EP2802637B1 - Verfahren zur bereitstellung eines dampfförmigen gereinigten roh-c4-schnittes als einsatzstrom für eine extraktivdestillation mit einem selektiven lösungsmittel - Google Patents
Verfahren zur bereitstellung eines dampfförmigen gereinigten roh-c4-schnittes als einsatzstrom für eine extraktivdestillation mit einem selektiven lösungsmittel Download PDFInfo
- Publication number
- EP2802637B1 EP2802637B1 EP13700159.0A EP13700159A EP2802637B1 EP 2802637 B1 EP2802637 B1 EP 2802637B1 EP 13700159 A EP13700159 A EP 13700159A EP 2802637 B1 EP2802637 B1 EP 2802637B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cut
- crude
- hydrocarbons
- vaporous
- purified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G21/00—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
- C10G21/28—Recovery of used solvent
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G21/00—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
- C10G21/06—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
- C10G21/12—Organic compounds only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/12—Liquefied petroleum gas
Definitions
- the invention relates to a process for providing a gaseous purified crude C 4 cut as feed stream for extractive distillation with a selective solvent.
- C 4 cut denotes mixtures of hydrocarbons having predominantly 4 carbon atoms per molecule.
- C 4 cuts are obtained, for example, in the production of ethylene and / or propylene by thermal cracking, usually in steam crackers, especially naphtha crackers or fluidized catalytic cracking (FCC) crackers of a petroleum fraction, such as liquefied petroleum gas, light gasoline or gas oil.
- C 4 cuts are obtained in the catalytic dehydrogenation of n-butane and / or n-butene.
- C 4 cuts usually contain butanes, butenes, 1,3-butadiene, small amounts of C 3 and C 4 acetylenes, 1,2-butadiene and C 5+ hydrocarbons.
- the separation of C 4 cuts is a complicated distillation problem because of the small differences in the relative volatilities of the components. Therefore, the separation is carried out by a so-called extractive distillation, ie a distillation with the addition of a selective solvent (also referred to as extractant), which has a higher boiling point than the mixture to be separated and which increases the differences in the relative volatilities of the components to be separated.
- extractive distillation ie a distillation with the addition of a selective solvent (also referred to as extractant), which has a higher boiling point than the mixture to be separated and which increases the differences in the relative volatilities of the components to be separated.
- Crude C 4 cuts contain impurities which would lead to problems in the extractive distillation, in particular foaming of the solvent and apparatus fouling, so that they must be separated just before the feed of the crude C 4 cut for extractive distillation in order to obtain a reliable Ensure operation of the extractive distillation.
- Impurities leading to the above problems are especially higher than boiling components, especially C " 5+” hydrocarbons (predominantly hydrocarbons having 5 or more carbon atoms per molecule, isoprene, C " 4" oligomers and polymers, ie Oligomers and optionally polymers of butadiene of the formula (C 4 H 6 ) n , where n is greater than or equal to 2.
- C " 5+” hydrocarbons predominantly hydrocarbons having 5 or more carbon atoms per molecule, isoprene, C " 4" oligomers and polymers, ie Oligomers and optionally polymers of butadiene of the formula (C 4 H 6 ) n , where n is greater than or equal to 2.
- the proportion of C 5+ hydrocarbons in C 4 cuts is dependent in particular on the operating conditions during thermal cracking and is up to to 1000 ppm by weight or even up to 5000 ppm by weight, in individual cases up to 1% by weight, based on the total weight of the crude C 4 cut
- the C 4 -oligomers and polymers are formed in particular by Storage and transport, their proportion is therefore largely dependent on the storage and transport conditions, in particular temperature, duration, inerting of the atmosphere under which the storage and / or transport takes place.
- C 3 hydrocarbons ie hydrocarbons having three carbon atoms per molecule
- the extractive distillation can cause problems; this is in particular methylacetylene, which has a similar affinity to the commonly used selective solvents such as 1,3-butadiene.
- the proportion of C 3 hydrocarbons should therefore be limited in the feed stream for extractive distillation to a maximum of 50 ppm by weight, based on the total weight of the feed stream.
- the depleted with C 3 components crude C 4 stream is almost completely evaporated, and indeed flow controlled, so that the high-boiling compared to 1,3-butadiene components in the remaining liquid content not more than 5 wt .-%, in particular not above 1 wt .-%, or even not more than 0.1 wt .-%, based on the total weight of the evaporator vessel supplied raw C 4 cut lie.
- the liquid stream remaining in the evaporator vessel is discharged as purge stream.
- the disadvantage here however, that high levels of recyclables, C 4 hydrocarbons are discharged via the purge stream together with the high boilers.
- the US 4,419,188 A describes a process for extractive distillation in a plurality of distillation columns wherein a plurality of thermally coupled extractive distillation steps are carried out.
- This object is achieved by a process for providing a gaseous purified crude C 4 fraction as feed stream for an extractive distillation with a selective solvent,
- a stripping column to the evaporator boiler, that is to provide evaporator boiler and stripping column as separate apparatuses.
- Evaporator boilers are known in the process engineering simple apparatus. They usually include a boiler, in which a gas phase can separate from a liquid phase, and a heat exchanger, which is located inside or outside the boiler.
- a stripping column is assigned to the evaporator vessel.
- a typical crude C 4 cut from a naphtha cracker has the following composition in weight percent: propane 0 - 0.5 propene 0 - 0.5 propadiene 0 - 0.5 propyne 0 - 0.5 n-butane 3 - 10 i-butane 1 - 3 1-butene 10 - 20 i-butene 10 - 30 trans-2-butene 2 - 8 cis-2-butene 2 - 6 1,3-butadiene 35 - 65 1,2-butadiene 0.1 -1 ethyl acetylene 0.1 - 2 vinyl acetylene 0.1 - 3 C5 0 - 0.5
- Raw C 4 cuts from naphtha crackers thus contain predominantly butanes, butenes and 1,3-butadiene. In addition, small amounts of other hydrocarbons are included. C 4 -acetylenes are frequently present in a proportion of 5% by weight or even up to 2% by weight.
- extractive distillation are as selective solvents generally substances or mixtures in question, which have a higher boiling point than the mixture to be separated and a greater affinity for conjugated double bonds and triple bonds than simple double bonds and single bonds, preferably dipolar, more preferably dipolaraprotician solvent. For technical reasons, less or non-corrosive substances are preferred.
- Suitable selective solvents for the process according to the invention are, for example, butyrolactone, nitriles such as acetonitrile, propionitrile, methoxypropionitrile, ketones such as acetone, furfurol, N-alkyl-substituted lower aliphatic acid amides such as dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, N-formylmorpholine, N-alkyl-substituted cyclic acid amides (Lactams) such as N-alkylpyrrolidones, in particular N-methylpyrrolidone.
- nitriles such as acetonitrile, propionitrile, methoxypropionitrile
- ketones such as acetone, furfurol
- N-alkyl-substituted lower aliphatic acid amides such as dimethylformamide, diethylformamide, dimethylacetamide, dieth
- N-alkyl substituted lower aliphatic acid amides or N-alkyl substituted cyclic acid amides are used. Particularly advantageous are dimethylformamide, acetonitrile, furfurol and in particular N-methylpyrrolidone.
- mixtures of these solvents with one another for example of N-methylpyrrolidone with acetonitrile
- mixtures of these solvents with cosolvents such as water and / or tert-butyl ether, for example methyl tert-butyl ether, ethyl tert-butyl ether, propyl tert-butyl ether, n- or iso-butyl tert-butyl ether can be used.
- N-methylpyrrolidone preferably in aqueous solution, in particular with 8 to 10 wt .-% water, particularly preferably with 8.3 wt .-% water.
- the C 3 hydrocarbons in the gaseous purified crude C 4 cut to less than 10 ppm by weight, based on the total weight of the gaseous purified crude C 4 cut , or more preferably less than 4 wt. ppm, depleted in a distillation column upstream of the evaporator boiler.
- the C 5+ hydrocarbons are more preferably in the vapor purified crude C 4 fraction is depleted to less than half of the C 5+ hydrocarbons contained in the feed stream.
- the stripping column is preferably operated at a top pressure in the range of 3 to 7 bar absolute, more preferably at a top pressure in the range of 4.5 to 5.5 bar absolute.
- the stripping column has in particular 1 to 15 theoretical plates.
- FIG. 1 shows an evaporator vessel, VK, at the upper end of which a stripping column K connects, such that the Evaporator VK and the stripping column K form a single apparatus.
- a sump evaporator is provided at the lower end of the evaporator vessel VK.
- the stripping column K is fed in the upper region thereof the liquid crude C 4 cut as stream 1, and at the top of the stripping column K, the purified crude C 4 cut , stream 2, deducted.
- Fig. 2 shows the schematic representation of another preferred embodiment in which the evaporator boiler VK and the stripping column K are formed as separate apparatus, and wherein a direct gas and liquid exchange at the upper end of the evaporator vessel VK is provided with the stripping column K.
- the evaporator boiler VK is equipped with a sump evaporator S.
- the stripping column K is fed in the upper region thereof the liquid C 4 cut as stream 1 and withdrawn as overhead stream of the vaporized purified crude C 4 cut , stream 2.
- the starting point is a crude liquid C 4 cut as feed stream for a 100 kt / year plant containing 200 ppm of propane, 400 ppm of propene, 300 ppm of propadiene, 400 ppm of propyne, 2.0% of n-butane, 6.0 % iso-butane, 19.0% n-butene, 28.3% iso-butene, 5.5% trans-2-butene, 4.4% cis-2-butene, 39.0% butadiene-1.3 , 0.2% butadiene-1,2, 1200 ppm butyn-1, 4500 ppm vinyl acetylene and 1000 ppm iso-pentane, 3-methylbutene-1 and 2-methylbutene-2, in each case based on the total weight of the feed stream.
- C 4 oligomers and polymers can be contained in the% range.
- the above crude C 4 cut is subjected to a pre-purification, for comparison in a plant with a distillation column in which the C 3 hydrocarbons are removed overhead and the remaining components are withdrawn via the bottom whereupon the bottom stream is fed to an evaporator vessel for the purpose of separating off the components boiling high in relation to 1,3-butadiene, ie an apparatus with a single separation stage.
- the crude C 4 stream depleted in C 3 components is virtually completely vaporized and discharged under flow control so that the C 5 components which boil over 1,3-butadiene do not exceed 5% by weight in the remaining liquid fraction.
- Based on the total weight supplied to the evaporator vessel raw C 4 cut to the loss of C 4 components in liquid residue to keep small.
- the proportion of oligomers and polymers contained in the liquid residue is significantly greater because of the lower vapor pressure.
- the liquid stream remaining in the evaporator vessel is discharged as purge stream.
- the same crude C 4 cut is fed as feed stream to an evaporator vessel VK, on which a stripping column K is set up with 5 theoretical plates, to which the liquid C 4 cut 1 is fed in the upper region and from the top End of the same is withdrawn from the gaseous purified crude C 4 cut 2, wherein the stripping column K is operated without a condenser at the top of the column.
- a stripping column K is set up with 5 theoretical plates, to which the liquid C 4 cut 1 is fed in the upper region and from the top End of the same is withdrawn from the gaseous purified crude C 4 cut 2, wherein the stripping column K is operated without a condenser at the top of the column.
- the residue stream (from the evaporator vessel) is according to the prior art 160 kg / h, with a proportion of 1,3-butadiene of 38.6 wt .-%.
- a purified crude C 4 cut with a higher degree of purity, compared to the method of the prior art is separated by the novel process.
- ppm C 5 components additional proportions of C 6 components as well as oligomers and polymers may come into consideration, which are not taken into consideration here
- only 55.1 kg / h of C 5 components of the extractive distillation are fed in.
- the loss of desired product 1,3-butadiene is thus greater by about 192 t / year in the process according to the prior art than in the process according to the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13700159.0A EP2802637B1 (de) | 2012-01-11 | 2013-01-10 | Verfahren zur bereitstellung eines dampfförmigen gereinigten roh-c4-schnittes als einsatzstrom für eine extraktivdestillation mit einem selektiven lösungsmittel |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12150824 | 2012-01-11 | ||
PCT/EP2013/050366 WO2013104692A1 (de) | 2012-01-11 | 2013-01-10 | Verfahren zur bereitstellung eines dampfförmigen gereinigten roh-c4-schnittes als einsatzstrom für eine extraktivdestillation mit einem selektiven lösungsmittel |
EP13700159.0A EP2802637B1 (de) | 2012-01-11 | 2013-01-10 | Verfahren zur bereitstellung eines dampfförmigen gereinigten roh-c4-schnittes als einsatzstrom für eine extraktivdestillation mit einem selektiven lösungsmittel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2802637A1 EP2802637A1 (de) | 2014-11-19 |
EP2802637B1 true EP2802637B1 (de) | 2017-03-22 |
Family
ID=47553075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13700159.0A Active EP2802637B1 (de) | 2012-01-11 | 2013-01-10 | Verfahren zur bereitstellung eines dampfförmigen gereinigten roh-c4-schnittes als einsatzstrom für eine extraktivdestillation mit einem selektiven lösungsmittel |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2802637B1 (enrdf_load_stackoverflow) |
JP (1) | JP6067748B2 (enrdf_load_stackoverflow) |
KR (1) | KR102049312B1 (enrdf_load_stackoverflow) |
CN (1) | CN104053752B (enrdf_load_stackoverflow) |
WO (1) | WO2013104692A1 (enrdf_load_stackoverflow) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3793969A1 (en) * | 2018-05-18 | 2021-03-24 | SABIC Global Technologies B.V. | Method of producing a fuel additive with a hydration unit |
EP3935139B1 (en) | 2019-03-08 | 2024-09-11 | SABIC Global Technologies B.V. | Method of producing a fuel additive |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2877173A (en) * | 1955-03-23 | 1959-03-10 | Standard Oil Co | Hydroforming process |
US4419188A (en) * | 1980-06-02 | 1983-12-06 | Mccall Thomas F | Thermally coupled extractive distillation process |
JPS58167683A (ja) * | 1982-03-29 | 1983-10-03 | Nippon Zeon Co Ltd | 抽出蒸留方法 |
DE10022465A1 (de) * | 2000-05-09 | 2001-11-15 | Basf Ag | Verfahren und Vorrichtung zur Aufarbeitung eines C4-Schnitts aus der Fraktionierung von Erdöl |
DE10333756A1 (de) * | 2003-07-24 | 2005-02-17 | Basf Ag | Verfahren zur Auftrennung eines Roh-C4-Schnittes |
DE102004005930A1 (de) * | 2004-02-06 | 2005-08-25 | Basf Ag | Verfahren zur Gewinnung von Roh-1,3-Butadien |
EP1766310A4 (en) * | 2004-07-06 | 2011-12-28 | Fluor Tech Corp | CONFIGURATIONS AND METHODS FOR SEPARATING GASEOUS CONDENSATES FROM HIGH PRESSURE HYDROCARBON MIXTURES |
JP5074489B2 (ja) * | 2006-07-12 | 2012-11-14 | ビーエーエスエフ ソシエタス・ヨーロピア | 選択的溶剤を用いる抽出蒸留によるc4カットの分離のための方法 |
CN101492335B (zh) * | 2008-01-23 | 2013-07-31 | 中国石油化工股份有限公司 | 综合利用混合碳四的组合方法 |
-
2013
- 2013-01-10 KR KR1020147021970A patent/KR102049312B1/ko active Active
- 2013-01-10 EP EP13700159.0A patent/EP2802637B1/de active Active
- 2013-01-10 JP JP2014551607A patent/JP6067748B2/ja active Active
- 2013-01-10 WO PCT/EP2013/050366 patent/WO2013104692A1/de active Application Filing
- 2013-01-10 CN CN201380005242.3A patent/CN104053752B/zh active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP2015508409A (ja) | 2015-03-19 |
KR20140120329A (ko) | 2014-10-13 |
WO2013104692A1 (de) | 2013-07-18 |
CN104053752B (zh) | 2016-08-31 |
CN104053752A (zh) | 2014-09-17 |
JP6067748B2 (ja) | 2017-01-25 |
EP2802637A1 (de) | 2014-11-19 |
KR102049312B1 (ko) | 2019-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2043977B1 (de) | Verfahren zur auftrennung eines c4-schnittes durch extraktivdestillation mit einem selektiven lösungsmittel | |
EP1501773B1 (de) | Kontinuierliches verfahren zur gewinnung von butenen aus einem c4-schnitt | |
EP2545019B1 (de) | Verfahren zur destillativen gewinnung von rein-1,3-butadien aus roh-1,3-butadien | |
DE2724365A1 (de) | Verfahren zum trennen eines c tief 4 -kohlenwasserstoffgemisches durch extraktive destillation | |
EP1628940B1 (de) | Verfahren zur gewinnung von roh-1,3-butadien aus einem c4-schnitt | |
EP1656334B1 (de) | Verfahren zur auftrennung eines roh-c4-schnittes | |
EP1718585B1 (de) | Verfahren zur gewinnung von roh-1,3-butadien | |
DE2911395C2 (de) | Verfahren zur Gewinnung eines konjugierten Diolefins aus einem C↓4↓- oder C↓5↓-Kohlenwasserstoffgemisch | |
EP2788457B1 (de) | Verfahren zur durchführung einer extraktivdestillation mit einem selektiven lösungsmittel, mit einem gereinigten dampfförmigen roh-c4-schnitt als einsatzstrom | |
EP0284971B1 (de) | Verfahren zur Gewinnung von 1,3-Butadien | |
EP3573943B1 (de) | Verfahren zur gewinnung von rein-1,3-butadien | |
EP2802637B1 (de) | Verfahren zur bereitstellung eines dampfförmigen gereinigten roh-c4-schnittes als einsatzstrom für eine extraktivdestillation mit einem selektiven lösungsmittel | |
EP0016474B1 (de) | Verfahren zur Gewinnung eines konjugierten Diolefins aus einem C 4- oder C 5-Kohlenwasserstoffgemisch | |
EP2496539B1 (de) | Verfahren zur auftrennung eines c4-schnittes durch extraktivdestillation mit einem selektiven lösungsmittel | |
EP3596033B1 (de) | Vereinfachtes verfahren zur gewinnung von rein-1,3-butadien | |
DE3339157A1 (de) | Verfahren zur gewinnung eines konjugierten diolefins und/oder olefins aus einem c(pfeil abwaerts)4(pfeil abwaerts)- oder c(pfeil abwaerts)5(pfeil abwaerts)-kohlenwasserstoffgemisch | |
DE2911393B1 (de) | Verfahren zur Gewinnung eines konjugierten Diolefins aus einem C4- oder C5-Kohlenwasserstoffgemisch | |
DE3346695A1 (de) | Verfahren zur trennung eines c(pfeil abwaerts)4(pfeil abwaerts)-kohlenwasserstoffgemisches durch extraktivdestillation | |
WO2019007781A1 (de) | Verfahren und anlage zur trennung von c4-kohlenwasserstoffen durch extraktive destillation | |
DE2911396C2 (de) | Verfahren zur Gewinnung eines konjugierten Diolefins aus einem C↓4↓- oder C↓5↓-Kohlenwasserstoffgemisch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140811 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161208 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 877769 Country of ref document: AT Kind code of ref document: T Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013006711 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170622 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170623 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170622 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170722 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170724 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013006711 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
26N | No opposition filed |
Effective date: 20180102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180110 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180928 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180110 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180110 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 877769 Country of ref document: AT Kind code of ref document: T Effective date: 20180110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250129 Year of fee payment: 13 |