EP2791389A1 - Procédé de revêtement de surface par projection de particules au moyen d'un fluide vecteur cryogénique - Google Patents

Procédé de revêtement de surface par projection de particules au moyen d'un fluide vecteur cryogénique

Info

Publication number
EP2791389A1
EP2791389A1 EP12775802.7A EP12775802A EP2791389A1 EP 2791389 A1 EP2791389 A1 EP 2791389A1 EP 12775802 A EP12775802 A EP 12775802A EP 2791389 A1 EP2791389 A1 EP 2791389A1
Authority
EP
European Patent Office
Prior art keywords
substrate
carrier fluid
fluid
particles
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12775802.7A
Other languages
German (de)
English (en)
Other versions
EP2791389B1 (fr
Inventor
Frédéric Richard
Jacques Quintard
Charles Truchot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP2791389A1 publication Critical patent/EP2791389A1/fr
Application granted granted Critical
Publication of EP2791389B1 publication Critical patent/EP2791389B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/025Processes for applying liquids or other fluent materials performed by spraying using gas close to its critical state
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/149Spray pistols or apparatus for discharging particulate material with separate inlets for a particulate material and a liquid to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials

Definitions

  • the invention relates to a method for producing a coating of a material on the surface of a substrate, said method being based on the projection of particles of said material towards the substrate to be coated by means of a carrier fluid, in particular of the liquid nitrogen, and an installation adapted to operate said method.
  • thermal spraying makes it possible to produce coatings of good quality, that is to say thick, homogeneous, compact and having good adhesion to the treated substrate.
  • the production of a thermal spray coating is based on the use of a carrier gas to accelerate, transporting fine particles of the material constituting the coating on the substrate to be coated.
  • the particles with a characteristic size typically ranging from 5 to 100 ⁇ , generally in the form of a powder, are thus projected towards the substrate on which they crush and accumulate to form the desired coating.
  • the coatings obtained generally have a thickness of the order of a few tens to a few hundreds of ⁇ .
  • the thermal spray coating technique generally implies that the particles are melted or partially melted to promote their attachment to the substrate.
  • Some processes such as blast or blown arc plasma spraying, lead to complete melting of the projected particles.
  • heating the particles beyond their melting temperature then plays a preponderant role relative to the speed of the carrier gas to promote the adhesion of the coating on the substrate.
  • hypersonic projection consist, always by operating the complete or quasi-complete fusion of the projected particles, to significantly increase their projection speed to increase their impact force on the substrate.
  • a "cold" projection coating method has been proposed, as described in documents EP-A-0911423 and EP-A-0911425.
  • the particles are projected onto the substrate to be coated using a carrier gas heated to a temperature typically between 30 and 900 ° C, the carrier gas generally containing a neutral gas, such as nitrogen or helium, at a pressure of between 5 and 50 bar.
  • the carrier gas is accelerated to supersonic speeds, of the order of 350 to 1600 m / s, in a "Laval" geometry nozzle, that is to say the gas conduit comprises a portion upstream of convergent form and a downstream portion of divergent form.
  • the particles of material to be sprayed are introduced, generally in powder form, into the nozzle and projected towards the substrate. The impact of the particles on the substrate, due to their high kinetic energy, causes a plastic deformation thereof, releasing sufficient energy to ensure their attachment to the substrate.
  • the carrier gases used generally contain compounds chosen from air gases, such as helium or nitrogen, and preferably neutral gases. Air, oxygen or any oxygen-containing compound is generally prohibited to limit the oxidation of the projected particles.
  • the traditional cold spraying processes have carrier gas consumptions typically between a few Nm3 / h and 150 Nm3 / h, that is to say between about 150 and 2500 1 min. Equivalent projection plant, the hourly consumption of carrier gas is comparable that is used nitrogen or helium.
  • Cold spraying makes it possible to produce coatings with carrier gases at temperatures that are generally lower than the melting temperature of the projected material, at the vector gas pressure used. This limits the problems of structural change and oxidation of the projected material, as well as the thermal stresses experienced by the substrate.
  • the particles must be projected at a speed exceeding a so-called critical speed.
  • critical speed depends on the nature of the projected material. For example, T. Schmidt et al., "Development of a Generalized Parameter Window for Cold Spray Deposition", Acta Mater., 2006, 54 (3), pp 729-742, mentions for copper a critical speed of 500 m / s, and for magnesium, a critical speed of 860 m / s.
  • the temperature at which the carrier gas is to be heated also depends on the nature of the projected material.
  • Helium being a light gas, it can be accelerated to a lower temperature than can be the nitrogen for an equivalent speed.
  • helium is not an ideal solution because it has the disadvantage of being expensive. In addition, helium is a scarce resource.
  • the temperatures of the carrier gases remain relatively high, that is to say between 200 and 900 ° C. As explained previously, these temperatures are essential to obtain projected particle speeds sufficient for the production of quality coatings.
  • these temperatures may be incompatible with certain applications, especially when the substrates to be coated are fragile, for example sensitive to thermal shocks, such as ceramics, or likely to undergo deformation at the temperatures involved, or when the coatings realized are thick, typically more than 500 ⁇ .
  • the problem to be solved is therefore to propose a method for effecting the coating of a substrate by projection of a material which is improved, that is to say for which the aforementioned drawbacks no longer exist or are considerably limited, by allowing particles of said material to be projected at sufficiently high speeds to form a quality coating, that is to say thick, adherent to the substrate, homogeneous and compact, i. e. without or with a reduced level of porosity, and without resorting to the use of a heated carrier gas, while improving the positioning tolerance of the projection tool relative to the treated substrate.
  • the solution of the invention is then a process for producing a coating of a material of at least a part of the surface of a substrate by projection of particles of said material towards the substrate to be coated by means of a carrier fluid containing a compound chosen from the gases of the air,
  • said carrier fluid is in the liquid state, at a pressure of at least 300 bar and at a temperature below 0 ° C.
  • a fluid vector in the liquid state at high pressure, that is to say at least 300 bar, and at a temperature below 0 ° C, in particular liquid nitrogen, allowed to project material particles at a sufficiently high speed to allow their attachment to a substrate, and hence the rapid construction of an adherent coating.
  • the major advantage of the invention lies in the use of a carrier fluid containing a compound in the liquid state, in particular liquid nitrogen, whose temperature is below 0 ° C., instead of carrier gas containing a compound at a temperature in the range of 200 to 900 ° C.
  • the risk of subjecting the substrate to significant mechanical stresses is reduced, which is particularly advantageous for the production of thick coatings, typically between 500 and 2000 ⁇ .
  • thick coatings typically between 500 and 2000 ⁇ .
  • the method of the invention makes it possible to minimize the rise in substrate temperature and thus reduce the waiting time between each layer. This results in an increase in the efficiency of the process.
  • the invention may include one or more of the following features:
  • the vector fluid has a temperature below -10 ° C., preferably below -20 ° C.
  • the vector fluid has a temperature greater than -200 ° C., preferably greater than -180 ° C., more preferably greater than -160 ° C.
  • the vector fluid has a pressure of less than 4000 bar.
  • the vector fluid has a pressure of less than 1000 bar.
  • the vector fluid is liquid nitrogen.
  • the compound contained in the carrier fluid is nitrogen.
  • the particles of material are conveyed by the vector fluid at a speed of between 300 and 2500 m / s, preferably between 300 and 1700 m / s.
  • the vector fluid is delivered at a flow rate of between 1 and 20 l / min, preferably between 2 and 15 l / min.
  • the particles of material are formed of a metallic, polymer, ceramic or composite material.
  • the material particles have an average size of between 5 and 100 ⁇ and are in powder form.
  • the substrate is formed of a metallic, polymer, ceramic or composite material.
  • the coating of material made on the substrate has a thickness of between 50 and 2000 ⁇ .
  • the particles of material and the vector fluid form a mixture distributed by a projection tool in the form of a jet directed towards the substrate, the downstream end of said projection tool being positioned at a distance of between 5 and 50 cm from the surface to be coated with the substrate, preferably between 10 and 30 cm.
  • the invention relates to a surface treatment installation, in particular an installation for operating a method according to the invention, comprising a mixing chamber fed by a source of particles of material and a source of vector fluid, which source of fluid vector cooperates with a compression system and two heat exchangers for producing and supplying said mixing chamber with the carrier fluid at a pressure greater than 300 bar and at a temperature below 0 ° C.
  • FIG. 1 schematizing an embodiment of a device capable of operating the coating method of the invention.
  • the method of the invention is based on the use of a carrier fluid 8 containing a compound selected from the gases of air to project particles of said material 9 towards the surface of the substrate 6 to be coated and thus to make the coating by said material 9 of at least a portion of the surface of the substrate 6.
  • a projection tool 3 is supplied with a flow of vector fluid 8, represented by the arrow 8, by means of a fluid supply duct 2 connected fluidically to the upstream end 3a of the tool 3.
  • the vector fluid 8 is formed of a compound in the liquid state, at a pressure of at least 300 bar and at a temperature below 0 ° C.
  • pressure of the vector fluid 8 is expressed in absolute bar.
  • bar is understood to mean absolute bar.
  • the compound is chosen from air gases, that is to say naturally present in the air, it may be in particular nitrogen or helium.
  • the carrier fluid 8 is liquid nitrogen, which has the advantage of being inert and less expensive than helium.
  • the compound contained in the vector fluid 8 is in this case nitrogen.
  • the vector fluid 8 is free of oxygen, so as to minimize the risk of oxidation of the projected material 9.
  • a source of vector fluid 8 (not shown) is arranged upstream of the pipe 2 and fluidly connected thereto.
  • the principle of obtaining fluid vector in the liquid state, at a temperature below 0 ° C. and under high pressure, or otherwise known as high pressure cryogenic fluids, is known and described in detail in documents US Pat. 7,310,955 and US-A-7,316,363.
  • an installation for producing cryogenic fluid, for example liquid nitrogen, at high pressure comprises a reservoir for storing vector fluid in the liquid state, which feeds, via a line supplying liquid carrier fluid under low pressure. , that is to say at about 3 to 6 bar and at a temperature of -180 ° C, a compression device, with compressor and heat exchanger upstream allowing ultra high pressure of the liquid nitrogen.
  • the compression device thus makes it possible to compress the liquid nitrogen from the storage tank.
  • the liquid nitrogen at the first pressure is then conveyed via a conveying line, to a downstream heat exchanger where the liquid nitrogen is cooled with liquid nitrogen at atmospheric pressure, to obtain typically liquid nitrogen. .
  • liquid nitrogen at a pressure typically greater than 300 bar, generally between 1000 bar and 4000 bar and at a temperature below 0 ° C, typically between -10 ° C and -200 ° C, which is sent to the projection tool 3.
  • the flow of vector fluid 8 follows a path represented by the dotted line 7 within the projection tool 3. It is delivered at a flow rate of between 1 and 20 l / min, preferably between 2 and 15 l / min. .
  • the vector fluid 8 is delivered into the spraying tool 3 at a temperature below 0 ° C, preferably below -10 ° C, more preferably below -20 ° C.
  • the vector fluid 8 has a temperature greater than -200.degree. C., preferably greater than -180.degree. C., more preferably greater than -160.degree.
  • the pressure of the vector fluid 8 is at least 300 bar, and preferably remains below 4000 bar. It is also possible in certain cases to operate the method of the invention at vector fluid pressures 8 of less than 1000 bar.
  • the projection tool 3 is also powered by a stream of particles of material 9 to be sprayed. This flow is distributed through a conduit 1.
  • the material particles 9 have a characteristic size of the order of 5 to 100 ⁇ .
  • the material 9 is distributed in powder form.
  • the projection tool 3 comprises a mixing chamber 4 fed by the flow of vector fluid 8 and by the flow of material particles 9.
  • the mixing chamber 4 is adapted to and designed to create, by the "Venturi” effect, a depression serving to suck the material particles 9 towards said mixing chamber 4.
  • the mixing chamber 4 is adapted to and designed to mix the flow of vector fluid 8 and the flow of material particles 9 so that the material particles 9 are transported and accelerated by the flow of vector fluid 8, at a speed of the order of the speed of the vector fluid 8.
  • the mixture of material particles 9 and carrier fluid 8 is then distributed through an outlet orifice located at the downstream end 3b of the projection tool 3 in the form of a jet 5 directed towards the substrate 6 to be coated.
  • the downstream end 3b of the projection tool 3 is positioned at a distance of between 5 and 50 cm from the surface to be coated with the substrate 6, preferably between 10 and 30 cm.
  • the method of the invention is therefore characterized by large working distances, which is advantageous when the coating is to be performed on an uneven surface or having holes or recesses.
  • the vector fluid is distributed in the projection tool 3 at a speed between Mach 1 and Mach 7, that is to say between 300 and 2500 m / s, preferably between Mach 1 and Mach 5, that is to say between about 300 and 1700 m / s, the speed Mach 1 corresponding to the speed of sound in the air, 340 m / s, Mach 2 corresponding to the speed of sound multiplied by a factor 2, and so on.
  • the material particles 9 are thus conveyed by the vector fluid 8 at a speed of between 300 and 2500 m / s, preferably between 300 and 1700 m / s.
  • projection speeds lead to the production of material coatings 9 on the substrate 6 whose thickness is typically between 50 and 2000 ⁇ .
  • the projection tool 3 is moved above the surface of the substrate to be coated at a so-called scanning speed, this speed varying according to the thickness of the coating to be made or the speed of the projected particles.
  • the coating is carried out on all or part of the surface of the substrate 6 and deposited in the form of one or more layers of material 9. In the context of a coating in the form of several layers, the layers will be deposited immediately. after the others, or after a so-called rest time has elapsed.
  • the material particles 9 are transported by the carrier fluid 8 in the solid state, that is to say that they are unmelted.
  • the mass quantity of material particles 9 projected per unit time using the vector fluid 8 is typically between 1 and 5 kg / h.
  • Materials 9 of different kinds can thus coat different types of substrates 6, themselves formed of metallic, polymeric, ceramic or composite materials.
  • a coating method according to the invention for coating at least a portion of the surface of a substrate with a material copper coatings have been made according to the invention on several types of substrates. : a sheet of aluminum alloy AG5 with a thickness of 10 mm, a sheet of stainless steel type 304 with a thickness of 2 mm and a sheet steel type DX54 used in the automotive industry a thickness 2 mm.
  • the projected material was a pure copper powder with an average grain size of about 50 ⁇ .
  • the vector fluid used was liquid nitrogen at a pressure of the order of 3200 bar and a temperature of the order of -155 ° C, delivered by an ejection tool whose outlet orifice has a diameter of 0.3 mm. This leads to a flow of liquid vector fluid whose flow through the projection tool is of the order of 3 1 / min and the speed of the order 710 m / s.
  • the scanning speed of the projection tool that is to say its speed of displacement above the surface of the substrate to be coated was of the order of 1 m min.
  • this speed is comparable to that which can be achieved with a cold-blasting process according to the prior art, without the fluid being heated.
  • the flow rate of 3 l / min of liquid nitrogen corresponds, at the pressure of the order of 3200 bar involved, to 144 Nm3 / h of nitrogen gas, which is comparable to Nitrogen gas flow rates used with cold-blasting processes according to the prior art.
  • the distance between the outlet orifice of the ejection tool and the surface of the substrate to be coated was of the order of 20 cm.
  • the particle velocity at the output of the projection tool was estimated between Mach 2 and Mach 3.
  • Tests were also conducted with liquid nitrogen at -48 ° C., all conditions being identical elsewhere, and also led to the production of copper coating on the substrates tested.
  • the temperature of -48 ° C has the advantage for certain applications of limiting the cooling of the substrate and therefore of limiting or even eliminating the condensation on the substrate of the water contained in the air.
  • the solution of the invention also relates to a surface treatment plant, including an installation for operating a method of coating at least a portion of the surface of a substrate to be coated with a given material.
  • This installation is essentially characterized by the fact that it comprises a mixing chamber fed by a source of particles of the material to be sprayed and a source of vector fluid, which source of vector fluid cooperates with a compression system and two heat exchangers to produce and feeding said mixing chamber with the carrier fluid at a pressure above 300 bar and at a temperature below 0 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Nozzles (AREA)

Abstract

L'invention à trait à un procédé pour réaliser un revêtement par un matériau (9) d'au moins une partie de la surface d'un substrat (6) par projection de particules dudit matériau (9) vers le substrat (6) à revêtir au moyen d'un fluide vecteur (8) contenant un composé choisi parmi les gaz de l'air. Selon l'invention, ledit fluide vecteur (8) est à l'état liquide, à une pression d'au moins 300 bar et à une température inférieure à 0°C. Installation de traitement de surface associée, notamment une installation pour opérer un procédé selon l'invention.

Description

Procédé de revêtement de surface par projection de particules au moyen d'un fluide vecteur cryogénique
L'invention porte sur un procédé pour réaliser un revêtement par un matériau de la surface d'un substrat, ledit procédé reposant sur la projection de particules dudit matériau vers le substrat à revêtir au moyen d'un fluide vecteur, en particulier de l'azote liquide, ainsi qu'une installation apte à opérer ledit procédé.
Actuellement, il existe différentes techniques pour réaliser le revêtement de la surface d'un substrat par un matériau. En particulier, la projection thermique permet de réaliser des revêtements de bonne qualité, c'est-à-dire épais, homogène, compact et présentant une bonne adhérence sur le substrat traité.
La réalisation d'un revêtement par projection thermique repose sur l'utilisation d'un gaz vecteur pour accélérer, transporter de fines particules du matériau constituant le revêtement sur le substrat à revêtir. Les particules, d'une taille caractéristique allant typiquement de 5 à 100 μιη, en général sous forme de poudre, sont ainsi projetées vers le substrat sur lequel elles s'écrasent et s'accumulent pour former le revêtement désiré. Les revêtements obtenus ont généralement une épaisseur de l'ordre de quelques dizaines à quelques centaines de μιη.
La technique de revêtement par projection thermique implique en général que les particules soient fondues ou partiellement fondues pour favoriser leur accrochage sur le substrat.
Certains procédés, tels la projection thermique par chalumeau ou par plasma d'arc soufflé, conduisent à la fusion complète des particules projetées. Dans ces procédés, réchauffement des particules au-delà de leur température de fusion joue alors un rôle prépondérant par rapport à la vitesse du gaz vecteur pour favoriser l'adhérence du revêtement sur le substrat.
D'autres procédés, tels la projection hypersonique, consistent, toujours en opérant la fusion complète ou quasi-complète des particules projetées, à augmenter signif cativement leur vitesse de projection pour augmenter leur force d'impact sur le substrat.
Toutefois, ces techniques de revêtement repose toutes sur un échauffement important des particules projetées, ce qui conduit à la génération de contraintes thermiques importantes sur le substrat, ainsi qu'à l'oxydation et/ou à des transformations métallurgiques du matériau projeté.
Pour améliorer ces techniques, il a été proposé un procédé de revêtement par projection dite « à froid », comme décrit dans les documents EP-A-0911423 et EP-A-0911425. Dans ce cas, les particules sont projetées sur le substrat à revêtir en utilisant un gaz vecteur chauffé à une température typiquement comprise entre 30 et 900°C, le gaz vecteur contenant en général un gaz neutre, tel l'azote ou l'hélium, à une pression comprise entre 5 et 50 bar.
Habituellement, le gaz vecteur est accéléré à des vitesses supersoniques, de l'ordre de 350 à 1600 m/s, dans une tuyère à géométrie dite « de Laval », c'est-à-dire dont le conduit de gaz comprend une portion amont de forme convergente et une portion aval de forme divergente. Les particules de matériau à projeter sont introduites, généralement sous forme de poudre, dans la tuyère et projetées vers le substrat. L'impact des particules sur le substrat, de par leur grande énergie cinétique, provoque une déformation plastique de celles-ci, en libérant une énergie suffisante à assurer leur accrochage sur le substrat.
Les gaz vecteurs utilisés contiennent en général des composés choisis parmi les gaz de l'air, tels l'hélium ou l'azote, et de préférence des gaz neutres. L'air, l'oxygène ou tout composé contenant de l'oxygène sont en général proscrits pour limiter l'oxydation des particules projetées.
Les procédés de projection à froid traditionnels ont des consommations en gaz vecteur typiquement comprises entre quelques Nm3/h et 150 Nm3/h, c'est-à-dire entre environ 150 et 2500 1 min. A installation de projection équivalente, la consommation horaire en gaz vecteur est comparable que l'on utilise de l'azote ou de l'hélium.
Or, fin 2011 , le coût de la molécule d'hélium en France était environ 70 fois plus cher que le coût de la molécule d'azote. Par conséquent, d'un point de vue économique, l'utilisation de l'azote est préférable à celle de l'hélium.
La projection à froid permet la réalisation de revêtements avec des gaz vecteurs à des températures généralement inférieures à la température de fusion du matériau projeté, à la pression de gaz vecteur utilisée. On limite ainsi les problèmes de changement de structure et d'oxydation du matériau projeté, ainsi que les contraintes thermiques subies par le substrat.
Toutefois, les procédés de projection à froid traditionnels continuent de présenter plusieurs inconvénients.
Tout d'abord, pour former un revêtement de qualité, les particules doivent être projetées à une vitesse dépassant une vitesse dite critique. Autrement dit, si la vitesse des particules est inférieure à la vitesse critique, il n'y a pas de formation de couche de revêtement adhérente sur le substrat, mais une simple érosion du substrat par les particules projetées, si toutefois la dureté desdites particules est supérieure à celle dudit substrat. Cette vitesse critique dépend de la nature du matériau projeté. Par exemple, le document de T. Schmidt et al, « Development of a Generalized Parameter Window for Cold Spray Déposition », Acta Mater., 2006, 54(3), p 729- 742, mentionne pour le cuivre une vitesse critique de 500 m/s, et pour le magnésium, une vitesse critique de 860 m/s.
Pour atteindre ces vitesses, il est nécessaire de chauffer le gaz vecteur. En effet, plus la température du gaz vecteur augmente, plus sa vitesse augmente et plus les particules sont accélérées. Il s'ensuit que la quantité d'énergie cinétique disponible pour la déformation desdites particules à l'impact sur le substrat augmente, ce qui conduit à la réalisation de revêtements plus adhérents et plus compacts. La température à laquelle le gaz vecteur doit être chauffé dépend également de la nature du matériau projeté.
Outre la nécessité d'intégrer des moyens de chauffage du gaz à l'installation de revêtement, conduisant à une complexifîcation de ladite installation, ceci pose problème lorsque l'on souhaite projeter des particules de matériaux dont la température de fusion à pression atmosphérique est relativement basse. C'est le cas par exemple des métaux tels le magnésium, dont la température de fusion est de l'ordre de 650°C, le plomb, dont la température est de l'ordre de 327°C, l'étain, dont la température de fusion est de l'ordre de 230°C, le zinc, dont la température de fusion est de l'ordre de 400°C, ou l'aluminium, dont la température de fusion est de l'ordre de 700°C, ou des matériaux polymères.
Pour ces matériaux dits à point de fusion bas, l'obtention de vitesses de particules projetées supérieures aux vitesses critiques (par exemple 860 m/s pour le magnésium) impose d'utiliser de l'azote gazeux chauffé à des températures supérieures aux températures de fusion des particules projetées, ce qui est à proscrire du fait des problèmes d'altération des propriétés métallurgiques du matériau projeté et de contraintes thermiques résultantes sur le substrat.
II est alors impératif d'utiliser de l'hélium en tant que gaz vecteur. L'hélium étant un gaz léger, il peut être accéléré à une température inférieure que ne peut l'être l'azote pour une vitesse équivalente.
Mais l'utilisation d'hélium n'est pas une solution idéale car elle présente l'inconvénient d'être onéreuse. De plus, l'hélium est une ressource en voie de raréfaction.
Par ailleurs, même en projection à froid, et en particulier pour l'azote, les températures des gaz vecteurs restent relativement élevées, c'est-à-dire entre 200 et 900 °C. Comme expliqué précédemment, ces températures sont indispensables à l'obtention de vitesses de particules projetées suffisantes pour la réalisation de revêtements de qualité.
Or, ces températures peuvent s'avérer incompatibles avec certaines applications, notamment lorsque les substrats à revêtir sont fragiles, par exemple sensibles aux chocs thermiques, comme les céramiques, ou susceptibles de subir des déformations aux températures mises en jeu, ou encore lorsque les revêtements réalisés sont épais, typiquement plus de 500 μιη.
Les contraintes subies par le substrat sont dans ce cas encore plus importantes.
Enfin, les procédés de projection à froid conventionnels imposent de travailler à une distance de l'ordre de 0.5 à 2.5 cm par rapport à la surface du substrat à revêtir. Cette distance correspond à la distance séparant la surface du substrat traité et l'extrémité de l'outil de projection d'où sont projetées les particules. Au-delà de cette distance, les particules projetées n'ont plus une vitesse suffisante pour construire un revêtement de qualité sur le substrat traité.
Ceci constitue donc une limitation importante dans le cas où le substrat présente une surface irrégulière, résultant par exemple d'une rugosité importante, d'un défaut de planéité ou de trous formés intentionnellement dans la profondeur du substrat, le fond de ces zones pouvant alors se situer au-delà de la distance à laquelle les particules ont une vitesse de projection suffisante pour s'accrocher et adhérer au substrat.
Le problème à résoudre est dès lors de proposer un procédé pour réaliser le revêtement d'un substrat par projection d'un matériau qui soit amélioré, c'est-à-dire pour lequel les inconvénients susmentionnés n'existent plus ou sont considérablement limités, en permettant la projection de particules dudit matériau à des vitesses suffisamment importantes pour former un revêtement de qualité, c'est-à-dire épais, adhérent au substrat, homogène et compact, i. e. sans ou avec un niveau de porosités réduit, et ce sans recourir à l'utilisation d'un gaz vecteur chauffé, tout en améliorant la tolérance de positionnement de l'outil de projection par rapport au substrat traité.
La solution de l'invention est alors un procédé pour réaliser un revêtement par un matériau d'au moins une partie de la surface d'un substrat par projection de particules dudit matériau vers le substrat à revêtir au moyen d'un fluide vecteur contenant un composé choisi parmi les gaz de l'air,
caractérisé en ce que ledit fluide vecteur est à l'état liquide, à une pression d'au moins 300 bar et à une température inférieure à 0 °C. En effet, les inventeurs de la présente invention ont mis en évidence que l'utilisation d'un fluide vecteur à l'état liquide, à forte pression, c'est-à-dire au moins 300 bar, et à une température inférieure à 0°C, en particulier de l'azote liquide, permettait de projeter des particules de matériau à une vitesse suffisamment importante pour permettre leur accrochage sur un substrat, et de là la construction rapide d'un revêtement adhérent.
L'intérêt majeur de l'invention réside dans l'utilisation d'un fluide vecteur contenant un composé à l'état liquide, en particulier de l'azote liquide, dont la température est inférieure à 0°C, au lieu d'un gaz vecteur contenant un composé à une température de l'ordre de 200 à 900°C.
D'une part, ceci permet de réduire encore plus efficacement, voire même d'éliminer, le phénomène d'oxydation des particules projetées se produisant dans les procédés de projection à froid de l'art antérieur.
D'autre part, le risque de soumettre le substrat à des contraintes mécaniques importantes est réduit, ce qui est particulièrement avantageux pour la réalisation de revêtements de forte épaisseur, typiquement entre 500 et 2000 μιη. Alors que dans l'art antérieur la réalisation de ces revêtements impose de déposer successivement de nombreuses couches fines en respectant un temps d'attente entre chaque couche pour permettre la diminution en température du substrat, le procédé de l'invention permet de minimiser la montée en température du substrat et donc de réduire le temps d'attente entre chaque couche. Il en résulte une augmentation du rendement du procédé.
Par ailleurs, selon le mode de réalisation considéré, l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :
- le fluide vecteur a une température inférieure à -10 °C, de préférence inférieure à -20 °C.
- le fluide vecteur a une température supérieure à -200 °C, de préférence supérieure à -180°C, de préférence encore supérieure à -160 °C.
- le fluide vecteur a une pression inférieure à 4000 bar.
- le fluide vecteur a une pression inférieure à 1000 bar.
- le fluide vecteur est de l'azote liquide. En d'autres termes, le composé contenu dans le fluide vecteur est de l'azote.
- les particules de matériau sont véhiculées par le fluide vecteur à une vitesse comprise entre 300 et 2500 m/s, de préférence entre 300 et 1700 m/s. - le fluide vecteur est délivré à un débit compris entre 1 et 20 1/min, de préférence entre 2 et 15 1/min.
- les particules de matériau sont formées d'un matériau métallique, polymère, céramique ou composite.
- les particules de matériau sont non fondues.
- les particules de matériau ont une taille moyenne comprise entre 5 et 100 μιη et sont sous forme de poudre.
- le substrat est formé d'un matériau métallique, polymère, céramique ou composite.
- le revêtement de matériau réalisé sur le substrat a une épaisseur comprise entre 50 et 2000 μιη.
- les particules de matériau et le fluide vecteur forment un mélange distribué par un outil de projection sous forme d'un jet dirigé vers le substrat, l'extrémité aval dudit outil de projection étant positionnée à une distance comprise entre 5 et 50 cm de la surface à revêtir du substrat, de préférence entre 10 et 30 cm.
Par ailleurs, l'invention concerne une installation de traitement de surface, notamment une installation pour opérer un procédé selon l'invention, comprenant une chambre de mélange alimentée par une source de particules de matériau et une source de fluide vecteur, laquelle source de fluide vecteur coopère avec un système de compression et deux échangeurs thermiques pour produire et alimenter ladite chambre de mélange avec le fluide vecteur à une pression supérieure à 300 bar et à une température inférieure à 0 °C.
L'invention va maintenant être mieux comprise grâce à la description détaillée suivante faite en référence à la Figure 1 annexée schématisant un mode de réalisation d'un dispositif apte à opérer le procédé de revêtement de l'invention.
Le procédé de l'invention repose sur l'utilisation d'un fluide vecteur 8 contenant un composé choisi parmi les gaz de l'air pour projeter des particules dudit matériau 9 vers la surface du substrat 6 à revêtir et ainsi réaliser le revêtement par ledit matériau 9 d'au moins une partie de la surface du substrat 6.
Comme on le voit sur la Figure 1, un outil de projection 3 est alimenté par un flux de fluide vecteur 8, représenté la flèche 8, au moyen d'une canalisation 2 d'amenée de fluide reliée fiuidiquement à l'extrémité amont 3a de l'outil 3. Selon l'invention, le fluide vecteur 8 est formé d'un composé à l'état liquide, à une pression d'au moins 300 bar et à une température inférieure à 0 °C.
A noter que la pression du fluide vecteur 8 est exprimée en bar absolus. Dans le cadre de la présente invention, on entend donc par le terme bar des bar absolus.
Le composé est choisi parmi les gaz de l'air, c'est-à-dire naturellement présents dans l'air, est peut être notamment de l'azote ou de l'hélium. De préférence, le fluide vecteur 8 est de l'azote liquide, qui présente l'avantage d'être inerte et moins onéreux que l'hélium. Dit autrement, le composé contenu dans le fluide vecteur 8 est dans ce cas de l'azote.
Avantageusement, le fluide vecteur 8 est exempt d'oxygène, de manière à minimiser le risque d'oxydation du matériau 9 projeté.
Une source de fluide vecteur 8 (non représentée) est agencée en amont de la canalisation 2 et reliée fluidiquement à celle-ci. Le principe de l'obtention de fluide vecteur à l'état liquide, à température inférieure à 0°C et sous haute pression, ou dit autrement de fluides cryogéniques à haute pression, est connu et décrit en détail dans les documents US-A-7,310,955 et US-A- 7,316,363.
Typiquement, une installation de production de fluide cryogénique, par exemple d'azote liquide, à haute pression comprend un réservoir de stockage de fluide vecteur à l'état liquide, qui alimente, via une ligne d'amenée de fluide vecteur liquide sous basse pression, c'est-à-dire à environ de 3 à 6 bar et à une température de -180°C environ, un dispositif de compression, avec compresseur et échangeur thermique amont permettant une mise à ultra haute pression de l'azote liquide.
Le dispositif de compression permet donc de réaliser la compression de l'azote liquide provenant du réservoir de stockage.
L'azote liquide à la première pression est alors véhiculé via une ligne de convoyage, jusqu'à un échangeur thermique aval où l'azote liquide subit un refroidissement avec de l'azote liquide à pression atmosphérique, pour obtenir typiquement de l'azote liquide.
Il en résulte de l'azote liquide à une pression typiquement supérieure à 300 bar, généralement comprise entre 1000 bar et 4000 bar et à une température inférieure à 0°C, typiquement entre -10°C et -200°C, qui est envoyé vers l'outil de projection 3. Le flux de fluide vecteur 8 suit un trajet représenté par la ligne en pointillés 7 au sein de l'outil de projection 3. Il est délivré à un débit compris entre 1 et 20 1/min, de préférence entre 2 et 15 1/min.
Le fluide vecteur 8 est délivré dans l'outil de projection 3 à une température inférieure à 0°C, de préférence inférieure à -10 °C, de préférence encore inférieure à -20 °C. Avantageusement, le fluide vecteur 8 a une température supérieure à -200 °C, de préférence supérieure à -180 °C, de préférence encore supérieure à -160 °C.
La pression du fluide vecteur 8 est d'au moins 300 bar, et reste de préférence inférieure à 4000 bar. Il est également possible dans certains cas d'opérer le procédé de l'invention à des pressions de fluide vecteur 8 inférieures à 1000 bar.
L'outil de projection 3 est également alimenté par un flux de particules de matériau 9 à projeter. Ce flux est distribué par un conduit 1. Les particules de matériau 9 ont une taille caractéristique de l'ordre de 5 à 100 μιη. Avantageusement, le matériau 9 est distribué sous forme de poudre.
Plus précisément, l'outil de projection 3 comprend une chambre de mélange 4 alimentée par le flux de fluide vecteur 8 et par le flux de particules de matériau 9.
Selon un mode de réalisation particulier, la chambre de mélange 4 est apte à et conçue pour créer, par effet « Venturi », une dépression servant à aspirer les particules de matériau 9 vers ladite chambre de mélange 4.
De façon générale, dans le cadre de l'invention, la chambre de mélange 4 est apte à et conçue pour mélanger le flux de fluide vecteur 8 et par le flux de particules de matériau 9 de manière à ce que les particules de matériau 9 soient transportées et accélérées par le flux de fluide vecteur 8, à une vitesse de l'ordre de la vitesse du fluide vecteur 8.
Le mélange de particules de matériau 9 et de fluide vecteur 8 est alors distribué par un orifice de sortie situé à l'extrémité aval 3b de l'outil de projection 3 sous forme d'un jet 5 dirigé vers le substrat 6 à revêtir. Selon, la pression et la température du fluide vecteur 8, l'extrémité aval 3b de l'outil de projection 3 est positionnée à une distance comprise entre 5 et 50 cm de la surface à revêtir du substrat 6, de préférence entre 10 et 30 cm. Le procédé de l'invention se caractérise donc par des distances de travail importantes, ce qui est avantageux lorsque le revêtement doit être réalisé sur une surface irrégulière ou présentant des trous ou des renfoncements. Selon l'invention, le fluide vecteur est distribué dans l'outil de projection 3 à une vitesse comprise entre Mach 1 et Mach 7, c'est-à-dire entre 300 et 2500 m/s, de préférence entre Mach 1 et Mach 5, c'est-à-dire entre environ 300 et 1700 m/s, la vitesse Mach 1 correspondant à la vitesse du son dans l'air, 340 m/s, Mach 2 correspondant à la vitesse du son multipliée par un facteur 2, et ainsi de suite. Les particules de matériau 9 sont ainsi véhiculées par le fluide vecteur 8 à une vitesse comprise entre 300 et 2500 m/s, de préférence entre 300 et 1700 m/s.
Ces vitesses de projection conduisent à la réalisation de revêtements de matériau 9 sur le substrat 6 dont l'épaisseur est typiquement comprise entre 50 et 2000 μιη. Pour ce faire, l'outil de projection 3 est déplacé au-dessus de la surface du substrat à revêtir à une vitesse dite de balayage, cette vitesse variant selon l'épaisseur du revêtement à réaliser ou la vitesse des particules projetées. Le revêtement est réalisé sur tout ou partie de la surface du substrat 6 et déposé sous forme d'une ou plusieurs couches de matériau 9. Dans le cadre d'un revêtement sous forme de plusieurs couches, on procédera au dépôt des couches immédiatement les unes après les autres, ou après qu'un temps dit de repos s'est écoulé.
Avantageusement, les particules de matériau 9 sont transportées par le fluide vecteur 8 à l'état solide, c'est-à-dire qu'elles sont non fondues. La quantité massique de particules de matériau 9 projetées par unité de temps au moyen du fluide vecteur 8 est typiquement comprise entre 1 et 5 kg/h.
Des matériaux 9 de différentes natures, typiquement des matériaux métalliques, polymères, céramiques ou composites, peuvent ainsi revêtir différents types de substrats 6, eux- mêmes formés de matériaux métalliques, polymères, céramiques ou composites.
Exemples
Afin de démontrer l'efficacité d'un procédé de revêtement selon l'invention pour revêtir au moins une partie de la surface d'un substrat par un matériau, des revêtements de cuivre ont été réalisés conformément à l'invention sur plusieurs types de substrats : une tôle en alliage d'aluminium AG5 d'une épaisseur de 10 mm, une tôle en acier inoxydable de type 304 d'une épaisseur de 2 mm et une tôle en acier de type DX54 utilisée dans l'industrie automobile d'une épaisseur de 2 mm. Le matériau projeté était une poudre de cuivre pur avec une taille moyenne de grains de l'ordre de 50 μιη.
Le fluide vecteur utilisé était de l'azote liquide à une pression de l'ordre de 3200 bars et une température de l'ordre de -155°C, délivré par un outil d'éjection dont l'orifice de sortie a un diamètre de 0.3 mm. Ceci conduit à un flux de fluide vecteur liquide dont le débit à travers l'outil de projection est de l'ordre de 3 1/min et la vitesse de l'ordre 710 m/s. La vitesse de balayage de l'outil de projection, c'est-à-dire sa vitesse de déplacement au-dessus de la surface du substrat à revêtir était de l'ordre de 1 m min.
A titre indicatif, cette vitesse est comparable à celle qui peut être atteinte avec un procédé de projection à froid selon l'art antérieur, et ceci sans que le fluide ne soit chauffé. De plus, il est à noter que le débit de 3 1/min d'azote liquide correspond, à la pression de l'ordre de 3200 bar mise en jeu, à 144 Nm3/h d'azote gazeux, ce qui est comparable aux débits d'azote gazeux utilisés avec les procédés de projection à froid selon l'art antérieur.
Lors de ces essais, la distance entre l'orifice de sortie de l'outil d'éjection et la surface du substrat à revêtir était de l'ordre de 20 cm. La vitesse des particules en sortie de l'outil de projection était estimée entre Mach 2 et Mach 3.
Ces essais ont conduit à la formation de revêtements de cuivre d'une épaisseur d'environ 150 μιη, présentant de bonnes propriétés d'adhérence sur les substrats traités.
Des essais ont également été menés avec de l'azote liquide à -48°C, toutes conditions étant identiques par ailleurs, et ont également conduits à la réalisation de revêtement de cuivre sur les substrats testés. La température de -48°C présente l'avantage pour certaines applications de limiter le refroidissement du substrat et donc de limiter, voire supprimer, la condensation sur le substrat de l'eau contenue dans l'air.
Ces essais démontrent donc clairement l'efficacité de l'invention qui permet de projeter des particules de matériau à des vitesses suffisamment importantes pour former un revêtement constitué dudit matériau qui soit adhérent au substrat à revêtir, et ce sans recourir à l'utilisation d'un gaz vecteur chauffé.
Par ailleurs, la solution de l'invention concerne également une installation de traitement de surface, notamment une installation pour opérer un procédé de revêtement d'au moins une partie de la surface d'un substrat à revêtir par un matériau donné. Cette installation se caractérise essentiellement par le fait qu'elle comprend une chambre de mélange alimentée par une source de particules du matériau à projeter et une source de fluide vecteur, laquelle source de fluide vecteur coopère avec un système de compression et deux échangeurs thermiques pour produire et alimenter ladite chambre de mélange avec le fluide vecteur à une pression supérieure à 300 bar et à une température inférieure à 0 °C.

Claims

Revendications
1. Procédé pour réaliser un revêtement par un matériau (9) d'au moins une partie de la surface d'un substrat (6) par projection de particules dudit matériau (9) vers le substrat (6) à revêtir au moyen d'un fluide vecteur (8) contenant un composé choisi parmi les gaz de l'air, caractérisé en ce que ledit fluide vecteur (8) est à l'état liquide, à une pression d'au moins 300 bar et à une température inférieure à 0 °C.
2. Procédé selon la revendication 1, caractérisé en ce que le fluide vecteur (8) a une température inférieure à -10 °C, de préférence inférieure à -20 °C.
3. Procédé selon l'une des revendications précédentes, caractérisé en ce que le fluide vecteur (8) a une température supérieure à -200 °C, de préférence supérieure à -180 °C, de préférence encore supérieure à -160 °C.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que le fluide vecteur (8) a une pression inférieure à 4000 bar.
5. Procédé selon l'une des revendications précédentes, caractérisé en que le fluide vecteur (8) a une pression inférieure à 1000 bar.
6. Procédé selon l'une des revendications précédentes, caractérisé en que le fluide vecteur (8) est de l'azote liquide.
7. Procédé selon l'une des revendications précédentes, caractérisé en que les particules de matériau (9) sont véhiculées par le fluide vecteur (8) à une vitesse comprise entre 300 et 2500 m/s, de préférence entre 300 et 1700 m/s.
8. Procédé selon l'une des revendications précédentes, caractérisé en que le fluide vecteur (8) est délivré à un débit compris entre 1 et 20 1/min, de préférence entre 2 et 15 1/min.
9. Procédé selon l'une des revendications précédentes, caractérisé en que les particules de matériau (9) sont formées d'un matériau métallique, polymère, céramique ou composite.
10. Procédé selon l'une des revendications précédentes, caractérisé en que les particules de matériau (9) sont non fondues.
11. Procédé selon l'une des revendications précédentes, caractérisé en que les particules de matériau (9) ont une taille moyenne comprise entre 5 et 100 μιη et sont sous forme de poudre.
12. Procédé selon l'une des revendications précédentes, caractérisé en que le substrat (6) est formé d'un matériau métallique, polymère, céramique ou composite.
13. Procédé selon l'une des revendications précédentes, caractérisé en que le revêtement de matériau (9) réalisé sur le substrat (6) a une épaisseur comprise entre 50 et 2000 μιη.
14. Procédé selon l'une des revendications précédentes, caractérisé en ce que les particules de matériau (9) et le fluide vecteur (8) forment un mélange distribué par un outil de projection (3) sous forme d'un jet (5) dirigé vers le substrat (6), l'extrémité aval (3b) dudit outil de projection (3) étant positionnée à une distance comprise entre 5 et 50 cm de la surface à revêtir du substrat (6), de préférence entre 10 et 30 cm.
15. Installation de traitement de surface, notamment une installation pour opérer un procédé selon l'une des revendications 1 à 14, comprenant une chambre de mélange (4) alimentée par une source de particules de matériau (9) et une source de fluide vecteur (8), laquelle source de fluide vecteur (8) coopère avec un système de compression et deux échangeurs thermiques pour produire et alimenter ladite chambre de mélange (4) avec le fluide vecteur (8) à une pression supérieure à 300 bar et à une température inférieure à 0 °C.
EP12775802.7A 2011-12-12 2012-10-01 Procédé de revêtement de surface par projection de particules au moyen d'un fluide vecteur cryogénique Not-in-force EP2791389B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1161473A FR2983874B1 (fr) 2011-12-12 2011-12-12 Procede de revetement de surface par projection de particules au moyen d'un fluide vecteur cryogenique
PCT/FR2012/052219 WO2013088007A1 (fr) 2011-12-12 2012-10-01 Procédé de revêtement de surface par projection de particules au moyen d'un fluide vecteur cryogénique

Publications (2)

Publication Number Publication Date
EP2791389A1 true EP2791389A1 (fr) 2014-10-22
EP2791389B1 EP2791389B1 (fr) 2015-12-30

Family

ID=47071386

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12775802.7A Not-in-force EP2791389B1 (fr) 2011-12-12 2012-10-01 Procédé de revêtement de surface par projection de particules au moyen d'un fluide vecteur cryogénique

Country Status (5)

Country Link
US (1) US20140377469A1 (fr)
EP (1) EP2791389B1 (fr)
JP (1) JP2015507690A (fr)
FR (1) FR2983874B1 (fr)
WO (1) WO2013088007A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747383A1 (de) 1997-10-27 1999-04-29 Linde Ag Verbinden von Werkstücken
DE19747386A1 (de) 1997-10-27 1999-04-29 Linde Ag Verfahren zum thermischen Beschichten von Substratwerkstoffen
US7316363B2 (en) 2004-09-03 2008-01-08 Nitrocision Llc System and method for delivering cryogenic fluid
US7310955B2 (en) 2004-09-03 2007-12-25 Nitrocision Llc System and method for delivering cryogenic fluid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013088007A1 *

Also Published As

Publication number Publication date
WO2013088007A1 (fr) 2013-06-20
EP2791389B1 (fr) 2015-12-30
JP2015507690A (ja) 2015-03-12
US20140377469A1 (en) 2014-12-25
FR2983874B1 (fr) 2014-02-21
FR2983874A1 (fr) 2013-06-14

Similar Documents

Publication Publication Date Title
JP5802435B2 (ja) 燃焼コールドスプレー及びその方法
EP2501888B1 (fr) Procédé de fabrication d'un vitrage isolant
FR2845937A1 (fr) Cuivre pulverise a froid pour applications a un moteur de fusee.
MXPA05013017A (es) Proceso de aspersion en frio por vacio.
EP1972699A1 (fr) Procede de revetement d'un substrat et installation de depot sous vide d'alliage metallique
EP3017084B1 (fr) Procede de preparation a la depose d'un revetement metallique par projection thermique sur un substrat
FR2981286A1 (fr) Methodologie hybride amelioree pour produire des revetements composites, multicouches et a gradient par pulverisation par plasma utilisant une poudre et une charge de precurseur en solution
JP2006265732A (ja) コールドスプレーを用いてエンジン部品に接合被覆を付与する方法
FR2762667A1 (fr) Dispositif et procede de traitement thermique
WO2011131757A1 (fr) Procédé de préparation d'un revêtement multicouche sur une surface d'un substrat par projection thermique
US9040116B2 (en) Method and device for coating components
EP2791389B1 (fr) Procédé de revêtement de surface par projection de particules au moyen d'un fluide vecteur cryogénique
FR3038623A1 (fr) Procede permettant de retirer les oxydes presents a la surface des nodules d'une poudre metallique avant l'utilisation de celle-ci dans un procede industriel
CA2766493A1 (fr) Revetement de protection thermique pour une piece de turbomachine et son procede de realisation
EP3374543A1 (fr) Revêtement céramique multicouche de protection thermique à haute température, notamment pour application aéronautique, et son procédé de fabrication
WO1995007768A1 (fr) Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en ×uvre
EP2371994B1 (fr) Procédé pour réaliser un revêtement d'acier inoxydable sur une matrice en cuivre
FR2896489A1 (fr) Cuve en materiau composite resistant a la corrosion
EP3785805A1 (fr) Pistolet pour projeter une couche isolante sur un plafond à l aide d'un flux de liquide et procédé de production d'une telle couche isolante
Zhao et al. Feasibility Study of Brazing Aluminium Alloys Through Pre‐Deposition of a Braze Alloy by Cold Spray Process
FR3049819A1 (fr) Fer a cheval comportant un revetement resistant a l'abrasion et au choc
GB2415708A (en) High velocity oxy-fuel spraying system utilising superfine powder particles
FR3001977A1 (fr) Procede de depot d'un revetement contre la corrosion a partir d'une suspension
JP2008274318A (ja) エアロゾル吐出ノズルおよび被膜形成装置
FR2950280A1 (fr) Procede de travail par jet de fluide cryogenique pulse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 24/04 20060101AFI20150630BHEP

Ipc: B05D 1/02 20060101ALI20150630BHEP

Ipc: B05B 7/14 20060101ALI20150630BHEP

Ipc: B05D 1/12 20060101ALI20150630BHEP

Ipc: B05C 19/04 20060101ALI20150630BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150813

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 767541

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012013455

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151230

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 767541

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160502

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012013455

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181019

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181023

Year of fee payment: 7

Ref country code: GB

Payment date: 20181019

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012013455

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031