. Die Schutzkomponenten können alternativ auch als Varistoren, insbesondere als MetalloxidVaristoren, ausgeführt sein. Denkbar ist auch beispielsweise eine Ausführung anhand von Gasfunkenstrecken bzw. gasgefüllten Überspannungsableitern.
  • Als Alternative zu einer Ausführung mit identischen Bauteilen ist auch ein Aufbau mit verschieden ausgeführten Pfaden zur Ableitung der Störimpulse möglich.
  • Als Alternative zur Ausführung mit zwei spannungsbegrenzenden Schutzkomponenten, kann lediglich die erste Schutzkomponente als spannungsbegrenzende Schutzkomponente ausgeführt sein und mit dem neutralen Potential verbunden werden. Eine spannungsbegrenzende Schutzkomponente ist bereits hinreichend um unerwünschte Verlustströme z.B. zum Erdpotential zu verhindern und zugleich Störimpulsenergie abzuleiten.
  • Als eine solche Alternative kann zweckmäßig vorgesehen sein, dass die zweite Schutzkomponente als impulsfester Kondensator ausgeführt ist, wobei entweder diese zweite Schutzkomponente oder gegebenenfalls eine Reihenschaltung aus der zweiten Schutzkomponente mit einer ebenfalls als impulsfestem Kondensator ausgeführten weiteren Schutzkomponente die Verbindung zum ersten und zweiten LED-Anschluss darstellt. Aufgrund der frequenzabhängigen Impedanz wirken Kondensatoren gegenüber den bei impulsartigen Störungen vorliegenden Hochfrequenzanteilen als niederohmige Verbindung zwischen der spannungsbegrenzenden Schutzkomponente und zum jeweiligen LED-Anschluss. Zudem sind impulsfeste Kondensatoren günstiger und können zumindest teilweise zeitlich begrenzte Überspannungen aufnehmen und somit auch eine gewisse Schutzwirkung ähnlich jener eines Glättungs- oder Blockkondensators entfalten. Bei Verwendung von zwei Kondensatoren in Reihenschaltung, können zudem bei geeigneter Wahl der Durchlass- bzw. Durchbruchspannung der spannungsbegrenzenden Schutzkomponente auch geringfügigere Störungen zuverlässig auf das neutrale Potential abgeleitet werden.
  • Die bei Störimpulsen auftretende, abzuführende Energie kann durch eine Gleichtaktimpedanz am Ausgang des LED-Treibers, etwa eine Transformatorspule, aufgenommen werden.
  • Bei Geräten mit galvanischer Trennung zwischen Eingangs- und Ausgangsseite des Betriebsgeräts hat es sich als zweckmäßig erwiesen, wenn die erste und die zweite Schutzkomponente jeweils eine Durchlass- bzw. Durchbruchspannung aufweisen, die einige zehn Volt größer ist als die halbe LED- Versorgungsspannung. Bei Geräten ohne galvanische Trennung ist die Durchbruchspannung zweckmäßig um einige zehn Volt größer als die Summe der Spitze-Spitze-Spannung der Netzversorgung und der halben LED- Versorgungsspannung.
  • Werden als Schutzkomponenten einer oder mehrere Kondensatoren eingesetzt, kann durch geeignete Wahl der Kapazität eine Schutzwirkung auch bei geringeren Durchlass- bzw. Durchbruchspannungen der spannungsbegrenzenden Schutzkomponente eine Schutzfunktion realisiert werden. Diese Ausführung ist insbesondere bei hoher Quellimpedanz vorteilhaft.
  • Zur kontrollierten Umwandlung in Wärme bzw. zum Schutz unabhängig von der Ausführungsform des LED-Treibers ist es zweckmäßig, wenn die Schutzvorrichtung eine erste und eine zweite Impedanzkomponente aufweist. Zweckmässigerweise verbindet die erste Impedanzkomponente eine Schutzkomponente mit dem ersten LED-Anschluss. Analog verbindet die zweite Impedanzkomponente eine andere Schutzkomponente mit dem zweiten LED-Anschluss.
  • Zweckmäßig können weiter eine dritte und eine vierte Impedanzkomponente in der Schutzvorrichtung vorgesehen sein. Die dritte Impedanzkomponente ist hierbei mit dem Knotenpunkt zwischen der ersten Schutzkomponente und der ersten Impedanzkomponente verbunden und verbindet insbesondere die eine Schutzkomponente mit dem dritten Anschluss für die LED-Treiberschaltung. Entsprechend ist die vierte Impedanzkomponente mit dem Knotenpunkt zwischen der anderen Schutzkomponente und der zweiten Impedanzkomponente verbunden und verbindet insbesondere die zweite Schutzkomponente mit einem bzw. dem vierten Anschluss für die LED-Treiberschaltung.
  • Die erste und zweite und/oder dritte und vierte Impedanzkomponente sind bevorzugt mit hauptsächlich induktivem Anteil (bis einige wenige MHz) ausgeführt. Diese können besonders zweckmäßig als Luftspulen und/oder Spulen mit Ferritkern ausgeführt sein, wodurch impulsartige Stromstöße gedämpft werden, ohne nennenswerte Verluste beim LED-Betriebsstrom zu bewirken. Hierdurch werden die Anforderungen betreffend die Belastbarkeit der spannungsbegrenzenden Schutzkomponenten reduziert.
  • Besonders geeignet ist die Erfindung zur Verwendung mit bzw. Nachrüstung von Straßenleuchten in LED-Technologie.
  • Die Erfindung betrifft ebenfalls ein Verfahren gemäß Anspruch 17 zum Schutz von LED-Leuchtmitteln unter Verwendung einer erfindungsgemäßen Schutzvorrichtung.
  • Weitere Einzelheiten, Vorteile und Merkmale der Erfindung lassen sich der nachfolgenden näheren Beschreibung bevorzugter Ausführungsbeispiele anhand der beigefügten Zeichnungen entnehmen. Hierbei zeigen:
  • FIG.1:
    ein Betriebsgerät für LED-Leuchtmittel mit einer erfindungsgemäßen Schutzschaltung;
    FIG.2:
    ein LED-Leuchtmodul mit einer erfindungsgemäßen Schutzschaltung;
    FIG.3:
    ein vom Betriebsgerät und dem LED-Leuchtmodul getrennt ausgeführtes Schutzmodul mit einer erfindungsgemäßen Schutzschaltung, in einer ersten Ausführungsform;
    FIG.4:
    eine erste erfindungsgemäße Schutzschaltung;
    FIG.5:
    eine zweite erfindungsgemäße Schutzschaltung;
    FIG.6:
    eine dritte erfindungsgemäße Schutzschaltung;
    FIG.7:
    ein vom Betriebsgerät und dem LED-Leuchtmodul getrennt ausgeführtes Schutzmodul mit einer erfindungsgemäßen Schutzschaltung, in einer zweiten Ausführungsform;
    FIG.8:
    eine vierte erfindungsgemäße Schutzschaltung;
    FIG.9:
    eine fünfte erfindungsgemäße Schutzschaltung.
  • In FIG. 1 ist ein Betriebsgerät 10 zur Leistungsversorgung eines LED-Leuchtmoduls 2 schematisch bzw. in Blockdarstellung veranschaulicht. Das Betriebsgerät 10 ist über die eingangsseitigen Netzanschlüsse 3, hier Phasen-, Null- und Erdleiter mit dem Versorgungsnetz verbunden. Das Betriebsgerät 10 von weitestgehend bekannter Bauart und umfasst typisch ein Schaltnetzteil mit hoher Gleichtaktimpedanz zwischen den Netzanschlüssen 3 und ausgangsseitigen LED-Anschlüssen 5, 6. Das vereinfacht dargestellte Betriebsgerät 10 umfasst unter anderem einen LED-Treiber 4, z.B. einen Konstantstromtreiber, zum Bereitstellen einer geeigneten Versorgungsspannung für die Serienschaltung von mehreren LEDs 7 im LED-Leuchtmodul 2, welches über die LED-Anschlüsse 5, 6 an den LED-Treiber 4 bzw. ausgangsseitig an das Betriebsgerät 10 angeschlossen ist.
  • Zum Schutz der LEDs 7 im LED-Leuchtmodul 2 gegen Störimpulse, insbesondere gegen asymmetrische Störspannungen aus dem Netz, ist im Betriebsgerät 10 eine Schutzschaltung 11 vorgesehen, welche dem LED-Treiber 4 nachgeschaltet ist und mit den beiden LED-Anschlüssen 5, 6, verbunden ist. Die Schutzschaltung 11 kann z.B. gemäß FIG.4 ausgeführt sein und umfasst eine Reihenschaltung aus einer ersten und einer zweiten spannungsbegrenzenden Schutzkomponente 12, 14. Auch eine Schutzschaltung 51, 61 nach FIG.5-6 oder FIG. 8-9 kann vorgesehen werden. Die vorliegend beschriebenen Schutzschaltungen schützen nicht nur die LEDs 7, sondern auch andere Bestandteile wie z.B. die Isolierung in der Metallkernleiterplatte (s. unten).
  • Ausgangsseitig am Betriebsgerät 10 weist die Schutzschaltung 11 gemäß FIG.1 einen separaten Schutzanschluss 16 auf. Der Schutzanschluss 16 ist mit dem Knotenpunkt 15 zwischen den beiden Schutzkomponenten 12, 14 verbunden. So kann anhand des Schutzanschlusses 16 ein geeignetes Teil 18 in oder am Träger 17 des LED-Leuchtmoduls 2 mit der Schutzschaltung 11 verbunden werden, um störimpulsbedingte Überspannungen am LED-Leuchtmittel 2, insbesondere am LED-Anschluss 5 und/oder am LED-Anschluss 6 auf ein gewünschtes Maß zu begrenzen.
  • Aufgrund des symmetrischen Schaltungsaufbaus können gleichermaßen asymmetrische Störladungen an dem einen LED-Anschluss 5 oder an dem anderen LED-Anschluss 6 auf ein neutrales Potential abgeführt werden. Als Bauteil mit neutralem Potential kommt beispielsweise der Kühlkörper 18 der LEDs 7 in Betracht, insbesondere bei LEDs 7 mit einem Träger 17 aus Keramik oder FR4. Bei einer Metallkernplatine als Träger 17 kann die Schutzschaltung 11 über den Schutzanschluss 16 auch mit dem Metallkern der Metallkernplatine verbunden werden. Es kommt auch eine leitende Verbindung mit dem Gehäuse der Leuchte 9 in Betracht, insbesondere bei Ausführung als Straßenleuchte.
  • In einer Alternativausführung gemäß FIG.2 ist die Schutzschaltung 11 nicht in das Betriebsgerät 1, sondern in ein LED-Leuchtmodul 22 integriert. In diesem Fall ist kein gesonderter, extern zugänglicher Schutzanschluss vorgesehen, sondern ein Schutzleiter 26 innerhalb des LED-Leuchtmoduls 22 verbindet den Knotenpunkt 15 zwischen den zwei Schutzkomponenten 12, 14 unmittelbar mit dem Metallkern oder dem Kühlkörper. Ansonsten ist die Ausführung nach FIG.2 elektrisch und schaltungstechnisch äquivalent zu FIG.1 und kann mit einer der Schutzschaltungen nach FIG.4-6 ausgeführt werden.
  • In der Alternativausführung gemäß FIG.3 ist die Schutzschaltung 11 in ein getrennt hergestelltes Schutzmodul 30 zum Nachrüsten bestehender Betriebsgeräte 1 oder LED-Leuchtmodule 2 integriert. Durch geringe Baugröße kann dieses Schutzmodul 30 ohne weiteres nachträglich in das Gehäuse einer Leuchte 9, z.B. einer LED-Straßenleuchte eingebaut werden. Entsprechend weist das Schutzmodul weitere Anschlüsse, nämlich einen dritten und einen vierten Anschluss 33, 34 für den Anschluss an die ausgangsseitigen Anschlüsse der LED-Treiberschaltung 4 auf. Das LED-Leuchtmodul 2 wird wiederum and die LED-Anschlüsse 5, 6 angeschlossen, mit welchen die Schutzschaltung 11 verbunden ist. Über den Schutzanschluss 16 wird z.B. der Kühlkörper 18 leitend mit dem Knotenpunkt 15 der Schutzschaltung 11 verbunden. Ansonsten ist die Ausführung nach FIG.3 äquivalent zu FIG.1 oder FIG.2.
  • Rein zum Zwecke der Veranschaulichung zeigen FIG.1-3 parasitäre Kapazitäten zwischen dem Kühlkörper 18 und den Knotenpunkten zwischen den Paaren der LED 7. Aufgrund der parasitären Kopplung können Störimpulse leicht zur Zerstörung bzw. zur Beeinträchtigung einzelner LED 7 führen. Hiergegen schützt die erfindungsgemäße Schutzschaltung 11.
  • FIG.4 zeigt eine erfindungsgemäße Schutzvorrichtung in Form einer Schutzschaltung 11 mit insgesamt sechs Zweipolen in Form einer H-Schaltung. Die Querverbindung bzw. den Brückenzweig bildet die Serienschaltung aus zwei vorzugsweise identischen Schutzkomponenten 12, 14, z.B. gasgefüllte Überspannungsableiter. Eine erste Impedanzkomponente 41, z.B. eine Luft- oder Ferritkernspule, verbindet die erste Schutzkomponente 12 mit dem ersten LED-Anschluss 5. Eine zweite Impedanzkomponente 42, z.B. eine Luft- oder Ferritkernspule, verbindet die zweite Schutzkomponente 14 mit dem zweiten LED-Anschluss 6. Ferner verbinden eine dritte und vierte Impedanzkomponente 43 bzw. 44 die erste Schutzkomponente 12 bzw. die zweite Schutzkomponente 14 mit einem entsprechenden Anschluss unmittelbar mit der LED-Treiberschaltung. Durch die zusätzlichen Impedanzkomponenten 41, 42, 43, 44 können überspannungsbedingte Ströme kontrolliert in Wärme bzw. Feldenergie umgewandelt werden. Durch geeignete Wahl der Schutzkomponenten 12, 14 wird in Abhängigkeit des zu schützendem LED-Leuchtmoduls 2 die Durchbruchspannung vorgegeben, so dass diese zumindest größer ist, als die halbe LED-Versorgungsspannung VS zur Versorgung des LED-Leuchtmoduls 2. Bei Geräten mit galvanischer Trennung zwischen den Netzanschlüssen 3 und den LED-Anschlüssen 5, 6 kann die Durchbruchspannung demnach im Bereich von einigen zehn bis wenigen hundert Volt liegen. Bei Geräten ohne galvanische Trennung zwischen den Netzanschlüssen 3 und den LED-Anschlüssen 5, 6 soll die Durchbruchspannung entsprechend um die Spitze-Spitze-Spannung der Netzversorgung erhöht werden und kann so durchaus im Bereich von 700-1000V liegen.
  • Alternativ zur gezeigten Ausführung der Schutzschaltung 11 nach FIG.4 können auch anstatt vier nur zwei oder keine Impedanzkomponenten im Stromkreis der LED 7 vorgesehen werden. Möglich ist auch eine Anordnung der Impedanzkomponenten in der Querverbindung bzw. im Brückenzweig in Serie mit den Schutzkomponenten 12, 14.
  • FIG.5 zeigt eine Variante einer Schutzschaltung 51 ohne Impedanzkomponenten, insbesondere geeignet für Betriebsgeräte mit hoher Gleichtaktunterdrückung. Als Schutzkomponenten sind TVS-Dioden 52, 54 vorgesehen, z.B. Suppressordioden vom Typ P6KE.
  • FIG.6 zeigt eine weitere Variante einer Schutzschaltung 61 ohne Impedanzkomponenten. Als Schutzkomponenten sind hier spannungsabhängige Widerstände bzw. Varistoren 62, 64 vorgesehen, insbesondere Metalloxidvaristoren. Nicht näher gezeigt, aber ebenfalls möglich, wäre eine Schutzschaltung mit Gasfunkenstrecken als Schutzkomponenten.
  • FIG.7 zeigt schließlich eine Fortbildung eines separaten Schutzmoduls 70. Dieses umfasst neben der Schutzschaltung 11 eine weitere Schutzschaltung 71 zum netzanschlussseitigen Überspannungsschutz des Betriebsgeräts 1 gegen Überspannungen >1500V. Die eingangsseitige Schutzschaltung 71 ist galvanisch von der ausgangseitigen Schutzschaltung 11 isoliert. Die Schutzschaltung 71 hat eine an sich bekannte Bauweise und verbindet die Netzanschlüsse 3 des Betriebsgeräts 1 mit dem Netz.
  • FIG.8 zeigt als Variante zur Schutzschaltung gemäß FIG.4 eine Schutzschaltung 81. In FIG.8 sind die optionalen Impedanzkomponenten aus FIG.4 nicht näher gezeigt. In der Schutzschaltung 81, ist lediglich eine spannungsbegrenzende (erste) Schutzkomponente 12 vorgesehen, welche über eine zweite und eine weitere, dritte Schutzkomponente 13A, 13B mit den beiden LED-Anschlüssen 5, 6 verbunden ist. Die Schutzkomponenten 13A, 13B sind - im Unterschied zu FIG.4 oder FIG.5-6 - als impulsfeste Kondensatoren ausgeführt. Die Schutzkomponenten 13A, 13B sind vorzugsweise selbstheilend, d. h. verursachen bei inneren elektrischen Durchschlägen keinen Kurzschluss. Die Schutzkomponenten 13A, 13B wirken aufgrund der mit steigender Frequenz fallenden Impedanz gegenüber impulsartigen Störflanken niederohmig und ermöglichen so ein Ableiten von Impulsenergie über lediglich eine spannungsbegrenzende Schutzkomponente 12 zum neutralen Potential. Die Schutzkomponente 12 kann als Varistor, als Suppressordiode, als Gasfunkenstrecke oder sonstige geeignete, als Überspannungsableitung wirkende Komponente ausgeführt sein.
  • FIG.9 zeigt als weitere Variante einer Schutzschaltung 91 eine Abwandlung zu FIG.8 mit lediglich einer spannungsbegrenzenden (ersten) Schutzkomponente 12 und lediglich einer zweiten, als Kondensator ausgeführten zweiten Schutzkomponente 13. Die zweite Schutzkomponente 13 ist mit beiden Polen unmittelbar an die LED-Anschlüssen 5, 6 angeschlossen. Die spannungsbegrenzende Schutzkomponente hingegen ist nicht wie in FIG.8 an einen Mittenabgriff, sondern unmittelbar mit einem der beiden LED-Anschlüsse 5, 6 verbunden. Die Ausführung nach FIG.9 ist besonders zweckmäßig, wenn ein Kondensator bereits ausgangseitig in den LED-Treiber 4 integriert ist und als zweite Schutzkomponente 13 mitgenutzt werden kann, d.h. nicht als zusätzliche Komponente vorgesehen werden muss.
  • Anstelle der spannungsbegrenzenden Schutzkomponente 12 kann in den Beispielen nach FIG.8 und FIG.9 ein Kondensator, vorzugsweise mit hoher Kapazität bzw. geringer Impedanz, als Schutzkomponente eingesetzt werden. Dies kann zur Einhaltung bestimmter Normen vorteilhaft sein. Die Ausführungsformen nach FIG.8 und FIG.9 sind kostensparend, da höchstens eine spannungsbegrenzende Schutzkomponente 12 eingesetzt wird.
  • Die bevorzugten, mit dem ersten und dem zweiten LED-Anschluss verbundenen bzw. verbindbaren Schutzschaltungen nach FIG.4-6 hingegen zeichnen sich aus durch eine erste und eine zweite spannungsbegrenzende Schutzkomponente 12, 14, welche in Reihe geschaltet sind, sowie durch einen zusätzlichen Schutzanschluss 16, welcher mit einem Knotenpunkt 15 zwischen der ersten und der zweiten Schutzkomponente verbunden ist und mittels welchem ein Teil 18 in oder an einem Träger 17 des LED-Leuchtmittels, insbesondere ein Metallkern oder Kühlkörper, mit der Schutzschaltung 11 verbindbar ist, um störimpulsbedingte Überspannungen am LED-Leuchtmittel 2 zu begrenzen.
  • Alle mit den vorstehenden Ausführungsbeispielen beschriebenen Schutzvorrichtungen verhindern zuverlässig und auf einfache Weise, dass bei Auftreten eines Störimpulses an einem oder beiden LED-Anschlüssen 5, 6 Spannungen auftreten können, die durch Ableitung über parasitäre Kapazitäten einen für die einzelnen LED 7 schädlichen Strom erzeugen.
  • Bezugszeichenliste
    • FIG.1
      2
      LED-Leuchtmodul
      3
      Netzanschlüsse
      4
      LED-Treiber
      5, 6
      LED-Anschluss
      7
      LED
      9
      Leuchte
      10
      Betriebsgerät
      11
      Schutzschaltung
      16
      Schutzanschluss
      17
      Träger
      18
      Kühlkörper
    • FIG.2
      1
      Betriebsgerät
      3
      Netzanschlüsse
      4
      LED-Treiber
      5, 6
      LED-Anschluss
      7
      LED
      9
      Leuchte
      11
      Schutzschaltung
      22
      LED-Leuchtmodul
      26
      Schutzleiter
      27
      Träger
      28
      Kühlkörper
    • FIG.3
      1
      Betriebsgerät
      2
      LED-Leuchtmodul
      3
      Netzanschlüsse
      4
      LED-Treiber
      5, 6
      LED-Anschluss
      7
      LED
      9
      Leuchte
      16
      Schutzanschluss
      17
      Träger
      18
      Kühlkörper
      30
      Schutzmodul
      33
      dritter Anschluss
      34
      vierter Anschluss
    • FIG.4
      11
      Schutzschaltung
      12, 14
      Schutzkomponente
      15
      Knotenpunkt
      41, 42
      Impedanzkomponente
      43, 44
      Impedanzkomponente
    • FIG.5
      5, 6
      LED-Anschluss
      15
      Knotenpunkt
      51
      Schutzschaltung
      52, 54
      TVS-Diode
      56
      Schutzanschluss
    • FIG.6
      5, 6
      LED-Anschluss
      15
      Knotenpunkt
      61
      Schutzschaltung
      62, 64
      Varistor
      66
      Schutzanschluss
    • FIG.7
      1
      Betriebsgerät
      2
      LED-Leuchtmodul
      3
      Netzanschlüsse
      4
      LED-Treiber
      5, 6
      LED-Anschluss
      7
      LED
      9
      Leuchte
      11
      Schutzschaltung
      16
      Schutzanschluss
      17
      Träger
      18
      Kühlkörper
      70
      Schutzmodul
      71
      weitere Schutzschaltung
    • FIG.8
      5, 6
      LED-Anschluss
      15
      Knotenpunkt
      12
      Schutzkomponente
      13A, 13B
      Kondensator
      81
      Schutzschaltung
    • FIG.9
      5, 6
      LED-Anschluss
      12
      Schutzkomponente
      13
      Kondensator
      91
      Schutzschaltung

Claims (20)

  1. Betriebsgerät (10) für LED-Leuchtmittel (2) mit einer Schutzvorrichtung gegen Störimpulse, wobei das Betriebsgerät:
    eingangsseitige Netzanschlüsse (3) für die Energieversorgung des Betriebsgeräts; und
    eine LED-Treiberschaltung (4) mit einem ersten und zweiten ausgangsseitigen LED-Anschluss (5, 6) zum Bereitstellen einer Versorgungsspannung für ein LED-Leuchtmittel mit einer oder mehreren LED (7); umfasst wobei die Schutzvorrichtung eine mit dem ersten und dem zweiten LED-Anschluss (5, 6) verbundene Schutzschaltung (11; 51; 61) aufweist, mit einer ersten Schutzkomponente (12; 52; 62) und mit einer zweiten Schutzkomponente (14; 54; 64; 13; 13A), welche die erste Schutzkomponente (12; 52; 62) mit einem LED-Anschluss (5, 6) verbindet, wobei die erste Schutzkomponente (12) mit dem anderen LED-Anschluss (5, 6) verbunden ist, sowie
    einen zusätzlichen Schutzanschluss (16), welcher mit der ersten Schutzkomponente (12; 52; 62) verbunden ist und mittels welchem ein Teil in oder an einem Träger (17) des LED-Leuchtmittels, insbesondere ein Metallkern oder Kühlkörper (18; 28), mit der Schutzschaltung (11; 51; 61) verbindbar ist, um störimpulsbedingte Überspannungen am LED-Leuchtmittel (2) zu begrenzen.
  2. Betriebsgerät nach Anspruch 1, dadurch gekennzeichnet, dass die erste und die zweite Schutzkomponente (12, 14) als spannungsbegrenzende Schutzkomponenten ausgeführt und vorzugsweise in Reihe geschaltet sind, wobei der zusätzliche Schutzanschluss (16) vorzugsweise mit einem Knotenpunkt (15) zwischen der ersten und der zweiten Schutzkomponente (12, 14) verbunden ist.
  3. Betriebsgerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Betriebsgerät ein Schaltnetzteil, insbesondere ein Schaltnetzteil mit einem Transformator, umfasst, welches die LED-Anschlüsse (5, 6) galvanisch von den Netzanschlüssen (3) trennt.
  4. LED-Leuchtmodul (22) mit einer Schutzvorrichtung gegen Störimpulse, wobei das LED-Leuchtmodul:
    ein LED-Leuchtmittel mit einer oder mehreren LED (7), insbesondere mehreren in Reihe geschalteten LED, mit einem ersten und einem zweiten LED-Anschluss (5, 6) für die Versorgung durch eine LED-Treiberschaltung (4); und einen Träger (27) umfasst, welcher die LED (7) trägt, insbesondere eine LED-Trägerplatine, wobei im oder am Träger ein Teil, insbesondere ein Metallkern oder Kühlkörper (28), vorgesehen ist und
    wobei die Schutzvorrichtung eine mit dem ersten und dem zweiten LED-Anschluss (5, 6) verbundene Schutzschaltung (11; 51; 61) aufweist, mit einer ersten Schutzkomponente (12; 52; 62) und mit einer zweiten Schutzkomponente (14; 54; 64; 13; 13A), welche die erste Schutzkomponente mit einem LED-Anschluss (5, 6) verbindet, wobei die erste Schutzkomponente (12; 52; 62) mit dem anderen LED-Anschluss (5, 6) verbunden ist, sowie
    eine Verbindung der ersten Schutzkomponente (12; 52; 62) mit dem Teil (28) im oder am Träger (27), um störimpulsbedingte Überspannungen am LED-Leuchtmittel zu begrenzen.
  5. LED-Leuchtmodul (22) nach Anspruch 4, dadurch gekennzeichnet, dass die erste und die zweite Schutzkomponente (12, 14) als spannungsbegrenzende Schutzkomponenten ausgeführt und vorzugsweise in Reihe geschaltet sind, wobei die Verbindung vorzugsweise einen Knotenpunkt (15) zwischen der ersten und der zweiten Schutzkomponente mit dem Teil (28) im oder am Träger (27) verbindet.
  6. Anordnung mit einem LED-Leuchtmittel (2) und einem separaten Schutzmodul (30; 70) zum Schutz des LED-Leuchtmittels (2) gegen Störimpulse, das Schutzmodul umfassend:
    einen ersten und einen zweiten LED-Anschluss (5, 6), an welche das LED-Leuchtmittel angeschlossen ist;
    einen dritten und einen vierten Anschluss (33, 34) für die ausgangsseitigen Anschlüsse eines Betriebsgeräts (1) für das LED-Leuchtmittel (2);
    eine mit dem ersten und dem zweiten LED-Anschluss (5, 6) verbundene Schutzschaltung (11; 51; 61) mit einer ersten Schutzkomponente (12; 52; 62) und mit einer zweiten Schutzkomponente (14; 54; 64; 13; 13A), welche die erste Schutzkomponente mit einem LED-Anschluss (5, 6) verbindet, wobei die erste Schutzkomponente mit dem anderen LED-Anschluss (5, 6) verbunden ist, wobei die erste Schutzkomponente (12; 52; 62) mit einem zusätzlichen Schutzanschluss (16) verbunden ist, mittels welchem ein Teil in oder an einem Träger (17) des LED-Leuchtmittels, insbesondere ein Metallkern oder Kühlkörper (18), mit der Schutzschaltung (11; 51; 61) verbunden ist, um störimpulsbedingte Überspannungen am LED-Leuchtmittel zu begrenzen.
  7. Anordnung nach Anspruch 6, dadurch gekennzeichnet, dass die erste und die zweite Schutzkomponente (12, 14) als spannungsbegrenzende Schutzkomponenten ausgeführt und vorzugsweise in Reihe geschaltet sind, wobei der zusätzliche Schutzanschluss (16) vorzugsweise mit einem Knotenpunkt (15) zwischen der ersten und der zweiten Schutzkomponente verbunden ist.
  8. Anordnung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass das Schutzmodul (70) eine weitere Schutzschaltung (71) zum netzanschlussseitigen Überspannungsschutz des Betriebsgeräts (1) umfasst, wobei die weitere Schutzschaltung hochohmig von der Schutzschaltung (11; 51; 61) am ersten und zweiten LED-Anschluss (5,6) getrennt ist.
  9. Vorrichtung nach einem der vorstehenden Ansprüche, insbesondere nach Anspruch 2, 5 oder 7, dadurch gekennzeichnet, dass die erste und die zweite Schutzkomponente als TVS-Diode (52, 54) ausgeführt sind.
  10. Vorrichtung nach einem der vorstehenden Ansprüche, insbesondere nach Anspruch 2, 5 oder 7, dadurch gekennzeichnet, dass die erste und die zweite Schutzkomponente als Varistor (62, 64), insbesondere als Metalloxid-Varistor, ausgeführt sind.
  11. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die erste und die zweite Schutzkomponente (12, 14) als spannungsbegrenzende Schutzkomponenten ausgeführt sind und jeweils eine Durchbruchspannung aufweisen, welche vorzugsweise größer ist als die halbe LED-Versorgungsspannung des LED-Leuchtmittels (2).
  12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die erste Schutzkomponente (12; 52; 62) unmittelbar mit dem anderen LED-Anschluss (5, 6) verbunden ist.
  13. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die erste Schutzkomponente (12) über eine weitere Schutzkomponente (13B) mit dem anderen LED-Anschluss (5, 6) verbunden ist.
  14. Vorrichtung nach einem der Ansprüche 1, 4 oder 6 und nach Anspruch 12, dadurch gekennzeichnet, dass die zweite Schutzkomponente (13) als impulsfester Kondensator ausgeführt ist, wobei die zweite Schutzkomponente (13) den ersten und den zweiten LED-Anschluss (5, 6) verbindet.
  15. Vorrichtung nach einem der Ansprüche 1, 4 oder 6 und nach Anspruch 13, dadurch gekennzeichnet, dass die zweite Schutzkomponente (13A) als impulsfester Kondensator ausgeführt ist, dass die weitere Schutzkomponente (13B) als impulsfester Kondensator ausgeführt ist und dass eine Reihenschaltung aus der zweiten Schutzkomponente (13A) und der weiteren Schutzkomponente (13B) den ersten und den zweiten LED-Anschluss (5, 6) verbindet.
  16. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Schutzvorrichtung eine erste und eine zweite Impedanzkomponente (41, 42) aufweist, wobei die erste Impedanzkomponente (41) eine Schutzkomponente mit dem ersten LED-Anschluss verbindet und die zweite Impedanzkomponente (42) eine andere Schutzkomponente mit dem zweiten LED-Anschluss verbindet.
  17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass die Schutzvorrichtung eine dritte und eine vierte Impedanzkomponente (43, 44) aufweist, wobei die dritte Impedanzkomponente (43) mit dem Knotenpunkt zwischen der einen Schutzkomponente und der ersten Impedanzkomponente verbunden ist, insbesondere die erste Schutzkomponente mit dem dritten Anschluss für die LED-Treiberschaltung verbindet, und die vierte Impedanzkomponente (44) mit dem Knotenpunkt zwischen der anderen Schutzkomponente und der zweiten Impedanzkomponente verbunden ist, insbesondere die zweite Schutzkomponente mit dem vierten Anschluss für die LED-Treiberschaltung verbindet.
  18. Vorrichtung nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass die ersten und zweiten und/oder die dritten und vierten Impedanzkomponenten (41, 42, 43, 44) als Luftspulen und/der Spulen mit Ferritkern ausgeführt sind.
  19. LED-Straßenleuchte (9) umfassend ein Betriebsgerät nach Anspruch 1, ein LED-Leuchtmodul nach Anspruch 4, oder ein Schutzmodul nach Anspruch 6.
  20. Verfahren zum Schutz von LED-Leuchtmitteln (2) gegen Störimpulse, wobei das LED-Leuchtmittel über eine LED-Treiberschaltung (4) mit einem ersten und zweiten ausgangsseitigen LED-Anschluss (5, 6) versorgt wird und einen Träger (17; 27) für LED umfasst, insbesondere eine LED-Trägerplatine, wobei im oder am Träger ein Teil, insbesondere ein Metallkern oder Kühlkörper, vorgesehen ist; das Verfahren umfassend:
    Verbinden einer Schutzschaltung (11) mit dem ersten und dem zweiten LED-Anschluss, wobei in der Schutzschaltung (11) eine erste Schutzkomponente (12) spannungsbegrenzend wirkt, und eine zweite Schutzkomponente (14; 13; 13A) die erste Schutzkomponente mit einem LED-Anschluss verbindet, und die erste Schutzkomponente (12) mit dem anderen LED-Anschluss verbunden ist, sowie
    Begrenzen von störimpulsbedingten Überspannungen am LED-Leuchtmittel (2) durch Verbinden der ersten Schutzkomponente (12) mit dem Teil (18; 28) im oder am Träger (17; 27) des LED-Leuchtmittels.
EP14170431.2A 2013-05-29 2014-05-28 Schutzvorrichtungen zum Schutz von LED-Leuchtmitteln gegen Störimpulse Active EP2809129B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013210119 2013-05-29
DE102013113603.6A DE102013113603A1 (de) 2013-05-29 2013-12-06 Schutzvorrichtungen zum Schutz von LED-Leuchtmitteln gegen Störimpulse

Publications (3)

Publication Number Publication Date
EP2809129A2 EP2809129A2 (de) 2014-12-03
EP2809129A3 EP2809129A3 (de) 2015-08-19
EP2809129B1 true EP2809129B1 (de) 2017-07-26

Family

ID=50819666

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14170431.2A Active EP2809129B1 (de) 2013-05-29 2014-05-28 Schutzvorrichtungen zum Schutz von LED-Leuchtmitteln gegen Störimpulse

Country Status (2)

Country Link
EP (1) EP2809129B1 (de)
DE (1) DE102013113603A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118234A1 (de) 2015-10-26 2017-04-27 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070086141A1 (en) * 2005-10-18 2007-04-19 Eaton Corporation Surge receptacle apparatus and power system including the same
US8284536B2 (en) * 2008-11-26 2012-10-09 Abl Ip Holding Llc Surge protection module for luminaires and lighting control devices
EP2290777A1 (de) 2009-09-01 2011-03-02 Nxp B.V. Netzüberspannungsschutz
JP2012004052A (ja) 2010-06-18 2012-01-05 Koninkl Philips Electronics Nv 発光装置及びそれを備える灯具
WO2012143871A1 (en) 2011-04-20 2012-10-26 Koninklijke Philips Electronics N.V. Surge protection device
JP2013031350A (ja) * 2011-07-27 2013-02-07 Tozai Denko Co Ltd Led光源用点灯装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2809129A3 (de) 2015-08-19
EP2809129A2 (de) 2014-12-03
DE102013113603A1 (de) 2014-12-04

Similar Documents

Publication Publication Date Title
EP0855758B1 (de) Schaltungsanordnung zum Schutz von HF-Eingangskreisen von Telekommunikationsgeräten
DE202013008967U1 (de) LED Ansteuerschaltung
WO2011135098A9 (de) Spannungsfeste schnittstellenschaltung
DE102014116734A1 (de) Schaltung zum Schutz vor Überspannungen
EP2809129B1 (de) Schutzvorrichtungen zum Schutz von LED-Leuchtmitteln gegen Störimpulse
DE202013101705U1 (de) Schaltungsanordnung zum Überspannungsschutz in Gleichstrom-Versorgungskreisen
DE102015200186A1 (de) Überspannungsschutzvorrichtung sowie Leuchte mit einer derartigen Überspannungsschutzvorrichtung
DE202013004107U1 (de) Retrofit-Lampe
DE102014115226B4 (de) ESD-Schutzbeschaltung und LED-Leuchte
EP3060030B1 (de) Vorrichtung zum betrieb von leuchtmitteln
DE202015106305U1 (de) Schutzschaltung für Betriebsgeräte
DE102011078620A1 (de) Hochvolt-LED-Multichip-Modul und Verfahren zur Einstellung eines LED-Multichip-Moduls
DE102010039437A1 (de) Schaltung, Netzfilter, Betriebsgerät und Leuchtvorrichtung oder Lampe
EP3935706B1 (de) Gleichstromnetzwerk
AT16713U1 (de) Leuchtenbaugruppe für eine hochspannungsfeste LED-Leuchte
DE4040164C2 (de)
DE102010028448A1 (de) Schnittstellenschaltung und Verfahren zur Beeinflussung der Flankensteilheit eines Ansteuersignals
DE202011005045U1 (de) Schutzelement für ein elektronisches Vorschaltgerät
EP3372057B1 (de) Verfahren zur reduzierung von leiterbahnabständen bei elektronischen leiterplatten und elektronische leiterplatte mit reduzierten abständen zwischen leiterbahnen
DE202009009254U1 (de) Adapter für Kompaktleuchtstofflampen oder Leuchtdiodenlampen mit integriertem Vorschaltgerät
DE102009050203B4 (de) Vorrichtung mit einer Unterdrückungsschaltung eines Restlichts
DE102009031967B3 (de) Adapter für Kompaktleuchtstofflampen oder Leuchtdiodenlampen mit integriertem Vorschaltgerät
EP2624663A1 (de) LED-Schaltung
DE102019107112B3 (de) Schaltvorrichtung, Spannungsversorgungssystem, Verfahren zum Betreiben einer Schaltvorrichtung und Herstellverfahren
DE102017106770B4 (de) Schaltungsanordnung zum Schutz vor Netzüberspannungen für Stromrichter von Fahrzeugen, insbesondere von fahrleitungsgebundenen Fahrzeugen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140528

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 33/08 20060101AFI20150710BHEP

R17P Request for examination filed (corrected)

Effective date: 20160219

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160420

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAG ELECTRONICS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170227

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 913389

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014004720

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170726

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171026

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171026

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014004720

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014004720

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170726

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200522

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200603

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200522

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 913389

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210528

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014004720

Country of ref document: DE

Owner name: OPTOTRONIC GMBH, DE

Free format text: FORMER OWNER: BAG ELECTRONICS GMBH, 59759 ARNSBERG, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014004720

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230531

Year of fee payment: 10