EP2805682B1 - Koagulationseinrichtung mit energiesteuerung - Google Patents

Koagulationseinrichtung mit energiesteuerung Download PDF

Info

Publication number
EP2805682B1
EP2805682B1 EP13169105.7A EP13169105A EP2805682B1 EP 2805682 B1 EP2805682 B1 EP 2805682B1 EP 13169105 A EP13169105 A EP 13169105A EP 2805682 B1 EP2805682 B1 EP 2805682B1
Authority
EP
European Patent Office
Prior art keywords
operating phase
source
control unit
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13169105.7A
Other languages
English (en)
French (fr)
Other versions
EP2805682A1 (de
Inventor
Heiko Schall
Daniel SCHÄLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erbe Elecktromedizin GmbH
Original Assignee
Erbe Elecktromedizin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erbe Elecktromedizin GmbH filed Critical Erbe Elecktromedizin GmbH
Priority to EP13169105.7A priority Critical patent/EP2805682B1/de
Priority to PL13169105T priority patent/PL2805682T3/pl
Priority to BR102014011590-0A priority patent/BR102014011590B1/pt
Priority to KR1020140061504A priority patent/KR101630919B1/ko
Priority to US14/285,189 priority patent/US9962218B2/en
Priority to CN201410220492.5A priority patent/CN104173103B/zh
Priority to JP2014107828A priority patent/JP2014226561A/ja
Publication of EP2805682A1 publication Critical patent/EP2805682A1/de
Priority to US15/971,804 priority patent/US11207121B2/en
Application granted granted Critical
Publication of EP2805682B1 publication Critical patent/EP2805682B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00619Welding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00761Duration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00827Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00892Voltage

Definitions

  • the invention relates to a device for tissue coagulation, in particular for tissue fusion.
  • the EP 1 862 137 A1 a coagulation device with a generator that feeds two electrodes between which biological tissue is captured.
  • the tissue undergoes a first phase I during coagulation, during which it significantly decreases the tissue impedance and a second phase II, during which the tissue impedance increases again.
  • a sensor circuit is provided which emits an interrogation signal to determine the initial tissue impedance and subsequently to define a particular trajectory for the desired time course of the tissue impedance.
  • the interrogation signal is formed by an electrical pulse with which a tissue property is measured.
  • the measured tissue property may be energy, power, impedance, current, voltage, electrical phase angle, reflected power or temperature.
  • the US 8216223 B2 deals with the coagulation of tissue.
  • the tissue impedance is first measured. As time passes, the minimum of the impedance is detected. Starting from this point, a setpoint curve generated for the desired impedance increase and a target value for the impedance calculated. If this is reached, the HF generator is switched off. The shutdown is followed by a cooling phase whose length is also specified from the setpoint curve. At the end of the cooling phase, the merger is complete.
  • thermofusion according to US 8,034,049 B2 controlled.
  • phase I of the thermofusion for example, the impedance characteristic is measured while the current is kept constant. From this the initial impedance, the drop of the impedance, the minimum of the impedance or the increase of the impedance are derived. From this information, other activation parameters are generated.
  • the EP 2 213 255 B1 describes the control of energy in a thermofusion.
  • a state variable SV is defined, which indicates the falling or rising of the impedance.
  • a nominal value trajectory for the impedance is specified.
  • the energy input is controlled so that the desired temporal impedance curve is approximated.
  • the energy input is coupled or counter-coupled to the impedance as a function of the state variable SV.
  • the EP 2 394 593 A1 describes the measurement of impedance during thermofusion. It is intended, after a certain minimum time has elapsed, to check whether a minimum impedance has been reached. Once this is the case, the activation is completed.
  • the US 6,733,498 B2 discloses a method for thermofusion in which the time course of the tissue impedance during the application of RF voltage is detected. The end of the first phase and the duration of the second phase will be determined by the impedance curve accordingly.
  • US 8,147,485 B2 uses tissue impedance monitoring to regulate thermofusion. From the minimum of the tissue impedance and the impedance increase, an impedance trajectory is calculated.
  • US 2010/0179563 A1 and the US 2011/0160725 A1 detect the tissue impedance or its change to control or regulate the electrosurgical process.
  • phase I a first phase
  • the energy introduced into the tissue is measured and limited in order to limit the coagulation volume. Once the specified energy has been introduced into the tissue, the coagulation process is terminated.
  • the WO 2008/102154 A1 discloses a method of fusion of an artery coagulating the blood contained in the artery.
  • the tissue impedance is monitored and the coagulation end is detected by the type of impedance change.
  • a power control loop is provided, wherein the power or other parameters of the applied voltage can be controlled either according to a preselected pattern or depending on the measured impedance. It is also proposed that the power control loop detect and monitor the total applied energy
  • the local state of tissue is characterized by the local specific tissue impedance. Although the detection of the impedance between two electrodes provides an indication of the condition and thus the treatment progress of the tissue as a whole, but the local specific tissue impedance is not detected. This can lead to erroneous results in inhomogeneous tissue.
  • the inventive device is used for tissue coagulation and, if necessary, for tissue fusion.
  • an electrical source is connected or connectable to electrodes for the action of current on biological tissue.
  • the electrical source may be a source of DC or AC, preferably RF.
  • the source is preferably designed to be controllable in order to be able to control the magnitude of the emitted current and / or the delivered voltage. It is connected to a control unit. It contains a monitoring unit connected to the source. In particular, the monitoring unit is connected to the output of the source, to which the electrodes are also connected. Alternatively, the monitoring unit may be connected to the electrodes.
  • the monitoring unit thus detects at least one electrical quantity that characterizes the energy that has been emitted from the source to the electrodes and thus from the electrodes to the tissue during a first operating phase.
  • the first phase of operation corresponds to phase I of tissue coagulation, during which the tissue resistance decreases and passes through a minimum.
  • the monitoring unit may detect the current power and integrate it during the first phase of operation to determine the energy output.
  • the monitoring unit detects the active power output by the electrodes.
  • the active energy is determined, which has been thermally converted in the tissue.
  • the energy introduced into the tissue during the first phase of operation is used to control the second phase of operation. This corresponds to phase II of tissue coagulation, during which tissue resistance increases and the tissue dries by boiling down tissue fluid.
  • the apparent power may be detected but includes reactive power components. If these are known or constant, the apparent power and thus the total apparent energy output can also be used to control the second phase of operation.
  • the control unit controls the source in the second operating phase based on the determined during the first phase of operation energy (active energy or apparent energy). This ensures that the amount of energy applied in the second operating phase is adapted to the size of the tissue area which is detected and influenced by the electrodes.
  • the cells opened in the first phase I release tissue fluid. In the second phase II, this is evaporated while drying the tissue.
  • a parameter is available by means of which phase II can be controlled such that the entire tissue electrosurgically influenced in phase I is uniformly coagulated.
  • control unit operates the source in the first operating phase I with controlled current. It is both possible to initially specify a time-increasing current, as well as in the further progress of the operating phase I a constant current. As a result, tissue heating and electrode heating occur. Thermal tissue denaturation reduces tissue impedance, which may be between 2 ohms and 40 ohms, for example. As a result of the formation of steam and the drying out of the fabric, the impedance can rise again during the operating phase I until the end of the phase I is detected. For this purpose, different recognition criteria can be used. For example, the voltage-to-current ratio at the source, and thus the tissue impedance, may increase above a threshold.
  • the rate of change of tissue resistance may alternatively be used as a turn-off criterion, for example by setting a limit on the rate of rise of the tissue impedance and monitoring its attainment.
  • the previously applied energy is stored at the end of the operating phase I.
  • the progress of the others Control of the operating phase II is derived from this energy value.
  • the duration of the operating phase II can be determined according to the energy value from the operating phase I.
  • the switch-off criterion, ie the end of a subsequent operating phase III can be determined on the basis of the energy value determined in the first operating phase.
  • the control parameters, ie the duration of the operating phase II and the switch-off criterion, ie the end of the operating phase III functions of the measured energy in the operating phase 1.
  • the transition from the operating phase I to the operating phase II preferably takes place continuously, ie without a sudden change in the current supplied to the biological tissue and / or without a sudden change in the voltage applied to the tissue and / or without a sudden change in the power delivered to the tissue.
  • the control unit preferably operates the source with impedance control as the nominal value of the impedance increase.
  • impedance For tissue impedance, a value above 100 ohms per second is recommended.
  • the targeted slow increase in impedance causes a stabilization of the evaporation of tissue fluid.
  • the formation of steam takes place evenly and spatially.
  • the desired time profile of the impedance can have a constant rise or a variable rise.
  • the control unit preferably determines the length of time of the operating phase II as a function of the energy detected in the first operating phase.
  • the second phase of operation is terminated when the time t 2 has elapsed. It joins (optional) the third phase III operation. In this, a constant tension is preferably applied to the biological tissue.
  • the end of the third phase of operation III can thereby be determined that the minimum treatment time has elapsed and an energy E ges has been achieved.
  • the energy E tot may be determined as a function of the energy E 1 detected in the first operating phase.
  • the minimum treatment time t min can also be determined by the energy E 1 .
  • the operation phase III may be terminated when the maximum treatment time has elapsed. This can in turn be determined as a function of the minimum treatment time and thus likewise as a function of the energy E 1 detected in the first operating phase. Further shutdown criteria, each of which depends on the energy E 1 , can be defined.
  • treatment parameters may change. For example, by inadvertently loosening the electrodes temporarily from the biological tissue (opening fusion clips), penetrating tissue fluid, such as blood or irrigation fluid, may affect the process. Thus, it may be necessary that a larger amount of energy and longer application time is required than was originally derived from the energy E 1 . In order to achieve a proper merger in such cases, the current performance can be monitored during the second (and / or third) operational phase.
  • the application time ie the times t 2 and t 3 , as well as the calculation parameters t min and / or t max, may be appropriate be extended.
  • FIG. 1 There is illustrated an apparatus 10 for coagulating biological tissue 11, which may be, for example, a hollow vessel or any other biological tissue.
  • the tissue 11 is a blood vessel which is to be closed by coagulation, ie a fusion of the opposing walls of the vessel is to be carried out.
  • two electrodes 12, 13 which grasp the fabric 11 between each other and also stress it mechanically, for example by compressing it.
  • the electrodes 12, 13 may be the branches of a bipolar fusion instrument.
  • the electrodes 12, 13 are connected via a line 14 to a feeding device 15.
  • the line 14 has, for example, two cores 16, 17, to which high-frequency current is supplied or can be supplied by the device 15.
  • the device 15 has a source 18, for example in the form of a controllable HF generator 19. This can be supplied via a power supply 20 and a power supply 21 via a supply network with operating voltage.
  • the HF generator 19 and / or the power supply 20 are designed to be controllable.
  • a control unit 22 is connected, which in particular controls or regulates the output of electrical power by the HF generator 19.
  • the control unit 22 includes a monitoring unit 23, which detects the electrical quantities of the electrodes 12, 13 supplied electrical energy.
  • the monitoring unit 23 is set up, at least temporarily to detect and integrate the electrical power supplied to the electrodes 12, 13 to determine the energy delivered in a time interval.
  • the monitoring unit 23 may have a voltage block 24 for monitoring the voltage applied to the terminals 12, 13.
  • the monitoring unit 23 may have a current block 25 for determining the size of the current supplied to the electrodes 12, 13.
  • the control unit 22 may further comprise a module 26 for determining the end of a first phase of operation I, the module receiving at least one output signal of the voltage block 24 or the current block 25 or a signal derived from its output signals for operating phase end detection.
  • the control unit 22 is in FIG. 2 schematically simplified and illustrated only in part.
  • the current block 25 the current I IST flowing through the tissue 11 is detected.
  • the voltage block 24 the voltage applied to the fabric 11 actual voltage U IST is detected. From both variables, the actual power P IST supplied to the fabric 11 is calculated, at least temporarily.
  • the power P IST may be the detected active power or the apparent power supplied to the electrodes 12, 13.
  • a corresponding block 27 is used for calculating or otherwise determining the power P IST .
  • the control unit 22 may also have a current specification block 28, which specifies a current I SOLL depending on the time and / or situation.
  • a voltage specification block 29 may be provided to specify a desired voltage U SOLL .
  • the current specification block 28 and the voltage specification block 29 may be controlled by an impedance block 30, which determines a desired relationship between the voltage U SOLL and the current I SOLL time and or situation-dependent, for example, a desired tissue resistance Set R G or a desired time course of the same.
  • the target actual deviations for the current I IST and the voltage U IST are respectively formed and fed to a processing module 33.
  • the latter controls the generator 19.
  • the processing module 33 also includes the module 26 for detecting various phases of operation.
  • This module 26 may receive (via non-illustrated signal paths) at least the actual current I IST and / or the actual U actual voltage or a value derived from these quantities as an input variable.
  • an energy block 34 for determining the power supplied to the fabric 11. This integrates the measured power P IST over a period of time predetermined by the processing module 33 and supplies the integral to the processing block 33.
  • blocks 27 to 32 and 34 may also be part of the processing module 33.
  • the further construction of the device 15 and in particular of its control unit 22 results from the following description of its time behavior: It is assumed that first between the electrodes 12, 13 living, undenatured tissue 11 is taken. The device 15 now receives at its activation input 35, the signal for coagulation and optionally fusion of the biological tissue 11. This corresponds to the in FIG. 3 noted start time or start of activation t 0 .
  • the operating phase I begins first with a partial phase Ia.
  • the current I IST is controlled to a desired current value of 4 A, for example. It can be guided from an initial value, such as 1 A within a period t 1a to the target value of, for example, 4 A.
  • the time for this can be between 200 ms and 2 s.
  • the effective value of the current is preferably taken as the measured variable.
  • the tissue resistance R G drops from an initial value to a minimum value of, for example, 2 ohms to 40 ohms.
  • the voltage U IST increases during the period t 1a .
  • the current I is increased during this time, preferably in the form of a ramp.
  • the peak voltage between the electrodes 12, 13 can be measured as the measured value for the voltage U IST .
  • the current I IST is then kept constant at a value i 1b during a further partial phase Ib.
  • the control unit 22 operates as a current control circuit for keeping constant the value i 1b .
  • the energy block 34 integrates the power determined by the block 27 and supplies the determined value of the energy E 1 to the processing module 33 at the end of the operating phase I.
  • the start and end of the operating phase I are determined by the times t 0 and t 1 marked.
  • the time t 1 is determined by the processing module 33 according to one of the above criteria.
  • the operating phase II With the end of the operating phase I begins the operating phase II. This starts preferably with the same current I IST , with the operating phase I has ended. In addition, it preferably starts with the same voltage U actual , with which the first operating phase I has ended.
  • the generator 19 is operated impedance controlled in the operating phase II, ie the control unit 22 forms a regulator for the tissue impedance.
  • a desired temporal impedance increase A is set. In FIG. 3 For example , the impedance increase A as a desired dashed line over time is illustrated as R Gsoll .
  • the impedance increase A may be 50 to 200, preferably 100 ohms per second.
  • the targeted slow increase of the impedance causes a stabilization of the evaporation of the tissue fluid.
  • the operating phase II is terminated when the duration t 2 has elapsed.
  • the time t max is the maximum duration of treatment.
  • t min is a fixed value of, for example, 5.4 seconds, or the value resulting from calculating the parenthesis, whichever is less.
  • phase III of operations will commence.
  • the voltage U IST is controlled to the value U 3 for a time t 3 constant.
  • the control unit 22 operates here as a voltage regulator circuit.
  • the achievement of the maximum duration t 3 of the operating phase III can be detected.
  • a device 10 for tissue coagulation, in particular fusion has an electrical source 18 which is connected or connectable to electrodes 12, 13 for the action of current on biological tissue 11.
  • a controller 22 controls the source 18 during phases I and II of tissue fusion.
  • Operating phases I, II and III of the device 10 correspond to these phases I and II.
  • a monitoring unit 23 detects the energy E 1 applied to the tissue 11.
  • the control unit 22 controls the source 18 in the subsequent operating phases II and III on the basis of the detected energy E 1 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Description

  • Die Erfindung betrifft eine Einrichtung zur Gewebekoagulation, insbesondere zur Gewebefusion.
  • Es sind verschiedene elektrochirurgische Verfahren in Gebrauch, deren Effekt auf einer kontrollierten Denaturierung biologischen Gewebes beruht.
  • Beispielsweise offenbart die EP 1 862 137 A1 eine Koagulationseinrichtung mit einem Generator, der zwei Elektroden speist, zwischen denen biologisches Gewebe gefasst ist. Das Gewebe durchläuft während der Koagulation eine erste Phase I, während derer die Gewebeimpedanz deutlich abnimmt und eine zweite Phase II, während derer die Gewebeimpedanz wieder ansteigt. Zur Erfassung der Gewebeimpedanz ist ein Sensorschaltkreis vorgesehen, der ein Abfragesignal aussendet, um die anfängliche Gewebeimpedanz zu bestimmen und nachfolgend eine bestimmte Trajektorie für den gewünschten Zeitverlauf der Gewebeimpedanz zu definieren. Das Abfragesignal wird durch einen elektrischen Puls gebildet, mit dem eine Gewebeeigenschaft gemessen wird. Die gemessene Gewebeeigenschaft kann Energie, Leistung, Impedanz, Strom, Spannung, elektrischer Phasenwinkel, reflektierte Leistung oder Temperatur sein.
  • Auch die US 8216223 B2 befasst sich mit der Koagulation von Gewebe. Während einer HF-Aktivierung von Elektroden wird zunächst die Gewebeimpedanz gemessen. Im weiteren zeitlichen Verlauf wird das Minimum der Impedanz festgestellt. Von diesem Punkt ausgehend wird eine Sollwertkurve für den gewünschten Impedanzanstieg generiert und ein Zielwert für die Impedanz errechnet. Wird dieser erreicht, wird der HF-Generator abgeschaltet. An das Abschalten schließt sich eine Kühlungsphase an, deren Länge ebenfalls aus der Sollwertkurve vorgegeben wird. Mit Ende der Kühlungsphase ist die Fusion abgeschlossen.
  • Ebenfalls anhand der initialen Gewebeimpedanz wird die Thermofusion gemäß US 8,034,049 B2 gesteuert. In der Phase I der Thermofusion wird zum Beispiel bei konstant gehaltenem Strom der Impedanzverlauf gemessen. Daraus werden die Initialimpedanz, der Abfall der Impedanz, das Minimum der Impedanz oder der Anstieg der Impedanz abgeleitet. Aus diesen Informationen werden andere Aktivierungsparameter generiert.
  • Die EP 2 213 255 B1 beschreibt die Steuerung der Energie bei einer Thermofusion. Dazu wird eine Zustandsvariable SV definiert, die das Fallen oder Steigen der Impedanz anzeigt. Es ist eine Sollwerttrajektorie für die Impedanz vorgegeben. Der Energieeintrag wird so gesteuert, dass der gewünschte zeitliche Impedanzverlauf angenähert wird. Dazu wird der Energieeintrag abhängig von der Zustandsvariablen SV zur Impedanz mitgekoppelt oder gegengekoppelt.
  • Die EP 2 394 593 A1 beschreibt die Messung der Impedanz während der Thermofusion. Es ist vorgesehen, nach Ablauf einer gewissen Mindestzeit zu überprüfen, ob eine Mindestimpedanz erreicht wurde. Sobald dies der Fall ist, wird die Aktivierung abgeschlossen.
  • Die US 6,733,498 B2 offenbart ein Verfahren zur Thermofusion, bei dem der zeitliche Verlauf der Gewebeimpedanz während der Applikation von HF-Spannung erfasst wird. Das Ende der ersten Phase und die Dauer der zweiten Phase werden durch den Impedanzverlauf entsprechend festgelegt.
  • Auch die US 8,147,485 B2 nutzt zur Regulierung der Thermofusion die Überwachung der Gewebeimpedanz. Aus dem Minimum der Gewebeimpedanz und dem Impedanzanstieg wird eine Impedanztrajektorie berechnet.
  • Auch die US 2010/0179563 A1 und die US 2011/0160725 A1 erfassen die Gewebeimpedanz oder deren Veränderung zur Steuerung oder Regelung des elektrochirurgischen Prozesses.
  • Die US 2013/006237 A1 beschreibt ein Koagulationsverfahren, bei dem in einer ersten Phase (Phase I) die in das Gewebe eingebrachte Energie gemessen und beschränkt wird, um das Koagulationsvolumen zu begrenzen. Sobald die festgelegte Energie in das Gewebe eingebracht worden ist, wird der Koagulationsprozess beendet.
  • Aus der EP 2 499 982 A1 ist es bekannt, einen Ablationsprozess zu steuern, wobei der Steueralgorithmus sowohl die Energie als auch die verstrichene Zeit als Rechengrößen berücksichtigt.
  • Die WO 2008/102154 A1 offenbart ein Verfahren zur Fusion einer Arterie unter Koagulation des in der Arterie enthaltenen Bluts. Dabei wird die Gewebeimpedanz überwacht und das Koagulationsende durch die Art der Impedanzänderung erfasst. Bei einer automatisierten Variante ist eine Leistungsregelschleife vorgesehen, wobei die Leistung oder andere Parameter der applizierten Spannung entweder nach einem vorberstimmten Muster oder in Abhängigkeit von der gemessenen Impedanz gesteuert werden können. Es wird außerdem vorgeschlagen, dass die Leistungsregelschleife die insgesamt applizierte Energie erfasst und überwacht
  • Der lokale Zustand von Gewebe wird durch die lokale spezifische Gewebeimpedanz charakterisiert. Die Erfassung der Impedanz zwischen zwei Elektroden liefert zwar einen Anhaltspunkt für den Zustand und somit den Behandlungsfortschritt des Gewebes insgesamt, wobei jedoch die lokale spezifische Gewebeimpedanz nicht erfasst wird. Dies kann zu Fehlschlüssen bei inhomogenem Gewebe führen.
  • Es ist Aufgabe der Erfindung, eine alternative Einrichtung zur Gewebekoagulation zu schaffen.
  • Diese Aufgabe wird mit der Einrichtung nach Anspruch 1 gelöst:
    Die erfindungsgemäße Einrichtung dient zur Gewebekoagulation sowie bedarfsweise auch zur Gewebefusion. Dazu ist eine elektrische Quelle mit Elektroden zur Stromeinwirkung auf biologisches Gewebe verbunden oder verbindbar. Die elektrische Quelle kann eine Quelle für Gleichstrom oder Wechselstrom, vorzugsweise HF-Strom, sein. Die Quelle ist vorzugsweise steuerbar ausgebildet, um die Größe des abgegebenen Stroms und/oder der abgegebenen Spannung steuern zu können. Sie ist dazu an eine Steuereinheit angeschlossen. Diese enthält eine Überwachungseinheit, die mit der Quelle verbunden ist. Insbesondere ist die Überwachungseinheit mit dem Ausgang der Quelle verbunden, an den auch die Elektroden angeschlossen sind. Alternativ kann die Überwachungseinheit mit den Elektroden verbunden sein. Die Überwachungseinheit erfasst somit mindestens eine elektrische Größe, die die Energie kennzeichnet, die während einer ersten Betriebsphase von der Quelle an die Elektroden und somit von den Elektroden an das Gewebe abgegeben worden ist. Die erste Betriebsphase entspricht der Phase I der Gewebekoagulation, während derer der Gewebewiderstand abnimmt und ein Minimum durchläuft.
  • Zum Beispiel kann die Überwachungseinheit die aktuelle Leistung erfassen und diese während der ersten Betriebsphase aufintegrieren, um die abgegebene Energie zu ermitteln. Insbesondere ist es vorteilhaft, wenn die Überwachungseinheit die von den Elektroden abgegebene Wirkleistung erfasst. Durch Aufintegrieren wird daraus die Wirkenergie ermittelt, die im Gewebe thermisch umgesetzt worden ist. Die in der ersten Betriebsphase in das Gewebe eingebrachte Energie wird zur Steuerung der zweiten Betriebsphase genutzt. Diese entspricht der Phase II der Gewebekoagulation, während derer der Gewebewiderstand zunimmt und das Gewebe durch verkochen von Gewebeflüssigkeit trocknet.
  • Alternativ kann die Scheinleistung erfasst werden, die jedoch Blindleistungsanteile enthält. Sind diese bekannt oder konstant, kann auch die Scheinleistung und damit die insgesamt abgegebene Scheinenergie zur Steuerung der zweiten Betriebsphase genutzt werden.
  • Die Steuereinheit steuert die Quelle in der zweiten Betriebsphase anhand der während der ersten Betriebsphase ermittelten Energie (Wirkenergie oder Scheinenergie). Dadurch wird sichergestellt, dass die in der zweiten Betriebsphase applizierte Energiemenge an die Größe des von den Elektroden erfassten und beeinflussten Gewebeareals angepasst ist. Die in der ersten Phase I geöffneten Zellen setzen Gewebeflüssigkeit frei. In der zweiten Phase II wird diese unter Auftrocknung des Gewebes verdampft. Durch Erfassung der in der ersten Betriebsphase applizierten Energie steht ein Parameter zur Verfügung, anhand dessen die Phase II so gesteuert werden kann, dass das gesamte in Phase I elektrochirurgisch beeinflusste Gewebe gleichmäßig koaguliert wird.
  • Es ist zweckmäßig, wenn die Steuereinheit die Quelle in der ersten Betriebsphase I mit geregeltem Strom betreibt. Dabei ist es sowohl möglich, zu Beginn einen zeitlich ansteigenden Strom vorzugeben, wie auch im weiteren Fortschritt der Betriebsphase I einen konstanten Strom. Dadurch tritt eine Gewebeerwärmung und eine Elektrodenerwärmung auf. Durch thermische Gewebedenaturierung kommt es zu einer Verminderung der Gewebeimpedanz, die zum Beispiel zwischen 2 Ohm und 40 Ohm liegen kann. Durch Dampfbildung und beginnende Austrocknung des Gewebes kann die Impedanz während der Betriebsphase I wieder ansteigen, bis das Ende der Phase I erkannt wird. Dazu können verschiedene Erkennungskriterien genutzt werden. Zum Beispiel kann das Verhältnis zwischen Spannung und Strom an der Quelle und somit die Gewebeimpedanz über einen Grenzwert hinaus ansteigen. Alternativ kann als Erkennungskriterium genutzt werden, wenn das Verhältnis zwischen Spannung und Strom an der Quelle, d.h. die Gewebeimpedanz, ein Minimum durchläuft. Weiter alternativ kann als Erkennungskriterium genutzt werden, dass die Spannung an der Quelle einen Grenzwert übersteigt. Weiter alternativ kann als Erkennungskriterium genutzt werden, dass der von der Quelle konstant zu haltende Strom unter einen Schwellwert abfällt, weil beispielsweise die von der Steuereinheit und der Quelle gebildete Stromregelschaltung ihren Regelbereich verlässt. Dies kann geschehen, wenn die Quelle ihre Maximalspannung oder eine sonstige Spannungsgrenze erreicht hat. Auch kann alternativ die Geschwindigkeit der Änderung des Gewebewiderstands (Verhältnis zwischen Spannung und Strom an der Quelle) als Abschaltkriterium genutzt werden, zum Beispiel indem für die Anstiegsgeschwindigkeit der Gewebeimpedanz eine Grenze festgelegt und deren Erreichen überwacht wird.
  • Jedenfalls wird am Ende der Betriebsphase I die bislang applizierte Energie gespeichert. Der Fortgang der weiteren Steuerung der Betriebsphase II wird aus diesem Energiewert abgeleitet. Insbesondere kann die Dauer der Betriebsphase II entsprechend dem Energiewert aus der Betriebsphase I festgelegt werden. Auch kann das Abschaltkriterium, d.h. das Ende einer sich anschließenden Betriebsphase III, anhand des in der ersten Betriebsphase ermittelten Energiewerts festgelegt werden. Somit sind die Steuerungsparameter, d.h. die Dauer der Betriebsphase II und das Abschaltkriterium, d.h. das Ende der Betriebsphase III, Funktionen der in der Betriebsphase 1 gemessenen Energie. Vorzugsweise erfolgt der Übergang von der Betriebsphase I zur Betriebsphase II stetig, d.h. ohne sprungartige Änderung des an das biologische Gewebe gelieferten Stroms und/oder ohne sprungartige Änderung der an das Gewebe angelegten Spannung und/oder ohne sprungartige Änderung der an das Gewebe abgegebenen Leistung.
  • In der Betriebsphase II betreibt die Steuereinheit die Quelle vorzugsweise impedanzgeregelt als Sollwert des Impedanzanstiegs. Für die Gewebeimpedanz empfiehlt sich ein Wert oberhalb 100 Ohm pro Sekunde. Die gezielte langsame Erhöhung der Impedanz bewirkt eine Verstetigung der Verdampfung von Gewebeflüssigkeit. Die Dampfbildung erfolgt gleichmäßig und räumlich verteilt. Der gewünschte zeitliche Verlauf der Impedanz kann einen konstanten Anstieg oder auch einen variablen Anstieg haben. Vorzugsweise legt die Steuereinheit die zeitliche Länge der Betriebsphase II in Abhängigkeit von der in der ersten Betriebsphase erfassten Energie fest. Die zweite Betriebsphase wird beendet, wenn die Zeit t2 verstrichen ist. Es schließt sich (optional) die dritte Betriebsphase III an. In dieser wird vorzugsweise an das biologische Gewebe eine konstante Spannung appliziert.
  • Das Ende der dritten Betriebsphase III kann dadurch festgelegt sein, dass die minimale Behandlungszeit verstrichen ist und eine Energie Eges erreicht worden ist. Die Energie Eges kann in Abhängigkeit von der in der ersten Betriebsphase erfassten Energie E1 festgelegt sein. Die minimale Behandlungszeit tmin kann ebenfalls von der Energie E1 bestimmt werden. Alternativ kann die Betriebsphase III beendet werden, wenn die maximale Behandlungszeit verstrichen ist. Diese kann wiederum in Abhängigkeit von der minimalen Behandlungszeit und somit ebenfalls in Abhängigkeit von der in der ersten Betriebsphase erfassten Energie E1 festgelegt werden. Weitere Abschaltkriterien in die jeweils in Abhängigkeit von der Energie E1 stehen, können festgelegt werden.
  • Im Laufe der Behandlung kann es vorkommen, dass sich Behandlungsparameter ändern. Beispielsweise kann durch versehentliches zeitweiliges Lockern der Elektroden von dem biologischen Gewebe (Öffnen von Fusionsklemmen) nachdringende Gewebeflüssigkeit, wie Blut oder Spülflüssigkeit, den Prozess beeinflussen. Somit kann es notwendig werden, dass eine größere Energiemenge und längere Applikationszeit notwendig wird als ursprünglich aus der Energie E1 abgeleitet wurde. Um in solchen Fällen eine ordnungsgemäße Fusion zu erreichen, kann während der zweiten (und/oder dritten) Betriebsphase die aktuelle Leistung beobachtet werden. Sofern die Leistung innerhalb eines Beobachtungszeitintervalls ein vorgegebenes Fenster aus minimaler Leistung Pmin und maximaler Leistung Pmax für einen nicht vernachlässigbar kurzen Zeitraum verlässt, kann die Applikationszeit, d.h. die Zeiten t2 und t3, sowie Rechenparameter tmin und/oder tmax entsprechend verlängert werden.
  • Weitere Einzelheiten von Ausführungsformen der Erfindung ergeben sich aus Ansprüchen, aus der Zeichnung und/ oder aus der nachfolgenden Beschreibung eines veranschaulichenden Beispiels. Es zeigen:
    • Figur 1 die erfindungsgemäße Einrichtung, in schematischer Darstellung.
    • Figur 2 eine Steuereinheit für die Einrichtung nach Figur 1, in ausschnittsweiser schematisierter Blockdarstellung und
    • Figur 3 Zeitdiagramme zur Erläuterung der Funktion der Steuereinheit.
  • In Figur 1 ist eine Einrichtung 10 zur Koagulation von biologischem Gewebe 11 veranschaulicht, das beispielsweise ein Hohlgefäß oder auch irgendein anderes biologisches Gewebe sein kann. Im folgenden Beispiel ist als Gewebe 11 ein Blutgefäß veranschaulicht, das durch Koagulation geschlossen werden soll, d.h. es ist eine Fusion der einander gegenüber liegenden Wände des Gefäßes durchzuführen. Dazu dienen zwei Elektroden 12, 13, die zwischen einander das Gewebe 11 fassen und es auch mechanisch beanspruchen, beispielsweise zusammendrücken können. In Figur 1 ist die mechanische Struktur des entsprechenden Instruments nicht weiter veranschaulicht. Beispielsweise können die Elektroden 12, 13 die Branchen eines bipolaren Fusionsinstruments sein.
  • Die Elektroden 12, 13 sind über eine Leitung 14 mit einem speisenden Gerät 15 verbunden. Die Leitung 14 weist dazu zum Beispiel zwei Adern 16, 17 auf, denen von dem Gerät 15 hochfrequenter Strom zugeführt wird oder zugeführt werden kann.
  • Dazu weist das Gerät 15 eine Quelle 18, zum Beispiel in Gestalt eines steuerbaren HF-Generators 19, auf. Dieser kann über ein Netzteil 20 und einen Netzanschluss 21 über ein Versorgungsnetz mit Betriebsspannung versorgt sein.
  • Der HF-Generator 19 und/oder das Netzteil 20 sind steuerbar ausgebildet. An ihren entsprechenden Steuereingänge ist, wie Pfeile veranschaulichen, eine Steuereinheit 22 angeschlossen, die insbesondere die Abgabe elektrischer Leistung durch den HF-Generator 19 steuert oder regelt. Dazu enthält die Steuereinheit 22 eine Überwachungseinheit 23, die die elektrischen Größen der den Elektroden 12, 13 zugeführten Elektroenergie erfasst. Insbesondere ist die Überwachungseinheit 23 dazu eingerichtet, zumindest zeitweilig die den Elektroden 12, 13 zugeführte elektrische Leistung zu erfassen und aufzuintegrieren, um die in einem Zeitintervall gelieferte Energie zu bestimmen. Die Überwachungseinheit 23 kann einen Spannungsblock 24 zur Überwachung der an den Klemmen 12, 13 liegenden Spannung aufweisen. Außerdem kann die Überwachungseinheit 23 einen Stromblock 25 zur Bestimmung der Größe des zu den Elektroden 12, 13 gelieferten Stroms aufweisen. Die Steuereinheit 22 kann außerdem ein Modul 26 zur Festlegung des Endes einer ersten Betriebsphase I aufweisen, wobei das Modul wenigstens ein Ausgangssignal des Spannungsblocks 24 oder des Stromblocks 25 oder ein aus deren Ausgangssignalen abgeleitetes Signal zur Betriebsphasenenderkennung erhält.
  • Die Steuereinheit 22 ist in Figur 2 schematisch vereinfacht und lediglich auszugsweise veranschaulicht. Mit dem Stromblock 25 wird der durch das Gewebe 11 fließende Strom IIST erfasst. Mit dem Spannungsblock 24 wird die an das Gewebe 11 angelegte tatsächliche Spannung UIST erfasst. Aus beiden Größen wird, zumindest zeitweilig, die tatsächliche dem Gewebe 11 zugeführte Leistung PIST errechnet. Die Leistung PIST kann die erfasste Wirkleistung oder auch die den Elektroden 12, 13 zugeführte Scheinleistung sein. Zur Errechnung oder anderweitigen Bestimmung der Leistung PIST dient ein entsprechender Block 27.
  • Die Steuereinheit 22 kann außerdem einen Stromvorgabeblock 28 aufweisen, der zeit- und/oder situationsabhängig einen Strom ISOLL vorgibt. Ebenso kann ein Spannungsvorgabeblock 29 vorgesehen sein, um eine gewünschte Spannung USOLL vorzugeben. Der Stromvorgabeblock 28 und der Spannungsvorgabeblock 29 können von einem Impedanzblock 30 gesteuert sein, der ein gewünschtes Verhältnis zwischen der Spannung USOLL und dem Strom ISOLL zeit- und oder situationsabhängig festlegt, beispielsweise um einen gewünschten Gewebewiderstand RG oder einen gewünschten zeitlichen Verlauf desselben festzulegen.
  • In entsprechenden Differenzbildungsblöcken 31, 32 werden jeweils die Soll-Ist-Abweichungen für den Strom IIST und die Spannung UIST gebildet und einem Verarbeitungsmodul 33 zugeführt. Letzteres steuert den Generator 19.
  • Das Verarbeitungsmodul 33 enthält außerdem das Modul 26 zur Erkennung verschiedener Betriebsphasen. Dieses Modul 26 kann (über nicht veranschaulichte Signalwege) wenigstens den tatsächlichen Strom IIST und/oder die tatsächliche UIST Spannung oder einen aus diesen Größen abgeleiteten Wert als Eingangsgröße erhalten.
  • An den Block 27 zur Leistungsermittlung ist ein Energieblock 34 zur Bestimmung der an das Gewebe 11 gelieferten Energie angeschlossen. Dieser integriert die gemessene Leistung PIST über einen von dem Verarbeitungsmodul 33 vorgegebenen Zeitraum auf und liefert das Integral an den Verarbeitungsblock 33.
  • Es wird darauf hingewiesen, dass die Blöcke 27 bis 32 sowie 34 auch Teil des Verarbeitungsmoduls 33 sein können.
  • Der weitere Aufbau des Geräts 15 und insbesondere seiner Steuereinheit 22 ergibt sich aus der nachfolgenden Beschreibung von deren Zeitverhalten:
    Es wird davon ausgegangen, dass zunächst zwischen den Elektroden 12, 13 lebendes, nicht denaturiertes Gewebe 11 gefasst ist. Das Gerät 15 erhält nun an seinem Aktivierungseingang 35 das Signal zur Koagulation und gegebenenfalls Fusion des biologischen Gewebes 11. Dies entspricht dem in Figur 3 vermerkten Anfangszeitpunkt bzw. Aktivierungsbeginn t0. Es beginnt die Betriebsphase I zunächst mit einer Teilphase Ia. In dieser wird der Strom IIST kontrolliert auf einen gewünschten Stromwert von zum Beispiel 4 A gebracht. Er kann dabei von einem Ausgangswert, wie beispielsweise 1 A innerhalb einer Zeitspanne t1a auf den Sollwert von zum Beispiel 4 A geführt werden. Dies kann in einer linearen Rampe geschehen: Die Zeit dafür kann zwischen 200 ms und 2 s betragen. Vorzugsweise wird als Messgröße der Effektivwert des Stroms genommen. Während dieser Phase oder auch ganz oder teilweise in einer späteren Betriebsphase Ib fällt der Gewebewiderstand RG von einem initialen Wert auf einen minimalen Wert von zum Beispiel 2 Ohm bis 40 Ohm ab. Durch das Erhöhen des Stroms steigt die Spannung UIST während der Zeitdauer t1a an. Der Strom Iist wird während dieser Zeit vorzugsweise in Form einer Rampe erhöht. Als Messwert für die Spannung UIST kann zum Beispiel die Spitzenspannung zwischen den Elektroden 12, 13 gemessen werden. In der Betriebsphase I wird dann während einer weiteren Teilphase Ib der Strom IIST auf den Wert i1b konstant gehalten. Dabei arbeitet die Steuereinheit 22 als Stromregelschaltung zur Konstanthaltung des Werts i1b.
  • Während der ersten Teilphase Ia oder während der zweiten Teilphase Ib durchläuft der Gewebewiderstand RG ein Minimum, um dann wieder anzusteigen. Wird das Gewebewiderstands-Minimum schon in der ersten Teilphase Ia erreicht, kann die Teilphase Ib übersprungen und direkt in die Betriebsphase II übergegangen werden. Dabei kann unter Umständen die Leistungsgrenze des Generators 19 erreicht werden, so dass es der Stromregelschaltung nicht mehr gelingt, den Strom IIST mit dem gewünschten Strom ISOLL in Übereinstimmung zu bringen. Der Strom fällt somit gegen Ende der Betriebsphase I ab. Je nach Ausführungsform kann dieser Abfall des Stroms i1b oder auch der von dem Differenzbildungsblock 31 gebildete Stromdifferenzwert (ISOLL - IIST) als Kennzeichen für das Ende der Betriebsphase I genutzt werden. Es ist auch möglich, dass die Steuereinheit 22 die Gewebeimpedanz RG als Quotient aus UIST und IIST ermittelt und das Ende der Betriebsphase I feststellt, wenn der Gewebewiderstand eine gegebene Schwelle überschreitet. Alternativ kann auch die Anstiegsgeschwindigkeit für den Gewebewiderstand RG überwacht werden. Demnach können kumulativ oder alternativ von der Steuereinheit 22 folgende Kriterien zur Erkennung der Betriebsphase I genutzt werden:
    • Detektion des Durchlaufens des Minimums der Gewebeimpedanz oder des Gewebewiderstands dR/dt = 0)
    • Unterschreiten eines Schwellwerts des Stroms IIST, zum Beispiel 0,5 * i1b
    • Überschreiten eines Schwellwerts der Gewebeimpedanz, zum Beispiel von 80 Ohm
    • Überschreiten eines Schwellwerts der Anstiegsgeschwindigkeit der Gewebeimpedanz (dR/dt)
  • Während der gesamten Betriebsphase I integriert der Energieblock 34 die von dem Block 27 ermittelte Leistung und liefert am Ende der Betriebsphase I den ermittelten Wert der Energie E1 an das Verarbeitungsmodul 33. Anfang und Ende der Betriebsphase I werden durch die Zeitpunkte t0 und t1 markiert. Der Zeitpunkt t1 wird von dem Verarbeitungsmodul 33 nach einem der oben genannten Kriterien bestimmt.
  • Mit dem Ende der Betriebsphase I beginnt die Betriebsphase II. Diese beginnt vorzugsweise mit dem gleichen Strom IIST, mit der die Betriebsphase I geendet hat. Außerdem beginnt sie vorzugsweise mit der gleichen Spannung UIST, mit der die erste Betriebsphase I geendet hat. Für die Betriebsphase II werden nun Betriebskriterien anhand der in der Betriebsphase I ermittelten applizierten Energie E1 festgelegt. Vorzugsweise wird der Generator 19 in der Betriebsphase II impedanzgeregelt betrieben, d.h. die Steuereinheit 22 bildet einen Regler für die Gewebeimpedanz. Für die Gewebeimpedanz wird ein gewünschter zeitlicher Impedanzanstieg A festgelegt. In Figur 3 ist der Impedanzanstieg A als gewünschte gestrichelte Linie im Zeitverlauf als RGsoll veranschaulicht. Der tatsächliche Impedanzanstieg RGist kann davon etwas abweichen, dies hängt von der Regelgüte des von der Steuereinheit 22 nun gebildeten Impedanzreglers ab. Zugleich fällt während der Betriebsphase II, d.h. während der Zeitdauer t2 der Strom IIST ab, während die Spannung UIST ansteigt. Die Spannung Uist hat eine obere Grenze, z.B. 150V (Scheitelwert), so dass vermieden wird, dass Funken auftreten und somit eine Schnittwirkung hervorgerufen würde.
  • Der Impedanzanstieg A kann 50 bis 200, vorzugsweise 100 Ohm pro Sekunde betragen. Die gezielte langsame Erhöhung der Impedanz bewirkt eine Verstetigung der Verdampfung der Gewebeflüssigkeit.
  • Die Betriebsphase II wird beendet, wenn die Dauer t2 verstrichen ist. Die Dauer t2 kann auf folgende Weise aus der Energie E1 ermittelt werden: t 2 = 2 / 3 t max t 1 ,
    Figure imgb0001
  • Die Zeit tmax ist dabei die maximale Behandlungsdauer. Die maximale Behandlungsdauer tmax lässt sich aus der minimalen Behandlungsdauer errechnen, indem ein konstanter vorgegebener Summand addiert wird, zum Beispiel: t max = t min + 1,8 s
    Figure imgb0002
  • Die minimale Behandlungsdauer tmin lässt sich beispielsweise nach folgender Beziehung aus der Energie E1 bestimmen: t min = min 5,4 s ; 38,25 μ s*E 1 2 / J 1 2 / J 2 + 18 ms*E 1 / J + 270 ms .
    Figure imgb0003
  • Danach ist tmin ein festgelegter Wert von zum Beispiel 5,4 s oder der sich durch Ausrechnen der runden Klammer ergebende Wert, je nachdem, welcher Wert geringer ist.
  • Mit Ende der Betriebsphase II wird die Betriebsphase III begonnen. In dieser wird die Spannung UIST auf den Wert U3 für eine Zeitspanne t3 konstant geregelt. Die Steuereinheit 22 arbeitet hier als Spannungsreglerschaltung.
  • Während der Betriebsphasen II und III, die der Phase II der Gewebekoagulation entsprechen, wird die Leistung weiter aufintegriert. Erreicht dieser Wert den Gesamthöchstwert Eges, wird die Behandlung beendet. Der Gesamthöchstwert Eges kann nach verschiedenen empirisch gewonnenen Formeln in Abhängigkeit von der Energie E1 ermittelt werden, beispielsweise folgendermaßen: E ges = 45 J + 2,75 * E 1 .
    Figure imgb0004
  • Alternativ kann das Erreichen der maximalen Dauer t3 der Betriebsphase III erkannt werden. Diese Dauer t3 kann zum Beispiel nach: t 3 = 1 / 3 * t max t 1
    Figure imgb0005
    berechnet werden.
  • Zur Vermeidung von Fehlbehandlungen durch unvorhergesehene Änderungen der Behandlungsparameter, beispielsweise durch versehentliches Öffnen der Fusionsklemmen, kann zusätzlich überwacht werden, ob innerhalb eines Beobachtungszeitintervalls, beispielsweise während der Betriebshase II und/oder III, die tatsächliche Leistung ein Leistungsfenster aus Pmin und Pmax verlässt. Falls dies für längere Zeit der Fall ist, kann die Applikationszeit verlängert werden.
  • Eine Einrichtung 10 zur Gewebekoagulation, insbesondere Fusion, weist eine elektrische Quelle 18 auf, die mit Elektroden 12, 13 zur Stromeinwirkung auf biologisches Gewebe 11 verbunden oder verbindbar ist. Eine Steuereinheit 22 steuert die Quelle 18 während der Phasen I und II der Gewebefusion. Diesen Phasen I und II entsprechen Betriebsphasen I, II und III der Einrichtung 10. Während der Betriebsphase I erfasst eine Überwachungseinheit 23, die in das Gewebe 11 applizierte Energie E1. Die Steuereinheit 22 steuert die Quelle 18 in den nachfolgenden Betriebsphasen II und III anhand der erfassten Energie E1. Eine solche Einrichtung erweist sich als besonders zuverlässig und im Einsatz robust Die Erfindung ist in den folgenden Ansprüchen definiert.
  • Bezugszeichenliste:
  • 10
    Einrichtung
    11
    biologisches Gewebe
    12, 13
    Elektroden
    14
    Leitung
    15
    Gerät
    16, 17
    Adern
    18
    Quelle
    19
    HF-Generator
    20
    Netzteil
    21
    Netzanschluss
    22
    Steuereinheit
    23
    Überwachungseinheit
    24
    Spannungsblock
    25
    Stromblock
    26
    Modul zur Erkennung von Betriebsphasen
    UIST
    Spannung (z.B. Spitzenwert)
    IIST
    Strom (z.B. Effektivwert)
    PIST
    Leistung
    27
    Block zur Leistungsermittlung
    28
    Stromvorgabeblock
    ISOLL
    gewünschter Strom
    29
    Spannungsvorgabeblock
    USOLL
    gewünschte Spannung
    30
    Impedanzblock
    RG
    Gewebewiderstand
    31, 32
    Differenzbildungsblöcke
    33
    Verarbeitungsmodul
    34
    Energieblock
    35
    Aktivierungseingang
    t0
    Aktivierungsbeginn
    I
    erste Betriebsphase
    Ia
    Teilphase
    t1a
    Dauer der ersten Teilphase
    Ib
    Teilphase
    i1a
    Wert des Stroms IIST in der Teilphase Ia
    i1b
    Wert des Stroms IIST in der Teilphase Ib
    t1
    Dauer der Betriebsphase I
    E1
    in Phase I in das Gewebe 11 eingetragene Energie
    A
    Impedanzanstieg
    RGsoll
    gewünschter Impedanzverlauf
    RGist
    tatsächlicher Impedanzverlauf
    t2
    Dauer der Betriebsphase II
    tmax
    maximale Behandlungsdauer
    tmin
    minimale Behandlungsdauer
    Eges
    Gesamthöchstwert der Energie
    t3
    Dauer der Betriebsphase III
    tges
    gesamte Dauer der Behandlung
    RGmax
    Grenzwert für Gewebewiderstand in der Betriebsphase I
    M
    Minimum des Gewebewiderstands in der Betriebsphase I
    U3
    Spannung in der Betriebsphase III
    Pmax, Pmin
    legen Leistungsfenster für die Leistung P der Quelle 18 in den Betriebsphasen II und/oder III fest

Claims (14)

  1. Einrichtung (10) zur Gewebekoagulation, insbesondere zur Gewebefusion,
    mit einer elektrischen Quelle (18), die mit Elektroden (12, 13) zur Stromeinwirkung auf biologisches Gewebe (11) verbunden ist,
    mit einer Überwachungseinheit (23), die an die Quelle (18) angeschlossen ist, um den von der Quelle (18) abgegebenen Strom (IIST) und/oder die von der Quelle (18) abgegebene Spannung (UIST) zu erfassen,
    mit einer Steuereinheit (22), die die Überwachungseinheit (23) enthält und mit der Quelle (18) steuernd verbunden ist, wobei die Steuereinheit(22) in einer ersten Betriebsphase (I) die von der Quelle (18) an die Elektroden (12, 13) abgegebene Energie (E1) ermittelt und speichert und in einer darauf folgenden zweiten Betriebsphase (II) die Quelle (18) in Abhängigkeit von der in der ersten Betriebsphase (I) erfassten Energie (E1) steuert, wobei die zeitliche Länge (t2) der zweiten Betriebsphase (II) von der Steuereinheit (22) in Abhängigkeit von der in der ersten Betriebsphase (I) erfassten Energie (E1) festgelegt wird.
  2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinheit (22) mit der Quelle (18) in der ersten Betriebsphase (I) als Stromregelschaltung zusammengeschaltet ist.
  3. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (22) zu Beginn der ersten Betriebsphase (I) einen zeitlich ansteigenden Strom (i1a) vorgebend ausgebildet ist.
  4. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (22) während zumindest eines Abschnitts (Ib) der ersten Betriebsphase (I) einen konstanten Strom (i1b) vorgebend ausgebildet ist.
  5. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (22) ein Modul (26) zur Erfassung des Abschlusses der ersten Betriebsphase (I) aufweist, wobei das Modul (26) dazu ausgebildet ist, wenigstens eines der folgenden Erkennungskriterien zu nutzen:
    - das Verhältnis zwischen Spannung und Strom an der Quelle (18) steigt über einen Grenzwert (RGmax) an,
    - das Verhältnis zwischen Spannung und Strom an der Quelle (18) durchläuft ein Minimum (M),
    - die Anstiegsgeschwindigkeit des Verhältnisses zwischen Spannung und Strom an der Quelle (18) übersteigt einen Grenzwert,
    - die Spannung (UIST) an der Quelle (18) übersteigt einen Grenzwert,
    - der Strom (IIST) unterschreitet einen Grenzwert.
  6. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (22) darauf eingerichtet ist, zu Beginn der zweiten Betriebsphase (II) wenigstens eine der folgenden Größen:
    - Strom (IIST) aus der Quelle (18),
    - Spannung (UIST) an der Quelle (18),
    - abgegebene Leistung (PIST) der Quelle (18)
    auf den gleichen Wert einzustellen, den diese Größe zu Ende der ersten Betriebsphase (I) hatte.
  7. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (22) in der zweiten Betriebsphase (II) einen Zeitverlauf für das Verhältnis aus der Spannung (UIST) an der Quelle (18) und dem von dieser gelieferten Strom (IIST) vorgebend ausgebildet ist.
  8. Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Zeitverlauf einen konstanten Impedanzanstieg (A) aufweist.
  9. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (22) die zeitliche Länge (t2) der zweiten Betriebsphase (II) vorgebend ausgebildet ist.
  10. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (22) im unmittelbaren Anschluss an die zweite Betriebsphase (II) in eine dritte Betriebsphase (III) übergehend ausgebildet ist.
  11. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Steuereinheit (22) in der dritten Betriebsphase (III) eine konstante Spannung (U3) vorgebend und einstellend ausgebildet ist.
  12. Einrichtung nach einem der Ansprüche 10 oder 11 dadurch gekennzeichnet, dass die Steuereinheit (22) in der dritten Betriebsphase (III) die Spannung (U3) der Quelle (18) auf denjenigen Wert festlegend ausgebildet ist, der zu Ende der zweiten Betriebsphase (II) durch die Überwachungseinheit (23) erfasst worden ist.
  13. Einrichtung nach einem der Ansprüche 10 bis 12 dadurch gekennzeichnet, dass die Steuereinheit (22) die dritte Betriebsphase (III) beendend ausgebildet ist, wenn:
    - eine minimale Behandlungszeit (tmin) und eine gegebene Gesamtenergie (Eges) erreicht sind oder
    - eine maximale Behandlungszeit (tmax) verstrichen ist oder
    - eine maximale Energie (Emax) appliziert worden ist.
  14. Einrichtung nach einem der Ansprüche 10 bis 12 dadurch gekennzeichnet, dass die Steuereinheit (22) dazu eingerichtet ist, in der Betriebsphase (II) die von der Quelle (18) abgegebene Leistung zu überwachen, um die Zeitdauer (t2) für die zweite oder dritte Betriebsphase (II, III) zu verlängern, sofern die Leistung ein zwischen einer Maximalleistung (Pmax) und einer Minimalleistung (Pmin) vorgegebenes Leistungsfenster verlassen hat.
EP13169105.7A 2013-05-24 2013-05-24 Koagulationseinrichtung mit energiesteuerung Active EP2805682B1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP13169105.7A EP2805682B1 (de) 2013-05-24 2013-05-24 Koagulationseinrichtung mit energiesteuerung
PL13169105T PL2805682T3 (pl) 2013-05-24 2013-05-24 Urządzenie do koagulacji ze sterowaniem energią
BR102014011590-0A BR102014011590B1 (pt) 2013-05-24 2014-05-14 Dispositivo de coagulação de tecido
US14/285,189 US9962218B2 (en) 2013-05-24 2014-05-22 Coagulation device comprising an energy control
KR1020140061504A KR101630919B1 (ko) 2013-05-24 2014-05-22 에너지 제어를 포함한 응고 장치
CN201410220492.5A CN104173103B (zh) 2013-05-24 2014-05-23 包括能量控制的凝结设备
JP2014107828A JP2014226561A (ja) 2013-05-24 2014-05-26 エネルギー制御を備える凝固装置
US15/971,804 US11207121B2 (en) 2013-05-24 2018-05-04 Coagulation device comprising an energy control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13169105.7A EP2805682B1 (de) 2013-05-24 2013-05-24 Koagulationseinrichtung mit energiesteuerung

Publications (2)

Publication Number Publication Date
EP2805682A1 EP2805682A1 (de) 2014-11-26
EP2805682B1 true EP2805682B1 (de) 2019-03-20

Family

ID=48569941

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13169105.7A Active EP2805682B1 (de) 2013-05-24 2013-05-24 Koagulationseinrichtung mit energiesteuerung

Country Status (7)

Country Link
US (2) US9962218B2 (de)
EP (1) EP2805682B1 (de)
JP (1) JP2014226561A (de)
KR (1) KR101630919B1 (de)
CN (1) CN104173103B (de)
BR (1) BR102014011590B1 (de)
PL (1) PL2805682T3 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014115868A1 (de) * 2014-10-31 2016-05-04 Aesculap Ag Verfahren und Vorrichtung zur Steuerung eines Behandlungsvorgangs
GB2552452A (en) * 2016-05-23 2018-01-31 Creo Medical Ltd Electrosurgical apparatus and method for promoting haemostasis in biological tissue
DE102017106747A1 (de) * 2017-03-29 2018-10-04 Erbe Elektromedizin Gmbh Generator zur Versorgung eines Koagulationsinstruments und Steuerungsverfahren für diesen
US11172984B2 (en) 2019-05-03 2021-11-16 Biosense Webster (Israel) Ltd. Device, system and method to ablate cardiac tissue
EP3965676A1 (de) 2019-05-09 2022-03-16 Gyrus ACMI, Inc. d/b/a Olympus Surgical Technologies America Elektrochirurgische systeme und verfahren
WO2020227519A1 (en) * 2019-05-09 2020-11-12 Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America Electrosurgical systems and methods

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324289A (en) 1991-06-07 1994-06-28 Hemostatic Surgery Corporation Hemostatic bi-polar electrosurgical cutting apparatus and methods of use
AU701320B2 (en) * 1994-12-22 1999-01-28 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US6733498B2 (en) 2002-02-19 2004-05-11 Live Tissue Connect, Inc. System and method for control of tissue welding
US7704260B2 (en) 2002-09-17 2010-04-27 Medtronic, Inc. Low profile instrument immobilizer
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US20070282320A1 (en) 2006-05-30 2007-12-06 Sherwood Services Ag System and method for controlling tissue heating rate prior to cellular vaporization
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
GB0703417D0 (en) * 2007-02-22 2007-04-04 Eschmann Holdings Ltd Electro-surgical systems
US8167875B2 (en) 2009-01-12 2012-05-01 Tyco Healthcare Group Lp Energy delivery algorithm for medical devices
CN102378601B (zh) 2009-10-28 2014-04-30 奥林巴斯医疗株式会社 高频手术装置以及医疗设备的动作方法
US20120239024A1 (en) 2011-03-17 2012-09-20 Vivant Medical, Inc. Energy-Based Ablation Completion Algorithm
PL2540244T3 (pl) * 2011-06-30 2017-11-30 Erbe Elektromedizin Gmbh Urządzenie do zoptymalizowanej koagulacji tkanki biologicznej

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US9962218B2 (en) 2018-05-08
US20140350548A1 (en) 2014-11-27
KR101630919B1 (ko) 2016-06-15
US20180250063A1 (en) 2018-09-06
US11207121B2 (en) 2021-12-28
BR102014011590B1 (pt) 2021-11-23
CN104173103B (zh) 2018-09-14
KR20140138058A (ko) 2014-12-03
BR102014011590A2 (pt) 2015-01-06
PL2805682T3 (pl) 2019-07-31
CN104173103A (zh) 2014-12-03
JP2014226561A (ja) 2014-12-08
EP2805682A1 (de) 2014-11-26

Similar Documents

Publication Publication Date Title
EP2805682B1 (de) Koagulationseinrichtung mit energiesteuerung
DE69530646T2 (de) Impedanzrückkopplungsüberwacher für elektrochirurgisches Instrument
EP1858428B1 (de) Hf-chirurgieeinrichtung
DE102010028895B4 (de) Generator für die Elektrochirurgie
EP1816969B1 (de) Hf-chirurgiegerät
DE102004026179B4 (de) Elektrochirurgisches Instrument
EP2540244B1 (de) Vorrichtung zum optimierten Koagulieren von biologischem Gewebe
EP2306918B1 (de) Elektrochirurgisches gerät zum behandeln eines biologischen gewebes
EP2992848B1 (de) Einrichtung zur kontaktkoagulation von biologischem gewebe
EP2514380B1 (de) Elektrochirurgische Einrichtung mit verbessertem Abschnitt
EP2520240B1 (de) Einrichtung zur Gewerbefusion oder Koagulation durch elektrische Einwirkung mit negativer Quellimpedanz
EP3569171B1 (de) Vorrichtung und verfahren zum vorgeben von betriebsparametern zur erzeugung eines plasmas in wässriger umgebung
EP3011923B1 (de) Einrichtung zur Metallerkennung bei der Einwirkung auf biologisches Gewebe mittels eines funkenbildenden elektrochirurgischen Instruments
EP2520241B1 (de) Einrichtung zur Gewebefusion oder Koagulation durch gewebewiderstandsabhängig spannungsgeregelte elektrische Einwirkung
WO2018069533A1 (de) Hochfrequenzgenerator zum anschliessen eines instruments für die behandlung von körpergewebe
EP0978259B1 (de) Hochfrequenzchirurgiegenerator mit einer einstellbaren Ausgangsleistung
EP2362756B1 (de) Vorrichtung zur devitalisierung von biologischem gewebe
EP3277212A1 (de) Plasmachirurgische vorrichtung sowie verfahren zum betreiben einer solchen vorrichtung
EP3030181A1 (de) Verfahren und vorrichtung zur steuerung eines behandlungsvorgangs
DE4126609A1 (de) Hochfrequenzchirurgiegenerator zum geregelten koagulierenden schneiden
DE4135185A1 (de) Hochfrequenzchirurgiegenerator zur koagulation von geweben
DE102021132365A1 (de) Elektrochirurgie-Generator mit erweitertem Messbereich
EP3964152A1 (de) Einrichtung zur gewebebehandlung und verfahren zur erfassung eines elektroden/gewebe-kontakts
DE102012220665A1 (de) Multipolare Elektrodenanordnung zur Verringerung der Blutadhäsion an HF-Elektroden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130524

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ERBE ELEKTROMEDIZIN GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181031

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190206

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012439

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1109683

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190621

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012439

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

26N No opposition filed

Effective date: 20200102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1109683

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230525

Year of fee payment: 11

Ref country code: FR

Payment date: 20230523

Year of fee payment: 11

Ref country code: DE

Payment date: 20230530

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230427

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 11