EP2807118A1 - Procede de preparation de silices precipitees - Google Patents

Procede de preparation de silices precipitees

Info

Publication number
EP2807118A1
EP2807118A1 EP13713364.1A EP13713364A EP2807118A1 EP 2807118 A1 EP2807118 A1 EP 2807118A1 EP 13713364 A EP13713364 A EP 13713364A EP 2807118 A1 EP2807118 A1 EP 2807118A1
Authority
EP
European Patent Office
Prior art keywords
acid
weight
concentration
reaction medium
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13713364.1A
Other languages
German (de)
English (en)
Inventor
Emmanuelle Allain
Sylvaine Neveu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Operations SAS
Original Assignee
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations SAS filed Critical Rhodia Operations SAS
Publication of EP2807118A1 publication Critical patent/EP2807118A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • C01B33/128Preparation of silica of undetermined type by acidic treatment of aqueous silicate solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates

Definitions

  • the present invention relates to a new process for the preparation of precipitated silica.
  • precipitated silicas as a catalyst support, as an absorbent of active materials (in particular liquid carriers, for example used in foodstuffs, such as vitamins (especially vitamin E, choline chloride), as a viscosifying, texturizing or anti-caking agent, as an element for battery separators, as an additive for toothpaste, for paper.
  • active materials in particular liquid carriers, for example used in foodstuffs, such as vitamins (especially vitamin E, choline chloride), as a viscosifying, texturizing or anti-caking agent, as an element for battery separators, as an additive for toothpaste, for paper.
  • precipitated silicas as reinforcing filler in silicone matrices (for example for coating electrical cables) or in compositions based on polymer (s), natural or synthetic, in particular elastomer (s), especially diene, for example for shoe soles, floor coverings, gas barriers, fire-retardant materials and also technical parts such as ropeway rollers, appliance seals, liquid or gas line joints, brake system seals, ducts, cables and transmission belts.
  • the object of the present invention is to provide a new process for the preparation of precipitated silica, which constitutes an alternative to the known processes for the preparation of precipitated silica.
  • one of the aims of the present invention is to provide a process which, while having an improved productivity in particular at the level of the precipitation reaction, in particular with respect to the preparation methods of the state of the art involving using a dilute acid as acid, it is possible to obtain precipitated silicas having physicochemical characteristics and similar properties, in particular as regards their morphology, particle size and porosity and / or their reinforcing properties, to those of precipitated silicas obtained by these preparative methods of the state of the art.
  • Another object of the invention is preferably, at the same time, to reduce the amount of energy consumed and / or the amount of water used in the preparation of precipitated silica, particularly with respect to the methods of the state of the art. the technique employing as acid a dilute acid.
  • the object of the invention is a new process for the preparation of precipitated silica, comprising the reaction of a silicate with at least one acid, whereby a suspension of silica is obtained, followed by separation and drying of this suspension, in which the reaction of the silicate with the acid is carried out according to the following successive steps:
  • silicate and acid are added simultaneously to the reaction medium, so that the pH of the reaction medium is maintained between 7 and 10, preferably between 7.5 and 9.5,
  • step (vi) the reaction medium obtained at the end of step (v) is brought into contact (mixture) (thus having a pH of between 2.5 and 5.3, preferably between 2.8 and 5.2 ) with acid and silicate, such that the pH of the reaction medium is maintained between 2.5 and 5.3, preferably between 2.8 and 5.2, in which process: in at least a part of step (ii) (i.e. in at least some or all of step (ii))
  • the acid used is a concentrated acid, preferably selected from the group consisting of sulfuric acid having a concentration of at least 80% by weight, in particular at least 90% by weight, acetic acid or formic acid having a concentration of at least 90% by weight, the nitric acid having a concentration of at least 60% by weight, the phosphoric acid having a concentration of at least 75% by weight, the acid hydrochloric acid having a concentration of at least 30% by mass.
  • the concentrated acid is concentrated sulfuric acid, that is to say sulfuric acid having a concentration of at least 80% by weight, preferably at least 90% by weight. .
  • sulfuric acid having a concentration of at least 1400 g / l, in particular at least 1650 g / l.
  • step (vii) it is possible, in a subsequent step (vii), to add, in the reaction medium obtained at the end of step (vi), an alkaline agent, preferably a silicate, until it reaches pH value of the reaction medium of between 4.7 and 6.3, preferably between 5.0 and 5.8, for example between 5.0 and 5.4.
  • an alkaline agent preferably a silicate
  • the acid used in step (vi) is a concentrated acid as defined above.
  • the acid used in steps (ii), (iv) and (v) can then be a dilute acid, advantageously dilute sulfuric acid, that is to say having a concentration much lower than 80% in bulk, in this case a concentration of less than 20% by weight (and in general of at least 4% by weight), in particular less than 14% by weight, in particular of not more than 10% by weight, for example between 5 and 10% by weight.
  • a dilute acid advantageously dilute sulfuric acid, that is to say having a concentration much lower than 80% in bulk, in this case a concentration of less than 20% by weight (and in general of at least 4% by weight), in particular less than 14% by weight, in particular of not more than 10% by weight, for example between 5 and 10% by weight.
  • the invention is a new process for the preparation of precipitated silica comprising the reaction of a silicate with at least one acid, whereby a suspension of silica is obtained. , then separating and drying this suspension, in which the reaction of the silicate with the acid is carried out according to the following successive steps: (i) forming an aqueous base having a pH of between 2 and 5, preferably between 2.5 and 5, (ii) adding to said base of the tank, simultaneously, silicate and acid, of in such a way that the pH of the reaction medium is maintained between 2 and 5, preferably between 2.5 and 5,
  • silicate and acid are added simultaneously to the reaction medium, so that the pH of the reaction medium is maintained between 7 and 10, preferably between 7.5 and 9.5,
  • step (vi) the reaction medium obtained at the end of step (v) is brought into contact (mixture) (thus having a pH of between 2.5 and 5.3, preferably between 2.8 and 5.2 ) with acid and silicate, so that the pH of the reaction medium is maintained between 2.5 and 5.3, preferably between 2.8 and 5.2, in which process, in at least a part of step (ii) (i.e., in at least a part or all of step (ii)), the acid used is a concentrated acid, preferably selected from the group formed with sulfuric acid having a concentration of at least 80% by weight, in particular at least 90% by weight, the acetic acid or the formic acid having a concentration of at least 90% by weight, nitric acid having a concentration of at least 60% by weight, the phosphoric acid having a concentration of at least 75% by weight, the hydrochloric acid having a concentration of at least 30% by weight.
  • mixture thus having a pH of between 2.5 and 5.3, preferably between 2.8 and 5.2
  • step (ii) is a concentrated acid, preferably selected from the group consisting of sulfuric acid having a concentration of at least 80% by weight, in particular at least 90% by weight.
  • acetic acid or formic acid having a concentration of at least 90% by weight
  • the nitric acid having a concentration of at least 60% by weight
  • the phosphoric acid having a concentration of at least 75% by weight
  • the hydrochloric acid having a concentration of at least 30% by weight.
  • the concentrated acid is concentrated sulfuric acid, that is to say sulfuric acid having a concentration of at least 80% by weight (and generally at most 98% by weight). mass), preferably at least 90% by weight; in particular, its concentration is between 90 and 98% by weight, for example between 91 and 97% by weight.
  • the concentrated acid as defined above is used only in part of step (ii).
  • the acid used in steps (iv) to (vi) can then be, for example, a dilute acid, advantageously dilute sulfuric acid, that is to say having a concentration of much less than 80% by weight. , in this case a concentration of less than 20% by weight (and in general of at least 4% by weight), in particular less than 14% by weight, in particular of not more than 10% by weight, for example between 5 and 10% by weight.
  • a dilute acid advantageously dilute sulfuric acid, that is to say having a concentration of much less than 80% by weight.
  • a concentration of less than 20% by weight (and in general of at least 4% by weight) in particular less than 14% by weight, in particular of not more than 10% by weight, for example between 5 and 10% by weight.
  • the acid used in step (iv) is also a concentrated acid as mentioned above.
  • the acid used in steps (iv) and (v) is also a concentrated acid as mentioned above.
  • the acid used in steps (iv) to (vi) is also a concentrated acid as mentioned above.
  • the concentrated acid used in a part of step (ii) is generally used in a second and last part of this step (ii) (the acid used in the other part of step (ii) being for example a diluted acid as described above).
  • the acid employed until the gel point is reached in the reaction medium may be a dilute acid as mentioned above, advantageously dilute sulfuric acid (this is that is, a concentration of less than 80% by weight, in this case a concentration of less than 20% by weight, generally less than 14% by weight, in particular of not more than 10% by weight, for example between 5 and 10% by weight).
  • the acid employed after reaching the gel point in the reaction medium can itself be a concentrated acid as mentioned above, advantageously concentrated sulfuric acid, that is to say acid sulfuric acid having a concentration of at least 80% by weight, preferably at least 90% by weight, in particular between 90 and 98% by weight.
  • the acid employed in the first x minutes of step (ii), with x being between 10 and 25, preferably between 12 and 22, may be a dilute acid as mentioned above and the acid employed after the first x minutes of step (ii), with x between 10 and 25, preferably between 12 and 22, may be a concentrated acid as mentioned above.
  • the acid used in the whole of step (ii) may also be a concentrated acid as mentioned above, advantageously acid concentrated sulfuric acid, that is to say having a concentration of at least 80% by weight, preferably at least 90% by weight, in particular between 90 and 98% by weight.
  • water may optionally be added to the initial stock, in particular either before step (ii) or during step (ii).
  • acid (s) (concentrated acid or dilute acid) an organic acid such as acetic acid, formic acid or carbonic acid or, preferably, a mineral acid such as sulfuric acid, nitric acid, phosphoric acid or hydrochloric acid.
  • organic acid such as acetic acid, formic acid or carbonic acid or, preferably, a mineral acid such as sulfuric acid, nitric acid, phosphoric acid or hydrochloric acid.
  • concentrated acetic acid or concentrated formic acid is used as the concentrated acid, then their concentration is at least 90% by weight.
  • concentrated nitric acid is used as concentrated acid, then its concentration is at least 60% by weight.
  • concentrated concentrated phosphoric acid If concentrated concentrated phosphoric acid is used, then its concentration is at least 75% by weight. If concentrated hydrochloric acid is used as concentrated acid, then its concentration is at least 30% by weight.
  • the acid (s) used is sulfuric acid (s), the concentrated sulfuric acid then used having a concentration as already mentioned in the above discussion.
  • silicate any current form of silicates such as metasilicates, disilicates and advantageously an alkali metal silicate, in particular sodium or potassium silicate.
  • the silicate may have a concentration (expressed as SiO 2) of between 40 and 330 g / l, for example between 60 and 300 g / l, in particular between 60 and 260 g / l.
  • the silicate used is sodium silicate.
  • sodium silicate In the case where sodium silicate is used, it generally has a weight ratio SiO 2 / Na 2 O of between 2.5 and 4, for example between 3.2 and 3.8.
  • the alkaline agent employed in the optional step (vii) may be, for example, a solution of sodium hydroxide, potassium hydroxide or ammonia.
  • this alkaline agent is silicate, in particular silicate as used in the preceding steps.
  • reaction of the silicate with the acid is in a very specific manner according to the following steps.
  • First (step (i)) is formed an aqueous base stock having a pH of between 2 and 5.
  • the heelstock formed has a pH of between 2.5 and 5, in particular between 3 and 4.6; this pH is for example between 3.5 and 4.5.
  • This initial starter can be obtained (preferred variant) by adding acid to water so as to obtain a pH value of the bottom of the tank between 2 and 5, preferably between 2.5 and 5, especially between 3 and 4.6 and for example between 3.5 and 4.5.
  • It can also be obtained by adding acid to a water + silicate mixture so as to obtain this pH value. It can also be prepared by adding acid to a stock base containing silica particles previously formed at a pH below 7, so as to obtain a pH value between 2 and 5, preferably between 2.5 and 5. , especially between 3 and 4.6 and for example between 3.5 and 4.5.
  • the heelstock formed in step (i) may or may not comprise an electrolyte.
  • electrolyte is here understood in its normal acceptation, that is to say that it signifies any ionic or molecular substance which, when in solution, decomposes or dissociates to form ions or charged particles.
  • electrolyte mention may be made of a salt of the group of alkali and alkaline earth metal salts, in particular the salt of the starting silicate metal and of the acid, for example sodium chloride in the case of the reaction of a silicate of sodium with hydrochloric acid or, preferably, sodium sulfate in the case of the reaction of a sodium silicate with sulfuric acid.
  • sodium sulfate when sodium sulfate is used as the electrolyte in step (i), its concentration in the initial stock is in particular between 12 and 20 g / l, for example between 13 and 18 g. / L.
  • the second step (step (ii)) consists of a simultaneous addition of acid and of silicate, in such a way (particularly at such flow rates) that the pH of the reaction medium is between 2 and 5, preferably between 2, 5 and 5, especially between 3 and 5, for example between 3.5 and 4.8.
  • this simultaneous addition is carried out in such a way that the pH value of the reaction medium is close, preferably constant (within ⁇ 0.2), to that reached at the end of the initial step (i). .
  • a step (iii) the addition of acid is stopped while continuing the addition of silicate in the reaction medium so as to obtain a pH value of the reaction medium of between 7 and 10, preferably between 7 and 10. , 5 and 9.5, for example between 7.5 and 9.
  • step (iii) it is possible to carry out, just after this step (iii) and therefore just after stopping the addition of silicate, a ripening of the reaction medium, in particular at the pH obtained at the end of step (iii), and in general with stirring; this curing can for example last from 2 to 45 minutes, in particular from 5 to 25 minutes, and preferably does not include any addition of acid or addition of silicate.
  • a new simultaneous addition of acid and silicate in such a way (particularly at such flow rates) that the pH of the reaction medium is maintained between 7 and 10 preferably between 7.5 and 9.5, for example between 7.5 and 9 (step (iv)).
  • this second simultaneous addition is carried out in such a way that the pH value of the reaction medium is constantly equal (within ⁇ 0.2) to that reached at the end of the previous step.
  • step (iii) and step (iv) for example between, on the one hand, the eventual maturing according to step (iii), and, of on the other hand, step (iv), add to the reaction medium acid, preferably concentrated acid as defined above, the pH of the reaction medium after the addition of acid being, however, between 7 and 9.5, preferably between 7.5 and 9.5, for example between 7.5 and 9. Then, in a step (v), the silicate addition is stopped while continuing the addition of acid in the reaction medium so as to obtain a pH value of the reaction medium of between 2.5 and 5.3, preferably between 2.8 and 5.2, for example between 3.5 and 5.1 ( even between 3.5 and 5.0).
  • step (v) a ripening of the reaction medium, in particular at the pH obtained after step (v), and in general with stirring; this curing can for example last from 2 to 45 minutes, in particular from 5 to 20 minutes, and preferably does not comprise any addition of acidifying agent or addition of silicate.
  • reaction medium obtained at the end of stage (v) said reaction medium having a pH of between 2.5 and 5.3, preferably between 2.8 and 5.2, for example between 3.5 and 5.1 (or even 3.5 to 5.0),
  • the pH of the reaction medium obtained is maintained between 2.5 and 5.3, preferably between 2.8 and 5.2, for example between 3.5 and 5.1. (even between 3.5 and 5.0).
  • Said pH of the reaction medium may vary within the range 2.5-5.3, preferably in the range 2.8-5.2, for example in the range 3.5-5.1 (even 3 , 5-5,0), or, preferably, remain (substantially) constant within these ranges.
  • the contacting of the reaction medium resulting from step (v) with the acid and the silicate is carried out by adding acid and silicate to said reaction medium.
  • step (vi) the acid and then the silicate are added to said reaction medium.
  • step (vi) the acid and the silicate are added simultaneously to said reaction medium; preferably, this simultaneous addition is carried out with regulation of the pH of the reaction medium obtained during this addition to a value (substantially) constant within the aforementioned ranges.
  • Step (vi) is generally carried out with stirring.
  • step (vii) of the process according to the invention consists in an addition, in the reaction medium obtained at the end of step (vi), of an alkaline agent, preferably of silicate, and this up to to reach a pH value of the reaction medium of between 4.7 and 6.3, preferably between 5.0 and 5.8, for example between 5.0 and 5.4.
  • an alkaline agent preferably of silicate
  • This step (vii) is usually carried out with stirring.
  • the whole reaction steps (i) to (vi), or (vii) where appropriate) is carried out with stirring.
  • all the steps are carried out at a constant temperature.
  • the end-of-reaction temperature is higher than the reaction start temperature: thus, the temperature is maintained at the beginning of the reaction (for example during steps (i) and (ii)) preferably between 75 and 90 ° C, then the temperature is increased, preferably to a value between 90 and 97 ° C, the value at which it is maintained (for example during steps (iii) to (vii)) until the end of the reaction. It may be advantageous to proceed at the end of step (vi), or of optional step (vii), to a maturation of the reaction medium obtained, in particular at the pH obtained at the end of this step (vi) (or step (vii)), and in general with stirring.
  • This ripening can for example last from 2 to 30 minutes, in particular 3 to 20 minutes and can be carried out between 75 and 97 ° C, preferably between 80 and 96 ° C, in particular at the temperature at which step (vii) (or step (vii)). It preferably does not include any addition of acid or addition of silicate.
  • step (vi) may be carried out in a fast mixer or in a turbulent flow zone, which may allow better control of the characteristics of the precipitated silicas obtained.
  • silicate with the medium resulting from the addition of the acid to the reaction medium obtained at the end of step (v) can be carried out in a fast mixer or in a turbulent flow zone.
  • step (vi) the acid and the silicate are added simultaneously to the reaction medium obtained at the end of step (v), then bringing said acid into contact with said silicate with said reaction medium can be carried out in a fast mixer or in a turbulent flow zone.
  • the reaction medium obtained in the fast mixer or in a turbulent flow zone feeds a reactor, preferably subjected to agitation, reactor in which the possible step (vii) is implemented.
  • step (vi) it is possible to use a fast mixer chosen from symmetrical T-mixers or Y-mixers, asymmetric T-shaped or Y-shaped mixers (or tubes), tangential jet mixers, mixers Hartridge-Roughton, vortex mixers, rotor-stator mixers.
  • a fast mixer chosen from symmetrical T-mixers or Y-mixers, asymmetric T-shaped or Y-shaped mixers (or tubes), tangential jet mixers, mixers Hartridge-Roughton, vortex mixers, rotor-stator mixers.
  • T or symmetrical Y are usually made of two opposite tubes (T-tubes) or forming an angle less than 180 ° (Y-tubes), of the same diameter, discharging into a central tube whose diameter is identical to or greater than that of the two previous tubes. They are called "symmetrical" because the two reagent injection tubes have the same diameter and the same angle with respect to the central tube, the device being characterized by an axis of symmetry.
  • the central tube has a diameter about twice as large as the diameter of the opposed tubes; similarly the fluid velocity in the central tube is preferably half that in the opposite tubes.
  • a mixer or tube T or Y asymmetrical rather than a symmetrical T or Y mixer.
  • one of the fluids (the lower flow fluid in general) is injected into the central tube by means of a smaller diameter side tube.
  • the latter forms with the central tube an angle of 90 ° in general (T-tube); this angle may be different from 90 ° (Y-tube), giving co-current systems (for example 45 ° angle) or counter-current (for example 135 ° angle) relative to the other current.
  • a fast mixer As a fast mixer, a tangential jet mixer, a Hartridge-Roughton mixer or a vortex mixer (or precipitator) are preferably used, which are derived from symmetrical T-shaped devices.
  • step (vi) it is possible to use a tangential jet mixer, Hartridge-Roughton or vortex, comprising a chamber having (a) at least two tangential admissions through which enter separately (but at the same time ) on the one hand, the silicate, and, on the other hand, the medium resulting from the addition of acid to the reaction medium resulting from stage (v), ie, on the one hand, silicate and the acid, and, on the other hand, the reaction medium resulting from step (v), and (b) an axial outlet through which the reaction medium obtained in this step (vi) leaves, preferably to a reactor (tank) arranged in series after said mixer.
  • the two tangential admissions are preferably located symmetrically, and oppositely, with respect to the central axis of said chamber.
  • the mixer chamber with tangential jets, Hartridge-Roughton or vortex optionally used generally has a circular section and is preferably of cylindrical shape.
  • Each tangential inlet tube may have an internal diameter d of 0.5 to 80 mm.
  • This internal diameter d may be between 0.5 and 10 mm, in particular between 1 and 9 mm, for example between 2 and 7 mm. However, especially on an industrial scale, it is preferably between 10 and 80 mm, in particular between 20 and 60 mm, for example between 30 and 50 mm.
  • the internal diameter of the chamber of the tangential jet mixer, Hartridge-Roughton or vortex optionally used may be between 3d and 6d, in particular between 3d and 5d, for example equal to 4d; the internal diameter of the axial outlet tube may be between 1 d and 3d, in particular between 1.5d and 2.5d, for example equal to 2d.
  • step (vi) or of step (vii) if appropriate, a silica slurry is obtained, which may be followed by maturing. separated (liquid-solid separation).
  • the separation used in the preparation process according to the invention usually comprises a filtration, followed by washing if necessary.
  • the filtration is carried out by any suitable method, for example by means of a filter press, a belt filter, a vacuum filter.
  • the silica suspension thus recovered (filter cake) is then dried.
  • This drying can be done by any means known per se.
  • the drying is done by atomization.
  • any suitable type of atomizer may be used, such as a turbine, nozzle, liquid pressure or two-fluid atomizer.
  • a turbine nozzle
  • liquid pressure two-fluid atomizer.
  • the filter cake is not always under conditions allowing atomization, in particular because of its high viscosity.
  • the cake is then subjected to a disintegration operation. This operation can be performed mechanically, by passing the cake in a colloid mill or ball.
  • the disintegration is generally carried out in the presence of water and / or in the presence of an aluminum compound, in particular sodium aluminate and, optionally, in the presence of an acid as described above (in the latter case the aluminum compound and the acid are usually added simultaneously).
  • the disintegration operation makes it possible in particular to lower the viscosity of the suspension to be dried later.
  • the silica that can then be obtained is usually in the form of substantially spherical balls.
  • the silica that is then likely to be obtained is generally in the form of a powder.
  • the silica that may then be obtained may be in the form of a powder.
  • the dried product in particular by a turbine atomizer or milled as indicated above can optionally be subjected to a step agglomerating, which consists for example of a direct compression, a wet-path granulation (that is to say with use of a binder such as water, suspension of silica, etc.), an extrusion or, preferably, dry compaction.
  • a step agglomerating which consists for example of a direct compression, a wet-path granulation (that is to say with use of a binder such as water, suspension of silica, etc.), an extrusion or, preferably, dry compaction.
  • the silica that can then be obtained by this agglomeration step is generally in the form of granules.
  • the powders, as well as the silica beads, obtained by the process according to the invention thus offer the advantage, among others, of having a simple, effective and economical way of accessing granules, in particular by conventional setting operations. in form, such as for example a granulation or compaction, without the latter causing degradation likely to hide or annihilate the good intrinsic properties attached to these powders or beads.
  • the process according to the invention makes it possible to obtain silicas formed from aggregates of large primary silica particles on the surface of which there are small primary silica particles advantageously having the characteristics of the silicas described in the international application WO 201 1/026895.
  • the implementation of the preparation method according to the invention makes it possible in particular to obtain during said process (at the end of step (vi) or of the possible step (vii)) a suspension more concentrated in silica than that obtained by an identical process using only dilute acid, and therefore a gain in productivity of silica (can reach for example at least 10 to 40%) , while surprisingly accompanying the production of precipitated silicas preferably having a particular morphology, particle size and porosity.
  • the precipitated silicas obtained by the process according to the invention have a good dispersibility in the polymers and give them a compromise of very satisfactory properties, for example with regard to their comparable mechanical, dynamic and rheological properties.
  • the process according to the invention makes it possible, compared with an identical process using only dilute acid, to gain energy consumption (in the form of live steam, for example), in particular to the precipitation reaction (that is to say at the end of the step (vi)), due to a decrease in the quantities of water involved and the exo-thermicity associated with the use of concentrated acid.
  • the use of concentrated acid makes it possible to restrict (for example by at least 15%) the quantity of water required for the reaction, in particular because of the reduction in the quantity of water used for the preparation of acid.
  • the precipitated silicas prepared by the process according to the invention can be used in many applications.
  • They can be used in particular as a catalyst support, as absorbent of active substances (in particular liquid carriers, for example used in foodstuffs, such as vitamins (vitamin E), choline chloride), in polymer compositions. (S), including elastomer (s), silicone (s), as viscosifying agent, texturizing or anti-caking agent, as an element for battery separators, as an additive for toothpaste, for concrete, for paper.
  • active substances in particular liquid carriers, for example used in foodstuffs, such as vitamins (vitamin E), choline chloride
  • S including elastomer (s), silicone (s), as viscosifying agent, texturizing or anti-caking agent, as an element for battery separators, as an additive for toothpaste, for concrete, for paper.
  • the polymer compositions in which they may be used, especially as reinforcing filler, are generally based on one or more polymers or copolymers, in particular one or more elastomers, in particular thermoplastic elastomers, having preferably, at least a glass transition temperature of between -150 and +300 ° C, for example between -150 and +20 ° C.
  • diene polymers in particular diene elastomers.
  • finished articles based on the polymer compositions described above, such as shoe soles, tires, floor coverings, gas barriers, fireproofing materials and the like. also technical parts such as ropeway rollers, appliance gaskets, liquid or gas line joints, braking system seals, ducts (especially cable ducts), cables and belts transmissions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Paper (AREA)

Abstract

L'invention concerne un procédé de préparation de silices précipitées dans lequel : (i) on forme un pied de cuve de pH de 2 à 5, (ii) on y ajoute, simultanément, du silicate et de l'acide, de telle manière que le pH du milieu réactionnel soit entre 2 et 5, (iii) on ajoute du silicate jusqu'à un pH de 7 à 10, (iv) on ajoute, simultanément, du silicate et de l'acide, de telle manière que le pH soit entre 7 et 10, (v) on ajoute de l'acide jusqu'à un pH de 2,5 à 5,3, (vi) on met en contact le milieu réactionnel avec de l'acide et du silicate, de telle manière que le pH soit entre 2,5 et 5,3, dans lequel l'acide utilisé dans au moins une de ses étapes est un acide concentré.

Description

PROCEDE DE PREPARATION DE SILICES PRECIPITEES
La présente invention concerne un nouveau procédé de préparation de silice précipitée.
Il est connu d'employer des silices précipitées comme support de catalyseur, comme absorbant de matières actives, (en particulier supports de liquides, par exemple utilisés dans l'alimentation, tels que les vitamines (vitamine E notamment, le chlorure de choline), comme agent viscosant, texturant ou anti- mottant, comme élément pour séparateurs de batteries, comme additif pour dentifrice, pour papier.
On peut également employer des silices précipitées comme charge renforçante dans des matrices silicones (par exemple pour l'enrobage des câbles électriques) ou dans des compositions à base de polymère(s), naturels(s) ou synthétique(s), en particulier d'élastomère(s), notamment diéniques, par exemple pour les semelles de chaussures, les revêtements de sols, les barrières aux gaz, les matériaux ignifugeants et également les pièces techniques telles que les galets de téléphériques, les joints d'appareils électroménagers, les joints de conduite de liquides ou de gaz, les joints de système de freinage, les gaines, les câbles et les courroies de transmissions.
Il est ainsi connu de préparer, en mettant en œuvre une réaction de précipitation entre un silicate et un acide dilué, des silices précipitées utilisables comme charge renforçante pour les compositions de polymères, aux caractéristiques atypiques.
Le but de la présente invention est de proposer un nouveau procédé de préparation de silice précipitée, qui constitue une alternative aux procédés connus de préparation de silice précipitée.
Plus préférentiellement, l'un des buts de la présente invention consiste à fournir un procédé qui, tout en ayant une productivité améliorée en particulier au niveau de la réaction de précipitation, notamment par rapport aux procédés de préparation de l'état de la technique mettant en œuvre à titre d'acide un acide dilué, permet d'obtenir des silices précipitées ayant des caractéristiques physicochimiques et des propriétés similaires, notamment au niveau de leur morphologie, leur granulométrie et leur porosité et/ou de leurs propriétés renforçantes, à celles des silices précipitées obtenues par ces procédés de préparation de l'état de la technique. Un autre but de l'invention consiste préférentiellement, dans le même temps, à réduire la quantité d'énergie consommée et/ou la quantité d'eau employée lors de la préparation de silice précipitée, notamment par rapport aux procédés de l'état de la technique mettant en œuvre à titre d'acide un acide dilué.
Notamment dans ces buts, l'objet de l'invention est un nouveau procédé de préparation de silice précipitée comprenant la réaction d'un silicate avec au moins un acide ce par quoi l'on obtient une suspension de silice, puis la séparation et le séchage de cette suspension, dans lequel la réaction du silicate avec l'acide est réalisée selon les étapes successives suivantes :
(i) on forme un pied de cuve aqueux présentant un pH compris entre 2 et 5, de préférence entre 2,5 et 5, (ii) on ajoute audit pied de cuve, simultanément, du silicate et de l'acide, de telle manière que le pH du milieu réactionnel soit maintenu entre 2 et 5, de préférence entre 2,5 et 5,
(iii) on arrête l'addition de l'acide tout en continuant l'addition de silicate dans le milieu réactionnel jusqu'à l'obtention d'une valeur du pH du milieu réactionnel comprise entre 7 et 10, de préférence entre 7,5 et 9,5,
(iv) on ajoute au milieu réactionnel, simultanément, du silicate et de l'acide, de telle manière que le pH du milieu réactionnel soit maintenu entre 7 et 10, de préférence entre 7,5 et 9,5,
(v) on arrête l'addition du silicate tout en continuant l'addition de l'acide dans le milieu réactionnel jusqu'à l'obtention d'une valeur du pH du milieu réactionnel comprise entre 2,5 et 5,3, de préférence entre 2,8 et 5,2,
(vi) on met en contact (mélange) le milieu réactionnel obtenu à l'issue de l'étape (v) (présentant donc un pH compris entre 2,5 et 5,3, de préférence entre 2,8 et 5,2) avec de l'acide et du silicate, de telle manière que le pH du milieu réactionnel soit maintenu entre 2,5 et 5,3, de préférence entre 2,8 et 5,2, procédé dans lequel : - dans au moins une partie de l'étape (ii) (c'est-à-dire dans, au minimum, une partie ou la totalité de l'étape (ii))
et/ou
- dans l'étape (vi)
l'acide utilisé est un acide concentré, de préférence choisi dans le groupe formé par l'acide sulfurique présentant une concentration d'au moins 80 % en masse, en particulier d'au moins 90 % en masse, l'acide acétique ou l'acide formique présentant une concentration d'au moins 90 % en masse, l'acide nitrique présentant une concentration d'au moins 60 % en masse, l'acide phosphorique présentant une concentration d'au moins 75 % en masse, l'acide chlorhydrique présentant une concentration d'au moins 30 % en masse.
De manière avantageuse, l'acide concentré est de l'acide sulfurique concentré, c'est-à-dire de l'acide sulfurique présentant une concentration d'au moins 80 % en masse, de préférence d'au moins 90 % en masse.
On peut ainsi utiliser, comme acide concentré, de l'acide sulfurique ayant une concentration d'au moins 1400 g/L, en particulier d'au moins 1650 g/L.
Il est possible, dans une éventuelle étape (vii) ultérieure, d'ajouter, dans le milieu réactionnel obtenu à l'issue de l'étape (vi), un agent alcalin, de préférence un silicate, et ce jusqu'à atteindre une valeur du pH du milieu réactionnel comprise entre 4,7 et 6,3, de préférence entre 5,0 et 5,8, par exemple entre 5,0 et 5,4. Selon une variante (A) du procédé de l'invention, l'acide utilisé dans l'étape (vi) est un acide concentré tel que défini ci-dessus.
L'acide utilisé dans les étapes (ii), (iv) et (v) peut alors être un acide dilué, de manière avantageuse de l'acide sulfurique dilué, c'est-à-dire présentant une concentration très inférieure à 80 % en masse, en l'occurrence une concentration inférieure à 20 % en masse (et en général d'au moins 4 % en masse), en particulier inférieure à 14 % en masse, notamment d'au plus 10 % en masse, par exemple comprise entre 5 et 10 % en masse.
Selon la variante préférée de l'invention (variante (B)), l'invention est un nouveau procédé de préparation de silice précipitée comprenant la réaction d'un silicate avec au moins un acide ce par quoi l'on obtient une suspension de silice, puis la séparation et le séchage de cette suspension, dans lequel la réaction du silicate avec l'acide est réalisée selon les étapes successives suivantes : (i) on forme un pied de cuve aqueux présentant un pH compris entre 2 et 5, de préférence entre 2,5 et 5, (ii) on ajoute audit pied de cuve, simultanément, du silicate et de l'acide, de telle manière que le pH du milieu réactionnel soit maintenu entre 2 et 5, de préférence entre 2,5 et 5,
(iii) on arrête l'addition de l'acide tout en continuant l'addition de silicate dans le milieu réactionnel jusqu'à l'obtention d'une valeur du pH du milieu réactionnel comprise entre 7 et 10, de préférence entre 7,5 et 9,5,
(iv) on ajoute au milieu réactionnel, simultanément, du silicate et de l'acide, de telle manière que le pH du milieu réactionnel soit maintenu entre 7 et 10, de préférence entre 7,5 et 9,5,
(v) on arrête l'addition du silicate tout en continuant l'addition de l'acide dans le milieu réactionnel jusqu'à l'obtention d'une valeur du pH du milieu réactionnel comprise entre 2,5 et 5,3, de préférence entre 2,8 et 5,2,
(vi) on met en contact (mélange) le milieu réactionnel obtenu à l'issue de l'étape (v) (présentant donc un pH compris entre 2,5 et 5,3, de préférence entre 2,8 et 5,2) avec de l'acide et du silicate, de telle manière que le pH du milieu réactionnel soit maintenu entre 2,5 et 5,3, de préférence entre 2,8 et 5,2, procédé dans lequel, dans au moins une partie de l'étape (ii) (c'est-à-dire dans, au minimum, une partie ou la totalité de l'étape (ii)), l'acide utilisé est un acide concentré, de préférence choisi dans le groupe formé par l'acide sulfurique présentant une concentration d'au moins 80 % en masse, en particulier d'au moins 90 % en masse, l'acide acétique ou l'acide formique présentant une concentration d'au moins 90 % en masse, l'acide nitrique présentant une concentration d'au moins 60 % en masse, l'acide phosphorique présentant une concentration d'au moins 75 % en masse, l'acide chlorhydrique présentant une concentration d'au moins 30 % en masse.
Selon l'une des caractéristiques essentielles de la variante (B), prise en combinaison avec une succession d'étapes particulières, et en particulier la présence d'une première addition simultanée d'acide et de silicate en milieu acide à pH compris entre 2 et 5 et d'une seconde addition simultanée d'acide et de silicate en mileu basique à un pH compris entre 7 et 10, l'acide utilisé dans au moins une partie de l'étape (ii) est un acide concentré, de préférence choisi dans le groupe formé par l'acide sulfurique présentant une concentration d'au moins 80 % en masse, en particulier d'au moins 90 % en masse, l'acide acétique ou l'acide formique présentant une concentration d'au moins 90 % en masse, l'acide nitrique présentant une concentration d'au moins 60 % en masse, l'acide phosphorique présentant une concentration d'au moins 75 % en masse, l'acide chlorhydrique présentant une concentration d'au moins 30 % en masse.
De manière avantageuse, l'acide concentré est de l'acide sulfurique concentré, c'est-à-dire de l'acide sulfurique présentant une concentration d'au moins 80 % en masse (et en général d'au plus 98 % en masse), de préférence d'au moins 90 % en masse ; en particulier, sa concentration est comprise entre 90 et 98 % en masse, par exemple entre 91 et 97 % en masse.
Selon un mode de réalisation de la variante (B), l'acide concentré tel que défini ci-dessus est utilisé uniquement dans une partie de l'étape (ii).
L'acide utilisé dans les étapes (iv) à (vi) peut alors être par exemple un acide dilué, de manière avantageuse de l'acide sulfurique dilué, c'est-à-dire présentant une concentration très inférieure à 80 % en masse, en l'occurrence une concentration inférieure à 20 % en masse (et en général d'au moins 4 % en masse), en particulier inférieure à 14 % en masse, notamment d'au plus 10 % en masse, par exemple comprise entre 5 et 10 % en masse.
De préférence, l'acide utilisé dans l'étape (iv) est également un acide concentré tel que mentionné ci-dessus.
De manière préférée, l'acide utilisé dans les étapes (iv) et (v) est également un acide concentré tel que mentionné ci-dessus.
Cependant, selon un mode de réalisation préféré de la variante (B), l'acide utilisé dans les étapes (iv) à (vi) est également un acide concentré tel que mentionné ci-dessus.
Dans le cadre de ce mode de réalisation préféré de la variante (B), l'acide concentré utilisé dans une partie de l'étape (ii) est utilisé en général dans une deuxième et dernière partie de cette étape (ii) (l'acide utilisé dans l'autre partie de l'étape (ii) étant par exemple un acide dilué comme décrit ci-dessus). Ainsi, dans cette étape (ii), l'acide employé jusqu'à ce qu'on atteigne le point de gel dans le milieu réactionnel (correspondant à une brusque augmentation de la turbidité du milieu réactionnel caractéristique d'une augmentation de la taille des objets) peut être un acide dilué tel que mentionné ci-dessus, de manière avantageuse de l'acide sulfurique dilué (c'est-à-dire présentant une concentration très inférieure à 80 % en masse, en l'occurrence une concentration inférieure à 20 % en masse, en général inférieure à 14 % en masse, en particulier d'au plus 10 % en masse, par exemple comprise entre 5 et 10 % en masse). L'acide employé après atteinte du point de gel dans le milieu réactionnel peut quant à lui être un acide concentré tel que mentionné ci-dessus, de manière avantageuse de l'acide sulfurique concentré, c'est-à-dire de l'acide sulfurique présentant une concentration d'au moins 80 % en masse, de préférence d'au moins 90 % en masse, en particulier comprise entre 90 et 98 % en masse.
De même, dans cette étape (ii), l'acide employé dans les x premières minutes de l'étape (ii), avec x compris entre 10 et 25, de préférence entre 12 et 22, peut être un acide dilué tel que mentionné ci-dessus et l'acide employé après les x premières minutes de l'étape (ii), avec x compris entre 10 et 25, de préférence entre 12 et 22, peut être un acide concentré tel que mentionné ci-dessus.
Dans le cadre de ce mode de réalisation préféré de la variante (B), l'acide utilisé dans la totalité de l'étape (ii) peut également être un acide concentré tel que mentionné ci-dessus, de manière avantageuse de l'acide sulfurique concentré, c'est-à-dire présentant une concentration d'au moins 80 % en masse, de préférence d'au moins 90 % en masse, en particulier comprise entre 90 et 98 % en masse. Dans ce cas, on peut éventuellement ajouter de l'eau dans le pied de cuve initial, en particulier soit avant l'étape (ii) soit au cours de l'étape (ii).
Dans le procédé selon l'invention, on utilise généralement comme acide(s) (acide concentré ou acide dilué) un acide organique tel que l'acide acétique, l'acide formique ou l'acide carbonique ou, de préférence, un acide minéral tel que l'acide sulfurique, l'acide nitrique, l'acide phosphorique ou l'acide chlorhydrique.
Si on utilise comme acide concentré de l'acide acétique concentré ou de l'acide formique concentré, alors leur concentration est d'au moins 90 % en masse.
Si on utilise comme acide concentré de l'acide nitrique concentré, alors sa concentration est d'au moins 60 % en masse.
Si on utilise comme acide concentré de l'acide phosphorique concentré, alors sa concentration est d'au moins 75 % en masse. Si on utilise comme acide concentré de l'acide chlorhydrique concentré, alors sa concentration est d'au moins 30 % en masse.
Cependant de manière très avantageuse, on emploie comme acide(s) un (des) acide(s) sulfurique(s), l'acide sulfurique concentré alors utilisé présentant une concentration telle que déjà mentionné dans l'exposé ci-dessus.
En général, lorsque de l'acide concentré est utilisé dans plusieurs étapes, on emploie alors le même acide concentré.
On peut par ailleurs utiliser en tant que silicate toute forme courante de silicates tels que métasilicates, disilicates et avantageusement un silicate de métal alcalin, notamment le silicate de sodium ou de potassium.
Le silicate peut présenter une concentration (exprimée en S1O2) comprise entre 40 et 330 g/L, par exemple entre 60 et 300 g/L, en particulier entre 60 et 260 g/L.
De manière générale, on emploie, comme silicate, le silicate de sodium.
Dans le cas où l'on utilise le silicate de sodium, celui-ci présente, en général, un rapport pondéral SiO2/Na2O compris entre 2,5 et 4, par exemple entre 3,2 et 3,8.
L'agent alcalin employé lors de l'éventuelle étape (vii) peut être par exemple une solution de soude, de potasse ou d'ammoniac. De préférence, cet agent alcalin est du silicate, en particulier du silicate tel qu'utilisé lors des étapes précédentes.
En ce qui concerne plus particulièrement le procédé de préparation de l'invention, la réaction du silicate avec l'acide se fait d'une manière très spécifique selon les étapes suivantes.
On forme tout d'abord (étape (i)) un pied de cuve aqueux présentant un pH compris entre 2 et 5.
De préférence, le pied de cuve formé présente un pH compris entre 2,5 et 5, notamment entre 3 et 4,6 ; ce pH est par exemple compris entre 3,5 et 4,5.
Ce pied de cuve initial peut être obtenu (variante préférée) par ajout d'acide à de l'eau de manière à obtenir une valeur de pH du pied de cuve entre 2 et 5, de préférence entre 2,5 et 5, notamment entre 3 et 4,6 et par exemple entre 3,5 et 4,5.
Il peut être également obtenu par ajout d'acide à un mélange eau + silicate de manière à obtenir cette valeur de pH. Il peut aussi être préparé par ajout d'acide à un pied de cuve contenant des particules de silice préalablement formées à un pH inférieur à 7, de manière à obtenir une valeur de pH entre 2 et 5, de préférence entre 2,5 et 5, notamment entre 3 et 4,6 et par exemple entre 3,5 et 4,5.
Le pied de cuve formé dans l'étape (i) peut comprendre ou non un électrolyte.
Le terme d'électrolyte s'entend ici dans son acceptation normale, c'est-à-dire qu'il signifie toute substance ionique ou moléculaire qui, lorsqu'elle est en solution, se décompose ou se dissocie pour former des ions ou des particules chargées. On peut citer comme électrolyte un sel du groupe des sels des métaux alcalins et alcalino-terreux, notamment le sel du métal de silicate de départ et de l'acide, par exemple le chlorure de sodium dans le cas de la réaction d'un silicate de sodium avec l'acide chlorhydrique ou, de préférence, le sulfate de sodium dans le cas de la réaction d'un silicate de sodium avec l'acide sulfurique.
De préférence, lorsqu'on utilise du sulfate de sodium comme électrolyte dans l'étape (i), sa concentration dans le pied de cuve initial est comprise, en particulier, entre 12 et 20 g/L, par exemple entre 13 et 18 g/L.
La deuxième étape (étape (ii)) consiste en une addition simultanée d'acide et de silicate, de telle manière (en particulier à des débits tels) que le pH du milieu réactionnel soit compris entre 2 et 5, de préférence entre 2,5 et 5, notamment entre 3 et 5, par exemple entre 3,5 et 4,8.
En général, cette addition simultanée est réalisée de manière telle que la valeur du pH du milieu réactionnel soit proche, de préférence constamment égale (à ± 0,2 près), à celle atteinte à l'issue de l'étape initiale (i).
Puis, dans une étape (iii), on arrête l'addition d'acide tout en continuant l'addition de silicate dans le milieu réactionnel de manière à obtenir une valeur du pH du milieu réactionnel comprise entre 7 et 10, de préférence entre 7,5 et 9,5, par exemple entre 7,5 et 9.
On peut éventuellement effectuer juste après cette étape (iii) et donc juste après l'arrêt de l'addition de silicate, un mûrissement du milieu réactionnel, notamment au pH obtenu à l'issue de l'étape (iii), et en général sous agitation ; ce mûrissement peut par exemple durer de 2 à 45 minutes, en particulier de 5 à 25 minutes et ne comporte préférentiellement ni addition d'acide, ni addition de silicate. Après l'étape (Ni) et l'éventuel mûrissement, on procède à une nouvelle addition simultanée d'acide et de silicate, de telle manière (en particulier à des débits tels) que le pH du milieu réactionnel soit maintenu entre 7 et 10, de préférence entre 7,5 et 9,5, par exemple entre 7,5 et 9 (étape (iv)).
En général, cette seconde addition simultanée est réalisée de manière telle que la valeur du pH du milieu réactionnel soit constamment égale (à ± 0,2 près) à celle atteinte à l'issue de l'étape précédente.
Il est à noter que l'on peut, entre l'étape (iii) et l'étape (iv), par exemple entre, d'une part, l'éventuel mûrissement suivant l'étape (iii), et, d'autre part, l'étape (iv), ajouter au milieu réactionnel de l'acide, de préférence de l'acide concentré tel que défini ci-dessus, le pH du milieu réactionnel à l'issue de cette addition d'acide étant cependant compris entre 7 et 9,5, de préférence entre 7,5 et 9,5, par exemple entre 7,5 et 9. Ensuite, dans une étape (v), on arrête l'addition du silicate tout en continuant l'addition d'acide dans le milieu réactionnel de manière à obtenir une valeur du pH du milieu réactionnel comprise entre 2,5 et 5,3, de préférence entre 2,8 et 5,2, par exemple entre 3,5 et 5,1 (voire entre 3,5 et 5,0).
On peut éventuellement effectuer juste après cette étape (v) un mûrissement du milieu réactionnel, notamment au pH obtenu à l'issue de l'étape (v), et en général sous agitation ; ce mûrissement peut par exemple durer de 2 à 45 minutes, en particulier de 5 à 20 minutes et ne comporte préférentiellement ni addition d'agent acidifiant, ni addition de silicate. Puis on met en contact (étape (vi)) :
- le milieu réactionnel obtenu à l'issue de l'étape (v), ledit milieu réactionnel présentant un pH compris entre 2,5 et 5,3, de préférence entre 2,8 et 5,2, par exemple entre 3,5 et 5,1 (voire entre 3,5 et 5,0),
- avec de l'acide et du silicate,
de telle manière (en particulier à des débits tels) que le pH du milieu réactionnel obtenu soit maintenu entre 2,5 et 5,3, de préférence entre 2,8 et 5,2, par exemple entre 3,5 et 5,1 (voire entre 3,5 et 5,0).
Ledit pH du milieu réactionnel peut varier à l'intérieur de la plage 2,5-5,3, de préférence de la plage 2,8-5,2, par exemple de la plage 3,5-5,1 (voire 3,5-5,0), ou, de manière préférée, rester (sensiblement) constant à l'intérieur de ces plages. En général, dans cette étape (vi), la mise en contact du milieu réactionnel issu de l'étape (v) avec l'acide et le silicate est effectuée en ajoutant de l'acide et du silicate audit milieu réactionnel.
Selon une variante du procédé de l'invention, dans l'étape (vi), on ajoute audit milieu réactionnel d'abord l'acide, puis le silicate.
Cependant, selon une variante préférée du procédé de l'invention, dans l'étape (vi), on ajoute plutôt simultanément l'acide et le silicate audit milieu réactionnel ; de préférence, cette addition simultanée est effectuée avec régulation du pH du milieu réactionnel obtenu lors de cette addition à une valeur (sensiblement) constante à l'intérieur des plages précitées.
L'étape (vi) est généralement effectuée sous agitation.
L'éventuelle étape (vii) du procédé selon l'invention consiste en une addition, dans le milieu réactionnel obtenu à l'issue de l'étape (vi), d'un agent alcalin, de préférence de silicate, et ce jusqu'à atteindre une valeur du pH du milieu réactionnel comprise entre 4,7 et 6,3, de préférence entre 5,0 et 5,8, par exemple entre 5,0 et 5,4.
Cette étape (vii) est habituellement effectuée sous agitation. En général, l'ensemble de la réaction (étapes (i) à (vi), ou (vii) le cas échéant) est effectué sous agitation.
Toutes les étapes (i) à (vi), ou (vii) le cas échéant sont habituellement réalisées entre 75 et 97 °C, de préférence entre 80 et 96 °C.
Selon une variante du procédé de l'invention, l'ensemble des étapes est effectué à une température constante.
Selon une autre variante du procédé de l'invention, la température de fin de réaction est plus élevée que la température de début de réaction : ainsi, on maintient la température au début de la réaction (par exemple au cours des étapes (i) et (ii)) de préférence entre 75 et 90 °C, puis on augmente la température, de préférence jusqu'à une valeur comprise entre 90 et 97 °C, valeur à laquelle elle est maintenue (par exemple au cours des étapes (iii) à (vii)) jusqu'à la fin de la réaction. II peut être avantageux de procéder à l'issue de l'étape (vi), ou de l'éventuelle étape (vii), à un mûrissement du milieu réactionnel obtenu, notamment au pH obtenu à l'issue de cette étape (vi) (ou de l'étape (vii)), et en général sous agitation. Ce mûrissement peut par exemple durer de 2 à 30 minutes, en particulier de 3 à 20 minutes et peut être réalisé entre 75 et 97 °C, de préférence entre 80 et 96 °C, en particulier à la température à laquelle a été effectuée l'étape (vii) (ou l'étape (vii)). Il ne comporte préférentiellement ni addition d'acide, ni addition de silicate.
Dans le procédé selon l'invention, l'étape (vi) peut être effectuée dans un mélangeur rapide ou dans une zone d'écoulement turbulent, ce qui peut permettre un meilleur contrôle des caractéristiques des silices précipitées obtenues.
Par exemple, dans le cas où, dans l'étape (vi), on ajoute au milieu réactionnel obtenu à l'issue de l'étape (v) d'abord l'acide, puis le silicate, alors la mise en contact dudit silicate avec le milieu résultant de l'ajout de l'acide au milieu réactionnel obtenu à l'issue de l'étape (v) peut être effectuée dans un mélangeur rapide ou dans une zone d'écoulement turbulent.
De même, dans le cas où, dans l'étape (vi), on ajoute simultanément l'acide et le silicate au milieu réactionnel obtenu à l'issue de l'étape (v), alors la mise en contact dudit acide et dudit silicate avec ledit milieu réactionnel peut être effectuée dans un mélangeur rapide ou dans une zone d'écoulement turbulent.
De préférence, le milieu réactionnel obtenu dans le mélangeur rapide ou dans une zone d'écoulement turbulent alimente un réacteur, de préférence soumis à une agitation, réacteur dans lequel l'éventuelle étape (vii) est mise en œuvre.
Dans l'étape (vi), on peut utiliser un mélangeur rapide choisi parmi les mélangeurs (ou tubes) en T ou en Y symétriques, les mélangeurs (ou tubes) en T ou en Y asymétriques, les mélangeurs à jets tangentiels, les mélangeurs Hartridge-Roughton, les mélangeurs vortex, les mélangeurs rotor-stators.
Les mélangeurs (ou tubes) en T ou en Y symétriques sont généralement constitués de deux tubes opposés (tubes en T) ou formant un angle inférieur à 180° (tubes en Y), de même diamètre, déchargeant dans un tube central dont le diamètre est identique ou supérieur à celui des deux tubes précédents. Ils sont dits « symétriques » car les deux tubes d'injection des réactifs présentent le même diamètre et le même angle par rapport au tube central, le dispositif étant caractérisé par un axe de symétrie. De préférence, le tube central présente un diamètre deux fois plus élevé environ que le diamètre des tubes opposés ; de même la vitesse de fluide dans le tube central est de préférence égale à la moitié de celle dans les tubes opposés.
On préfère cependant employer, en particulier lorsque les deux fluides à introduire ne présentent pas le même débit, un mélangeur (ou tube) en T ou en Y asymétriques plutôt qu'un mélangeur (ou tube) en T ou en Y symétrique. Dans les dispositifs asymétriques, un des fluides (le fluide de plus faible débit en général) est injecté dans le tube central au moyen d'un tube latéral de diamètre plus faible. Ce dernier forme avec le tube central un angle de 90° en général (tube en T) ; cet angle peut être différent de 90° (tube en Y), donnant des systèmes à co-courant (par exemple angle de 45°) ou à contre-courant (par exemple angle de 135°) par rapport à l'autre courant.
A titre de mélangeur rapide, on utilise de préférence un mélangeur à jets tangentiels, un mélangeur Hartridge-Roughton ou un mélangeur (ou précipiteur) vortex, qui dérivent des dispositifs en T symétriques.
Plus particulièrement, dans l'étape (vi), on peut mettre en oeuvre un mélangeur rapide à jets tangentiels, Hartridge-Roughton ou vortex, comprenant une chambre ayant (a) au moins deux admissions tangentielles par lesquelles entrent séparément (mais en même temps) soit, d'une part, le silicate, et, d'autre part, le milieu résultant de l'ajout d'acide au milieu réactionnel issu de l'étape (v), soit, d'une part, le silicate et l'acide, et, d'autre part, le milieu réactionnel issu de l'étape (v), et (b) une sortie axiale par laquelle sort le milieu réactionnel obtenu dans cette étape (vi) et ce, de préférence, vers un(e) réacteur (cuve) disposé(e) en série après ledit mélangeur. Les deux admissions tangentielles sont de préférence situées symétriquement, et de manière opposée, par rapport à l'axe central de ladite chambre.
La chambre du mélangeur à jets tangentiels, Hartridge-Roughton ou vortex éventuellement utilisé présente généralement une section circulaire et est de préférence de forme cylindrique.
Chaque tube d'admission tangentielle peut présenter un diamètre interne d de 0,5 à 80 mm.
Ce diamètre interne d peut être compris entre 0,5 et 10 mm, en particulier entre 1 et 9 mm, par exemple entre 2 et 7 mm. Cependant, notamment à l'échelle industrielle, il est de préférence compris entre 10 et 80 mm, en particulier entre 20 et 60 mm, par exemple entre 30 et 50 mm.
Le diamètre interne de la chambre du mélangeur à jets tangentiels, Hartridge-Roughton ou vortex éventuellement employé peut être compris entre 3d et 6d, en particulier entre 3d et 5d, par exemple égal à 4d ; le diamètre interne du tube de sortie axiale peut être compris entre 1 d et 3d, en particulier entre 1 ,5d et 2,5d, par exemple égal à 2d.
Les débits du silicate et de l'acide sont par exemple déterminés de façon à ce qu'au point de confluence les deux courants de réactifs entrent en contact l'un avec l'autre dans une zone d'écoulement suffisamment turbulent. Dans le procédé selon l'invention, on obtient, à l'issue de l'étape (vi) (ou de l'étape (vii) le cas échéant), éventuellement suivie d'un mûrissement, une bouillie de silice qui est ensuite séparée (séparation liquide-solide).
La séparation mise en œuvre dans le procédé de préparation selon l'invention comprend habituellement une filtration, suivie d'un lavage si nécessaire. La filtration s'effectue selon toute méthode convenable, par exemple au moyen d'un filtre presse, d'un filtre à bande, d'un filtre sous vide.
La suspension de silice ainsi récupérée (gâteau de filtration) est ensuite séchée.
Ce séchage peut se faire selon tout moyen connu en soi.
De préférence, le séchage se fait par atomisation. A cet effet, on peut utiliser tout type d'atomiseur convenable, notamment un atomiseur à turbines, à buses, à pression liquide ou à deux fluides. En général, lorsque la filtration est effectuée à l'aide d'un filtre presse, on utilise un atomiseur à buses, et, lorsque la filtration est effectuée à l'aide d'un filtre sous-vide, on utilise un atomiseur à turbines.
Il y a lieu de noter que le gâteau de filtration n'est pas toujours dans des conditions permettant une atomisation notamment à cause de sa viscosité élevée. D'une manière connue en soi, on soumet alors le gâteau à une opération de délitage. Cette opération peut être réalisée mécaniquement, par passage du gâteau dans un broyeur de type colloïdal ou à billes. Le délitage est généralement effectué en présence d'eau et/ou en présence d'un composé de l'aluminium, en particulier d'aluminate de sodium et, éventuellement, en présence d'un acide tel que décrit précédemment (dans ce dernier cas, le composé de l'aluminium et l'acide sont généralement ajoutés de manière simultanée).
L'opération de délitage permet notamment d'abaisser la viscosité de la suspension à sécher ultérieurement.
Lorsque le séchage est effectué à l'aide d'un atomiseur à buses, la silice susceptible d'être alors obtenue se présente habituellement sous forme de billes sensiblement sphériques.
A l'issue du séchage, on peut alors procéder à une étape de broyage sur le produit récupéré. La silice qui est alors susceptible d'être obtenue se présente généralement sous forme d'une poudre.
Lorsque le séchage est effectué à l'aide d'un atomiseur à turbines, la silice susceptible d'être alors obtenue peut se présenter sous la forme d'une poudre.
Enfin, le produit séché (notamment par un atomiseur à turbines) ou broyé tel qu'indiqué précédemment peut éventuellement être soumis à une étape d'agglomération, qui consiste par exemple en une compression directe, une granulation voie humide (c'est-à-dire avec utilisation d'un liant tel que eau, suspension de silice ...), une extrusion ou, de préférence, un compactage à sec. Lorsque l'on met en œuvre cette dernière technique, il peut s'avérer opportun, avant de procéder au compactage, de désaérer (opération appelée également pré-densification ou dégazage) les produits pulvérulents de manière à éliminer l'air inclus dans ceux-ci et assurer un compactage plus régulier.
La silice susceptible d'être alors obtenue par cette étape d'agglomération se présente généralement sous la forme de granulés.
Les poudres, de même que les billes, de silice obtenues par le procédé selon l'invention offrent ainsi l'avantage, entre autres, d'accéder de manière simple, efficace et économique, à des granulés, notamment par des opérations classiques de mise en forme, telles que par exemple une granulation ou un compactage, sans que ces dernières n'entraînent de dégradations susceptibles de masquer, voire annihiler, les bonnes propriétés intrinsèques attachées à ces poudres ou ces billes.
De manière générale, le procédé selon l'invention permet d'obtenir des silices formées d'agrégats de grosses particules primaires de silice à la surface desquels se trouvent des petites particules primaires de silice présentant avantageusement les caractéristiques des silices décrites dans la demande internationale WO 201 1/026895.
La mise en œuvre du procédé de préparation selon l'invention, particulièrement lorsque l'acide concentré utilisé est de l'acide sulfurique concentré, permet notamment d'obtenir au cours dudit procédé (à l'issue de l'étape (vi) ou de l'éventuelle étape (vii)) une suspension plus concentrée en silice que celle obtenue par un procédé identique utilisant uniquement de l'acide dilué, et donc un gain en productivité en silice (pouvant atteindre par exemple au moins 10 à 40%), tout en s'accompagnant de manière surprenante de l'obtention de silices précipitées présentant, de préférence, une morphologie, une granulométrie et une porosité particulières. Généralement, les silices précipitées obtenues par le procédé selon l'invention présentent une bonne aptitude à la dispersion dans les polymères et confèrent à ceux-ci un compromis de propriétés très satisfaisant, par exemple au niveau de leurs propriétés mécaniques, dynamiques et rhéologiques, comparables à celles des silices précipitées obtenues par un procédé identique utilisant uniquement de l'acide dilué. De manière avantageuse, dans le même temps, notamment lorsque l'acide concentré utilisé est de l'acide sulfurique concentré, le procédé selon l'invention permet, par rapport à un procédé identique mettant en œuvre uniquement de l'acide dilué, un gain (pouvant atteindre par exemple au moins 15 à 60 %) sur la consommation d'énergie (sous forme de vapeur vive par exemple), en particulier à la réaction de précipitation (c'est-à-dire à l'issue de l'étape (vi)), du fait d'une diminution des quantités d'eau engagées et de l'exo-thermicité liée à l'utilisation d'acide concentré. En outre, l'utilisation d'acide concentré permet de restreindre (par exemple d'au moins 15 %) la quantité d'eau nécessaire à la réaction, notamment du fait de la diminution de la quantité d'eau utilisée pour la préparation de l'acide.
Les silices précipitées préparées par le procédé selon l'invention peuvent être utilisées dans de nombreuses applications.
Elles peuvent être employées notamment comme support de catalyseur, comme absorbant de matières actives (en particulier support de liquides, par exemple utilisés dans l'alimentation, tels que les vitamines (vitamine E), le chlorure de choline), dans des compositions de polymère(s), notamment d'élastomère(s), de silicone(s), comme agent viscosant, texturant ou anti-mottant, comme élément pour séparateurs de batteries, comme additif pour dentifrice, pour béton, pour papier.
Cependant, elles trouvent une application particulièrement intéressante dans le renforcement des polymères, naturels ou synthétiques.
Les compositions de polymère(s) dans lesquelles elles peuvent être employées, notamment à titre de charge renforçante, sont en général à base d'un ou plusieurs polymères ou copolymères, en particulier d'un ou plusieurs élastomères, notamment les élastomères thermoplastiques, présentant, de préférence, au moins une température de transition vitreuse comprise entre -150 et +300 °C, par exemple entre -150 et +20 °C.
A titre de polymères possibles, on peut citer les polymères diéniques, en particulier les élastomères diéniques.
On peut citer, à titre d'exemples, non limitatifs, d'articles finis à base des compositions de polymère(s) décrites précédemment les semelles de chaussures, les pneumatiques, les revêtements de sols, les barrières aux gaz, les matériaux ignifugeants et également les pièces techniques telles que les galets de téléphériques, les joints d'appareils électroménagers, les joints de conduites de liquides ou de gaz, les joints de système de freinage, les gaines (notamment les gaines de câbles), les câbles et les courroies de transmissions.

Claims

REVENDICATIONS
1 - Procédé de préparation de silice précipitée du type comprenant la réaction d'un silicate avec au moins un acide ce par quoi l'on obtient une suspension de silice, puis la séparation et le séchage de cette suspension, dans lequel la réaction du silicate avec le au moins un acide est réalisée de la manière suivante : (i) on forme un pied de cuve aqueux présentant un pH compris entre 2 et 5, de préférence entre 2,5 et 5,
(ii) on ajoute audit pied de cuve, simultanément, du silicate et de l'acide, de telle manière que le pH du milieu réactionnel soit maintenu entre 2 et 5, de préférence entre 2,5 et 5,
(iii) on arrête l'addition de l'acide tout en continuant l'addition de silicate dans le milieu réactionnel jusqu'à l'obtention d'une valeur du pH du milieu réactionnel comprise entre 7 et 10, de préférence entre 7,5 et 9,5,
(iv) on ajoute au milieu réactionnel, simultanément, du silicate et de l'acide, de telle manière que le pH du milieu réactionnel soit maintenu entre 7 et 10, de préférence entre 7,5 et 9,5, (v) on arrête l'addition du silicate tout en continuant l'addition de l'acide dans le milieu réactionnel jusqu'à l'obtention d'une valeur du pH du milieu réactionnel comprise entre 2,5 et 5,3, de préférence entre 2,8 et 5,2,
(vi) on met en contact le milieu réactionnel avec de l'acide et du silicate, de telle manière que le pH du milieu réactionnel soit maintenu entre 2,5 et 5,3, de préférence entre 2,8 et 5,2, procédé dans lequel :
- dans au moins une partie de l'étape (ii)
et/ou
- dans l'étape (vi)
l'acide utilisé est un acide concentré, de préférence choisi dans le groupe formé par l'acide sulfurique présentant une concentration d'au moins 80 % en masse, en particulier d'au moins 90 % en masse, l'acide acétique ou l'acide formique présentant une concentration d'au moins 90 % en masse, l'acide nitrique présentant une concentration d'au moins 60 % en masse, l'acide phosphorique présentant une concentration d'au moins 75 % en masse, l'acide chlorhydrique présentant une concentration d'au moins 30 % en masse.
2- Procédé selon la revendication 1 , caractérisé en ce qu'après la mise en contact à l'étape (vi) du milieu réactionnel avec de l'acide et du silicate, on ajoute dans le milieu réactionnel obtenu un agent alcalin, de préférence du silicate, et ce de manière à augmenter le pH du milieu réactionnel jusqu'à une valeur comprise entre 4,7 et 6,3, de préférence entre 5,0 et 5,8.
3- Procédé de préparation de silice précipitée du type comprenant la réaction d'un silicate avec au moins un acide ce par quoi l'on obtient une suspension de silice, puis la séparation et le séchage de cette suspension, dans lequel la réaction du silicate avec le au moins un acide est réalisée de la manière suivante :
(i) on forme un pied de cuve aqueux présentant un pH compris entre 2 et 5, de préférence entre 2,5 et 5,
(ii) on ajoute audit pied de cuve, simultanément, du silicate et de l'acide, de telle manière que le pH du milieu réactionnel soit maintenu entre 2 et 5, de préférence entre 2,5 et 5,
(iii) on arrête l'addition de l'acide tout en continuant l'addition de silicate dans le milieu réactionnel jusqu'à l'obtention d'une valeur du pH du milieu réactionnel comprise entre 7 et 10, de préférence entre 7,5 et 9,5, (iv) on ajoute au milieu réactionnel, simultanément, du silicate et de l'acide, de telle manière que le pH du milieu réactionnel soit maintenu entre 7 et 10, de préférence entre 7,5 et 9,5,
(v) on arrête l'addition du silicate tout en continuant l'addition de l'acide dans le milieu réactionnel jusqu'à l'obtention d'une valeur du pH du milieu réactionnel comprise entre 2,5 et 5,3, de préférence entre 2,8 et 5,2, (vi) on met en contact le milieu réactionnel avec de l'acide et du silicate, de telle manière que le pH du milieu réactionnel soit maintenu entre 2,5 et 5,3, de préférence entre 2,8 et 5,2, procédé dans lequel, dans au moins une partie de l'étape (ii), l'acide utilisé est un acide concentré, de préférence choisi dans le groupe formé par l'acide sulfurique présentant une concentration d'au moins 80 % en masse, en particulier d'au moins 90 % en masse, l'acide acétique ou l'acide formique présentant une concentration d'au moins 90 % en masse, l'acide nitrique présentant une concentration d'au moins 60 % en masse, l'acide phosphorique présentant une concentration d'au moins 75 % en masse, l'acide chlorhydrique présentant une concentration d'au moins 30 % en masse.
4- Procédé selon la revendication 3, caractérisé en ce qu'après la mise en contact à l'étape (vi) du milieu réactionnel avec de l'acide et du silicate, on ajoute dans le milieu réactionnel obtenu un agent alcalin, de préférence du silicate, et ce de manière à augmenter le pH du milieu réactionnel jusqu'à une valeur comprise entre 4,7 et 6,3, de préférence entre 5,0 et 5,8. 5- Procédé selon l'une des revendications 3 et 4, caractérisé en ce que dans l'étape (ii) l'acide utilisé après l'atteinte du point de gel dans le milieu réactionnel est un acide concentré, de préférence choisi dans le groupe formé par l'acide sulfurique présentant une concentration d'au moins 80 % en masse, en particulier d'au moins 90 % en masse, l'acide acétique ou l'acide formique présentant une concentration d'au moins 90 % en masse, l'acide nitrique présentant une concentration d'au moins 60 % en masse, l'acide phosphorique présentant une concentration d'au moins 75 % en masse, l'acide chlorhydrique présentant une concentration d'au moins 30 % en masse. 6- Procédé selon l'une des revendications 3 à 5, caractérisé en ce que dans l'étape (ii) l'acide utilisé après x minutes à compter du début de ladite étape, avec x compris entre 10 et 25, est un acide concentré, de préférence choisi dans le groupe formé par l'acide sulfurique présentant une concentration d'au moins 80 % en masse, en particulier d'au moins 90 % en masse, l'acide acétique ou l'acide formique présentant une concentration d'au moins 90 % en masse, l'acide nitrique présentant une concentration d'au moins 60 % en masse, l'acide phosphorique présentant une concentration d'au moins 75 % en masse, l'acide chlorhydrique présentant une concentration d'au moins 30 % en masse. 7- Procédé selon l'une des revendications 3 à 6, caractérisé en ce que l'acide utilisé dans au moins une des étapes (iv) à (vi) est un acide concentré, de préférence choisi dans le groupe formé par l'acide sulfurique présentant une concentration d'au moins 80 % en masse, en particulier d'au moins 90 % en masse, l'acide acétique ou l'acide formique présentant une concentration d'au moins 90 % en masse, l'acide nitrique présentant une concentration d'au moins 60 % en masse, l'acide phosphorique présentant une concentration d'au moins 75 % en masse, l'acide chlorhydrique présentant une concentration d'au moins 30 % en masse.
8- Procédé selon l'une des revendications 3 à 6, caractérisé en ce que l'acide utilisé dans les étapes (iv) à (vi) est un acide concentré, de préférence choisi dans le groupe formé par l'acide sulfurique présentant une concentration d'au moins 80 % en masse, en particulier d'au moins 90 % en masse, l'acide acétique ou l'acide formique présentant une concentration d'au moins 90 % en masse, l'acide nitrique présentant une concentration d'au moins 60 % en masse, l'acide phosphorique présentant une concentration d'au moins 75 % en masse, l'acide chlorhydrique présentant une concentration d'au moins 30 % en masse.
9- Procédé selon l'une des revendications 1 à 8 caractérisé en ce que ledit acide concentré est de l'acide sulfurique présentant une concentration d'au moins 80 % en masse, de préférence d'au moins 90 % en masse. 10- Procédé selon l'une des revendication 1 à 9, caractérisé en ce que ledit acide concentré est de l'acide sulfurique présentant une concentration comprise entre 90 et 98 % en masse.
1 1 - Procédé selon l'une des revendications 1 à 10, caractérisé en ce que l'étape (i) comprend l'ajout d'acide à de l'eau de manière à obtenir une valeur de pH du pied de cuve ainsi formé comprise entre 2 et 5, de préférence entre 2,5 et 5, notamment entre 3,0 et 4,5.
12- Procédé selon l'une des revendications 1 à 1 1 , caractérisé en ce que le séchage est effectué par atomisation.
EP13713364.1A 2012-01-25 2013-01-23 Procede de preparation de silices precipitees Withdrawn EP2807118A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1200212A FR2985991B1 (fr) 2012-01-25 2012-01-25 Nouveau procede de preparation de silices precipitees
PCT/EP2013/051234 WO2013110655A1 (fr) 2012-01-25 2013-01-23 Procede de preparation de silices precipitees

Publications (1)

Publication Number Publication Date
EP2807118A1 true EP2807118A1 (fr) 2014-12-03

Family

ID=48044728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13713364.1A Withdrawn EP2807118A1 (fr) 2012-01-25 2013-01-23 Procede de preparation de silices precipitees

Country Status (11)

Country Link
US (1) US9695054B2 (fr)
EP (1) EP2807118A1 (fr)
KR (1) KR20140116524A (fr)
CN (1) CN104066682A (fr)
AU (1) AU2013211587A1 (fr)
BR (1) BR112014018028A8 (fr)
CA (1) CA2862473A1 (fr)
FR (1) FR2985991B1 (fr)
MX (1) MX354838B (fr)
RU (1) RU2581407C2 (fr)
WO (1) WO2013110655A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2984870B1 (fr) 2011-12-23 2014-03-21 Rhodia Operations Nouveau procede de preparation de silices precipitees.
AU2012357112A1 (en) 2011-12-23 2014-07-10 Rhodia Operations Precipitated-silica production method
FR2985992B1 (fr) 2012-01-25 2015-03-06 Rhodia Operations Nouveau procede de preparation de silices precitees
FR2985990B1 (fr) 2012-01-25 2014-11-28 Rhodia Operations Nouveau procede de preparation de silices precipitees a morphologie, granulometrie et porosite particulieres
FR2985993B1 (fr) 2012-01-25 2014-11-28 Rhodia Operations Nouveau procede de preparation de silices precipitees
PL3555000T3 (pl) * 2016-12-19 2021-10-25 Evonik Operations Gmbh Cząstki krzemionki kompatybilne z cyną
KR20200101936A (ko) * 2017-12-27 2020-08-28 로디아 오퍼레이션스 침전 실리카 및 그의 제조 방법
EP3990389B1 (fr) * 2019-06-27 2023-07-19 Rhodia Operations Silice précipitée et son procédé de fabrication

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022544A1 (fr) * 2008-09-01 2010-03-04 Evonik Degussa Gmbh Procédé de préparation de silices précipitées, silices précipitées et leur utilisation

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3639845A1 (de) 1986-11-21 1988-06-01 Degussa Faellungskieselsaeuren, verfahren zu ihrer herstellung und verwendung
FR2646673B1 (fr) * 1989-05-02 1991-09-06 Rhone Poulenc Chimie Silice sous forme de bille, procede de preparation et son utilisation au renforcement des elastomeres
FR2678259B1 (fr) 1991-06-26 1993-11-05 Rhone Poulenc Chimie Nouvelles silices precipitees sous forme de granules ou de poudres, procedes de synthese et utilisation au renforcement des elastomeres.
CN1047149C (zh) * 1993-09-29 1999-12-08 罗纳·布朗克化学公司 沉淀硅石
DE19526476A1 (de) * 1995-07-20 1997-01-23 Degussa Fällungskieselsäure
FR2763581B1 (fr) * 1997-05-26 1999-07-23 Rhodia Chimie Sa Silice precipitee utilisable comme charge renforcante pour elastomeres
EP1324947A2 (fr) 2000-10-13 2003-07-09 University of Cincinnati Procedes permettant la synthese de silice precipitee et utilisation de celle-ci
FR2818966B1 (fr) * 2000-12-28 2003-03-07 Rhodia Chimie Sa Procede de preparation de silice precipitee contenant de l'aluminium
ES2610590T3 (es) * 2001-08-13 2017-04-28 Rhodia Chimie Procedimiento de preparación de sílices con distribución granulométrica y/o reparto de poros particulares
US6869595B2 (en) * 2001-12-21 2005-03-22 J.M. Huber Corporation Abrasive compositions for clear toothpaste
FR2902781B1 (fr) * 2006-06-27 2008-09-05 Rhodia Recherches Et Technologies Sas Silice precipitee pour application papier
FR2949454B1 (fr) 2009-09-03 2011-09-16 Rhodia Operations Nouveau procede de preparation de silices precipitees
FR2949455B1 (fr) * 2009-09-03 2011-09-16 Rhodia Operations Nouveau procede de preparation de silices precipitees
FR2962996B1 (fr) 2010-07-23 2012-07-27 Rhodia Operations Nouveau procede de preparation de silices precipitees
AU2012357112A1 (en) 2011-12-23 2014-07-10 Rhodia Operations Precipitated-silica production method
FR2984870B1 (fr) 2011-12-23 2014-03-21 Rhodia Operations Nouveau procede de preparation de silices precipitees.
FR2985990B1 (fr) 2012-01-25 2014-11-28 Rhodia Operations Nouveau procede de preparation de silices precipitees a morphologie, granulometrie et porosite particulieres
FR2985993B1 (fr) 2012-01-25 2014-11-28 Rhodia Operations Nouveau procede de preparation de silices precipitees
FR2985992B1 (fr) 2012-01-25 2015-03-06 Rhodia Operations Nouveau procede de preparation de silices precitees

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022544A1 (fr) * 2008-09-01 2010-03-04 Evonik Degussa Gmbh Procédé de préparation de silices précipitées, silices précipitées et leur utilisation

Also Published As

Publication number Publication date
US9695054B2 (en) 2017-07-04
RU2581407C2 (ru) 2016-04-20
WO2013110655A1 (fr) 2013-08-01
CN104066682A (zh) 2014-09-24
RU2014134531A (ru) 2016-03-20
BR112014018028A8 (pt) 2017-07-11
US20150037235A1 (en) 2015-02-05
AU2013211587A1 (en) 2014-08-07
FR2985991B1 (fr) 2014-11-28
FR2985991A1 (fr) 2013-07-26
KR20140116524A (ko) 2014-10-02
MX354838B (es) 2018-03-21
MX2014009000A (es) 2015-03-05
BR112014018028A2 (fr) 2017-06-20
CA2862473A1 (fr) 2013-08-01

Similar Documents

Publication Publication Date Title
EP2807115B1 (fr) Procédé de préparation de silices précipitées à morphologie, granulométrie et porosité particulières
WO2013110655A1 (fr) Procede de preparation de silices precipitees
CA2859570C (fr) Procede de preparation de silices precipitees
CA2804692C (fr) Procede de preparation de silices precipitees
EP2807116B1 (fr) Procédé de préparation de silices précipitées
EP2550237B1 (fr) Procede de preparation de silices precipitees contenant de l'aluminium
EP2807117B1 (fr) Procédé de préparation de silices précipitées
CA2859542C (fr) Procede de preparation de silices precipitees
EP2102104B1 (fr) Nouveau procede de preparation de silices precipitees par mise en oeuvre d'un melangeur rapide
CA2867569C (fr) Procede de preparation de silice precipitee comprenant une etape de concentration membranaire
WO2011026893A1 (fr) Nouveau procede de preparation de silices precipitees.
WO2013139930A1 (fr) Procédé de préparation de silice précipitée comprenant une etape de fort compactage
FR2984871A1 (fr) Nouveau procede de preparation de silices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: ALLAIN, EMMANUELLE

Inventor name: NEVEU, SYLVAINE

17Q First examination report despatched

Effective date: 20190614

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190827