EP2802100B1 - Improved choke circuit, and bus power supply incorporating same - Google Patents

Improved choke circuit, and bus power supply incorporating same Download PDF

Info

Publication number
EP2802100B1
EP2802100B1 EP13167312.1A EP13167312A EP2802100B1 EP 2802100 B1 EP2802100 B1 EP 2802100B1 EP 13167312 A EP13167312 A EP 13167312A EP 2802100 B1 EP2802100 B1 EP 2802100B1
Authority
EP
European Patent Office
Prior art keywords
bus
circuit
voltage
capacitor
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13167312.1A
Other languages
German (de)
French (fr)
Other versions
EP2802100A1 (en
Inventor
Andreas Hagemeyer
Ingolf Bonkhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Friwo Geraetebau GmbH
Original Assignee
Friwo Geraetebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friwo Geraetebau GmbH filed Critical Friwo Geraetebau GmbH
Priority to EP13167312.1A priority Critical patent/EP2802100B1/en
Priority to PL13167312.1T priority patent/PL2802100T3/en
Priority to DK13167312.1T priority patent/DK2802100T3/en
Priority to IN2031CH2014 priority patent/IN2014CH02031A/en
Priority to JP2014096822A priority patent/JP5822981B2/en
Priority to CN201410199032.9A priority patent/CN104143911B/en
Priority to US14/274,882 priority patent/US9800147B2/en
Publication of EP2802100A1 publication Critical patent/EP2802100A1/en
Priority to HK14112296.0A priority patent/HK1198849A1/en
Application granted granted Critical
Publication of EP2802100B1 publication Critical patent/EP2802100B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1563Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/548Systems for transmission via power distribution lines the power on the line being DC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/547Systems for power line communications via DC power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5491Systems for power line communications using filtering and bypassing

Definitions

  • the invention relates to an improved choke circuit and a bus power supply incorporating an active choke circuit for use in a KNX TP bus.
  • EP2549679 A2 relates to a system for extracting a power supply signal from a two-wire bus signal on a data.
  • the supply signal is extracted in an improved manner from the bus signal, so that modulation of a data signal on the bus is hardly distorted.
  • the system additionally shows a decoupling circuit for decoupling low impedance power supply from the data signals modulated on the bus by using common mode choke on the power supply side.
  • Choke circuits are commonly known as integral parts of bus power supplies.
  • a bus power supply supplies bus nodes with power via a twisted pair cable.
  • one or more bus nodes are subsequently connected via a bus, namely the twisted pair cable, to the bus power supply to form a bus segment.
  • the one or more bus nodes are supplied from a bus power supply via the bus with an operating voltage.
  • a bus power supply provides an operating direct current, DC, voltage of 29 V to the bus.
  • the bus nodes are configured to work properly at DC voltages of at least 21 V.
  • a tolerance range of 8 V safe-guards the KNX TP bus from intermittent failures. Accordingly, even in case of a modest voltage drop on the bus or in case of a high contact resistance, the KNX TP bus and the connected bus node stay operational.
  • the one or more bus nodes are configured to transmit data via the bus, namely same twisted pair cable.
  • a bus node detects, in addition to the DC supply voltage, an alternating current, AC, transmit signal superimposed on the bus.
  • a transformer allows in each bus node for decoupling the AC transmit signal from the DC supply voltage; a capacitor may stabilize the DC supply voltage.
  • the transformer may also be used for transmission of data by a bus node via the bus.
  • the KNX TP bus specifies two different transmit signal forms representing a "0"-bit value or a "1 "-bit value.
  • a "0"-bit is transmitted in form of an AC signal superimposed on the DC supply voltage.
  • a "1 "-bit value is transmitted in the absence of alternating currents, namely by maintaining the DC supply voltage unchanged.
  • a transmission of subsequent "1 "-bit values may be identified as "idle state" of the bus.
  • KNX TP bus An important property of the KNX TP bus is that signal transmissions are carried out differentially via the bus.
  • the bus does not specify a predefined reference potential, e.g. a ground potential wire, but instead bus nodes receives data transmissions as differential signals between the two wires of the twisted pair cable.
  • the KNX TP bus provides for better electromagnetic immunity at the expense of a slightly higher hardware complexity.
  • the differential transmission of a "0"-bit is realized as follows: For the transmission of the AC waveform, at first, the bus node actively lowers the potential on the bus by approx. 5 V (e.g. from 29V to 24V). After approx. one third of the signal width, the bus node stops lowering the potential on the bus. This lowering of the potential on the bus corresponds to a negative half-wave of a transmit signal.
  • the bus acts causing a voltage overshoot by an inductive reaction, i.e. the potential between the two wires of the twisted pair cable exceeds the idle state of the bus.
  • the KNX TP bus arranges for a transformers and capacitors in each bus node and also for a choke circuit in the bus power supply which together act as the resonant circuit. Moreover, the overshoot of the voltage corresponds to the positive half-wave of the transmit signal.
  • the bus system 100 includes a DC power supply 110 configured to supply a DC voltage of 29 V. This DC voltage is provided via choke circuit 120 to the bus to which at least one bus node 130 is connected.
  • the DC power supply 110 and the choke circuit 120 form together a bus power supply.
  • choke circuit 120 includes a choke (e.g. a common-mode choke) that is connected via DC+ and DC- terminal to the DC power supply 110 on one side and connected via the bus, i.e. terminals Bus+, Bus-, to the at least one bus node 130 on the other side. Due to this choke in choke circuit 120, data transmissions between bus nodes 130 become possible.
  • a choke e.g. a common-mode choke
  • a bus node 130 reduces the potential between Bus+ and Bus- by about 5V. Without choke circuit 120, the DC power supply 110 would immediately counteract the lowered potential on the bus since commonly known DC power supplies are configured to resist high loads currents. Thus, the DC power supply 110 would, in the absence of the choke circuit 120, inhibit the lowering of the potential by the bus node 130.
  • bus node 130 transmits a "0"-bit by us of current source I L3 driving at position (1) a current through the winding L3 of transformer in order to induce a magnetic field in the transformer included in the bus node 130. Since winding L3 is magnetically coupled with windings L1 and L2, Voltages U L1 and U L2 are respectively induced in windings L1 and L2 at position (2).
  • the summed voltages U L1 and U L2 reduce the potential between Bus+ and Bus- at position (3), namely the negative half-wave, while at the same time the voltage at the capacitor remains stable 29V. This reduction of potential is shown in Fig. 1b at times t 1 to t 2 as present at position (3).
  • the choke circuit 120 is conventionally realized as common-mode choke element including two magnetically coupled windings, a first winding separating the DC power supply 110 from the Bus+ wire and a second winding separating the DC power supply 110 from the Bus- wire of the bus.
  • the common-mode choke of choke circuit 120 finds their correspondence in the windings L1 and L2 of the transformer in bus node 130 and allow blocking common-mode currents (e.g. due to electromagnetic interference), the common-mode choke of choke circuit 120 is rather expensive, bulky and from a manufacturing point of view a highly complex circuit element.
  • the two windings of the common-mode choke circuit 120 provide for a substantial DC resistance value which reduces the power efficiency of the choke circuit 120. Accordingly, for supply of bus node 130 with a DC voltage, the DC resistance of the choke circuit 120 has a disadvantageous influence on the power dissipation of the bus system 100.
  • the improved choke circuit includes an inductor L11 and a boost circuit assisting the inductor L11 for preserving the data transmission signal integrity. Accordingly, the boost circuit dispenses with the need for an expensive, bulky and from a manufacturing point of view highly complex choke circuit.
  • data transmissions are carried out by a bus node reducing the voltage level of the bus by a predefined voltage level (e.g. 5V). This is achieved by the bus node drawing a current from the bus for approx. one third of the signal width.
  • a predefined voltage level e.g. 5V
  • the reduced voltage level corresponds to a negative half-wave of a data transmission. Thereafter, the inductor of the choke circuit on the bus induces a voltage peak corresponding to positive half-wave of a data transmission.
  • a bus node is configured to draw similar currents i for data transmissions via the bus, i.e. the current is independent from the bus load or of the supplied voltage level U DC .
  • a reduction of the inductance L of the inductor included in the choke circuit is proportional to an increase in voltage level U BUS on the bus.
  • the choke circuit allows for a reduced inductance value of the inductor in the choke circuit due to the provision of an additional boost circuit which assists the inductor for preserving the data transmission signal integrity.
  • the boost circuit in the choke circuit of the invention counteracts the reduction in potential difference by temporarily increasing the reference potential, e.g. for the time of a negative half-wave of a data transmission.
  • bus nodes are exposed to a same reduction by a predefined voltage level on the bus as in former times. The reduction by a predefined voltage level enables a correct decoding of transmitted data.
  • the choke circuit of the invention may include an inductor L11 with a reduced inductance value L /2.
  • the boost circuit counteracts the reduction and restores the predefined voltage level on the bus by temporarily increasing the voltage level on bus by ⁇ U (i.e. by increasing the voltage to be output by the second output terminal Bus-). Consequently, the bus nodes experience the same predefined potential difference.
  • a choke circuit for providing an input voltage supplied by a DC power supply to at least one bus node.
  • the choke circuit 220 comprises two input terminals for receiving the input voltage supplied by the DC power supply; and two output terminals for outputting a voltage based on the input voltage to the at least one bus node.
  • the choke circuit further comprises an inductor connected between a first input terminal and a first output terminal; a boost circuit connected between the second input terminal and the second output terminal for increasing the voltage level that is output by the second output terminal; and switching element connected in parallel to the boost circuit for bypassing the boost circuit interposed between the second input terminal and the second output terminal.
  • a comparator is connected between the first input terminal and the first output terminal for detecting a potential difference across the inductor; wherein in case the comparator detects a potential difference higher than a threshold, the switching element is controlled to be in an OFF state such that a voltage level, increased by the boost circuit, is output by the second output terminal; and in case the comparator detects a potential difference lower than or equal to the threshold, the switching element is controlled to be in an ON state such that the boost circuit is bypassed and a voltage level, corresponding to the input voltage, is output by the second output terminal.
  • the boost circuit is configured to increase by a predefined voltage level the voltage level that is output by the second output terminal, the predefined voltage level being determined based on the inductance of the inductor.
  • the boost circuit includes: a first series circuit connected between the second input terminal and the second output terminal , the first series circuit being formed of a diode and a capacitor for storing, in the capacitor, charges flowing as a send current between the two output terminals; wherein the send current results from a data transmission of one of the at least one bus node; and wherein the boost circuit is configured to increase by an amount of charges stored in the capacitor the voltage level that is output by the second output terminal.
  • the first series circuit of the choke circuit additionally includes a Zener diode connected in parallel to the capacitor for limiting the amount of charges stored on the capacitor such that the voltage across capacitor corresponds to the predefined voltage level.
  • the first series circuit of the choke circuit additionally includes a voltage regulator connected in parallel to the capacitor for limiting the amount of charges stored on the capacitor such that the voltage level across capacitor corresponds to the predefined voltage level.
  • the first series circuit of the choke circuit further includes a switching converter connected in parallel to the capacitor for limiting the amount of charges stored on the capacitor by up-converting and feeding back energy into the first input terminal such that the voltage level across capacitor corresponds to the predefined voltage level.
  • the switching converter of the choke circuit comprises: a series circuit of an inductor and a switching element connected in parallel to the capacitor; and a diode connected to the intermediated node of the series circuit of the inductor and the switching element and to the first input terminal and configured to feed back energy from the inductor into the first input terminal.
  • the choke circuit further comprises: a reference voltage source for generating a reference voltage, the reference voltage being determined based on the predefined voltage level; a second comparator configured to compare a voltage across the capacitor with the reference voltage; and wherein the switching element of the switching converter is configured to be controlled based on the comparison result of the second comparator.
  • the reference voltage supplied by the reference voltage source of the choke circuit is varied based on a DC bus load resulting from the at least one bus node.
  • the reference voltage source of the choke circuit further comprises: a shunt resistor connected so as to carry the load current affected by the DC bus load, and wherein the resistance value of the shunt resistor corresponds to the DC resistance of the inductor.
  • the reference voltage source of the choke circuit further comprises: a converter circuit for filtering, amplifying and converting the voltage over the shunt resistor and outputting it as a reference voltage to the second comparator.
  • the choke circuit further comprises: a resistor and a second series circuit, formed of a diode and of another resistor, both the resistor and the second series circuit being connected in parallel to the inductor.
  • the inverting input of the comparator of the choke circuit is connected via first voltage divider and a capacitor to the first input terminal, and the non-inverting input of the comparator is connected via second voltage divider and another capacitor to the first output terminal.
  • the choke circuit further comprises: a pull-up resistor configured to supply a voltage to the first switching element for enabling the comparator to control the switching element, and a resistor configured to connect the output of the comparator to the gate terminal of the switching element.
  • the choke circuit further comprises: a driving circuit configured to drive an output voltage of the comparator for control of the switching element.
  • a bus power supply is proposed which allows incorporating same, previously describe choke circuit.
  • same choke circuit may now be incorporated into the bus power supply for a reduction of the assembly steps and a improvement of the module integration level.
  • a bus power supply for providing a voltage to at least one bus node.
  • the bus power supply comprises: a DC power supply circuit for providing a DC voltage; and a choke circuit according to one of the previously described embodiments; wherein the DC power supply circuit is connected to the two input terminals of the choke circuit.
  • the choke circuit 220 of this embodiment includes a decoupling circuit 221 and a boosting circuit 222 and may be used together with an externally connected DC power supply 110 and at least one externally connected bus node 130.
  • the choke circuit 220 includes two input terminals, namely DC+, DC-, for receiving an input voltage from an externally connected DC power supply.
  • the DC power supply may be realized as shown in Fig. 1 .
  • the DC power supply provides 29 V to the DC+ terminal of the choke circuit 220 and 0V to the DC- terminal of the choke circuit 220.
  • the choke circuit 220 may be used with any other voltage levels and is not restricted in this respect.
  • the choke circuit 220 includes two output terminals, namely Bus+, Bus-, for outputting a voltage level to at least one bus node.
  • the voltage level output by the choke circuit 220 is used by the at least one bus node as a source of power.
  • the output voltage level is based on the input voltage. In a KNX TP bus, the output voltage level is approximately 29V between the output terminals Bus+ and Bus-. However, also in this case it can be readily appreciated that various other voltage levels may be output and that the choke circuit 220 is not restricted in this respect.
  • the choke circuit 220 includes the decoupling circuit 221 for inductively decoupling the input terminals DC+, DC- from the output terminals Bus+, Bus-.
  • the choke circuit 220 also includes boost circuit 222.
  • the decoupling circuit 221 of choke circuit 220 includes an inductor L11, a comparator CMP and a switching element T12.
  • the inductor L11 of circuit 221 is connected between to a first input terminal DC+ and a first output terminal Bus+. Accordingly, the inductor L11 forwards a DC component of the input voltage at the first input terminal DC+ to the first output terminal Bus+-.
  • a bus node Due to the inductor L11, data transmissions between bus nodes become possible. Specifically, for transmitting a "0"-bit, a bus node reduces the voltage between the output terminals Bus+ and Bus- by a predefined voltage level (e.g. approx. 5V). With the inductor L11 interposed between the first input terminal DC+ and the first output terminal Bus+-, higher-frequency alternating currents are suppressed from being passed on from the bus, namely first output terminal Bus+, to the DC power supply, namely first input terminals DC+.
  • a predefined voltage level e.g. approx. 5V
  • inductance of inductor L11 prevents from forwarding sudden changes in potential on the bus to the bus power supply; instead the inductor L11 delays an alternating current and thereby relieves the bus power supply from counteract a changed (e.g. lowered) potential on the bus.
  • the inductor L11 may be implemented as a choke e.g. made of a wire or other conductor wound into a coil, to increase the magnetic field.
  • the inductor L11 may also be implemented in any other conceivable way as long as it provides an inductance with the above noted properties.
  • the boost circuit 222 is connected between a second input terminal DC- and a second output terminal Bus-.
  • the inductor L11 and the boost circuit 222 provide for separated paths between the two input terminals DC+, DC- and the output terminals Bus+, Bus- of the choke circuit 220.
  • the boost circuit 222 is configured to increase the voltage level output by the second output terminal Bus-. Accordingly, the boost circuit 222 does not only forward the voltage supplied to the second input terminal DC- but may increase the voltage level such that, at least for limited amount of time, a higher voltage level is output by the second output terminal Bus-.
  • the boost circuit 222 is configured to increase the voltage output by the second output terminal Bus- by a predefined voltage level.
  • the predefined voltage level is determined based on the inductance of the inductor L11.
  • switching element T12 of circuit 221 is also connected between the second input terminal DC- and the second output terminal Bus-. Accordingly, the switching element T12 is connected in parallel to the boost circuit 222 and enables bypassing (i.e. short-circuiting) the second output terminal Bus- to the second input terminal DC-.
  • the switching element T12 is implemented as a transistor, e.g. as a metal-oxide-semiconductor field-effect transistor, MOSFET, as a power MOSFET, as bipolar junction transistor, BJT, a junction gate field-effect transistor JFET, or as an insulated-gate bipolar transistor, IGBT.
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • BJT bipolar junction transistor
  • JFET junction gate field-effect transistor
  • IGBT insulated-gate bipolar transistor
  • the switching element T12 provides for a bypass to the boost circuit 222 such that the voltage level supplied to the second input terminal DC- may be passed on by the switching element T12 (e.g. via a drain-source channel) and output by the second output terminal Bus-.
  • the switching element T12 determines the voltage level supplied to and output by the second input terminal DC- at time periods when switching element T12 is in an ON state and does not determine the voltage level when switching element T12 is in an OFF state. In the later situation, a voltage level increased by the boost circuit 222 is supplied to and output by the second output terminal Bus-.
  • the switching element T12 is configured so as to enable or disable current to flow via the switching element T12 between the second input terminal DC-and the second output terminal Bus-, thereby bypassing or not-bypassing the boost circuit 222.
  • the switching element T12 In an ON state, the switching element T12 allows current to flow via the switching element T12 between the second input terminal DC- and the second output terminal Bus- such that the boost circuit 222 is bypassed. In an OFF state, the switching element T12 inhibits current from flowing via the switching element T12 such that the boost circuit 222 is not bypassed and, hence, the boost circuit 222 determines the voltage level output by the second output terminal Bus-.
  • the switching element T12 is controlled based on a detection result of comparator CMP additionally included in circuit 221.
  • the comparator CMP is implemented as operational amplifier. There are many different realizations of an operational amplifier which may advantageous for its inherent characteristics. However, also other implementations for a comparator CMP are conceivable. In this respect, the examples shall not be understood limiting the invention.
  • comparator CMP The inputs of comparator CMP are connected to the first input terminal DC+ and to the first output terminal Bus-.
  • the comparator CMP is configured to detect a voltage difference subject to the inductor L11.
  • the comparator CMP is adapted to detect AC signals resulting from data transmissions on the bus.
  • the comparator CMP would be able to detect situations where a bus node 130 first starts drawing and then stops drawing a current between the two output terminals Bus+ and Bus-.
  • inductor L11 is connected between the first input terminal DC+ and the first output terminal Bus+ and is, hence, exposed to changes in the potential on the bus, i.e. between Bus+ and Bus-.
  • the inductor L11 prevents from forwarding sudden changes in voltage on the bus to the bus power supply. Consequently, a potential difference builds up over the inductor L11 (i.e. between the first input terminal DC+ and the first output terminal Bus+ to both of which the inductor L11 is connected).
  • the comparator CMP detects a voltage difference between the first input terminal DC+ and the first output terminal Bus-. This detection result of the comparator CMP is utilized for control of the switching element T12.
  • the switching element T12 is controlled to be in an OFF state. With the switching element T12 in the OFF state, current is prevented from being forwarded by switching element T12 such that a voltage level, increased by the boost circuit 222, is output by the second output terminal Bus-.
  • a predefined threshold e.g. higher than the DC resistance of the inductor L11
  • the switching element T12 In case the comparator CMP detects a voltage difference lower than or equal to a predefined threshold, the switching element T12 is controlled to be in an ON state. With the switching element T12 in the ON state, current is allowed to flow via (i.e. is forwarded by) the switching element T12 such that the boost circuit 222 is bypassed and a voltage level, based on the input voltage, is output by the second output terminal Bus-.
  • the configuration of the choke circuit 220 allows adjusting the voltage level that is output by the output terminals Bus+, Bus- (in particular by the second output terminal Bus-) in response to detected AC signals resulting from data transmissions on the bus.
  • the choke circuit 220 allows compensating for a reduced inductance value of inductor L11.
  • the choke circuit 220 thereby substitutes for a conventional common-mode choke element while overcoming the need for a rather expensive, bulky and from the manufacturing point of view a highly complex design.
  • a choke circuit 320 according to a second embodiment of the invention is shown.
  • the choke circuit 320 of Fig. 3 is based on the choke circuit 220 of Fig. 2 where corresponding parts are given corresponding reference numerals and terms. The detailed description of corresponding parts has been omitted for reasons of conciseness.
  • the choke circuit 320 of this embodiment includes the circuit 221 as already described in connection with choke circuit 220. Additionally, the choke circuit 320 includes a first series circuit 322 in place of boost circuit 222. The choke circuit 320 may be used together with an externally connected DC power supply 110 and at least one externally connected bus node 130.
  • the first series circuit 322 is connected between the second input terminal DC- and the second output terminal Bus-. Accordingly, also in this embodiment the first series circuit 322 is connected in parallel to the switching element T12. Consequently, the switching element T12 is configured so as to enable or disable current to flow via the switching element T12 between the second input terminal DC- and the second output terminal Bus-, thereby bypassing or not-bypassing the first series circuit 322.
  • the first series circuit 322 includes a diode D16 connected in series with a capacitor C14 and being configured to store, in the capacitor C14, charges flowing as a current drawn by the at least one bus node 130.
  • the diode D16 is biased to allow current from the second output terminal Bus- to pass and to be stored by capacitor C14.
  • the switching element T12 is controlled to be in an ON state. With the switching element T12 in the ON state, current is allowed to flow via the switching element T12 such that the first series circuit 322 is bypassed and a voltage level based on the input voltage is output by the second output terminal Bus-.
  • a predefined threshold e.g. higher than the DC resistance of the inductor L11
  • the switching element T12 is controlled to be in an OFF state.
  • a current I Bus which is flowing on the bus, i.e. between the two output terminals Bus+ and Bus-, is forwarded via diode D16 towards capacitor C14.
  • bus current I Bus charges capacitor C14.
  • the capacitor C14 already stores charges, the voltage level output by the second output terminal Bus- is increased, namely by the voltage corresponding to charges stored on capacitor C14.
  • the bus current I Bus includes a alternating send current I Send ⁇ 105 m A which is drawn by bus node 130 for data transmission and a load current 0 mA ⁇ I load ⁇ 711 m A resulting from the DC load in all of the at least one bus nodes.
  • the bus current I Bus is sufficient to prevent from the capacitor C14 discharging due to leakage currents and maintains the voltage V C 14 over the capacitor C14 at least at the predefined voltage level.
  • the choke circuit is for use in a KNX TP bus being an always on bus-system. Accordingly, the initial charging of capacitor C14 occurs only once, namely at assembly of the bus-system.
  • This predefined voltage level of stored on capacitor C14 enables the first series circuit 322 to increase the voltage level output by the second output terminal Bus-.
  • the predefined voltage level is determined based on the inductance of the inductor L11.
  • the configuration of the choke circuit 320 allows adjusting the voltage level that is output by the output terminals Bus+, Bus- (in particular by the second output terminal Bus-) in response to detected AC signals resulting from data transmissions on the bus.
  • the choke circuit 320 allows compensating for a reduced inductance value of inductor L11.
  • the choke circuit 320 thereby substitutes for a conventional common-mode choke element while overcoming the need for a rather expensive, bulky and from the manufacturing point of view a highly complex design.
  • an external power source may be used that is configured to charge capacitor C14 to the predefined voltage level.
  • an additional charging circuit may be provided as part of the choke circuit to use the voltage level input via input terminals DC+ and DC- for charging the capacitor C14 to the predefined voltage level.
  • a start-up procedure may be carried out for charging the capacitor C14 of choke circuit 320.
  • This start-up procedure may include repeated dummy data transmissions for artificially generating a send current to charge capacitor C14. Dummy data transmissions shall be distinguished from "real" data transmissions. The send current of a dummy data transmissions, without assistance by a charged capacitor C14, would not result in a sufficiently large reduction in the potential between Bus+ and Bus- for the bus nodes to correctly decode such data transmission.
  • a choke circuit 420 according to a variant of the second embodiment of the invention is shown.
  • the choke circuit 420 of Fig. 4 is based on the choke circuit 320 of Fig. 3 where corresponding parts are given corresponding reference numerals and terms. The detailed description of corresponding parts has been omitted for reasons of conciseness.
  • the choke circuit 420 of this embodiment includes the circuit 221 as already described in connection with choke circuit 220 and 320.
  • the choke circuit 420 includes a different first series circuit 422 in place of boost circuit 222 or first series circuit 322.
  • the choke circuit 420 may be used together with an externally connected DC power supply 110 and at least one externally connected bus node 130.
  • the first series circuit 422 is connected between the second input terminal DC- and the second output terminal Bus-. Accordingly, also in this embodiment the series circuit 422 is connected in parallel to the switching element T12. Consequently, the switching element T12 is configured to bypass or not-bypass the first series circuit 422.
  • the first series circuit 422 includes a diode D16 connected in series with a capacitor C14 and being configured to store, in the capacitor C14, charges flowing as current I drawn by the at least one bus node 130.
  • the diode D16 is configured with a bias to allow current from the second output terminal Bus- to pass and to be stored by capacitor C14.
  • the first series circuit 422 includes a Zener diode Z connected in parallel to the capacitor C14 so as to control the voltage level stored on the capacitor C14. Accordingly, the Zener diode Z is connected reversely biased with respect to the predefined voltage level stored on the capacitor C14.
  • the cathode of Zener diode Z is connected to the positive side of the capacitor C14, i.e. to the node N14 interconnecting diode D16 and capacitor C14, and the anode is connected to the negative side of the capacitor, i.e. to the second input terminal DC-.
  • the switching element T12 is controlled to be in an ON state. With the switching element T12 in the ON state, current is allowed to flow via the switching element T12 such that the first series circuit 422 is bypassed and a voltage level based on the input voltage is output by the second output terminal Bus-.
  • a predefined threshold e.g. higher than the DC resistance of the inductor L11
  • the switching element T12 is controlled to be in an OFF state.
  • a current I Bus which is flowing on the bus, i.e. between the two output terminals Bus+ and Bus-, is forwarded via diode D16 towards capacitor C14.
  • bus current I Bus charges capacitor C14.
  • the capacitor C14 already stores charges, the voltage level output by the second output terminal Bus- is increased, namely by the voltage corresponding to charges stored on capacitor C14.
  • the Zener diode Z limits the charges to be stored on capacitor C14.
  • the breakdown voltage of the Zener diode Z is adapted to correspond to the predetermined voltage level of capacitor C14. Further, the breakdown voltage of the Zener diode Z and the predefined voltage level are determined based on the inductance of the inductor L11.
  • the Zener diode Z is configured to breakdown and to allow current to flow in reverse direction via Zener diode Z. Accordingly, current which would have charged the capacitor C14 to a higher level than the breakdown voltage of Zener diode Z is discharged towards the second input terminal DC-.
  • the configuration of the choke circuit 420 allows adjusting the voltage level that is output by the output terminals Bus+, Bus- (in particular by the second output terminal Bus-) in response to detected AC signals resulting from data transmissions on the bus.
  • the choke circuit 420 allows compensating for a reduced inductance value of inductor L11.
  • the choke circuit 420 thereby substitutes for a conventional common-mode choke element while overcoming the need for a rather expensive, bulky and from the manufacturing point of view a highly complex design.
  • the voltage level on the capacitor C14 may be kept constant at the predefined voltage level.
  • choke circuit 420 can precisely adjust the voltage level on the bus for the negative half-wave.
  • Zener diode Z of choke circuit 420 is replaced by a voltage regulator.
  • Voltage regulators are known to be more precise in keeping the voltage level (e.g. the voltage level on the capacitor C14) constant at the predefined voltage level.
  • a choke circuit 520 according to a further variant of the second embodiment of the invention is shown.
  • the choke circuit 520 of Fig. 5 is based on the choke circuit 320 of Fig. 3 where corresponding parts are given corresponding reference numerals and terms. The detailed description of corresponding parts has been omitted for reasons of conciseness.
  • the choke circuit 520 of this embodiment includes the circuit 221 as already described in connection with choke circuit 220 of Fig. 2 . Additionally, the choke circuit 520 includes a different boost circuit 522 in place of boost circuit 222 of Fig. 2 or first series circuit 322 of Fig. 3 . The choke circuit 520 may be used together with an externally connected DC power supply and at least one externally connected bus node.
  • the boost circuit 522 is connected between the second input terminal DC- and the second output terminal Bus-. Accordingly, also in this embodiment the boost circuit 522 is connected in parallel to the switching element T12. Consequently, the switching element T12 is configured to bypass or not-bypass the first series circuit 522.
  • the boost circuit 522 includes a diode D16 connected in series with a capacitor C14 and being configured to store, in the capacitor C14, charges flowing as current I drawn by the at least one bus node 130.
  • the diode D16 is biased to allow current from the second output terminal Bus- to pass and the charges thereof to be stored by capacitor C14.
  • the boost circuit 522 includes a switching converter (e.g. boost converter) 523 configured to adjust the voltage level stored on the capacitor C14 to the predefined voltage level.
  • the switching converter 523 includes switching element T13, inductor L10 and diode D15.
  • Inductor L10 and switching element T13 form a series circuit which is connected in parallel to the capacitor C14. Specifically, the inductor L10 of the series circuit is connected to the positive side of capacitor C14, i.e. to the node N14 interconnecting diode D16 and capacitor C14, and the switching element T13 of the series circuit is connected to the negative side of capacitor C14, i.e. to the second input terminal DC-.
  • the cathode of diode D15 is connected to the first input terminal DC+ and the anode of diode D15 is connected to the intermediated node N14 of the series circuit formed of inductor L10 and switching element T13, i.e. the connection between inductor L10 and the drain of switching element T13.
  • boost circuit 522 Referring now to the operation of boost circuit 522:
  • the switching element T12 is controlled to be in an ON state. With the switching element T12 in the ON state, current is allowed to flow via the switching element T12 such that the boost circuit 522 is bypassed and a voltage level based on the input voltage is output by the second output terminal Bus-.
  • a predefined threshold e.g. higher than the DC resistance of the inductor L11
  • the switching converter (e.g. boost converter) 523 limits the charges to be stored on capacitor C14.
  • switching converter 523 is controlled to convert excessive energy stored on capacitor C14 from the voltage level over capacitor C14 to a higher voltage level (i.e. the voltage level at the first input terminal DC+) for feed back into the first input terminal DC+.
  • switching converter e.g. boost converter
  • the boost circuit 523 is controlled depending on whether or not the voltage level across capacitor C14 exceeds the predefined voltage level.
  • a switching pattern for switching element T13 determines the conversion of the excessive voltage over capacitor C14 into a higher voltage level (i.e. the voltage level at the first input terminal DC+).
  • Application of the switching pattern allows the voltage across capacitor C14 to be maintained at the predefined voltage level determined based on the inductance of inductor L11.
  • switching converter e.g. boost converter
  • the magnetic field in inductor L10 induces voltage which forces a current in the previous direction. Since the current cannot flow via switching element T13 any more (i.e. T13 is in an OFF state), it chooses to flow via diode D15 into the first input terminal DC+.
  • the switching converter (e.g. boost converter) 523 allows feeding back energy into the first input terminal DC+ that was previously stored on the capacitor C14, namely an amount of charges resulting in a voltage level over the capacitor C14 exceeding the predefined voltage level. Accordingly, the voltage level over capacitor C14 is maintained constant at the predefined voltage level.
  • the configuration of the choke circuit 520 allows adjusting the voltage level that is output by the output terminals Bus+, Bus- (in particular by the second output terminal Bus-) in response to detected AC signals resulting from data transmissions on the bus.
  • the choke circuit 520 allows compensating for a reduced inductance value of inductor L11.
  • the choke circuit 520 thereby substitutes for a conventional common-mode choke element while overcoming the need for a rather expensive, bulky and from the manufacturing point of view a highly complex design.
  • the voltage level on the capacitor C14 may be kept constant at the predetermined voltage level.
  • choke circuit 520 can precisely adjust the voltage level on the bus for the negative half-wave.
  • the excessive energy stored on capacitor C14 is feed back into the first input terminal DC+ so as to improve the overall efficiency of the bus-system.
  • FIG. 6 an exemplary implementation of a decoupling circuit 621 for use in a choke circuit according to the second embodiment of the invention is shown.
  • the decoupling circuit 621 of Fig. 6 is based on the decoupling circuit 221 of Figs. 2 - 5 where corresponding parts are given corresponding reference numerals and terms. The detailed description of corresponding parts has been omitted for reasons of conciseness.
  • decoupling circuit 621 of this embodiment includes the components already described in connection with circuit 221 of Figs. 2 - 5 .
  • decoupling circuit 621 includes inductor L11 connected between to a first input terminal DC+ and a first output terminal Bus+; switching element T12 connected between the second input terminal DC- and the second output terminal Bus-, and comparator CMP connected to the first input terminal DC+ and to the first output terminal Bus- for enabling control of the switching element T12.
  • decoupling circuit 621 additionally, includes a protection circuit 624.
  • the protection circuit 624 is for limiting the peak voltage inducted by inductor L11 at times t 0 and t 2 as indicated in Fig. 1 b.
  • the protection circuit 624 includes resistor R10 and a second series circuit formed of a diode D10 and of another resistor R12 are included, wherein both the resistor R10 and the second series circuit are connected in parallel to the inductor L11.
  • the send current I Send at time t 0 flows in the forward direction of diode D10 and is limited by the parallel circuit of R10 and R12; the reverse current at time t 2 flows in reverse direction of diode D10 and, hence, is limited by resistor R10 only.
  • decoupling circuit 621 additionally, includes a two voltage divider circuits.
  • the voltage divider circuits are for respectively dividing the voltage at the first input terminal DC+ and the first output terminal Bus+ so as to be input into the comparator CMP.
  • the inverting input of the comparator CMP is connected via first voltage divider R13, R22 and a capacitor C10 to the first input terminal DC+, and the non-inverting input of the comparator CMP is connected via second voltage divider R14, R15 and another capacitor C11 to the first output terminal Bus-.
  • Capacitors C10 and C11 suppress electromagnetic interference.
  • decoupling circuit 621 additionally, includes a driver circuit.
  • the driver circuit enables the comparator CMP to control the switching element T12, both for controlling the switching element T12 to be in an OFF state and for controlling the switching element T12 to be in an ON state.
  • the gate of switching element T12 has to be set to a ground voltage. Accordingly, a current would flow from the gate of switching element T12 via the rail terminals of comparator CMP to the second input terminal DC-. For limiting this current and for protecting comparator CMP, the output terminal of comparator CMP is connected via resistor R29 to the gate terminal of switching element T12.
  • the gate-source voltage of switching element T12 has to be set to a level higher than a predetermined switching voltage.
  • a pull-up resistor R16 is used to drive the gate of switching element T12 via first input terminal DC+, whereas a Zener diode D11 limits the voltage level at the gate of switching element T12 by way of its breakdown voltage.
  • the resistance of pull-up resistor R16, connecting the first input terminal DC+ and the gate of switching element T12 limits the pull-up current.
  • a choke circuit according to any of Figs. 2 - 5 must not necessarily implement all the different circuits described with respect to Fig. 6 but may also implement a subset thereof.
  • FIG. 7 another exemplary implementation of a decoupling circuit 721 for use in a choke circuit according to the second embodiment of the invention is shown.
  • the decoupling circuit 721 of Fig. 7 is based on the decoupling circuit 621 of Fig. 6 where corresponding parts are given corresponding reference numerals and terms. The detailed description of corresponding parts has been omitted for reasons of conciseness.
  • the decoupling circuit 721 of this embodiment includes the components already described in connection with circuit 221 of Figs. 2 - 5 and additionally the protection circuit 624 and the two voltage divider circuits described in connection with circuit 621 of Fig. 6 .
  • decoupling circuit 721 includes a different driver circuit 725.
  • the driver circuit 725 enables the comparator CMP to control the switching element T12 at higher speed. Accordingly, the driver circuit 725 enables the switching element T12 to faster change states, namely from an OFF state to an ON state and vice versa.
  • the driver circuit 725 includes two complementary switching elements T10 and T11 connected in series between a supply voltage and a reference voltage.
  • the gate of both switching elements T10 and T11 is connected via resistor R19 to the output of the comparator CMP and a pull-up resistor R23 supplies high voltage level to the output of the comparator CMP.
  • the complementary switching elements T10 and T11 are never both conducting at a same time such that the efficiency is improved with respect to the driver circuit of Fig. 6 .
  • the supply voltage of the complementary switching elements T10 and T11 may be limited in accordance with the input voltage limitations of switching element T12, by resistor R16, Zener diode D11 and capacitor C12. Additionally, drive current to be supplied to the gate of switching element T12 may be limited by resistor R36 as explained earlier.
  • a choke circuit according to any of Figs. 2 - 5 must not necessarily implement all the different circuits described and illustrated with respect to Fig. 7 but may also implement a subset thereof.
  • a boost circuit 822 for use in a choke circuit according to the second embodiment of the invention is shown.
  • the boost circuit 822 of Fig. 8 is based on the boost circuit 522 of Fig. 5 where corresponding parts are given corresponding reference numerals and terms. The detailed description of corresponding parts has been omitted for reasons of conciseness.
  • the boost circuit 822 of this embodiment includes the components already described in connection with circuit 522 of Fig. 5 .
  • boost circuit 822 includes diode D16, capacitor C14 and switching converter (e.g. boost converter) 523 formed of inductor L10, diode D15 and switching element T13.
  • switching converter e.g. boost converter
  • switching converter 523 allows feeding back energy into the first input terminal DC+ that was previously stored on the capacitor C14, namely an amount of charges resulting in a voltage level over the capacitor C14 exceeding the predefined voltage level.
  • a second comparator CMP2 For detecting whether or not the voltage level over the capacitor C14 exceeds the predefined voltage level, a second comparator CMP2 is provided, wherein the non-inverting input of the second comparator CMP2 is connected to the node N14 interconnecting diode D16 and capacitor C14 and the inverting input of the second comparator CMP2 is supplied with a reference voltage level U ref .
  • the reference voltage level U ref is generated by reference voltage source 827 and will be exemplified in more detail in connection with Fig. 9 .
  • the second comparator CMP2 detects a voltage difference between the supplied reference voltage level U ref and the voltage U C 14 at node N14 interconnecting diode D16 and capacitor C14. This detection result of the second comparator CMP is utilized for control of the switching element T13.
  • the switching element T13 is controlled to be in an ON state.
  • the switching element T13 is controlled to be in an ON state, current flows from the positive side of the capacitor C14 via inductor L10 and the drain-source channel of switching element T13 to the negative side of the capacitor C14. As a result of the current flowing in inductor L10 a magnetic field created therein.
  • the switching element T13 is controlled to be in an OFF state.
  • the magnetic field in inductor L10 induces voltage which forces a current in the previous direction. Since the current cannot flow via switching element T13 any more (i.e. T13 is in an OFF state), instead it flows via diode D15 into the first input terminal DC+.
  • boost circuit 822 includes driver circuit 826.
  • the driver circuit 826 enables the second comparator CMP2 to control the switching element T13 at higher speed. Accordingly, the driver circuit 826 enables the switching element T13 to faster change states, namely from an OFF state to an ON state and vice versa.
  • the driver circuit 826 includes two complementary switching elements T14 and T15 connected in series between a supply voltage node and a reference voltage (GND node).
  • the gate of both switching elements T14 and T15 is connected via resistor R31 to the output of the second comparator CMP2 and a pull-up resistor R45 supplies high voltage level to the output of the second comparator CMP2.
  • the complementary switching elements T14 and T15 are never both conducting at a same time.
  • the supply voltage of the complementary switching elements T14 and T15 may be limited in accordance with the input voltage limitations of switching element T13, by resistor R28, Zener diode D12 and capacitor C18. Additionally, drive current to be supplied to the gate of switching element T13 may be limited by resistor R43 as explained earlier.
  • driver circuit 826 described with respect to Fig. 8 provides for a separate effect of improving the switching speed of transistor T13 and, hence, may also be dispensed with.
  • the driver circuit 826 may also be realized as described in connection with Fig. 6 , at the benefit of a more compact, cheaper design.
  • FIG. 9 an exemplary implementation of a reference voltage source 927 for use in a choke circuit according to the second embodiment of the invention is shown.
  • the reference voltage source 927 of Fig. 9 may exemplary provide the reference voltage level V ref for use in the boost circuit 822 of Fig. 8 .
  • the reference voltage source 927 may be used in place of the reference voltage source 827 of Fig. 8 .
  • an output of the reference voltage source 927 would be connected to the inverting input of the second comparator CMP2 of boost circuit 822 of Fig. 8 .
  • any kind of voltage source 827 may be provided a reference voltage level V ref which is determined based on the predefined voltage level.
  • the reference voltage source 927 supplies a reference voltage level V ref that is determined based on a DC bus load resulting from at least bus node connected to the output terminals Bus+ and Bus-.
  • the bus current I Bus includes a send current I send which is drawn by a bus node for data transmission and a load current I load resulting from the DC load in all of the at least one bus nodes.
  • the DC bus load may be determined based on the load current I load forwarded between the two output terminals Bus+ and Bus-.
  • the DC bus load may also be determined based on the bus current I Bus , namely by filtering out AC components including the send current I Send forwarded between the two output terminals Bus+ and Bus-.
  • the bus current I Bus or the load current I load is converted in a voltage
  • the voltage is amplified
  • the amplified voltage is converted such that it compensates during data transmissions for a voltage drop over inductor L11, namely for the duration of the negative half-wave of (i.e. between the times t 1 and t 2 as indicated in Fig. 1 b) .
  • reference voltage source 927 includes a shun resistor R37.
  • the shunt resistor R37 has a small resistance matched to the DC resistance of inductor L11. Further, the shunt resistor R37 is connected so as to carry the bus current I Bus or the load current I load . Thereby, a voltage can be measured in parallel to the shunt resistor R37 and allows voltage conversion in a subsequent step.
  • the shunt resistor R37 of reference voltage source 927 is connected as indicated for reference voltage source 827, namely such that it intercepts the current flow towards the second input terminal DC-.
  • the shunt resistor R37 is connected between the second input terminal DC- and intermediate node N12 to which the switching element T12 and the boost circuit 822 is connected. Consequently, the shunt resistor R37 carries the bus current I Bus including the load current I load affected by the bus load.
  • a RC low-pass filter (e.g. formed of resistor R24 and capacitor C13) is connected in parallel to the shunt resistor R37.
  • the shunt resistor R37 of reference voltage source 927 is connected such that it intercepts current from the switching element T12 only (e.g. between source terminal of switching element T12 and the intermediated node N12 indicated in Fig. 8 ). Moreover, in this case the shunt resistor R37 only carries the load current I load .
  • the output from the RC low-pass filter is input to amplifier 928 for amplifying the voltage level output by the RC low-pass filter to a predefined voltage range (i.e. 0...530mV).
  • the output of the RC low-pass filter is connected to amplifier 928 realized as non-inverting amplifier (e.g. formed of a third comparator CMP3 and resistors R25 and R32). Consequently, the voltage over the shunt resistor R38 is filtered and then amplified by a predetermined, constant scale factor (e.g. of approx. 10) such that the voltage corresponds to the DC load of the bus.
  • the output from the amplifier 928 is input to conversion circuit 929 for it to be mapped to reference voltage levels that correspond to a low or a high bus load, respectively.
  • the reference voltage levels provided by the conversion circuit 929 is provided for use in the boost circuit 822 of Fig. 8 .
  • the reference voltage level to be output by reference voltage source 927 is V ref ⁇ 2,4V and in case of a bus without DC load, the reference voltage level to be output by reference voltage source 927 is V ref ⁇ 2,93 V .
  • the conversion circuit 929 includes a fourth comparator CMP4.
  • the non-inverting input of the fourth comparator CMP4 is provided with a reference voltage level of 2,93V (e.g. supplied by a reference voltage source formed of the series circuit of Zener diode D14 and resistor R27 and of the voltage divider circuit of resistors R34 and R18).
  • the inverting input of the fourth comparator CMP4 is provided with the output (i.e. voltage in the range of 0...530mV) of the amplifier 928 including an offset of 2,93V (e.g. supplied by another reference voltage source formed of the series circuit of Zener diode D13 and resistor R26 and of the voltage divider circuit of resistors R33 and R17).
  • the fourth comparator CMP4 does not amplify the voltage difference, it merely determines the difference between its inputs to arrive at V ref ⁇ 2,4V for a fully loaded bus and at V ref ⁇ 2,93V for a bus without DC load.
  • the boost circuit 822 of Fig. 8 in combination with reference voltage source 927 of Fig. 9 may compensates during data transmissions for a voltage drop over inductor L11, namely for the duration of the negative half-wave of (i.e. between the times t 1 and t 2 as indicated in Fig. 1 b) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc-Dc Converters (AREA)
  • Power Sources (AREA)
  • Logic Circuits (AREA)

Description

  • The invention relates to an improved choke circuit and a bus power supply incorporating an active choke circuit for use in a KNX TP bus.
  • EP2549679 A2 , relates to a system for extracting a power supply signal from a two-wire bus signal on a data. The supply signal is extracted in an improved manner from the bus signal, so that modulation of a data signal on the bus is hardly distorted. The system additionally shows a decoupling circuit for decoupling low impedance power supply from the data signals modulated on the bus by using common mode choke on the power supply side.
  • Choke circuits are commonly known as integral parts of bus power supplies. In the exemplary KNX Twisted Pair, KNX TP, bus, as standardized in EN 50090, a bus power supply supplies bus nodes with power via a twisted pair cable. In this respect, one or more bus nodes are subsequently connected via a bus, namely the twisted pair cable, to the bus power supply to form a bus segment.
  • The one or more bus nodes are supplied from a bus power supply via the bus with an operating voltage. As specified for the KNX TP bus, a bus power supply provides an operating direct current, DC, voltage of 29 V to the bus.
  • The bus nodes are configured to work properly at DC voltages of at least 21 V. In this respect, a tolerance range of 8 V safe-guards the KNX TP bus from intermittent failures. Accordingly, even in case of a modest voltage drop on the bus or in case of a high contact resistance, the KNX TP bus and the connected bus node stay operational.
  • At the same time, the one or more bus nodes are configured to transmit data via the bus, namely same twisted pair cable. For this purpose, a bus node detects, in addition to the DC supply voltage, an alternating current, AC, transmit signal superimposed on the bus. A transformer allows in each bus node for decoupling the AC transmit signal from the DC supply voltage; a capacitor may stabilize the DC supply voltage. The transformer may also be used for transmission of data by a bus node via the bus.
  • For data transmission, the KNX TP bus specifies two different transmit signal forms representing a "0"-bit value or a "1 "-bit value. A "0"-bit is transmitted in form of an AC signal superimposed on the DC supply voltage. A "1 "-bit value is transmitted in the absence of alternating currents, namely by maintaining the DC supply voltage unchanged. In other words, a transmission of subsequent "1 "-bit values may be identified as "idle state" of the bus.
  • An important property of the KNX TP bus is that signal transmissions are carried out differentially via the bus. In other words, the bus does not specify a predefined reference potential, e.g. a ground potential wire, but instead bus nodes receives data transmissions as differential signals between the two wires of the twisted pair cable. Thereby, the KNX TP
    bus provides for better electromagnetic immunity at the expense of a slightly higher hardware complexity.
  • The differential transmission of a "0"-bit is realized as follows: For the transmission of the AC waveform, at first, the bus node actively lowers the potential on the bus by approx. 5 V (e.g. from 29V to 24V). After approx. one third of the signal width,
    the bus node stops lowering the potential on the bus. This lowering of the potential on the bus corresponds to a negative half-wave of a transmit signal.
  • Then, when the bus node stops lowering the potential on the bus, the bus acts causing a voltage overshoot by an inductive reaction,
    i.e. the potential between the two wires of the twisted pair cable exceeds the idle state of the bus.
  • Specifically, the KNX TP bus arranges for a transformers and capacitors in each bus node and also for a choke circuit in the bus power supply which together act as the resonant circuit. Moreover, the overshoot of the voltage corresponds to the positive half-wave of the transmit signal.
  • An exemplary KNX TP bus system is shown in Figs. 1 a and 1 b. The bus system 100 includes a DC power supply 110 configured to supply a DC voltage of 29 V. This DC voltage is provided via choke circuit 120 to the bus to which at least one bus node 130 is connected. The DC power supply 110 and the choke circuit 120 form together a bus power supply.
  • Specifically, choke circuit 120 includes a choke (e.g. a common-mode choke) that is connected via DC+ and DC- terminal to the DC power supply 110 on one side and connected via the bus, i.e. terminals Bus+, Bus-, to the at least one bus node 130 on the other side. Due to this choke in choke circuit 120, data transmissions between bus nodes 130 become possible.
  • As previously described, for transmitting data, e.g. a "0"-bit, a bus node 130 reduces the potential between Bus+ and Bus- by about 5V. Without choke circuit 120, the DC power supply 110 would immediately counteract the lowered potential on the bus since commonly known DC power supplies are configured to resist high loads currents. Thus, the DC power supply 110 would, in the absence of the choke circuit 120, inhibit the lowering of the potential by the bus node 130.
  • In more detail, bus node 130 transmits a "0"-bit by us of current source IL3 driving at position (1) a current through the winding L3 of transformer in order to induce a magnetic field in the transformer included in the bus node 130. Since winding L3 is magnetically coupled with windings L1 and L2, Voltages UL1 and UL2 are respectively induced in windings L1 and L2 at position (2).
  • Thus, the summed voltages UL1 and UL2, as generated by the bus node 130, reduce the potential between Bus+ and Bus- at position (3), namely the negative half-wave, while at the same time the voltage at the capacitor remains stable 29V. This reduction of potential is shown in Fig. 1b at times t 1 to t 2 as present at position (3).
  • When the bus node 130 stops reducing the potential between Bus+ and Bus- at position (3), the resonant circuit of the bus including the transformers and capacitors of each bus node 130 and the choke in choke circuit 120 provide for the positive half-wave of the transmit signal. This overshoot is shown in Fig. 1b at time t 3 as present at position (3).
  • As illustrated in Fig. 1a, the choke circuit 120 is conventionally realized as common-mode choke element including two magnetically coupled windings, a first winding separating the DC power supply 110 from the Bus+ wire and a second winding separating the DC power supply 110 from the Bus- wire of the bus.
  • Although the two windings of the common-mode choke circuit 120 find their correspondence in the windings L1 and L2 of the transformer in bus node 130 and allow blocking common-mode currents (e.g. due to electromagnetic interference), the common-mode choke of choke circuit 120 is rather expensive, bulky and from a manufacturing point of view a highly complex circuit element.
  • Furthermore, the two windings of the common-mode choke circuit 120 provide for a substantial DC resistance value which reduces the power efficiency of the choke circuit 120. Accordingly, for supply of bus node 130 with a DC voltage, the DC resistance of the choke circuit 120 has a disadvantageous influence on the power dissipation of the bus system 100.
  • In this respect, it is an object of the invention to suggest an improved choke circuit which overcomes the disadvantages noted above.
  • The object is achieved by the subject-matter of the independent claims. Advantageous embodiments are subject to the dependent claims.
  • According to a first aspect of the invention, the improved choke circuit includes an inductor L11 and a boost circuit assisting the inductor L11 for preserving the data transmission signal integrity. Accordingly, the boost circuit dispenses with the need for an expensive, bulky and from a manufacturing point of view highly complex choke circuit.
  • As described with respect to the background of the invention, data transmissions are carried out by a bus node reducing the voltage level of the bus by a predefined voltage level (e.g. 5V). This is achieved by the bus node drawing a current from the bus for approx. one third of the signal width.
  • The reduced voltage level corresponds to a negative half-wave of a data transmission. Thereafter, the inductor of the choke circuit on the bus induces a voltage peak corresponding to positive half-wave of a data transmission.
  • For simplicity we assume that a bus node is configured to draw similar currents i for data transmissions via the bus, i.e. the current is independent from the bus load or of the supplied voltage level UDC. Then, the voltage level UBUS of the bus is determined by the inductance L of the inductor L11 included in the choke circuit, namely as UBUS = UDC - L·di/dt. In this respect, a reduction of the inductance L of the inductor included in the choke circuit is proportional to an increase in voltage level UBUS on the bus.
  • Previously, it was common understanding that the inductance L of the choke circuit cannot be reduced because for other bus nodes to correctly detect data transmission, a predefined potential difference of approx. 5 V (e.g. from 29V to 24V) is required.
  • In the invention, now the choke circuit allows for a reduced inductance value of the inductor in the choke circuit due to the provision of an additional boost circuit which assists the inductor for preserving the data transmission signal integrity.
  • Specifically, the boost circuit in the choke circuit of the invention counteracts the reduction in potential difference by temporarily increasing the reference potential, e.g. for the time of a negative half-wave of a data transmission. In this respect, bus nodes are exposed to a same reduction by a predefined voltage level on the bus as in former times. The reduction by a predefined voltage level enables a correct decoding of transmitted data.
  • Exemplary, the choke circuit of the invention may include an inductor L11 with a reduced inductance value L/2. Without boost circuit, in case of data transmissions the voltage level on the bus would also be reduced by only half of the predefined voltage level (i.e.: ΔU = L/2·di/dt). However, the boost circuit counteracts the reduction and restores the predefined voltage level on the bus by temporarily increasing the voltage level on bus by ΔU (i.e. by increasing the voltage to be output by the second output terminal Bus-). Consequently, the bus nodes experience the same predefined potential difference.
  • According to one exemplary embodiment in line with the first aspect of the invention a choke circuit is suggested for providing an input voltage supplied by a DC power supply to at least one bus node. The choke circuit 220 comprises two input terminals for receiving the input voltage supplied by the DC power supply; and two output terminals for outputting a voltage based on the input voltage to the at least one bus node. The choke circuit further comprises an inductor connected between a first input terminal and a first output terminal; a boost circuit connected between the second input terminal and the second output terminal for increasing the voltage level that is output by the second output terminal; and switching element connected in parallel to the boost circuit for bypassing the boost circuit interposed between the second input terminal and the second output terminal. A comparator, further comprised in the choke circuit, is connected between the first input terminal and the first output terminal for detecting a potential difference across the inductor; wherein in case the comparator detects a potential difference higher than a threshold, the switching element is controlled to be in an OFF state such that a voltage level, increased by the boost circuit, is output by the second output terminal; and in case the comparator detects a potential difference lower than or equal to the threshold, the switching element is controlled to be in an ON state such that the boost circuit is bypassed and a voltage level, corresponding to the input voltage, is output by the second output terminal.
  • According to a more detailed embodiment, the boost circuit is configured to increase by a predefined voltage level the voltage level that is output by the second output terminal, the predefined voltage level being determined based on the inductance of the inductor.
  • According to another more detailed embodiment, the boost circuit includes: a first series circuit connected between the second input terminal and the second output terminal , the first series circuit being formed of a diode and a capacitor for storing, in the capacitor, charges flowing as a send current between the two output terminals; wherein the send current results from a data transmission of one of the at least one bus node; and wherein the boost circuit is configured to increase by an amount of charges stored in the capacitor the voltage level that is output by the second output terminal.
  • According to a further more detailed embodiment, the first series circuit of the choke circuit additionally includes a Zener diode connected in parallel to the capacitor for limiting the amount of charges stored on the capacitor such that the voltage across capacitor corresponds to the predefined voltage level.
  • According to yet another more detailed embodiment, the first series circuit of the choke circuit additionally includes a voltage regulator connected in parallel to the capacitor for limiting the amount of charges stored on the capacitor such that the voltage level across capacitor corresponds to the predefined voltage level.
  • According to a more detailed embodiment, the first series circuit of the choke circuit further includes a switching converter connected in parallel to the capacitor for limiting the amount of charges stored on the capacitor by up-converting and feeding back energy into the first input terminal such that the voltage level across capacitor corresponds to the predefined voltage level.
  • According to another more detailed embodiment, the switching converter of the choke circuit comprises: a series circuit of an inductor and a switching element connected in parallel to the capacitor; and a diode connected to the intermediated node of the series circuit of the inductor and the switching element and to the first input terminal and configured to feed back energy from the inductor into the first input terminal.
  • According to a further more detailed embodiment, the choke circuit further comprises: a reference voltage source for generating a reference voltage, the reference voltage being determined based on the predefined voltage level; a second comparator configured to compare a voltage across the capacitor with the reference voltage; and wherein the switching element of the switching converter is configured to be controlled based on the comparison result of the second comparator.
  • According to yet another more detailed embodiment, the reference voltage supplied by the reference voltage source of the choke circuit is varied based on a DC bus load resulting from the at least one bus node.
  • According to a more detailed embodiment, the reference voltage source of the choke circuit further comprises: a shunt resistor connected so as to carry the load current affected by the DC bus load, and wherein the resistance value of the shunt resistor corresponds to the DC resistance of the inductor.
  • According to another more detailed embodiment, the reference voltage source of the choke circuit further comprises: a converter circuit for filtering, amplifying and converting the voltage over the shunt resistor and outputting it as a reference voltage to the second comparator.
  • According to a further more detailed embodiment, the choke circuit further comprises: a resistor and a second series circuit, formed of a diode and of another resistor, both the resistor and the second series circuit being connected in parallel to the inductor.
  • According to yet another more detailed embodiment, the inverting input of the comparator of the choke circuit is connected via first voltage divider and a capacitor to the first input terminal, and the non-inverting input of the comparator is connected via second voltage divider and another capacitor to the first output terminal.
  • According to a more detailed embodiment, the choke circuit further comprises: a pull-up resistor configured to supply a voltage to the first switching element for enabling the comparator to control the switching element, and a resistor configured to connect the output of the comparator to the gate terminal of the switching element.
  • According to an alternatively more detailed embodiment, the choke circuit further comprises: a driving circuit configured to drive an output voltage of the comparator for control of the switching element.
  • According to a second aspect of the invention, a bus power supply is proposed which allows incorporating same, previously describe choke circuit.
  • In view of the less expensive, more efficient, less bulky and from a manufacturing point of view less complex choke circuit, same choke circuit may now be incorporated into the bus power supply for a reduction of the assembly steps and a improvement of the module integration level.
  • According to another exemplary embodiment in line with the second aspect of the invention a bus power supply is suggested for providing a voltage to at least one bus node. The bus power supply comprises: a DC power supply circuit for providing a DC voltage; and a choke circuit according to one of the previously described embodiments; wherein the DC power supply circuit is connected to the two input terminals of the choke circuit.
  • The accompanying drawings are incorporated into the specification and form a part of the specification to illustrate several embodiments of the present invention. These drawings, together with a description, serve to explain the principles of the invention. The drawings are merely for the purpose of illustrating the preferred and alternative examples of how the invention can be made and used, and are not to be construed as limiting the invention to only the illustrated and described embodiments. Furthermore, several aspects of the embodiments may form - individually or in different combinations - solutions according to the present invention. Further features and advantages will be become apparent from the following more particular description of the various embodiments of the invention as illustrated in the accompanying drawings, in which like references refer to like elements, and wherein:
  • Figs. 1a and 1b
    schematically show a conventional KNX TP bus including a bus power supply, a choke circuit and a bus node and a data transmission signal on the KNX TP bus;
    Fig. 2
    schematically shows a choke circuit according to a first embodiment of the invention;
    Fig. 3
    schematically shows a choke circuit according to a second embodiment of the invention;
    Fig. 4
    schematically shows a choke circuit according to a variant of the second embodiment of the invention;
    Fig. 5
    schematically shows a choke circuit according to an alternative variant of the second embodiment of the invention;
    Fig. 6
    schematically shows an exemplary implementation of a decoupling circuit for use in the choke circuit according to the second embodiment of the invention;
    Fig. 7
    schematically shows another exemplary implementation of a decoupling circuit for use in the choke circuit according to the second embodiment of the invention;
    Fig. 8
    schematically shows an exemplary implementation of a boost circuit for use in the choke circuit according to the second embodiment of the invention; and
    Fig. 9
    schematically shows a reference voltage source 1026 for use with the implementation of a boost circuit of the choke circuit of Fig. 9 according to second embodiment of the invention.
  • Referring now to Fig. 2, a choke circuit 220 according to a first embodiment of the invention is shown. The choke circuit 220 of this embodiment includes a decoupling circuit 221 and a boosting circuit 222 and may be used together with an externally connected DC power supply 110 and at least one externally connected bus node 130.
  • The choke circuit 220 includes two input terminals, namely DC+, DC-, for receiving an input voltage from an externally connected DC power supply. The DC power supply may be realized as shown in Fig. 1.
  • In a KNX TP bus, the DC power supply provides 29 V to the DC+ terminal of the choke circuit 220 and 0V to the DC- terminal of the choke circuit 220. However, it can be readily appreciated that the choke circuit 220 may be used with any other voltage levels and is not restricted in this respect.
  • Further, the choke circuit 220 includes two output terminals, namely Bus+, Bus-, for outputting a voltage level to at least one bus node. The voltage level output by the choke circuit 220 is used by the at least one bus node as a source of power.
  • The output voltage level is based on the input voltage. In a KNX TP bus, the output voltage level is approximately 29V between the output terminals Bus+ and Bus-. However, also in this case it can be readily appreciated that various other voltage levels may be output and that the choke circuit 220 is not restricted in this respect.
  • The choke circuit 220 includes the decoupling circuit 221 for inductively decoupling the input terminals DC+, DC- from the output terminals Bus+, Bus-. The choke circuit 220 also includes boost circuit 222. The decoupling circuit 221 of choke circuit 220 includes an inductor L11, a comparator CMP and a switching element T12.
  • The inductor L11 of circuit 221 is connected between to a first input terminal DC+ and a first output terminal Bus+. Accordingly, the inductor L11 forwards a DC component of the input voltage at the first input terminal DC+ to the first output terminal Bus+-.
  • Due to the inductor L11, data transmissions between bus nodes become possible. Specifically, for transmitting a "0"-bit, a bus node reduces the voltage between the output terminals Bus+ and Bus- by a predefined voltage level (e.g. approx. 5V). With the inductor L11 interposed between the first input terminal DC+ and the first output terminal Bus+-, higher-frequency alternating currents are suppressed from being passed on from the bus, namely first output terminal Bus+, to the DC power supply, namely first input terminals DC+.
  • Specifically, the inductance of inductor L11 prevents from forwarding sudden changes in potential on the bus to the bus power supply; instead the inductor L11 delays an alternating current and thereby relieves the bus power supply from counteract a changed (e.g. lowered) potential on the bus.
  • The inductor L11 may be implemented as a choke e.g. made of a wire or other conductor wound into a coil, to increase the magnetic field. However, the inductor L11 may also be implemented in any other conceivable way as long as it provides an inductance with the above noted properties.
  • The boost circuit 222 is connected between a second input terminal DC- and a second output terminal Bus-. The second input terminal DC- and second output terminal Bus-shall be understood as being not the first input terminal of the two input terminals and not the first output terminal of the two output terminals between which the inductor L11 is connected. In other words, the inductor L11 and the boost circuit 222 provide for separated paths between the two input terminals DC+, DC- and the output terminals Bus+, Bus- of the choke circuit 220.
  • The boost circuit 222 is configured to increase the voltage level output by the second output terminal Bus-. Accordingly, the boost circuit 222 does not only forward the voltage supplied to the second input terminal DC- but may increase the voltage level such that, at least for limited amount of time, a higher voltage level is output by the second output terminal Bus-.
  • According to an advantageous implementation, the boost circuit 222 is configured to increase the voltage output by the second output terminal Bus- by a predefined voltage level. The predefined voltage level is determined based on the inductance of the inductor L11.
  • Further, switching element T12 of circuit 221 is also connected between the second input terminal DC- and the second output terminal Bus-. Accordingly, the switching element T12 is connected in parallel to the boost circuit 222 and enables bypassing (i.e. short-circuiting) the second output terminal Bus- to the second input terminal DC-.
  • Exemplary, the switching element T12 is implemented as a transistor, e.g. as a metal-oxide-semiconductor field-effect transistor, MOSFET, as a power MOSFET, as bipolar junction transistor, BJT, a junction gate field-effect transistor JFET, or as an insulated-gate bipolar transistor, IGBT. Depending on the desired circuit properties, either of the transistor types may be advantageous for its inherent characteristics.
  • The switching element T12 provides for a bypass to the boost circuit 222 such that the voltage level supplied to the second input terminal DC- may be passed on by the switching element T12 (e.g. via a drain-source channel) and output by the second output terminal Bus-.
  • Consequently, due to the parallel connection of the switching element T12 and of the boost circuit 222, the switching element T12 determines the voltage level supplied to and output by the second input terminal DC- at time periods when switching element T12 is in an ON state and does not determine the voltage level when switching element T12 is in an OFF state. In the later situation, a voltage level increased by the boost circuit 222 is supplied to and output by the second output terminal Bus-.
  • In more detail, the switching element T12 is configured so as to enable or disable current to flow via the switching element T12 between the second input terminal DC-and the second output terminal Bus-, thereby bypassing or not-bypassing the boost circuit 222.
  • In an ON state, the switching element T12 allows current to flow via the switching element T12 between the second input terminal DC- and the second output terminal Bus- such that the boost circuit 222 is bypassed. In an OFF state, the switching element T12 inhibits current from flowing via the switching element T12 such that the boost circuit 222 is not bypassed and, hence, the boost circuit 222 determines the voltage level output by the second output terminal Bus-.
  • The switching element T12 is controlled based on a detection result of comparator CMP additionally included in circuit 221.
  • Exemplary, the comparator CMP is implemented as operational amplifier. There are many different realizations of an operational amplifier which may advantageous for its inherent characteristics. However, also other implementations for a comparator CMP are conceivable. In this respect, the examples shall not be understood limiting the invention.
  • The inputs of comparator CMP are connected to the first input terminal DC+ and to the first output terminal Bus-. Thereby, the comparator CMP is configured to detect a voltage difference subject to the inductor L11. In other words, the comparator CMP is adapted to detect AC signals resulting from data transmissions on the bus. Specifically, the comparator CMP would be able to detect situations where a bus node 130 first starts drawing and then stops drawing a current between the two output terminals Bus+ and Bus-.
  • In more detail, inductor L11 is connected between the first input terminal DC+ and the first output terminal Bus+ and is, hence, exposed to changes in the potential on the bus, i.e. between Bus+ and Bus-. The inductor L11 prevents from forwarding sudden changes in voltage on the bus to the bus power supply. Consequently, a potential difference builds up over the inductor L11 (i.e. between the first input terminal DC+ and the first output terminal Bus+ to both of which the inductor L11 is connected).
  • Accordingly, in case of changes due to data transmissions, the comparator CMP detects a voltage difference between the first input terminal DC+ and the first output terminal Bus-. This detection result of the comparator CMP is utilized for control of the switching element T12.
  • Specifically, in case the comparator CMP detects a voltage difference higher than a predefined threshold (e.g. higher than the DC resistance of the inductor L11), the switching element T12 is controlled to be in an OFF state. With the switching element T12 in the OFF state, current is prevented from being forwarded by switching element T12 such that a voltage level, increased by the boost circuit 222, is output by the second output terminal Bus-.
  • In case the comparator CMP detects a voltage difference lower than or equal to a predefined threshold, the switching element T12 is controlled to be in an ON state. With the switching element T12 in the ON state, current is allowed to flow via (i.e. is forwarded by) the switching element T12 such that the boost circuit 222 is bypassed and a voltage level, based on the input voltage, is output by the second output terminal Bus-.
  • In summary, the configuration of the choke circuit 220, explained above, allows adjusting the voltage level that is output by the output terminals Bus+, Bus- (in particular by the second output terminal Bus-) in response to detected AC signals resulting from data transmissions on the bus. In other words, by increasing the voltage level at the output during time periods of data transmissions, the choke circuit 220 allows compensating for a reduced inductance value of inductor L11.
  • Advantageously, the choke circuit 220 thereby substitutes for a conventional common-mode choke element while overcoming the need for a rather expensive, bulky and from the manufacturing point of view a highly complex design.
  • Referring now to Fig. 3, a choke circuit 320 according to a second embodiment of the invention is shown. The choke circuit 320 of Fig. 3 is based on the choke circuit 220 of Fig. 2 where corresponding parts are given corresponding reference numerals and terms. The detailed description of corresponding parts has been omitted for reasons of conciseness.
  • The choke circuit 320 of this embodiment includes the circuit 221 as already described in connection with choke circuit 220. Additionally, the choke circuit 320 includes a first series circuit 322 in place of boost circuit 222. The choke circuit 320 may be used together with an externally connected DC power supply 110 and at least one externally connected bus node 130.
  • The first series circuit 322 is connected between the second input terminal DC- and the second output terminal Bus-. Accordingly, also in this embodiment the first series circuit 322 is connected in parallel to the switching element T12. Consequently, the switching element T12 is configured so as to enable or disable current to flow via the switching element T12 between the second input terminal DC- and the second output terminal Bus-, thereby bypassing or not-bypassing the first series circuit 322.
  • The first series circuit 322 includes a diode D16 connected in series with a capacitor C14 and being configured to store, in the capacitor C14, charges flowing as a current drawn by the at least one bus node 130. In other words, the diode D16 is biased to allow current from the second output terminal Bus- to pass and to be stored by capacitor C14.
  • Referring now to the operation of the first series circuit 322:
    • The switching element T12 allows, in an ON state, current to flow via the switching element T12 (i.e. via a drain-source channel of T12) between the second input terminal DC- and the second output terminal Bus- such that the first series circuit 322 is bypassed. In an OFF state, the switching element T12 inhibits current from flowing via the switching element T12 (i.e. via a drain-source channel of T12) such that the first series circuit 322 is not bypassed. In this case, the first series circuit 322 increases the voltage level output by the second output terminal Bus-.
  • In case the comparator CMP detects a voltage difference lower than or equal to a predefined threshold (e.g. higher than the DC resistance of the inductor L11), the switching element T12 is controlled to be in an ON state. With the switching element T12 in the ON state, current is allowed to flow via the switching element T12 such that the first series circuit 322 is bypassed and a voltage level based on the input voltage is output by the second output terminal Bus-.
  • In case the comparator CMP detects a voltage difference higher than a predefined threshold, the switching element T12 is controlled to be in an OFF state. In this situation, a current IBus which is flowing on the bus, i.e. between the two output terminals Bus+ and Bus-, is forwarded via diode D16 towards capacitor C14. Accordingly, bus current IBus charges capacitor C14. At the same time, since the capacitor C14 already stores charges, the voltage level output by the second output terminal Bus- is increased, namely by the voltage corresponding to charges stored on capacitor C14.
  • Moreover, the bus current IBus includes a alternating send current ISend ≈ 105mA which is drawn by bus node 130 for data transmission and a load current 0mAIload ≤ 711mA resulting from the DC load in all of the at least one bus nodes.
  • Accordingly, when the switching element T12 is controlled to be in an OFF state, the bus current IBus forwarded towards capacitor C14 increases the voltage V C14 over the capacitor C 14.
  • As apparent to the skilled reader, the bus current IBus is not sufficient to charge the capacitor C14 during one data transmission (For KNX TP bus the time period of the negative half-wave is defined as approx. t = 35µs).
  • However, once the capacitor C14 is charged to the predefined voltage level (initial-state of capacitor C14), the bus current IBus is sufficient to prevent from the capacitor C14 discharging due to leakage currents and maintains the voltage V C14 over the capacitor C14 at least at the predefined voltage level.
  • Moreover, it can be readily appreciated that the choke circuit is for use in a KNX TP bus being an always on bus-system. Accordingly, the initial charging of capacitor C14 occurs only once, namely at assembly of the bus-system.
  • This predefined voltage level of stored on capacitor C14 enables the first series circuit 322 to increase the voltage level output by the second output terminal Bus-. The predefined voltage level is determined based on the inductance of the inductor L11.
  • The different variants of the second embodiment of the invention, as illustrated in Figs. 4 - 6, focus on situations where the bus current IBus flowing on the bus charges the capacitor C14 building-up voltage levels substantially higher than the predefined voltage level defined for increasing the voltage level output by the second output terminal Bus-.
  • In summary, the configuration of the choke circuit 320, explained above, allows adjusting the voltage level that is output by the output terminals Bus+, Bus- (in particular by the second output terminal Bus-) in response to detected AC signals resulting from data transmissions on the bus. In other words, by increasing the voltage level at the output during time periods of data transmissions, the choke circuit 320 allows compensating for a reduced inductance value of inductor L11.
  • Advantageously, the choke circuit 320 thereby substitutes for a conventional common-mode choke element while overcoming the need for a rather expensive, bulky and from the manufacturing point of view a highly complex design.
  • Aside, for an initial charging of the capacitor C14, an external power source may be used that is configured to charge capacitor C14 to the predefined voltage level. Alternatively, an additional charging circuit may be provided as part of the choke circuit to use the voltage level input via input terminals DC+ and DC- for charging the capacitor C14 to the predefined voltage level.
  • Further alternatively, a start-up procedure may be carried out for charging the capacitor C14 of choke circuit 320. This start-up procedure may include repeated dummy data transmissions for artificially generating a send current to charge capacitor C14. Dummy data transmissions shall be distinguished from "real" data transmissions. The send current of a dummy data transmissions, without assistance by a charged capacitor C14, would not result in a sufficiently large reduction in the potential between Bus+ and Bus- for the bus nodes to correctly decode such data transmission.
  • Referring now to Fig. 4, a choke circuit 420 according to a variant of the second embodiment of the invention is shown. The choke circuit 420 of Fig. 4 is based on the choke circuit 320 of Fig. 3 where corresponding parts are given corresponding reference numerals and terms. The detailed description of corresponding parts has been omitted for reasons of conciseness.
  • The choke circuit 420 of this embodiment includes the circuit 221 as already described in connection with choke circuit 220 and 320.
  • Additionally, the choke circuit 420 includes a different first series circuit 422 in place of boost circuit 222 or first series circuit 322. The choke circuit 420 may be used together with an externally connected DC power supply 110 and at least one externally connected bus node 130.
  • The first series circuit 422 is connected between the second input terminal DC- and the second output terminal Bus-. Accordingly, also in this embodiment the series circuit 422 is connected in parallel to the switching element T12. Consequently, the switching element T12 is configured to bypass or not-bypass the first series circuit 422.
  • Further, the first series circuit 422 includes a diode D16 connected in series with a capacitor C14 and being configured to store, in the capacitor C14, charges flowing as current I drawn by the at least one bus node 130. In other words, the diode D16 is configured with a bias to allow current from the second output terminal Bus- to pass and to be stored by capacitor C14.
  • Additionally, the first series circuit 422 includes a Zener diode Z connected in parallel to the capacitor C14 so as to control the voltage level stored on the capacitor C14. Accordingly, the Zener diode Z is connected reversely biased with respect to the predefined voltage level stored on the capacitor C14.
  • In other words, the cathode of Zener diode Z is connected to the positive side of the capacitor C14, i.e. to the node N14 interconnecting diode D16 and capacitor C14, and the anode is connected to the negative side of the capacitor, i.e. to the second input terminal DC-.
  • Referring now to the operation of circuit 422:
    • The switching element T12 allows, in an ON state, current to flow via the switching element T12 (i.e. via a drain-source channel of T12) between the second input terminal DC- and the second output terminal Bus- such that the first series circuit 422 is bypassed. In an OFF state, the switching element T12 inhibits current from flowing via the switching element T12 (i.e. via a drain-source channel of T12) such that the first series circuit 422 is not bypassed. In this case, the first series circuit 422 increases the voltage level output by the second output terminal Bus-.
  • In case the comparator CMP detects a voltage difference lower than or equal to a predefined threshold (e.g. higher than the DC resistance of the inductor L11), the switching element T12 is controlled to be in an ON state. With the switching element T12 in the ON state, current is allowed to flow via the switching element T12 such that the first series circuit 422 is bypassed and a voltage level based on the input voltage is output by the second output terminal Bus-.
  • In case the comparator CMP detects a voltage difference higher than a predefined threshold, the switching element T12 is controlled to be in an OFF state. In this situation, a current IBus which is flowing on the bus, i.e. between the two output terminals Bus+ and Bus-, is forwarded via diode D16 towards capacitor C14. Accordingly, bus current IBus charges capacitor C14. At the same time, since the capacitor C14 already stores charges, the voltage level output by the second output terminal Bus- is increased, namely by the voltage corresponding to charges stored on capacitor C14.
  • In this variant of the choke circuit 420, the Zener diode Z limits the charges to be stored on capacitor C14. Specifically, the breakdown voltage of the Zener diode Z is adapted to correspond to the predetermined voltage level of capacitor C14. Further, the breakdown voltage of the Zener diode Z and the predefined voltage level are determined based on the inductance of the inductor L11.
  • In more detail, in case the charges flowing as current I build up a voltage across capacitor C14 that is higher than the breakdown voltage of the Zener diode Z corresponding to the predefined voltage level, the Zener diode Z is configured to breakdown and to allow current to flow in reverse direction via Zener diode Z. Accordingly, current which would have charged the capacitor C14 to a higher level than the breakdown voltage of Zener diode Z is discharged towards the second input terminal DC-.
  • In summary, also the configuration of the choke circuit 420, explained above, allows adjusting the voltage level that is output by the output terminals Bus+, Bus- (in particular by the second output terminal Bus-) in response to detected AC signals resulting from data transmissions on the bus. In other words, by increasing the voltage level at the output during time periods of data transmissions, the choke circuit 420 allows compensating for a reduced inductance value of inductor L11.
  • Advantageously, the choke circuit 420 thereby substitutes for a conventional common-mode choke element while overcoming the need for a rather expensive, bulky and from the manufacturing point of view a highly complex design.
  • As a further advantage, the voltage level on the capacitor C14 may be kept constant at the predefined voltage level. Thus, in response to detected data transmissions, choke circuit 420 can precisely adjust the voltage level on the bus for the negative half-wave.
  • In another variant of the second embodiment which is not illustrated, the previously described Zener diode Z of choke circuit 420 is replaced by a voltage regulator. Voltage regulators are known to be more precise in keeping the voltage level (e.g. the voltage level on the capacitor C14) constant at the predefined voltage level.
  • Referring now to Fig. 5, a choke circuit 520 according to a further variant of the second embodiment of the invention is shown. The choke circuit 520 of Fig. 5 is based on the choke circuit 320 of Fig. 3 where corresponding parts are given corresponding reference numerals and terms. The detailed description of corresponding parts has been omitted for reasons of conciseness.
  • The choke circuit 520 of this embodiment includes the circuit 221 as already described in connection with choke circuit 220 of Fig. 2. Additionally, the choke circuit 520 includes a different boost circuit 522 in place of boost circuit 222 of Fig. 2 or first series circuit 322 of Fig. 3. The choke circuit 520 may be used together with an externally connected DC power supply and at least one externally connected bus node.
  • The boost circuit 522 is connected between the second input terminal DC- and the second output terminal Bus-. Accordingly, also in this embodiment the boost circuit 522 is connected in parallel to the switching element T12. Consequently, the switching element T12 is configured to bypass or not-bypass the first series circuit 522.
  • The boost circuit 522 includes a diode D16 connected in series with a capacitor C14 and being configured to store, in the capacitor C14, charges flowing as current I drawn by the at least one bus node 130. In other words, the diode D16 is biased to allow current from the second output terminal Bus- to pass and the charges thereof to be stored by capacitor C14.
  • Additionally, the boost circuit 522 includes a switching converter (e.g. boost converter) 523 configured to adjust the voltage level stored on the capacitor C14 to the predefined voltage level. The switching converter 523 includes switching element T13, inductor L10 and diode D15.
  • Inductor L10 and switching element T13 form a series circuit which is connected in parallel to the capacitor C14. Specifically, the inductor L10 of the series circuit is connected to the positive side of capacitor C14, i.e. to the node N14 interconnecting diode D16 and capacitor C14, and the switching element T13 of the series circuit is connected to the negative side of capacitor C14, i.e. to the second input terminal DC-.
  • Further, the cathode of diode D15 is connected to the first input terminal DC+ and the anode of diode D15 is connected to the intermediated node N14 of the series circuit formed of inductor L10 and switching element T13, i.e. the connection between inductor L10 and the drain of switching element T13.
  • Referring now to the operation of boost circuit 522:
    • The switching element T12 allows, in an ON state, current to flow via the switching element T12 between the second input terminal DC- and the second output terminal Bus- such that the boost circuit 522 is bypassed. In an OFF state, the switching element T12 inhibits current from flowing between the drain and source of switching element T12 such that the boost circuit 522 is not bypassed. In this case, the boost circuit 522 increases the voltage level output by the second output terminal Bus-.
  • In case the comparator CMP detects a voltage difference lower than or equal to a predefined threshold (e.g. higher than the DC resistance of the inductor L11), the switching element T12 is controlled to be in an ON state. With the switching element T12 in the ON state, current is allowed to flow via the switching element T12 such that the boost circuit 522 is bypassed and a voltage level based on the input voltage is output by the second output terminal Bus-.
  • In case the comparator CMP detects a voltage difference higher than the predefined threshold, the switching element T12 is controlled to be in an OFF state. In this situation, a current IBus which is flowing on the bus, i.e. between the two output terminals Bus+ and Bus-, is forwarded via diode D16 towards capacitor C14. Accordingly, bus current IBus charges capacitor C14. At the same time, since the capacitor C14 already stores charges, the voltage level output by the second output terminal Bus- is increased, namely by the voltage corresponding to charges stored on capacitor C14.
  • In this variant of the choke circuit 520, the switching converter (e.g. boost converter) 523 limits the charges to be stored on capacitor C14.
  • Specifically, switching converter (e.g. boost converter) 523 is controlled to convert excessive energy stored on capacitor C14 from the voltage level over capacitor C14 to a higher voltage level (i.e. the voltage level at the first input terminal DC+) for feed back into the first input terminal DC+.
  • In this respect, the boost circuit 523 is controlled depending on whether or not the voltage level across capacitor C14 exceeds the predefined voltage level. Specifically, a switching pattern for switching element T13 determines the conversion of the excessive voltage over capacitor C14 into a higher voltage level (i.e. the voltage level at the first input terminal DC+). Application of the switching pattern allows the voltage across capacitor C14 to be maintained at the predefined voltage level determined based on the inductance of inductor L11.
  • Referring now to the operation of the switching converter (e.g. boost converter) 523:
    • The switching element T13 is controlled to transfer energy from the capacitor C14 to the inductor L10 during an ON state of switching element T13 and to further transfer this energy from the inductor L10 via diode D15 into the first input terminal DC+ during a subsequent OFF state of switching element T13.
  • In more detail, in case the switching element T13 is controlled to be in an ON state, current flows from the positive side of the capacitor C14 via inductor L10 and the drain-source channel of switching element T13 to the negative side of the capacitor C14. As a result of the current flowing in inductor L10 a magnetic field created therein.
  • In case the switching element T13 is controlled to be in an OFF state, the magnetic field in inductor L10 induces voltage which forces a current in the previous direction. Since the current cannot flow via switching element T13 any more (i.e. T13 is in an OFF state), it chooses to flow via diode D15 into the first input terminal DC+.
  • Consequently, the switching converter (e.g. boost converter) 523 allows feeding back energy into the first input terminal DC+ that was previously stored on the capacitor C14, namely an amount of charges resulting in a voltage level over the capacitor C14 exceeding the predefined voltage level. Accordingly, the voltage level over capacitor C14 is maintained constant at the predefined voltage level.
  • In summary, also the configuration of the choke circuit 520, explained above, allows adjusting the voltage level that is output by the output terminals Bus+, Bus- (in particular by the second output terminal Bus-) in response to detected AC signals resulting from data transmissions on the bus. In other words, by increasing the voltage level at the output during time periods of data transmissions, the choke circuit 520 allows compensating for a reduced inductance value of inductor L11.
  • Advantageously, the choke circuit 520 thereby substitutes for a conventional common-mode choke element while overcoming the need for a rather expensive, bulky and from the manufacturing point of view a highly complex design.
  • As a further advantage, the voltage level on the capacitor C14 may be kept constant at the predetermined voltage level. Thus, in response to detected data transmissions, choke circuit 520 can precisely adjust the voltage level on the bus for the negative half-wave.
  • Even further advantageously, in the choke circuit 520 the excessive energy stored on capacitor C14 is feed back into the first input terminal DC+ so as to improve the overall efficiency of the bus-system.
  • Referring now to Fig. 6, an exemplary implementation of a decoupling circuit 621 for use in a choke circuit according to the second embodiment of the invention is shown. The decoupling circuit 621 of Fig. 6 is based on the decoupling circuit 221 of Figs. 2 - 5 where corresponding parts are given corresponding reference numerals and terms. The detailed description of corresponding parts has been omitted for reasons of conciseness.
  • The decoupling circuit 621 of this embodiment includes the components already described in connection with circuit 221 of Figs. 2 - 5. In particular, decoupling circuit 621 includes inductor L11 connected between to a first input terminal DC+ and a first output terminal Bus+; switching element T12 connected between the second input terminal DC- and the second output terminal Bus-, and comparator CMP connected to the first input terminal DC+ and to the first output terminal Bus- for enabling control of the switching element T12.
  • The exemplary implementation of decoupling circuit 621, additionally, includes a protection circuit 624. The protection circuit 624 is for limiting the peak voltage inducted by inductor L11 at times t 0 and t 2 as indicated in Fig. 1 b.
  • For this purpose, the protection circuit 624 includes resistor R10 and a second series circuit formed of a diode D10 and of another resistor R12 are included, wherein both the resistor R10 and the second series circuit are connected in parallel to the inductor L11. The send current ISend at time t0 flows in the forward direction of diode D10 and is limited by the parallel circuit of R10 and R12; the reverse current at time t 2 flows in reverse direction of diode D10 and, hence, is limited by resistor R10 only.
  • The exemplary implementation of decoupling circuit 621, additionally, includes a two voltage divider circuits. The voltage divider circuits are for respectively dividing the voltage at the first input terminal DC+ and the first output terminal Bus+ so as to be input into the comparator CMP.
  • Specifically, the inverting input of the comparator CMP is connected via first voltage divider R13, R22 and a capacitor C10 to the first input terminal DC+, and the non-inverting input of the comparator CMP is connected via second voltage divider R14, R15 and another capacitor C11 to the first output terminal Bus-. Capacitors C10 and C11 suppress electromagnetic interference.
  • The exemplary implementation of decoupling circuit 621, additionally, includes a driver circuit. The driver circuit enables the comparator CMP to control the switching element T12, both for controlling the switching element T12 to be in an OFF state and for controlling the switching element T12 to be in an ON state.
  • For controlling the switching element T12 to be in an OFF state, the gate of switching element T12 has to be set to a ground voltage. Accordingly, a current would flow from the gate of switching element T12 via the rail terminals of comparator CMP to the second input terminal DC-. For limiting this current and for protecting comparator CMP, the output terminal of comparator CMP is connected via resistor R29 to the gate terminal of switching element T12.
  • Further, for controlling the switching element T12 to be in an ON state, the gate-source voltage of switching element T12 has to be set to a level higher than a predetermined switching voltage. In the specific case, a pull-up resistor R16 is used to drive the gate of switching element T12 via first input terminal DC+, whereas a Zener diode D11 limits the voltage level at the gate of switching element T12 by way of its breakdown voltage. Moreover, the resistance of pull-up resistor R16, connecting the first input terminal DC+ and the gate of switching element T12, limits the pull-up current.
  • As can be readily appreciated from the above, the different circuits (i.e. protection circuit 624, voltage divider circuits, and driver circuit) described with respect to Fig. 6 provide for separate effects and, hence, may be used in variable configurations of choke circuit according to any of Figs. 2 - 5. In other words, a choke circuit according to any of Figs. 2 - 5 must not necessarily implement all the different circuits described with respect to Fig. 6 but may also implement a subset thereof.
  • Referring now to Fig. 7, another exemplary implementation of a decoupling circuit 721 for use in a choke circuit according to the second embodiment of the invention is shown. The decoupling circuit 721 of Fig. 7 is based on the decoupling circuit 621 of Fig. 6 where corresponding parts are given corresponding reference numerals and terms. The detailed description of corresponding parts has been omitted for reasons of conciseness.
  • The decoupling circuit 721 of this embodiment includes the components already described in connection with circuit 221 of Figs. 2 - 5 and additionally the protection circuit 624 and the two voltage divider circuits described in connection with circuit 621 of Fig. 6.
  • Further, the exemplary implementation of decoupling circuit 721 includes a different driver circuit 725. The driver circuit 725 enables the comparator CMP to control the switching element T12 at higher speed. Accordingly, the driver circuit 725 enables the switching element T12 to faster change states, namely from an OFF state to an ON state and vice versa.
  • For this purpose, the driver circuit 725 includes two complementary switching elements T10 and T11 connected in series between a supply voltage and a reference voltage. The gate of both switching elements T10 and T11 is connected via resistor R19 to the output of the comparator CMP and a pull-up resistor R23 supplies high voltage level to the output of the comparator CMP. Advantageously the complementary switching elements T10 and T11 are never both conducting at a same time such that the efficiency is improved with respect to the driver circuit of Fig. 6.
  • Exemplary, the supply voltage of the complementary switching elements T10 and T11 may be limited in accordance with the input voltage limitations of switching element T12, by resistor R16, Zener diode D11 and capacitor C12. Additionally, drive current to be supplied to the gate of switching element T12 may be limited by resistor R36 as explained earlier.
  • Again, also in this case the different circuits (i.e. protection circuit, voltage divider circuits, and driver circuit 725) described with respect to Fig. 7 provide for separate effects and, hence, may be used in variable configurations of choke circuit according to any of Figs. 2 - 5. In other words, a choke circuit according to any of Figs. 2 - 5 must not necessarily implement all the different circuits described and illustrated with respect to Fig. 7 but may also implement a subset thereof.
  • Referring now to Fig. 8, an exemplary implementation of a boost circuit 822 for use in a choke circuit according to the second embodiment of the invention is shown. The boost circuit 822 of Fig. 8 is based on the boost circuit 522 of Fig. 5 where corresponding parts are given corresponding reference numerals and terms. The detailed description of corresponding parts has been omitted for reasons of conciseness.
  • The boost circuit 822 of this embodiment includes the components already described in connection with circuit 522 of Fig. 5. In particular, boost circuit 822 includes diode D16, capacitor C14 and switching converter (e.g. boost converter) 523 formed of inductor L10, diode D15 and switching element T13. Accordingly, switching converter (e.g. boost converter) 523 allows feeding back energy into the first input terminal DC+ that was previously stored on the capacitor C14, namely an amount of charges resulting in a voltage level over the capacitor C14 exceeding the predefined voltage level.
  • For detecting whether or not the voltage level over the capacitor C14 exceeds the predefined voltage level, a second comparator CMP2 is provided, wherein the non-inverting input of the second comparator CMP2 is connected to the node N14 interconnecting diode D16 and capacitor C14 and the inverting input of the second comparator CMP2 is supplied with a reference voltage level Uref. The reference voltage level Uref is generated by reference voltage source 827 and will be exemplified in more detail in connection with Fig. 9.
  • Accordingly, in case of changes of the voltage over capacitor C14, the second comparator CMP2 detects a voltage difference between the supplied reference voltage level Uref and the voltage U C14 at node N14 interconnecting diode D16 and capacitor C14. This detection result of the second comparator CMP is utilized for control of the switching element T13.
  • Specifically, in case the second comparator CMP2 detects a voltage difference, the switching element T13 is controlled to be in an ON state. In more detail, in case the switching element T13 is controlled to be in an ON state, current flows from the positive side of the capacitor C14 via inductor L10 and the drain-source channel of switching element T13 to the negative side of the capacitor C14. As a result of the current flowing in inductor L10 a magnetic field created therein.
  • In case the comparator CMP2 detects no voltage difference, the switching element T13 is controlled to be in an OFF state. In case the switching element T13 is controlled to be in an OFF state, the magnetic field in inductor L10 induces voltage which forces a current in the previous direction. Since the current cannot flow via switching element T13 any more (i.e. T13 is in an OFF state), instead it flows via diode D15 into the first input terminal DC+.
  • The exemplary implementation of boost circuit 822 includes driver circuit 826. The driver circuit 826 enables the second comparator CMP2 to control the switching element T13 at higher speed. Accordingly, the driver circuit 826 enables the switching element T13 to faster change states, namely from an OFF state to an ON state and vice versa.
  • For this purpose, the driver circuit 826 includes two complementary switching elements T14 and T15 connected in series between a supply voltage node and a reference voltage (GND node). The gate of both switching elements T14 and T15 is connected via resistor R31 to the output of the second comparator CMP2 and a pull-up resistor R45 supplies high voltage level to the output of the second comparator CMP2. Advantageously the complementary switching elements T14 and T15 are never both conducting at a same time.
  • Exemplary, the supply voltage of the complementary switching elements T14 and T15 may be limited in accordance with the input voltage limitations of switching element T13, by resistor R28, Zener diode D12 and capacitor C18. Additionally, drive current to be supplied to the gate of switching element T13 may be limited by resistor R43 as explained earlier.
  • Again, also in this case the driver circuit 826 described with respect to Fig. 8 provides for a separate effect of improving the switching speed of transistor T13 and, hence, may also be dispensed with. Moreover, the driver circuit 826 may also be realized as described in connection with Fig. 6, at the benefit of a more compact, cheaper design.
  • Referring now to Fig. 9, an exemplary implementation of a reference voltage source 927 for use in a choke circuit according to the second embodiment of the invention is shown.
  • The reference voltage source 927 of Fig. 9 may exemplary provide the reference voltage level Vref for use in the boost circuit 822 of Fig. 8. The reference voltage source 927 may be used in place of the reference voltage source 827 of Fig. 8. In this respect, an output of the reference voltage source 927 would be connected to the inverting input of the second comparator CMP2 of boost circuit 822 of Fig. 8.
  • However, it is apparent to the skilled reader that any kind of voltage source 827 may be provided a reference voltage level Vref which is determined based on the predefined voltage level.
  • In more detail, the reference voltage source 927 supplies a reference voltage level Vref that is determined based on a DC bus load resulting from at least bus node connected to the output terminals Bus+ and Bus-.
  • As previously explained, the bus current IBus includes a send current Isend which is drawn by a bus node for data transmission and a load current Iload resulting from the DC load in all of the at least one bus nodes.
  • Accordingly, the DC bus load may be determined based on the load current Iload forwarded between the two output terminals Bus+ and Bus-. For simplicity, the DC bus load may also be determined based on the bus current IBus, namely by filtering out AC components including the send current ISend forwarded between the two output terminals Bus+ and Bus-.
  • In more detail, for determining the DC bus load, in a first step the bus current IBus or the load current Iload is converted in a voltage, then in a second step the voltage is amplified and in a third step, the amplified voltage is converted such that it compensates during data transmissions for a voltage drop over inductor L11, namely for the duration of the negative half-wave of (i.e. between the times t 1 and t 2 as indicated in Fig. 1 b).
  • Regarding the first step, reference voltage source 927 includes a shun resistor R37. The shunt resistor R37 has a small resistance matched to the DC resistance of inductor L11. Further, the shunt resistor R37 is connected so as to carry the bus current IBus or the load current Iload . Thereby, a voltage can be measured in parallel to the shunt resistor R37 and allows voltage conversion in a subsequent step.
  • Preferably, the shunt resistor R37 of reference voltage source 927 is connected as indicated for reference voltage source 827, namely such that it intercepts the current flow towards the second input terminal DC-. In other words, the shunt resistor R37 is connected between the second input terminal DC- and intermediate node N12 to which the switching element T12 and the boost circuit 822 is connected. Consequently, the shunt resistor R37 carries the bus current IBus including the load current Iload affected by the bus load.
  • In order to determine the DC component of the bus current IBus flowing through shunt resistor R37 (i.e. for removing the AC components including the send current Isend ) a RC low-pass filter (e.g. formed of resistor R24 and capacitor C13) is connected in parallel to the shunt resistor R37.
  • Alternatively, the shunt resistor R37 of reference voltage source 927 is connected such that it intercepts current from the switching element T12 only (e.g. between source terminal of switching element T12 and the intermediated node N12 indicated in Fig. 8). Moreover, in this case the shunt resistor R37 only carries the load current Iload .
  • Regarding the second step, the output from the RC low-pass filter is input to amplifier 928 for amplifying the voltage level output by the RC low-pass filter to a predefined voltage range (i.e. 0...530mV). For this purpose, the output of the RC low-pass filter is connected to amplifier 928 realized as non-inverting amplifier (e.g. formed of a third comparator CMP3 and resistors R25 and R32). Consequently, the voltage over the shunt resistor R38 is filtered and then amplified by a predetermined, constant scale factor (e.g. of approx. 10) such that the voltage corresponds to the DC load of the bus.
  • Regarding the third step, the output from the amplifier 928 is input to conversion circuit 929 for it to be mapped to reference voltage levels that correspond to a low or a high bus load, respectively. The reference voltage levels provided by the conversion circuit 929 is provided for use in the boost circuit 822 of Fig. 8.
  • Specifically, it has proven advantageous that, in case of a fully loaded bus, the reference voltage level to be output by reference voltage source 927 is Vref ≈ 2,4V and in case of a bus without DC load, the reference voltage level to be output by reference voltage source 927 is Vref ≈ 2,93V.
    No DC load current (Iload ≈ 0mA) reference voltage source Vref ≈ 2,93V
    Full DC load current Iload ≈ 711mA) reference voltage source V re/ ≈ 2,4V
  • For this purpose, the conversion circuit 929 includes a fourth comparator CMP4. The non-inverting input of the fourth comparator CMP4 is provided with a reference voltage level of 2,93V (e.g. supplied by a reference voltage source formed of the series circuit of Zener diode D14 and resistor R27 and of the voltage divider circuit of resistors R34 and R18). The inverting input of the fourth comparator CMP4 is provided with the output (i.e. voltage in the range of 0...530mV) of the amplifier 928 including an offset of 2,93V (e.g. supplied by another reference voltage source formed of the series circuit of Zener diode D13 and resistor R26 and of the voltage divider circuit of resistors R33 and R17).
  • Consequently, the fourth comparator CMP4 does not amplify the voltage difference, it merely determines the difference between its inputs to arrive at Vref ≈ 2,4V for a fully loaded bus and at Vref ≈ 2,93V for a bus without DC load. In this respect, the boost circuit 822 of Fig. 8 in combination with reference voltage source 927 of Fig. 9 may compensates during data transmissions for a voltage drop over inductor L11, namely for the duration of the negative half-wave of (i.e. between the times t 1 and t 2 as indicated in Fig. 1 b).

Claims (15)

  1. A choke circuit (220) for providing an input voltage supplied by a DC power supply (110) to at least one bus node (130), comprising:
    two input terminals (DC+, DC-) for receiving the input voltage supplied by the DC power supply (210);
    two output terminals (Bus+, Bus-) for outputting a voltage based on the input voltage to the at least one bus node (230);
    an inductor (L11) connected between a first input terminal (DC+) and a first output terminal (Bus+);
    a boost circuit (222) connected between the second input terminal (DC-) and the second output terminal (Bus-) for increasing the voltage level that is output by the second output terminal (Bus-);
    a switching element (T12) connected in parallel to the boost circuit (222) for bypassing the boost circuit (222) interposed between the second input terminal (DC-) and the second output terminal (Bus-);
    a comparator (CMP) connected between the first input terminal (DC+) and the first output terminal (Bus+) for detecting a potential difference across the inductor (L11);
    wherein in case the comparator (CMP) detects a potential difference higher than a threshold, the switching element (T12) is controlled to be in an OFF state such that a voltage level, increased by the boost circuit (222), is output by the second output terminal (Bus-);
    and in case the comparator (CMP) detects a potential difference lower than or equal to the threshold, the switching element (T12) is controlled to be in an ON state such that the boost circuit (222) is bypassed and a voltage level, corresponding to the input voltage, is output by the second output terminal (Bus-).
  2. The choke circuit (220) according to claim 1, wherein the boost circuit (222) is configured to increase by a predefined voltage level the voltage level that is output by the second output terminal (Bus-), the predefined voltage level being determined based on the inductance of the inductor (L11).
  3. The choke circuit according to one of claims 1 or 2, wherein the boost circuit (222) includes:
    a first series circuit (322) connected between the second input terminal (DC-) and the second output terminal (Bus-), the first series circuit (322) being formed of a diode (D16) and a capacitor (C14) for storing, in the capacitor (C14), charges flowing as a send current between the two output terminals (Bus+, Bus-);
    wherein the send current results from a data transmission of one of the at least one bus node (230); and wherein the boost circuit (222) is configured to increase by an amount of charges stored in the capacitor (C14) the voltage level that is output by the second output terminal (Bus-).
  4. The choke circuit (420) according to claim 3, wherein the first series circuit (422) additionally includes a Zener diode (Z) connected in parallel to the capacitor (C14) for limiting the amount of charges stored on the capacitor (C14) such that the voltage across capacitor (C14) corresponds to the predefined voltage level.
  5. The choke circuit (420) according to claim 3, wherein the first series circuit (522) additionally includes a voltage regulator connected in parallel to the capacitor (C14) for limiting the amount of charges stored on the capacitor (C14) such that the voltage level across capacitor (C14) corresponds to the predefined voltage level.
  6. The choke circuit (520) according to claim 3, wherein the first series circuit (622) further includes
    a switching converter (623) connected in parallel to the capacitor (C14) for limiting the amount of charges stored on the capacitor (C14) by up-converting and feeding back energy into the first input terminal (DC+) such that the voltage level across capacitor (C14) corresponds to the predefined voltage level.
  7. The choke circuit (620) according to claim 6, wherein the switching converter (523) comprises:
    a series circuit of an inductor (L10) and a switching element (T13) connected in parallel to the capacitor (C14); and
    a diode (D15) connected to the intermediated node of the series circuit of the inductor (L10) and the switching element (T13) and to the first input terminal (DC+) and configured to feed back energy from the inductor (L10) into the first input terminal (DC+).
  8. The choke circuit (620) according to claim 7, further comprising:
    a reference voltage source (827; 927) for generating a reference voltage, the reference voltage being determined based on the predefined voltage level;
    a second comparator (CMP2) configured to compare a voltage across the capacitor (C14) with the reference voltage; and
    wherein the switching element (T13) of the switching converter (623) is configured to be controlled based on the comparison result of the second comparator (CMP2).
  9. The choke circuit (620) according to claim 8, wherein the reference voltage supplied by the reference voltage source (927) is varied based on a DC bus load resulting from the at least one bus node (230).
  10. The choke circuit (620) according to claim 8 or 9, where the reference voltage source (927) further comprises:
    a shunt resistor (R37) connected so as to carry the load current affected by the DC bus load, and wherein the resistance value of the shunt resistor (R37) corresponds to the DC resistance of the inductor (L11).
  11. The choke circuit (620) according to claim 10, wherein the reference voltage source (927) further comprises:
    a converter circuit (928) for filtering, amplifying and converting the voltage over the shunt resistor (R37) and outputting it as a reference voltage to the second comparator (CMP2).
  12. The choke circuit (620) according to any of claims 1 to 11, further comprising:
    a resistor (R10) and a second series circuit, formed of a diode (D10) and of another resistor (R12), both the resistor (R10) and the second series circuit being connected in parallel to the inductor (L11).
  13. The choke circuit (620) according to any of claims 1 to 12, wherein the inverting input of the comparator (CMP) is connected via first voltage divider (R13, R22) and a capacitor (C10) to the first input terminal (DC+), and the non-inverting input of the comparator (CMP) is connected via second voltage divider (R14, R15) and another capacitor (C11) to the first output terminal (Bus+).
  14. The choke circuit (620) according to any of claims 1 to 13, further comprising:
    a pull-up resistor (R16) configured to supply a voltage to the first switching element (T12) for enabling the comparator (CMP) to control the switching element (T12), and
    a resistor (R36) configured to connect the output of the comparator (CMP) to the gate terminal of the switching element (T12); alternatively comprising:
    a driving circuit (828) configured to drive an output voltage of the comparator (CMP) for control of the switching element (T12).
  15. A bus power supply for providing a voltage to at least one bus node (130), comprising:
    a DC power supply circuit (110) for providing a DC voltage; and
    a choke circuit according to any of claims 1 - 14; wherein the DC power supply circuit (110) is connected to the two input terminals (DC+, DC-) of the choke circuit.
EP13167312.1A 2013-05-10 2013-05-10 Improved choke circuit, and bus power supply incorporating same Active EP2802100B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP13167312.1A EP2802100B1 (en) 2013-05-10 2013-05-10 Improved choke circuit, and bus power supply incorporating same
PL13167312.1T PL2802100T3 (en) 2013-05-10 2013-05-10 Improved choke circuit, and bus power supply incorporating same
DK13167312.1T DK2802100T3 (en) 2013-05-10 2013-05-10 Improved drosselkredsløb bus line rectifier and comprising the same
IN2031CH2014 IN2014CH02031A (en) 2013-05-10 2014-04-21
JP2014096822A JP5822981B2 (en) 2013-05-10 2014-05-08 Improved choke circuit and bus power supply incorporating it
CN201410199032.9A CN104143911B (en) 2013-05-10 2014-05-12 Improved choke circuit and the bus power source comprising the choke circuit
US14/274,882 US9800147B2 (en) 2013-05-10 2014-05-12 Choke circuit for a bus power supply
HK14112296.0A HK1198849A1 (en) 2013-05-10 2014-12-05 Improved choke circuit, and bus power supply incorporating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13167312.1A EP2802100B1 (en) 2013-05-10 2013-05-10 Improved choke circuit, and bus power supply incorporating same

Publications (2)

Publication Number Publication Date
EP2802100A1 EP2802100A1 (en) 2014-11-12
EP2802100B1 true EP2802100B1 (en) 2016-03-23

Family

ID=48444103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13167312.1A Active EP2802100B1 (en) 2013-05-10 2013-05-10 Improved choke circuit, and bus power supply incorporating same

Country Status (8)

Country Link
US (1) US9800147B2 (en)
EP (1) EP2802100B1 (en)
JP (1) JP5822981B2 (en)
CN (1) CN104143911B (en)
DK (1) DK2802100T3 (en)
HK (1) HK1198849A1 (en)
IN (1) IN2014CH02031A (en)
PL (1) PL2802100T3 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015105702B3 (en) * 2015-04-14 2016-08-04 Beckhoff Automation Gmbh Bus system with a feed module and a consumer module
US10054965B2 (en) * 2015-08-06 2018-08-21 Honeywell International Inc. Analog/digital input architecture having programmable analog output mode
EP3863184B1 (en) 2015-09-26 2024-03-13 Kollmorgen Corporation System and method for improved dc power line communication
CN108155626B (en) * 2018-01-02 2019-04-30 京东方科技集团股份有限公司 A kind of booster circuit, its control method, display panel and display device
CN108776265A (en) * 2018-07-11 2018-11-09 重庆线易电子科技有限责任公司 Dynamic impedance circuit and signal deteching circuit
CN113891524B (en) * 2020-07-03 2023-07-21 酷矽半导体科技(上海)有限公司 Driving circuit, driving chip, driving system and driving method supporting wide voltage input
CN112468131B (en) * 2020-11-30 2023-12-12 珠海格力电器股份有限公司 Driving circuit and driving device
DE102021208152B3 (en) 2021-07-28 2022-09-22 Karlsruher Institut für Technologie Electronic device and bus system and method for transmitting data between at least two participants

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2062985B (en) * 1979-11-12 1983-11-02 Matsushita Electric Ind Co Ltd Small load detection by comparison between input and output parameters of an induction heat cooking apparatus
EP0196679A3 (en) * 1982-05-26 1986-11-20 Nippon Chemi-Con Corporation Switching regulator
US4823023A (en) * 1982-06-01 1989-04-18 Nippon Chemi-Con Corporation Transistor with differentiated control switching circuit
JPH0720283B2 (en) * 1987-05-22 1995-03-06 松下電器産業株式会社 Power receiving device for home bus system
JPS6450727A (en) * 1987-08-19 1989-02-27 Matsushita Electric Ind Co Ltd Power transmission device for home bus system
KR100403541B1 (en) * 2001-06-29 2003-10-30 설승기 Active Common Mode EMI Filter for Eliminating Conducted Electromagnetic Interference
US6943505B2 (en) * 2003-06-05 2005-09-13 Infineon Technologies Ag Driving device for a light-emitting component and a method for driving a light-emitting component
US6943504B1 (en) * 2003-11-24 2005-09-13 National Semiconductor Corporation Open loop magnetic boost LED driver system and method
US20050162022A1 (en) * 2004-01-16 2005-07-28 Maytag Corporation Capacitor dropping power supply with shunt switching
JP4745234B2 (en) * 2006-03-29 2011-08-10 三菱電機株式会社 Power supply
JP4824524B2 (en) * 2006-10-25 2011-11-30 日立アプライアンス株式会社 Unidirectional DC-DC converter and control method thereof
US7564292B2 (en) * 2007-09-28 2009-07-21 Alpha & Omega Semiconductor, Inc. Device and method for limiting Di/Dt caused by a switching FET of an inductive switching circuit
CN100549887C (en) * 2007-11-29 2009-10-14 北京豪沃尔科技发展股份有限公司 Bus line data transceiver
TWI362153B (en) * 2008-01-07 2012-04-11 Elan Microelectronics Corp Control circuit for induction heating cooker and induction heating cooker thereof
CN201467155U (en) * 2009-04-15 2010-05-12 同济大学 CAN bus transceiver interface circuit
WO2011085703A1 (en) * 2010-01-12 2011-07-21 Gira Giersiepen Gmbh & Co. Kg Device and method for providing a supply voltage in a bus node of a bus network
KR101123985B1 (en) * 2010-08-12 2012-03-27 삼성전기주식회사 Boost converter
CN102082612A (en) * 2010-11-29 2011-06-01 北京汽车新能源汽车有限公司 Controller area network (CAN) bus-based anti-electromagnetic interference method and device
BE1020122A5 (en) * 2011-07-19 2013-05-07 Niko Nv DEVICE FOR EXTRACTING A FOOD SIGNAL FROM A BUS SIGNAL AND BUS DEVICE.
CN202281963U (en) * 2011-09-29 2012-06-20 深圳市元征软件开发有限公司 Transceiver protection circuit for CAN (Controller Area Network) bus
TWI449287B (en) * 2011-12-19 2014-08-11 Lextar Electronics Corp Over voltage protection circuit and driver circuit using the same
US8810144B2 (en) * 2012-05-02 2014-08-19 Cree, Inc. Driver circuits for dimmable solid state lighting apparatus
CN102695341B (en) * 2012-05-28 2014-07-16 矽力杰半导体技术(杭州)有限公司 LED drive power supply applicable to electronic transformer

Also Published As

Publication number Publication date
US20140333279A1 (en) 2014-11-13
HK1198849A1 (en) 2015-06-12
JP2014225259A (en) 2014-12-04
US9800147B2 (en) 2017-10-24
EP2802100A1 (en) 2014-11-12
IN2014CH02031A (en) 2015-07-03
CN104143911B (en) 2018-02-09
PL2802100T3 (en) 2016-09-30
DK2802100T3 (en) 2016-06-20
JP5822981B2 (en) 2015-11-25
CN104143911A (en) 2014-11-12

Similar Documents

Publication Publication Date Title
EP2802100B1 (en) Improved choke circuit, and bus power supply incorporating same
US10992236B2 (en) High efficiency AC direct to DC extraction converter and methods
KR102202763B1 (en) Off-line power converter and integrated circuit suitable for use in same
US9438127B2 (en) Reverse current control for an isolated power supply having synchronous rectifiers
US9391525B2 (en) Power system switch protection using output driver regulation
CN107852102B (en) Power conversion device
WO2013111360A1 (en) High-frequency current reduction device
TWI590574B (en) Power supply apparatus
US20110261594A1 (en) Power supply with input filter-controlled switch clamp circuit
US6842069B2 (en) Active common mode EMI filters
US9590510B1 (en) Cable IR drop compensation
JP2019062714A (en) Synchronous rectification circuit and switching power supply device
CN106877847A (en) Feedback control circuit
US10763737B2 (en) Waveform shaping circuit, semiconductor device, and switching power supply device
US10284075B2 (en) Overvoltage protection circuit for protecting overvoltage corresponding to wide range of input voltage
JP6951631B2 (en) Synchronous rectifier circuit and switching power supply
JP2017529822A (en) A device for generating a constant DC load current
US10038374B2 (en) Apparatus for producing unvarying direct load current
RU2568945C2 (en) Electronic inductive circuit for power supply source of intercom system with double-wire bus and its arrangement
WO2019056830A1 (en) Current sampling circuit
CN108649942A (en) A kind of multichannel SiC metal-oxide-semiconductor driving circuits
US20240128875A1 (en) Circuit for detecting power in a multi-stage power converter
WO2021176796A1 (en) Power supply circuit
JP4176090B2 (en) Voltage conversion circuit and power supply device
WO2021211920A1 (en) Isolated gate driver

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150429

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1198849

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 3/56 20060101ALI20150904BHEP

Ipc: H04B 3/54 20060101ALI20150904BHEP

Ipc: H04L 12/40 20060101ALI20150904BHEP

Ipc: H04L 12/10 20060101AFI20150904BHEP

INTG Intention to grant announced

Effective date: 20151001

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALTSBUERO JEAN HUNZIKER AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 784086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013005638

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013005638

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

26N No opposition filed

Effective date: 20170102

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160510

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1198849

Country of ref document: HK

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 784086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160323

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180517

Year of fee payment: 6

Ref country code: DK

Payment date: 20180517

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20180508

Year of fee payment: 6

Ref country code: AT

Payment date: 20180529

Year of fee payment: 6

Ref country code: IT

Payment date: 20180531

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190524

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190524

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20190531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 784086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190510

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190510

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190510

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230526

Year of fee payment: 11