EP2788494A1 - Biotechnological production of 3-hydroxyisobutyric acid - Google Patents

Biotechnological production of 3-hydroxyisobutyric acid

Info

Publication number
EP2788494A1
EP2788494A1 EP12784273.0A EP12784273A EP2788494A1 EP 2788494 A1 EP2788494 A1 EP 2788494A1 EP 12784273 A EP12784273 A EP 12784273A EP 2788494 A1 EP2788494 A1 EP 2788494A1
Authority
EP
European Patent Office
Prior art keywords
coenzyme
cell
isobutyryl
dehydrogenase
isobutyrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12784273.0A
Other languages
German (de)
French (fr)
Inventor
Thomas Haas
Steffen Schaffer
Markus PÖTTER
Mirja Wessel
Jan Christoph Pfeffer
Christian Gehring
Nicole KIRCHNER
Eva Maria WITTMANN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Priority to EP12784273.0A priority Critical patent/EP2788494A1/en
Publication of EP2788494A1 publication Critical patent/EP2788494A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/99Oxidoreductases acting on the CH-CH group of donors (1.3) with other acceptors (1.3.99)
    • C12Y103/99002Butyryl-CoA dehydrogenase (1.3.99.2), i.e. short chain acyl-CoA dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02007Butyrate kinase (2.7.2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01017Enoyl-CoA hydratase (4.2.1.17), i.e. crotonase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/01002Butyrate-CoA ligase (6.2.1.2)

Definitions

  • the invention relates to a process comprising the steps of a) providing isobutyric acid, b) contacting isobutyric acid with the combination of isobutyrate kinase and phosphotransisobutyrylase and / or isobutyryl-coenzyme A synthetase / ligase and / or isobutyrate-coenzyme A transferase, c ) Contacting the product of step b) with isobutyryl-coenzyme A dehydrogenase, d) contacting the product of step c) with methacrylyl-coenzyme A hydrate, and e) hydrolysing the product of step d) to give 3-hydroxyisobutyric acid, wherein at least one of the enzymes is provided in the form of a cell comprising a reduced activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof, a cell comprising at least one enzyme selected from the group consisting of
  • Methacrylic acid is one of the most important industrially manufactured chemicals. In the form of its monomeric methyl ester, it is required for the production of polymethylmethacrylate as a polymerization educt, which is known to the public under the trade name Plexiglas and indispensable for a variety of applications.
  • polymethacrylate examples include dentistry, where it is used for prostheses, the automotive industry, in which it is used for turn signal and taillight glasses, the optics, especially as a material for contact lenses and spectacle lenses, the building industry, where it is polymer concrete as well is used as a two-component adhesive, the textile industry as Component of polyacrylic fibers and in the household as a material for items such as bowls and cutlery.
  • methacrylic acid is produced from fossil fuels such as oil.
  • isobutylene and tertiary butanol may be converted to methacrylein, which is subsequently further oxidized to methacrylate (William Bauer, Jr. "Methacrylic Acid and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim).
  • amide sulfates of methacrylic acid produced from corresponding 2-hydroxynitriles can be hydrolyzed to form methacrylic acid.
  • the industrial production of methacrylic acid using such methods not only depends on a continuous supply of fossil reactants, but is done by consuming significant amounts of aggressive, environmentally harmful chemicals.
  • the production of 1 kg of methacrylic acid by hydrolysis of amide sulfates of methacrylic acid requires 1.6 kg of sulfuric acid.
  • the prior art teaches the preparation of 3-hydroxyisobutyric acid from isobutyric acid using the Wld type isolates of bacteria and yeasts (Hasegawa et al., 1981, Hasegawa et al., 1982, WO 2007/141208 A2 and WO 2008/19738 A1). , As a substrate for the production of 3-hydroxyisobutyric acid by suitable strains, for example by Candida rugosa, isobutyric acid is used exclusively.
  • the object of the present invention is to develop an improved process for the biotechnological production of 3-hydroxyisobutyric acid, which is superior to the processes described in the prior art with regard to yield, purity and resource requirements.
  • the object underlying the present invention is to develop a biotechnological process for the preparation of 3-hydroxyisobutyric acid starting from unsubstituted, in particular non-heteroatom-containing alkanes. Furthermore, the present invention is based on the object to develop a biotechnological process for the production of 3-hydroxyisobutyric acid starting from renewable raw materials and / or without the use of or with less use of harmful starting materials, intermediates, catalysts or by-products.
  • the object is achieved in a first aspect by a process comprising the following steps: a) providing isobutyric acid, b) contacting isobutyric acid with the combination of isobutyrate kinase and phosphotransisobutyrylase and / or Isobutyryl-coenzyme A synthetase / ligase and / or isobutyrate-coenzyme A-transferase, c) contacting the product from step b) with isobutyryl-coenzyme A dehydrogenase, d) contacting the product from step c) with methacrylyl-coenzyme A- Hydratase, and e) hydrolysis of the product of step d) to form 3-hydroxyisobutyric acid, wherein at least one of the enzymes used in steps b), c) and d) is selected from the group comprising isobutyrate kinase, phosphotransisobutyrylase
  • the isobutyric acid is formed by contacting isobutane with a monooxygenase, preferably an alkane hydroxylase, more preferably one of the AlkBGT type or a variant thereof.
  • a monooxygenase preferably an alkane hydroxylase, more preferably one of the AlkBGT type or a variant thereof.
  • step e) is achieved by contacting the product of step d) with a 3-hydroxysobutyryl-coenzyme A hydrolase.
  • the cell has both the isobutyryl-coenzyme A dehydrogenase in step c) and the methacrylyl coenzyme A hydratase in step d) as well Combination of isobutyrate kinase and phosphotransisobutyrylase and / or isobutyryl-coenzyme A synthetase / ligase and / or Isobutyrate coenzyme A transferase on.
  • the cell additionally comprises an alkane hydroxylase, preferably one of the AlkBGT type or a variant thereof.
  • the 3-hydroxyisobutyric acid dehydrogenase is XP_50491 1.1 or a variant thereof.
  • the object is achieved in a second aspect by a cell which comprises at least one enzyme from the group comprising isobutyryl-coenzyme A synthetase / ligase, isobutyrate-coenzyme A-transferase, isobutyrate kinase, phosphotransisobutyrylase, isobutyryl-coenzyme A dehydrogenase, Methacrylyl coenzyme A hydratase and 3-Hydroxisobutyryl- coenzyme A hydrolase and a reduced compared to their wild type activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof.
  • at least one enzyme from the group comprising isobutyryl-coenzyme A synthetase / ligase, isobutyrate-coenzyme A-transferase, isobutyrate kinase, phosphotransisobutyrylase, isobutyryl-co
  • the cell in addition to an isobutyryl-coenzyme A dehydrogenase and in addition to a methacrylyl coenzyme A hydratase, the cell comprises the combination of isobutyrate kinase and phosphotransisobutyrylase and / or isobutyryl-coenzyme A synthetase / ligase and / or isobutyrate-coenzyme A-transferase. preferably further comprises a 3-hydroxyisobutyryl-CoA-hydrolase. on.
  • the cell further comprises an alkane hydroxylase, preferably one of the AlkBGT type or a variant thereof.
  • a third embodiment of the second aspect which is also an embodiment of the first embodiment, is the 3-hydroxyisobutyric acid dehydrogenase and YaliOF02607g (XP_504911) or a variant thereof.
  • the problem underlying the invention is solved by the use of the cell according to any one of claims 7 to 10 for the preparation of 3-hydroxyisobutyric acid.
  • the 3-hydroxyisobutyric acid dehydrogenase is XP_50491 1.1 or a variant thereof.
  • the inventors of the present invention have surprisingly found that inactivating a gene encoding an enzyme identified as 3-hydroxyisobutyric acid dehydrogenase in an microorganism results in an increased yield of 3-hydroxyisobutyric acid.
  • the inventors have furthermore surprisingly found that it is possible to produce 3-hydroxyisobutyric acid biotechnologically starting from alkane educts, in particular isobutane.
  • the execution of the method according to the invention first requires the preparation of isobutyric acid.
  • isobutyric acid is prepared by contacting isobutane or another suitable alkane precursor with a suitable monooxygenase, preferably alkane hydroxylase, which in a particularly preferred embodiment is an alkyd hydroxylase of the AlkBGT type or a variant thereof.
  • alkane hydroxylase means an oxidoreductase capable of oxidizing saturated hydrocarbons, particularly isobutane or 3-hydroxyisobutane, to the carboxylic acid, preferably at a terminal carbon atom
  • oxidoreductase capable of oxidizing saturated hydrocarbons, particularly isobutane or 3-hydroxyisobutane, to the carboxylic acid, preferably at a terminal carbon atom
  • isobutyric acid by suitable strains of microorganisms naturally or genetically modified with metabolic pathways involving the production of isobutyric acid when fed with suitable carbon sources, for example glucose.
  • suitable carbon sources for example glucose.
  • suitable carbon sources for example glucose.
  • suitable carbon sources for example glucose.
  • Yarrowia lipolytica Candida rugosa, Hanseniaspora valbyensis, Hansenula anomala, Trichosporon aculeatum, Trichosporon fennicum, Endomyces reessii, Geotrichum loubieri, Micrococcus flavus, Micrococcus luteus, Micrococcus lysodeikticum, Candida parapsilosis, Pichia membranaefaciens, Torulopsis Candida, Coccidioides posadasii, Coccidioides immitis, Verticillium dahliae, zeae, Gibberella, Thielavia terrestris, Metarhizium acridum oryzae Magnaporthe, Sordaria macrospora, Metarhizium nisopliae, Ajellomyces dermatitidis, Chaetomium globosum, Paracoccidioides brasiliensis, Nectria haemato
  • the isobutyric acid is provided by oxidation of isobutane by the oxidoreductase AlkB from the alkBGT system from Pseudomonas putida or a variant thereof.
  • AlkB represents an oxidoreductase from the alkBGT system from Pseudomonas putida, which is known for its alkane hydroxylase activity. This is dependent on two other polypeptides, AlkG and AlkT.
  • AlkT is characterized as FAD-dependent rubredoxin reductase, which transfers electrons from NADH to AlkG.
  • AlkG is a rubredoxin, an iron-containing redox protein that acts as a direct electron donor for AlkB.
  • AlkBGT-type alkane hydrahydroylase as used herein is understood to mean a membrane-bound alkane monooxidase
  • a polypeptide having a sequence homology of increasingly preferred is the same term "alkBGT-type alkane hydrohylase” at least 75, 80, 85, 90, 92, 94, 96, 98 or 99% to the sequence of the AlkB of Pseudomonas putida Gpo1 (database code: CAB54050.1) understood.
  • the term is understood to mean a cytochrome-independent monooxygenase.
  • the term "alkBGT-type alkanohydrohylase” is understood to mean a cytochrome-independent monooxygenase which uses at least one rubredoxin or homologue as electron donor.
  • the term "membrane-active, cytochrome-independent alkanoneoxygenase” is used with more preferably at least 60, 70, 80, 80, 85, 90, 92, 94, 96, 98 or 99% to the sequence of the AlkB of Pseudomonas putida Gpo1, which as electron donor at least AlkG (CAB54052.1), but preferably the Combination of AlkG with the reductase AlkT (CAB54063.1), where alkG and / or alkT may also be a homologue of the respective polypeptide.
  • it is an "alkB-type oxidoreductase" as herein used to produce a cytochrome-independent oxidoreductase, ie an oxidoreductase that does not contain cytochrome as a cofactor.
  • isobutane in particular AlkB.
  • isobutane is contacted with a AlkBGT-containing whole-cell catalyst, expressed in a Rushzugtesten embodiment with a recombinant £ .co // 'strain of heterologous AlkBGT.
  • the teachings of the present invention may be made not only by using the exact amino acid or nucleic acid sequences of the biological macromolecules described herein, but also by using variants of such macromolecules obtained by deletion, addition or substitution of one or more amino acids or nucleic acids can.
  • the term "variant" of a nucleic acid sequence or amino acid sequence hereinafter synonymous and interchangeable with the term “homologue” as used herein, means another nucleic acid or amino acid sequence that is unique with respect to the corresponding original wild-type nucleic acid sequence. or amino acid sequence has a homology, here used as identity, of 70, 75, 80, 85, 90, 92, 94, 96, 98, 99% or more percent, preferably other than the catalytically active center forming amino acids or for the structure or folding essential amino acids are deleted or substituted or the latter are only conservatively substituted, for example, a glutamate instead of an aspartate or a leucine instead of a valine.
  • the variant of an amino acid or nucleic acid sequence preferably in addition to the sequence homology mentioned above, has essentially the same enzymatic activity of the wild-type molecule or the original molecule.
  • a variant of a polypeptide enzymatically active as protease has the same or substantially the same proteolytic activity as the polypeptide enzyme, ie the ability to catalyze the hydrolysis of a peptide bond.
  • the term “substantially the same enzymatic activity” means an activity with respect to the substrates of the wild-type polypeptide that is significantly above the background activity and / or that differs by less than 3, more preferably 2, more preferably an order of magnitude from the K M and / or k cat values
  • the term "variant" of a nucleic acid or amino acid sequence comprises at least one active part or fragment of the nucleic acid or amino acid sequence.
  • the term "active part" as used herein means an amino acid sequence or nucleic acid sequence which is less than full length of the amino acid sequence or less than full length of the amino acid sequence encoding the amino acid sequence or amino acid sequence the encoded amino acid sequence of lesser length than the Wldtype amino acid sequence has substantially the same enzymatic activity as the Wldtype polypeptide or a variant thereof, for example as alcohol dehydrogenase, monooxygenase or transaminase
  • the term "variant" of a nucleic acid comprises a nucleic acid whose complementary strand, preferably under stringent conditions, binds to the wild-type nucleic acid.
  • the stringency of the hybridization reaction is readily determinable by those skilled in the art and generally depends on the length of the probe, the temperatures of washing and the salt concentration. In general, longer probes require higher temperatures for hybridization, whereas shorter probes manage at low temperatures. Whether hybridization takes place generally depends on the ability of denatured DNA to anneal to complementary strands present in their environment, below the melting temperature.
  • the stringency of hybridization reaction and corresponding conditions are more fully described in Ausubel et al. 1995 described.
  • the term "variant" of a nucleic acid as used herein includes any nucleic acid sequence encoding the same amino acid sequence as the original nucleic acid or a variant of that amino acid sequence in the context of degeneracy of the genetic code.
  • isobutyric acid After providing isobutyric acid, this invention is contacted with an enzyme or enzyme system capable of converting it to isobutyryl-CoA. It is possible to contact isobutyric acid with the combination of isobutyrate kinase and phosphorotransisobutyrylase.
  • isobutyrate kinase as used herein is meant an enzyme capable of adding isobutyric acid with hydrolysis of ATP phosphorylate.
  • phosphotransisobutyrylase as used herein means an enzyme which catalyzes the reaction of the phosphorylated butyric acid with consumption of coenzyme A to form isobutyryl-CoA ..
  • Suitable enzymes can be taken from the prior art, for example : NP_348286.1, YP_001311072.1, YP_001311673.1, YP_003845108.1, CCC57671.1, ZP_02993103.1, YP_001255907.1, YP_001788766.1, YP_001783065.1, ZP_02613551.1, ZP_05129586.1, NP_783068.1, ZP_02616584 .1, YP_001392779.1, ZP_02642313.1, YP_697036.1, NP_563263.1, YP_699607.1, ZP_05129585.1, ZP_05394270.1, ZP_04821992.1, YP_001086582.1, YP_001884532.1, YP_001919732.1, YP_001513941.1 , YP_001322041.1, NP_3496
  • ZP_04152833.1 YP_001126403.1, ZP_03147541.1, ZP_04218902.1, ZP_08609344.1 ZP_00240356.1, YP_002368967.1, ZP_04147476.1, ZP_04176201.1, ZP_04269443.1
  • ZP_04187800.1 ZP_04313571.1, ZP_03231885.1, ZP_03237173.1, ZP_04086212.1
  • isobutyryl-CoA can be obtained using isobutyryl-coenzyme A synthetase or ligase from isobutyric acid.
  • isobutyryl-coenzyme A ligase refers to an enzyme which catalyzes the conversion of isobutyric acid to isobutyryl-CoA consuming coenzyme A and nucleotide triphosphate, in a particularly preferred embodiment
  • isobutyryl-coenzyme A synthetase as used herein means an isobutyryl-coenzyme A ligase wherein the NTP hydrolyzed in the course of the reaction is ATP.
  • Suitable enzymes can be found by those skilled in the art, for example: NP_579516.1, NP_125992.1, YP_004423263.1, YP_004070968.1, YP_182878.1, YP_002306709.1, YP_002959654.1, YP_004762301.1, YP_002581616.1, YP_002994502.
  • isobutyryl-CoA can be prepared from isobutyric acid by means of isobutyrate-coenzyme A transferase.
  • isobutyrate-coenzyme A transferase is an enzyme that catalyzes the production of isobutyryl-CoA from isobutyric acid to transfer coenzyme A from a donor-acting acyl-CoA Suitable enzymes can be found by the person skilled in the art, for example: NP_149326.1, AAB53234.1, YP_001310904.1, AAD54947.1, AAP42564.1, CAQ57984.1, YP_001886322.1, NP_622378.1, ZP_08693244.1, ZP_07926619 .1, ZP_08555875.1, ZP_04390377.1, ZP_01867058.1, ZP_04573915.1, ZP_07913714.1, Z
  • the next step in the biotechnological synthesis of 3-hydroxyisobutyric acid according to the invention comprises contacting the product from step b), the isobutyryl-CoA, with an isobutyryl-coenzyme A dehydrogenase.
  • isobutyryl-coenzyme A dehydrogenase means an enzyme which catalyzes the oxidation of isobutyryl coenzyme A to methacrylyl coenzyme A to release reducing equivalents
  • isobutyryl-coenzyme A dehydrogenase as used herein means an enzyme which catalyzes the oxidation of isobutyryl coenzyme A to methacrylyl coenzyme A to release reducing equivalents
  • Prior art known polypeptides with the database codes XP_501919.2, EDP50227.1, XP_001267173.1, XP_751977.1, EFW17827.1, XP_001241675.1, XP_003070631.1, XP_002376988.1, EGS22147.1, XP_001271742.1, XP_002794645.
  • the next step of the process of the invention involves the hydration of methacrylyl coenzyme A to give 3-hydroxyisobutyryl CoA by means of a methacrylyl coenzyme A hydratase.
  • methacrylyl-coenzyme A hydratase means an enzyme which catalyzes the attachment of a water molecule to methacrylyl coenzyme A to form 3-hydroxyisobutyric acid
  • Known polypeptides with the database codes XP_502475.1, XP_003067220.1, XP_001239658.1, XP_002567879.1, XP_002145078.1, XP_001259415.1, CAK97202.1, XP_001211164.1, XP_001401252.2, XP_753374.1, XP_664448.1, CBF71576.1, XP_001274572.1, XP
  • the hydrolysis of the product from step d), the 3-hydroxyisobutyryl-CoA is required.
  • the hydrolysis is carried out by contacting the product from step c) with a 3-hydroxyisobutyryl-coenzyme A hydrolase.
  • the term "3-hydroxyisobutyryl-coenzyme A-hydrolase" as used herein means an enzyme which hydrolyzes 3-hydroxyisobutyryl-coenzyme A to 3-hydroxyisobutyric acid and coenzyme A.
  • biologically active enzymes are used in step b) to d).
  • the enzymes may, as long as at least one of the enzymes is used in the form of a cell having a reduced their wild type activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof, as in all the invention used enzymatically active polypeptides to cells comprising enzymatically active polypeptides or whose lysates or preparations of the polypeptides in all purification stages, from the intact cell or its crude lysate to the pure polypeptide, which have the respective biologically active enzyme in endogenous or recombinant form, are preferably overexpressed. Numerous methods are known to those skilled in the art for over-expressing and isolating enzymatically-active polypeptides in suitable cells.
  • polypeptides for the expression of the polypeptides all expression systems available to the person skilled in the art can be used, for example vectors of the type pET or pGEX. Purification can be carried out by chromatographic methods, for example the affinity chromatographic purification of a tagged recombinant protein using immobilized ligands, for example a nickel ion in the case of a histidine tag, of immobilized glutathione in the case of glutathione S-transferase fused to the target protein or immobilized maltose in the case of a tag comprising maltose-binding protein.
  • immobilized ligands for example a nickel ion in the case of a histidine tag
  • suitable reaction conditions under which the enzyme of interest exhibits activity preferably optimal activity.
  • these conditions include, for example, the selection of suitable buffers, the determination and adjustment of the optimum pH, a certain salt concentration, and a certain minimum protein concentration, see, for example, Cornish-Bowden, 1995.
  • the former can be used either in soluble form or immobilized.
  • Suitable methods are known to the person skilled in the art with which polypeptides can be immobilized covalently or noncovalently on organic or inorganic solid phases, for example by sulfhydryl coupling chemistry (eg kits from Pierce).
  • the enzymes required for the process become particularly unique preferred embodiment in the form of a single whole-cell catalyst, ie in the form of a viable, metabolically active cell.
  • the enzymes can be presented on the surface of the whole-cell catalyst, as described in the prior art, for example in DE 60216245.
  • the enzymes to be regenerated by cofactors are located so that their active sites are in contact with the interior of the cell, so that the required cofactors and cosubstrates are obtained from the metabolism of the cell and be redelivered.
  • mutants of a cell which has a certain enzymatic activity with the aim of reducing this enzymatic activity in the mutant to be obtained compared to the wild type of the cell, is known to those skilled in the art using standard techniques in the field of molecular biology, genetics and microbiology (Sambrook et ai, 1989).
  • undirected mutagenesis is possible by treating Wld-type cells with radioactive radiation followed by a step of selecting appropriate mutants by determining the enzymatic activity of isolated colonies using appropriate assays described for numerous enzymes in the art (Cornish-Bowden , 1995).
  • Further methods comprise the insertion of deactivating point mutations, for example into the promoter or into the active center of the enzymatically active polypeptide, a likewise established method for decades (Fersht and Winter, 2008).
  • the cell used is a prokaryotic, preferably a bacterial cell. In a further preferred embodiment, it is a mammalian cell. In a further preferred embodiment, it is a lower eukaryotic cell, preferably a yeast cell.
  • Exemplary prokaryotic cells include Escherichia, especially Escherichia coli, and strains of the genus Pseudomonas and Corynebacterium.
  • Exemplary lower eukaryotic cells include the genera Saccharomyces, Candida, Pichia, Yarrowia, Schizosaccharomyces, especially the strains Candida tropicalis, Schizosaccharomyces pombe, Pichia pastoris, Yarrowia lipolytica and Saccharomyces cerivisiae.
  • the most preferred embodiment is Yarrowia lipolytica.
  • An aspect which is essential for the teaching according to the invention is that a cell is used whose 3-hydroxyisobutyric acid dehydrogenase activity or the activity of a variant thereof is reduced.
  • the term "3-hydroxyisobutyric acid dehydrogenase activity" as used herein means the activity of an enzyme that oxidizes 3-hydroxyisobutyric acid to the aldehyde,
  • the 3-hydroisobutyric acid dehydrogenase an enzyme from the group comprising the polypeptides known from the prior art XP_504911.1, XP_003066853.1, XP_001246264.1, XP_385460.1, EFY92465.1, XP_363761.1, XP_003346508.1, EFY97405.1, EEQ90955.
  • the 3-hydroxyisobutyric acid dehydrogenase is a 3-hydroxyisobutyric acid dehydrogenase from the group comprising the polypeptides known from the prior art BAC82381.1, NP_746775.1, YP_004703920.1, YP_001670886.1, ADR61938.1, YP_001269834.1, YP_001747642.1, YP_606441.1, BAJ07617.1, YP_257885.1, EGH62730.1, ZP_06461142.1, ZP_05642104.1, YP_004351842.1, EGH86869.1, YP_002874705.1, EGH24275.
  • the phrase "a cell which has a reduced activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof compared to its wild type” means that it is a cell genetically engineered with respect to its wild-type, that the Activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant in this cell is reduced compared to the activity of the same 3-hydroyxisobutyric acid dehydrogenase or the corresponding variant in the Wld type of the cell, preferably by at least 10, 20, 30, 50, 75, 90, 95 or 99%
  • the activity of the enzyme is no longer detectable in the genetically engineered cell
  • the genetic engineering effecting the activity reduction relates solely to the activity of a specific 3-hydroxy-butyric acid dehydrogenase of the cell, in contrast to the possibility that nonspecifically several enzymatic activities of the cell are reduced, for example by a defect in the folding machinery of the cell,
  • a comparison of the enzymatic activities of the genetically modified cell and its wild type is carried out under the same conditions and with the use of standard assays for the determination of a dehydrogenase activity.
  • the dehydrogenase activity can be monitored in a continuous spectrophotometric assay when the enzyme, either pure or in the form of a cell lysate, is incubated with substrate, ie 3-hydroxyisobutyric acid and redox factor, and the reaction progress is monitored by the extinction of the redox factor.
  • the temperature may be more than 20 ° C, 30 ° C, 40, 50 with the proviso that in the case of using a living cell or a preparation of suitable enzymes, the selected cell or enzymes are viable or show activity , 60, 70 ° C or more than 80 ° C, preferably to 100 ° C.
  • the person skilled in the art knows which organisms are viable at which temperatures, for example from textbooks such as Fuchs / Schlegel, 2007.
  • the temperature may be 5 to 45 ° C, more preferably 15 to 42 ° C, even more preferably 20 to 30 ° C.
  • the temperature may be 5 to 45 ° C, more preferably 15 to 42 ° C, even more preferably 20 to 30 ° C, most preferably 35 to 40 ° C.
  • a yeast cell for example YPD, YPN and YNB
  • amino acids for example with 0.01 g / L tryptophan, or with glucose, for example in a concentration of 1% ( w / v) can be supplemented.
  • a bacterium from the family Enterobacteriaceae preferably E.
  • coli come to grow full media such as LB medium or high cell density medium (HZD medium) consisting of NH 4 S0 4 1, 76 g, K 2 HP0 4 19.08 g, KH 2 PO 12.5 g, yeast extract 6.66 g, Na 3 citrate 1.96 g, NH Fe citrate (1%) 17 ml, trace element solution US3 5 ml, feed solution (glucose 50% w / v, MgS0 [x 7 H 2 0 0.5% w / v, NH 4 Cl 2.2% w / v) 30 ml per liter in question.
  • HZD medium high cell density medium
  • cells used in the method according to the invention are used in a medium other than that used for steps a) to d) of the method.
  • the medium used for the cultivation is a complete medium and the medium used for the steps a) to d) is a minimal medium.
  • the method according to the invention if it is carried out using viable cells, is preferably carried out after transformation of the cells in transformation buffer per liter of (NH) H 2 PO 4 8 g, NaCl 0.5 g, MgS 0 ⁇ 7 H 2 O 0.48 1 ml of the trace element solution US 3 was composed of HCl 37% 36.5 g, MnCl 2 ⁇ 4H 2 0 1, 91 g, ZnSO 4 ⁇ 7H 2 0 1, 87 g, Na EDTA x 2H 2 0 0.8 g, H 3 B0 3 0.3 g, Na 2 Mo0 4 x 2H 2 0 0.25 g, CaCl 2 x 2H 2 0 4.7 g, FeS0 4 x 7 H 2 0 17 , 8 g, CuCl 2 x 2H 2 0 0.15 g, and its pH is adjusted to 5.4.
  • the steps a) to d) of the process according to the invention are preferably carried out at atmospheric pressure.
  • the alkane hydroxylase may comprise the reaction in the presence of higher pressures in the presence of a gas mixture, preferably predominantly comprising isobutane.
  • the pressure is more than 1, 5, 2, 3 or 4 bar.
  • the pressure is 0.5 to 4, preferably 1 to 3, most preferably 1 to 1, 5 bar.
  • the object underlying the invention is achieved in that a cell of the genus Yarrowia, preferably Yarrowia lipolytica, in which the activity of the hydroxyisobutyric acid dehydrogenase YaliOF02607g or a variant thereof by deletion from the activity of the corresponding wild-type cell is reduced, is contacted in aqueous solution with isobutyric acid
  • step b) shows a particularly preferred sequence according to the invention of enzymatically catalyzed reactions comprising the conversion of isobutyric acid to isobutyryl-CoA by isobutyrate kinase and phosphotransisobutyrylase or isobutyryl-coenzyme A synthetase / ligase or isobutyrate-coenzyme A transferase in step b) , the oxidation of isobutyryl-coenzyme A to methacrylyl-coenzyme A by isobutyryl-coenzyme A-dehydrogenase in step c), the addition of water to methacrylyl-coenzyme A to give 3-hydroisobutyryl-coenzyme A in step d) and its hydrolysis to 3-hydroxyisobutyric acid in step e).
  • Va // 0F02607g / (noc / roi / f mutant in Y. lipolytica the promoter and terminator region of the Va // 0F02607g gene was cloned Chromosomal DNA from Y. lipolytica H222 (MATa) served as the template for the PCR
  • the gene knockout was carried out in the following strains: V. lipolytica H222-41 (MATa ura3-41) and Y. lipolytica H222-SW4-2 (MATa ura3-302 SUC2 ku70A-1572 trp1A-1199).
  • Va // 0F02607g 3-hydroxyisobutyric acid dehydrogenase
  • lipolytica H222 in a PCR were used for the PCR: promoter region, 1 x: initial denaturation, 98 ° C, 3 min; 35 x: denaturation, 98 ° C, 0:10 min, annealing, 59.5 ° C, 0:45 min; elongation, 72 ° C, 0:35 min; 1 x: terminal elongation, 72 ° C, 5 min.
  • Terminator area 1 x: initial denaturation, 98 ° C, 3 min; 35x: denaturation, 98 ° C, 0:10 min, annealing, 59.5 ° C, 0:45 min; Elongation, 72 ° C, 0:35 min; 1 x: terminal elongation, 72 ° C, 5 min.
  • Phusion TM High-Fidelity Master Mix from New England Biolabs (Frankfurt) was used according to the manufacturer's recommendations. In this way, the promoter fragment at the 3 'end was provided with an I-Scel interface and the terminator fragment at the 5' end with an I-Scel interface.
  • the following oligonucleotides were used for this:
  • PCR products of the promoter and terminator region (1060 or 970 base pairs) were purified by means of the "QIAquick PCR Purification Kit” (Qiagen, Hilden) according to the manufacturer's instructions
  • Qiagen Qiagen, Hilden
  • the two PCR products used as a template and amplification was carried out with the primers 3HIBDH-Pfw (SEQ ID No. 01) and 3HIBDH-Trv (SEQ ID No.
  • the plasmid pCRBIuntllTopo :: P_T_3HIBDH_YI_ura (SEQ ID NO: 07) was used as a template for the PCR with the following oligonucleotides and Parameters employed: 3HIBDH-Pfw (SEQ ID NO: 01) and 3HIBDH-TRV (SEQ ID NO: 04); 1 x: initial denaturation, 98 ° C, 3 min; 35x: denaturation, 98 ° C, 0:10 min, annealing, 65 ° C, 0:45 min; Elongation, 72 ° C, 1:45 min; 1 x: terminal elongation, 72 ° C, 5 min.
  • the desired 3.38 kilobase pair fragment (SEQ.ID.NO.:8) was purified using the "Quick Gel Extraction Kit” (Qiagen, Hilden) according to the manufacturer's instructions on an agarose gel, checked by restriction with Xmal and XmnI and for the integrative transformation of Y. lipolytica H222-SW4-2 and Y. lipolytica H222-41.
  • the transformation was carried out by the lithium acetate method (Barth G and Gaillard C (1996) Yarrowia lipolytica.) In: Wolf, K. (eds) Nonconventional yeasts in biotechnology Springer, Berlin Heidelberg New York, pp 313-388).
  • the obtained uracil-prototrophic transformants were checked by colony PCR.
  • the following parameters were used for the PCR: 1 ⁇ : initial denaturation, 98 ° C., 3 min; 35x: denaturation, 98 ° C, 0:10 min, annealing, 60 ° C, 0:45 min; Elongation, 72 ° C, 1:30 min; 1 x: terminal elongation, 72 ° C, 5 min.
  • the following oligonucleotides were used: fw-3HIBDH-ah:
  • uracil auxotrophy in the uracil prototrophic transformants was carried out according to Fickers et al., 2003.
  • competent cells were prepared. To do this, transformants were added in 5 mL of YPD pH 4 (10 g / L yeast extract, 10 g / L peptone, 10.5 g / L citric acid, 2% (w / v) glucose, and 0.5 M sodium citrate for pH adjustment ) for 8 h at 30 ° C and 190 rpm in 100 mL baffled flasks.
  • this preculture was used to inoculate 10 mL of YPD medium pH 4 in 250 mL baffled flasks with an optical density (OD600) of 0.05. All flasks were incubated at 30 ° C and 190 rpm.
  • the resulting clones were phenotypically tested on agar plates with YNB medium (6.7 g / L Difco TM Yeast Nitrogen Base w / o amino acids) and glucose with or without uracil.
  • YNB medium 6. g / L Difco TM Yeast Nitrogen Base w / o amino acids
  • glucose 6.7 g / L Difco TM Yeast Nitrogen Base w / o amino acids
  • glucose glucose
  • uracil glucose
  • the tranformants were incubated several times in 10 mL YPD medium in 100 mL baffled flasks at 30 ° C. and 190 rpm for 24 h and spread on YPD plates.
  • the resulting clones were monitored by PCR (as described in point 3) and phenotypically on agar plates.
  • V. // o / yfca strain H222-41 ⁇ 3HIBDH constructed in Example 1 was compared to the corresponding wild type H222-41 in 10 mL YNB medium (6.7 g / L Difco TM Yeast Nitrogen Base w / o Amino Acids ) were cultured with 0.2 g / L uracil, 0.01 g / L tryptophan and 5% (w / v) glucose overnight at 28 ° C. and 190 rpm.
  • the strains reached an OD600 of about 30. While the control strain Y. lipolytica H222-41 did not produce any 3-hydroxyisobutyric acid, in the case of the Y. lipolytica H222-41 ⁇ 3HIBDH derived therefrom, the formation of 4.5 mg / L 3-hydroxyisobutyric acid be detected.
  • the Y. // po / yfca strains H222-SW-4-2 ⁇ 3HIBDH and H222-41 ⁇ 3HIBDH constructed in Example 1 were compared to an unmodified control strain (H222-SW-4-2) in 10 mL YNB- Medium (6.7 g / L Difco TM Yeast Nitrogen Base w / o Amino Acids) with 0.01 g / L tryptophan and 1% (w / v) glucose cultured overnight at 30 ° C and 190 rpm.
  • lipolytica H222-41A3HIBDH converts over 90% isobutyric acid to 3-hydroxyisobutyric acid after 24 h and over 80% after 48 h.
  • Ya // 0F02607g in Y. lipolyica H222-41 or H222-SW ⁇ l-2 the yield of 3-hydroxyisobutyric acid production from isobutyric acid could be significantly increased (see Fig. 1).
  • the cultures were then sterile-filled in 50 ml Falcons and spun down at 5000 rpm. The pellets were washed 4x with 0.9% saline. Thereafter, 2 pellets of each strain were resuspended in 50 ml of transformation buffer and pooled.
  • the transformation buffer was composed per sterile-filtered liter of (NH 4 ) H 2 P0 4 8 g,
  • the starting OD was about 14.
  • the shake flasks were incubated at 180 rpm at 30 ° C. Samples were taken after 0, 6 and 24 hours. Microscopic controls did not show lysis cells in any approach throughout.
  • the measurement of the glucose was carried out with a YSI measuring instrument Kreienbaum, the measurement of isobutyric acid and 3-hydroxyisobutyric acid was carried out by HPLC over an Aminex column, the measurement of OD with a spectrophotometer at 600nm.
  • the glucose was partially metabolized to the biomass structure.
  • IBA as the sole source of C, no biomass production took place.
  • 3-HIB could only be detected as a metabolite for a short time with IBA as the substrate.
  • Y. // po / yfca strain H222-41 ⁇ 3HIBDH constructed in Example 1 was compared to the corresponding wild-type strain Y. lipolytica H222-41 in 10 ml of YNB medium (6.7 g / L Difco TM Yeast Nitrogen Base w / o amino Acids) with 0.2 g / L uracil, 0.01 g / L tryptophan and 1% (w / v) glucose overnight at 30 ° C and 190 rpm cultivated.
  • Ketoisovalerate (after 25.5 h, 0.5% (w / v) of ketoisovalerate and, after 49.5 h, 0.3% (w / v) of ketoisovalerate were again added to the culture) in 100 ml baffled flasks with an optical density ( OD600) of 0.5 inoculate. All flasks were incubated at 30 ° C and 190 rpm.
  • Preseed culture 1 liter of LB medium containing 50 ⁇ kanamycin was prepared from a solution of yeast extract 5g, peptone 10g, NaCl 0.5g, and 50 ⁇ kanamycin. The pH was adjusted to 7.4 with 5% NH40H. The solution is autoclaved at 121 ° C for 20 minutes.
  • Trace element solution US 3 is composed of HCl 37% 36.5 g, MnCl 2 x 4H 2 O 1.91 g, ZnSO 4 x 7H 2 O 1, 87 g, Na EDTA x 2H 2 O 0.8 g, H 3 BO 3 0 , 3g, Na 2 Mo0 4 x 2H 2 0 0.25g, CaCl 2 x 2H 2 04.7g, FeS0 x 7H 2 0 17.8g, CuCl 2 x 2H 2 0 0.15g. 948 ml of solution with NH 4 S0 to Na 3 citrate are autoclaved, the remainder was separately sterile filtered and then added sterile. The pH was 6.8.
  • Induction culture 25 ml each of the culture broth was poured into 75 ml of modified M9 medium (sterile filtered) with the following composition per liter: 15 g glucose, 6.79 g Na 2 PO 4 , 3 g KH 2 PO 4 , 0.5 g NaCl, 2 g, NH 4 Cl, 15 g yeast extract, 0.49 g MgS0 4 * 7H 2 0, 1 ml of trace element solution (as in seed culture) and 50 ⁇ g kanamycin in 1000 ml shake flasks. The cultures are incubated for 7h at 35 ° C and 180rpm (amplitude 2.5cm).
  • a sterile 10 L fermentor was charged with 7 L of a sterile medium having the composition (per liter) (NH 4 ) 2 S0 4 1, 75 g, K 2 HP0 4 x 3 H 2 0 19 g, KH 2 P0 4 12, 5 g, yeast extract 6.6 g, Na 3 citrate x 2H 2 O 2.24 g, glucose 15 g, MgS0 4 ⁇ 7 H 2 0 0.49 g, NH 4 Fe citrate (1% w / v) 16 , 6ml, trace element solution (as in seed culture) 15ml and Kanamycin 50 ⁇ g and 2ml defoamer Delamex.
  • the feed was an autoclave solution of glucose (50% w / v) with MgS0 4 x 7H 2 0 10g / l, for pH correction 0.5M H 2 S0 4 and 25% NH 4 OH.
  • the cultures from the shake flasks were combined sterile and inoculated via a transfer bottle into the fermenter.
  • the fermentation conditions were set p0 2 30%, Airflow 6nlpm, stirrer 400 - 1200rpm temperature 37 ° C, pH7, feed start 8 h, feed rate 150-250 g / h. After 19 h, the temperature was lowered to 30 ° C, the feed stopped and induced with 0.4 mM DCPK. After 23 hours, the OD in the fermenter is about 100, the culture broth was removed under sterile conditions and centrifuged off at 8000 rpm with 500 ml in 1000 ml centrifuge beakers.
  • the pellets from 200 ml of culture were resuspended in 10 ml of conversion buffer.
  • the conversion buffer consisted of 70 mM (NH 4 ) H 2 PO 4 buffer, pH 7 per liter with 8 g (NH 4 ) H 2 PO 4 , 0.5 g NaCl, 0.49 g MgSO 4 .7H 2 O, 1 ml TE and 50 ⁇ g kanamycin.
  • the pH was adjusted here with 5% NH 4 OH.
  • the fermenter was inoculated via a sampling tube with 30 ml of a pellet prepared in a) and resuspended in buffer.
  • the reaction was started with the start of a Glucosefeedes (or iso also glucose batch or template + feed ....) of 1, 5 g / lh. After 4.5 hours, a concentration of isobutyric acid of> 350 mg / l was achieved (3.97 mmol / kg).
  • the pH was adjusted to 5.4 with 1 MH 2 S0 4 and the gassing was changed to compressed air at a flow rate of 12.5 NI / h, the temperature lowered to 30 degrees, (alternatively):
  • the culture was harvested sterile and the biomass separated by centrifugation at 8000rpm with 500ml in 1000ml centrifuge beakers, and the supernatant stored at -20 ° C until transformation with the Ya / row / ' cultures.

Abstract

The invention relates to a method having the steps of a) providing isobutyric acid, b) bringing the isobutyric acid into contact with the combination of isobutyrate kinase and phosphotransisobutyrylase and/or isobutyryl-coenzyme A-synthetase/ligase and/or isobutyrate-coenzyme A-transferase, c) bringing the product of step a) into contact with isobutyryl-coenzyme A-dehydrogenase, d) bringing the product of step b) into contact with methacrylyl-coenzyme A-hydratase, and e) hydrolyzing the product of step d) with the formation of 3-hydroxyisobutyric acid. At least one of the enzymes is used in the form of a cell which comprises an activity of 3-hydroxyisobutyric acid dehydrogenase or a variant thereof, said activity being reduced with respect to the wild type of the cell. The invention also relates to a cell which comprises at least one enzyme of the group comprising isobutyryl-coenzyme A-synthetase/ligase, isobutyrate-coenzyme A-transferase, isobutyrate-kinase, phosphotransisobutyrylase, isobutyryl-coenzyme A-dehydrogenase, methacrylyl-coenzyme A-hydratase, and 3-hydroxisobutyryl-coenzyme A-hydrolase and which has an activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof, said activity being reduced with respect to the wild type of the cell. Additionally, the cell preferably has a monooxygenase, even more preferably a monooxygenase of the AlkBGT type or a variant thereof. The invention also relates to the use of such a cell for producing 3-hydroxyisobutyric acid

Description

Biotechnologische Herstellung  Biotechnological production
von 3-Hydroxyisobuttersäure  of 3-hydroxyisobutyric acid
Die Erfindung betrifft ein Verfahren umfassend die Schritte a) Bereitstellen von Isobuttersäure, b) Kontaktieren von Isobuttersäure mit der Kombination aus Isobutyrat-Kinase und Phosphotransisobutyrylase und/oder Isobutyryl-Coenzym A-Synthetase/Ligase und/oder Isobutyrat-Coenzym A-Transferase, c) Kontaktieren des Produktes aus Schritt b) mit Isobutyryl- Coenzym A-Dehydrogenase, d) Kontaktieren des Produktes aus Schritt c) mit Methacrylyl- Coenzym A-Hydratase, und e) Hydrolyse des Produktes aus Schritt d) unter Bildung von 3- Hydroxyisobuttersäure, wobei wenigstens eines der Enzyme in Form einer Zelle bereitgestellt wird, die eine ihrem Wildtyp gegenüber verringerte Aktivität einer 3-Hydroxyisobuttersäure- Dehydrogenase oder einer Variante davon umfasst, eine Zelle, die wenigstens ein Enzym aus der Gruppe umfassend Isobutyryl-Coenzym A-Synthetase/Ligase, Isobutyrat-Coenzym A- Transferase, Isobutyrat-Kinase, Phosphotransisobutyrylase, Isobutyryl-Coenzym A- Dehydrogenase-, Methacrylyl-Coenzym A-Hydratase und 3-Hydroxisobutyryl-Coenzym A- Hydrolase und eine gegenüber ihrem Wildtyp verringerte Aktivität einer 3- Hydroxyisobuttersäure-Dehydrogenase oder einer Variante davon aufweist, wobei die Zelle bevorzugt zusätzlich eine Monooxygenase, noch bevorzugter eine Alkanhydroxylase des AlkBGT-Typs oder eine Variante davon aufweist und die Verwendung einer solchen Zelle zur Herstellung von 3-Hydroxyisobuttersäure. The invention relates to a process comprising the steps of a) providing isobutyric acid, b) contacting isobutyric acid with the combination of isobutyrate kinase and phosphotransisobutyrylase and / or isobutyryl-coenzyme A synthetase / ligase and / or isobutyrate-coenzyme A transferase, c ) Contacting the product of step b) with isobutyryl-coenzyme A dehydrogenase, d) contacting the product of step c) with methacrylyl-coenzyme A hydrate, and e) hydrolysing the product of step d) to give 3-hydroxyisobutyric acid, wherein at least one of the enzymes is provided in the form of a cell comprising a reduced activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof, a cell comprising at least one enzyme selected from the group consisting of isobutyryl-coenzyme A synthetase / ligase , Isobutyrate-coenzyme A-transferase, isobutyrate kinase, phosphotransisobutyrylase, isobutyryl-coenzyme A dehydrogenase, methacryl yl coenzyme A hydratase and 3-Hydroxisobutyryl-coenzyme A hydrolase and a reduced compared to their wild-type activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof, wherein the cell preferably additionally a monooxygenase, more preferably an alkane hydroxylase of the AlkBGT type or a variant thereof, and the use of such a cell for the preparation of 3-hydroxyisobutyric acid.
Methacrylsäure stellt eine der bedeutendsten industriell hergestellten Chemikalien dar. In Form ihres monomeren Methylesters wird sie für die Herstellung von Polymethylmethacrylat als Polymerisationsedukt benötigt, das der Öffentlichkeit unter den Handelsnamen Plexiglas bekannt und für eine Vielzahl von Einsatzgebieten unentbehrlich ist. Beispiele für die Verwendung von Polymethacrylat umfassen die Zahnmedizin, wo es für Prothesen eingesetzt wird, die Automobiltechnik, in der es für Blinker- und Rückleuchtengläser verwandt wird, die Optik, insbesondere als Material für Kontaktlinsen und Brillenglas, das Bauwesen, wo es als Polymerbeton sowie als Zwei-Komponenten-Klebstoff eingesetzt wird, die Textilindustrie als Bestandteil von Polyacrylfasern und im Haushalt als Material für Gegenstände wie Schüsseln und Bestecke. Methacrylic acid is one of the most important industrially manufactured chemicals. In the form of its monomeric methyl ester, it is required for the production of polymethylmethacrylate as a polymerization educt, which is known to the public under the trade name Plexiglas and indispensable for a variety of applications. Examples of the use of polymethacrylate include dentistry, where it is used for prostheses, the automotive industry, in which it is used for turn signal and taillight glasses, the optics, especially as a material for contact lenses and spectacle lenses, the building industry, where it is polymer concrete as well is used as a two-component adhesive, the textile industry as Component of polyacrylic fibers and in the household as a material for items such as bowls and cutlery.
Herkömmlich wird Methacrylsäure ausgehend von fossilen Rohstoffen wie Öl hergestellt. Beispielsweise können Isobutylen und tertiäres Butanol zu Methacrylein umgesetzt werde, das in der Folge weiter zu Methacrylat oxidiert wird (William Bauer, Jr. "Methacrylic Acid and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim). Alternativ können Amidsulfate von Methacrylsäure, die ausgehend von entsprechenden 2- Hydroxynitrilen produziert werden, unter Entstehung von Methacrylsäure hydrolysiert werden. Die industrielle Produktion von Methacrylsäure unter Nutzung derartiger Verfahren hängt jedoch nicht nur von einer kontinuierlichen Zufuhr fossiler Edukte ab, sondern erfolgt unter Verbrauch erheblicher Mengen aggressiver, umweltschädlicher Chemikalien. So wird zur Produktion von 1 kg Methacrylsäure durch Hydrolyse von Amidsulfaten der Methacrylsäure 1 ,6 kg Schwefelsäure benötigt. Traditionally, methacrylic acid is produced from fossil fuels such as oil. For example, isobutylene and tertiary butanol may be converted to methacrylein, which is subsequently further oxidized to methacrylate (William Bauer, Jr. "Methacrylic Acid and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim). Alternatively, amide sulfates of methacrylic acid produced from corresponding 2-hydroxynitriles can be hydrolyzed to form methacrylic acid. However, the industrial production of methacrylic acid using such methods not only depends on a continuous supply of fossil reactants, but is done by consuming significant amounts of aggressive, environmentally harmful chemicals. Thus, the production of 1 kg of methacrylic acid by hydrolysis of amide sulfates of methacrylic acid requires 1.6 kg of sulfuric acid.
Um die Abhängigkeit von fossilen Rohstoffen als Energieträger und Edukte für industrielle Synthesen zu überwinden, werden derzeit vielfältige Anstrengungen übernommen, die darauf abzielen, industriell nachgefragte Feinchemikalien biotechnologisch auf der Basis nachwachsender Rohstoffe zu erzeugen. Im Falle der Methacrylsäure bzw. des Methacrylsäuremethylesters bietet sich eine biotechnologische Syntheseroute über 3- Hydroxyisobuttersäure an, die chemisch oder enzymatisch leicht unter Bildung von Methacrylsäure dehydratisiert werden kann (Wlliam Bauer, Jr. "Methacrylic Acid and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wley-VCH, Weinheim). Der Stand der Technik lehrt die Herstellung von 3-Hydroxyisobuttersäure aus Isobuttersäure unter Verwendung der von Wldtypisolaten von Bakterien und Hefen (Hasegawa et al., 1981 ; Hasegawa et al., 1982, WO 2007/141208 A2 und WO 2008/1 19738 A1). Als Substrat für die Herstellung von 3-Hydroxyisobuttersäure durch geeignete Stämme, beispielsweise durch Candida rugosa, dient ausschließlich Isobuttersäure. Die oben genannten Patentanmeldungen, WO 2007/141208 A2 und WO 2008/119738 A1 , beschreiben gentechnisch veränderte Zelle und Verfahren für die Herstellung von 3-Hydroxyisobuttersäure aus Kohlenhydraten, Glycerin, Kohlendioxid, Methanol, L-Vallin, L-Glutamat, CO, Synthesegas, Methan usw. sowie deren weitere chemische Umsetzung zu Methacrylsäure oder Methacrylsäureestern. Die Herstellung von 3-Hydroxyisobuttersäure über die oben beschriebenen biotechnologischen Verfahren ist derzeit jedoch nicht wirtschaftlich. Ein wesentliches Hindernis dabei sind die hohen Rohstoffkosten für Isobuttersäure bei gleichzeitig teilweise geringer Ausbeute bei deren Umsetzung oder Verwendung von geeigneten Mikroorganismen. In order to overcome the dependence on fossil fuels as energy sources and educts for industrial syntheses, a variety of efforts are currently being undertaken, which aim to produce industrially demanded fine chemicals biotechnologically based on renewable raw materials. In the case of methacrylic acid or of methyl methacrylate, a biotechnological synthesis route via 3-hydroxyisobutyric acid, which can be easily dehydrated chemically or enzymatically to form methacrylic acid (Wlliam Bauer, Jr., "Methacrylic Acid and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry, 2002) , Wley-VCH, Weinheim). The prior art teaches the preparation of 3-hydroxyisobutyric acid from isobutyric acid using the Wld type isolates of bacteria and yeasts (Hasegawa et al., 1981, Hasegawa et al., 1982, WO 2007/141208 A2 and WO 2008/19738 A1). , As a substrate for the production of 3-hydroxyisobutyric acid by suitable strains, for example by Candida rugosa, isobutyric acid is used exclusively. The above-mentioned patent applications, WO 2007/141208 A2 and WO 2008/119738 A1, describe genetically engineered cell and methods for the production of 3-hydroxyisobutyric acid from carbohydrates, glycerol, carbon dioxide, methanol, L-valine, L-glutamate, CO, synthesis gas , Methane, etc. and their further chemical conversion to methacrylic acid or methacrylic acid esters. However, the production of 3-hydroxyisobutyric acid via the biotechnological methods described above is currently not economical. A major obstacle here is the high raw material costs for isobutyric acid with at the same time partly low yield in the implementation or use of suitable microorganisms.
Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein verbessertes Verfahren zur biotechnologischen Herstellung von 3-Hydroxyisobuttersäure zu entwickeln, das den im Stand der Technik beschriebenen Verfahren mit Hinblick auf Ausbeute, Reinheit und Ressourcenbedarf überlegen ist. Against this background, the object of the present invention is to develop an improved process for the biotechnological production of 3-hydroxyisobutyric acid, which is superior to the processes described in the prior art with regard to yield, purity and resource requirements.
Weiterhin besteht die der vorliegenden Erfindung zu Grunde liegende Aufgabe darin, ein biotechnologisches Verfahren zur Herstellung von 3-Hydroxyisobuttersäure ausgehend von unsubstituierten, insbesondere nicht-heteroatomhaltigen Alkanen zu entwickeln. Weiterhin liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein biotechnologisches Verfahren zur Gewinnung von 3-Hydroxyisobuttersäure ausgehend von nachwachsenden Rohstoffen und/oder ohne Einsatz von oder mit geringerem Einsatz von gesundheitsschädlichen Edukten, Zwischenstufen, Katalysatoren oder Nebenprodukten zu entwickeln. Furthermore, the object underlying the present invention is to develop a biotechnological process for the preparation of 3-hydroxyisobutyric acid starting from unsubstituted, in particular non-heteroatom-containing alkanes. Furthermore, the present invention is based on the object to develop a biotechnological process for the production of 3-hydroxyisobutyric acid starting from renewable raw materials and / or without the use of or with less use of harmful starting materials, intermediates, catalysts or by-products.
Diese und weitere Aufgaben werden durch den Gegenstand der vorliegenden Anmeldung und insbesondere auch durch den Gegenstand der beigefügten unabhängigen Ansprüche gelöst, wobei sich Ausführungsformen aus den Unteransprüchen ergeben. These and other objects are achieved by the subject matter of the present application and in particular also by the subject of the appended independent claims, wherein embodiments result from the subclaims.
Erfindungsgemäß wird die Aufgabe in ein einem ersten Aspekt gelöst durch ein Verfahren umfassend die folgenden Schritte: a) Bereitstellen von Isobuttersäure, b) Kontaktieren von Isobuttersäure mit der Kombination aus Isobutyrat-Kinase und Phosphotransisobutyrylase und/oder Isobutyryl-Coenzym A-Synthetase/Ligase und/oder Isobutyrat-Coenzym A-Transferase, c) Kontaktieren des Produktes aus Schritt b) mit Isobutyryl-Coenzym A-Dehydrogenase, d) Kontaktieren des Produktes aus Schritt c) mit Methacrylyl-Coenzym A-Hydratase, und e) Hydrolyse des Produktes aus Schritt d) unter Bildung von 3-Hydroxyisobuttersäure, wobei wenigstens eines der in den Schritten b), c) und d) verwendeten Enzyme aus der Gruppe umfassend Isobutyrat-Kinase, Phosphotransisobutyrylase, Isobutyryl-Coenzym A- Synthetase/Ligase und Isobutyrat-Coenzym A-Transferase, bevorzugt alle, Enzyme in Form einer Zelle verwendet wird, die eine ihrem Wildtyp gegenüber verringerte Aktivität einer 3- Hydroxyisobuttersäure-Dehydrogenase oder einer Variante davon aufweist. According to the invention the object is achieved in a first aspect by a process comprising the following steps: a) providing isobutyric acid, b) contacting isobutyric acid with the combination of isobutyrate kinase and phosphotransisobutyrylase and / or Isobutyryl-coenzyme A synthetase / ligase and / or isobutyrate-coenzyme A-transferase, c) contacting the product from step b) with isobutyryl-coenzyme A dehydrogenase, d) contacting the product from step c) with methacrylyl-coenzyme A- Hydratase, and e) hydrolysis of the product of step d) to form 3-hydroxyisobutyric acid, wherein at least one of the enzymes used in steps b), c) and d) is selected from the group comprising isobutyrate kinase, phosphotransisobutyrylase, isobutyryl coenzyme A Synthetase / ligase and isobutyrate-coenzyme A transferase, preferably all, enzymes in the form of a cell is used, which has a wild-type compared to reduced activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof.
In einer ersten Ausführungsform des ersten Aspektes wird die Isobuttersäure durch Kontaktieren von Isobutan mit einer Monooxygenase, bevorzugt einer Alkanhydroxylase, noch bevorzugter einer des AlkBGT-Typs oder einer Variante davon, gebildet. In a first embodiment of the first aspect, the isobutyric acid is formed by contacting isobutane with a monooxygenase, preferably an alkane hydroxylase, more preferably one of the AlkBGT type or a variant thereof.
In einer zweiten Ausführungsform des ersten Aspektes, die auch eine Ausführungsform der ersten Ausführungsform darstellt, wird die Hydrolyse in Schritt e) durch Kontaktieren des Produktes aus Schritt d) mit einer 3-Hydroxisobutyryl-Coenzym A-Hydrolase erreicht. In a second embodiment of the first aspect, which is also an embodiment of the first embodiment, the hydrolysis in step e) is achieved by contacting the product of step d) with a 3-hydroxysobutyryl-coenzyme A hydrolase.
In einer dritten Ausführungsform des ersten Aspektes, die auch eine Ausführungsform der ersten bis zweiten Ausführungsform darstellt, weist die Zelle sowohl die Isobutyryl-Coenzym A- Dehydrogenase in Schritt c) als auch die Methacrylyl-Coenzym A-Hydratase in Schritt d) als auch die Kombination aus Isobutyrat-Kinase und Phosphotransisobutyrylase und/oder Isobutyryl-Coenzym A-Synthetase/Ligase und/oder Isobutyrat-Coenzym A-Transferase auf. In a third embodiment of the first aspect, which is also an embodiment of the first to second embodiments, the cell has both the isobutyryl-coenzyme A dehydrogenase in step c) and the methacrylyl coenzyme A hydratase in step d) as well Combination of isobutyrate kinase and phosphotransisobutyrylase and / or isobutyryl-coenzyme A synthetase / ligase and / or Isobutyrate coenzyme A transferase on.
In einer vierten Ausführungsform des ersten Aspektes, die auch eine Ausführungsform der ersten bis dritten Ausführungsform darstellt, weist die Zelle zusätzlich eine Alkanhydroxylase, bevorzugt eine des AlkBGT-Typs oder eine Variante davon, auf. In a fourth embodiment of the first aspect, which is also an embodiment of the first to third embodiments, the cell additionally comprises an alkane hydroxylase, preferably one of the AlkBGT type or a variant thereof.
In einer fünften Ausführungsform des ersten Aspektes, die auch eine Ausführungsform der ersten bis vierten Ausführungsform darstellt, handelt es sich bei der 3-Hydroxyisobuttersäure- Dehydrogenase um XP_50491 1.1 oder eine Variante davon. In a fifth embodiment of the first aspect, which is also an embodiment of the first to fourth embodiments, the 3-hydroxyisobutyric acid dehydrogenase is XP_50491 1.1 or a variant thereof.
Erfindungsgemäß wird die Aufgabe in einem zweiten Aspekt gelöst durch eine Zelle, die wenigstens ein Enzym aus der Gruppe umfassend Isobutyryl-Coenzym A-Synthetase/Ligase, Isobutyrat-Coenzym A-Transferase, Isobutyrat-Kinase, Phosphotransisobutyrylase, Isobutyryl- Coenzym A-Dehydrogenase, Methacrylyl-Coenzym A-Hydratase und 3-Hydroxisobutyryl- Coenzym A-Hydrolase und eine gegenüber ihrem Wildtyp verringerte Aktivität einer 3- Hydroxyisobuttersäure-Dehydrogenase oder einer Variante davon aufweist. According to the invention, the object is achieved in a second aspect by a cell which comprises at least one enzyme from the group comprising isobutyryl-coenzyme A synthetase / ligase, isobutyrate-coenzyme A-transferase, isobutyrate kinase, phosphotransisobutyrylase, isobutyryl-coenzyme A dehydrogenase, Methacrylyl coenzyme A hydratase and 3-Hydroxisobutyryl- coenzyme A hydrolase and a reduced compared to their wild type activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof.
In einer ersten Ausführungsform des zweiten Aspektes weist die Zelle zusätzlich zu einer Isobutyryl-Coenzym A-Dehydrogenase und zusätzlich zu einer Methacrylyl-Coenzym A- Hydratase die Kombination aus Isobutyrat-Kinase und Phosphotransisobutyrylase und/oder Isobutyryl-Coenzym A-Synthetase/Ligase und/oder Isobutyrat-Coenzym A-Transferase. bevorzugt darüber hinaus eine 3-Hydroxyisobutyryl-CoA-Hydrolase, auf. auf. In einer zweiten Ausführungsform des zweiten Aspektes, die auch eine Ausführungsform der ersten Ausführungsform darstellt, umfasst die Zelle weiter eine Alkanhydroxylase, bevorzugt eine des AlkBGT-Typs oder eine Variante davon. In a first embodiment of the second aspect, in addition to an isobutyryl-coenzyme A dehydrogenase and in addition to a methacrylyl coenzyme A hydratase, the cell comprises the combination of isobutyrate kinase and phosphotransisobutyrylase and / or isobutyryl-coenzyme A synthetase / ligase and / or isobutyrate-coenzyme A-transferase. preferably further comprises a 3-hydroxyisobutyryl-CoA-hydrolase. on. In a second embodiment of the second aspect, which is also an embodiment of the first embodiment, the cell further comprises an alkane hydroxylase, preferably one of the AlkBGT type or a variant thereof.
In einer dritten Ausführungsform des zweiten Aspektes, die auch eine Ausführungsform der ersten Ausführungsform darstellt, handelt es sich bei der 3-Hydroxyisobuttersäure- Dehydrogenase und YaliOF02607g (XP_504911) oder eine Variante davon. In einem dritten Aspekt wird das der Erfindung zu Grunde liegende Problem gelöst durch die Verwendung der Zelle nach einem der Ansprüche 7 bis 10 zur Herstellung von 3- Hydroxyisobuttersäure. In a third embodiment of the second aspect, which is also an embodiment of the first embodiment, is the 3-hydroxyisobutyric acid dehydrogenase and YaliOF02607g (XP_504911) or a variant thereof. In a third aspect, the problem underlying the invention is solved by the use of the cell according to any one of claims 7 to 10 for the preparation of 3-hydroxyisobutyric acid.
In einer Ausführungsform des dritten Aspektes handelt es sich bei der 3-Hydroxyisobuttersäure- Dehydrogenase um XP_50491 1.1 oder eine Variante davon. In one embodiment of the third aspect, the 3-hydroxyisobutyric acid dehydrogenase is XP_50491 1.1 or a variant thereof.
In einer weiteren Ausführungsform des ersten, zweiten oder dritten Aspektes handelt es sich bei der Zelle um eine bakterielle oder niedere eukaryontische Zelle. In einer weiteren Ausführungsform des ersten, zweiten oder dritten Aspektes handelt es sich bei der Zelle um eine Hefezelle aus der Gruppe von Gattungen handelt, die Yarrowia, Candida, Saccharomyces, Schizosaccharomyces und Pichia umfasst und es sich bevorzugt um Yarrowia lipolytica handelt. In einem vierten Aspekt wird das der Erfindung zu Grunde liegende Problem gelöst durch eine Reaktionsmischung umfassend die Zelle nach dem zweiten Aspekt sowie Isobutan oder Isobuttersäure. In a further embodiment of the first, second or third aspect, the cell is a bacterial or lower eukaryotic cell. In a further embodiment of the first, second or third aspect, the cell is a yeast cell from the group of genera comprising Yarrowia, Candida, Saccharomyces, Schizosaccharomyces and Pichia, and is preferably Yarrowia lipolytica. In a fourth aspect, the problem underlying the invention is solved by a reaction mixture comprising the cell according to the second aspect as well as isobutane or isobutyric acid.
Die Erfinder der vorliegenden Erfindung überraschend haben festgestellt, dass die Inaktivierung eines Gens, welches für ein als 3-Hydroxyisobuttersäure-Dehydrogenase identifiziertes Enzym kodiert, in einem Mikroorganismus zu einer erhöhten Ausbeute an 3-Hydroxyisobuttersäure führt. Die Erfinder haben weiterhin überraschend gefunden, dass es möglich ist 3- Hydroxyisobuttersäure biotechnologisch ausgehend von Alkanedukten, insbesondere Isobutan, herzustellen. Die Ausführung des erfindungsgemäßen Verfahrens erfordert zunächst das Bereitstellen von Isobuttersäure. Zunächst besteht die Möglichkeit, hierzu im Handel erhältliche Isobuttersäure abesteht die Möglichkeit, Isobuttersäure unter Verwendung von isolierten Enzymen oder ganzen Organismen mit geeigneter Katalysefähigkeit ausgehend von anderen Edukten herzustellen, beispielsweise durch Kultivierung eines Organismus, der natürlich Isobuttersäure herstellt. In einer bevorzugten Ausführungsform wird die Isobuttersäure durch das Kontaktieren von Isobutan oder einem anderen geeigneten Alkanvorläufer mit einer geeigneten Monooxygenase, bevorzugt Alkanhydroxylase hergestellt, bei der es sich in einer besonders bevorzugten Ausführungsform um eine Alkanhydroxylase des AlkBGT-Typs oder einer Variante davon handelt. In einer bevorzugten Ausführungsform wird unter dem Begriff „Alkanhydroxylase", wie hierin verwendet, eine Oxidoreduktase verstanden, die in der Lage ist, gesättigte Kohlenwasserstoffe, besonders Isobutan oder 3-Hydroxyisobutan, zur Carbonsäure zu oxidieren, bevorzugt an einem terminalen Kohlenstoffatom. Der Stand der Technik beschreibt eine Reihe von geeigneten Mikroorganismen und Enzymen. So beschreibt Patel et al. (Journal of Applied Biochemistry, 1983, 5 (1 - 2), 107 - 120) beschreiben 16 neue Bakterienstämme, die in der Lage sind, gasförmige Alkane mit einer Kettenlänge von C2 bis zu C4 zu den entsprechenden Methylketonen, sekundären und primären Alkoholen sowie Aldehyden zu oxidieren. Grant et al. (2011) beschreiben die Oxidation von Alkanen zu entsprechenden Säuren mittels der AlkB-Alkanhydroxylase (Grant, C, Woodley, J & Baganz, F 2011 , 'Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase System of P. putida GPo1 expressed in E. coli', Enzyme and Microbial Technology, vol 48, no. 6-7, pp. 480-486). The inventors of the present invention have surprisingly found that inactivating a gene encoding an enzyme identified as 3-hydroxyisobutyric acid dehydrogenase in an microorganism results in an increased yield of 3-hydroxyisobutyric acid. The inventors have furthermore surprisingly found that it is possible to produce 3-hydroxyisobutyric acid biotechnologically starting from alkane educts, in particular isobutane. The execution of the method according to the invention first requires the preparation of isobutyric acid. First, there is the possibility to commercially available isobutyric acid abest the possibility to produce isobutyric acid using isolated enzymes or whole organisms with suitable catalytic ability starting from other starting materials, for example by culturing an organism which naturally produces isobutyric acid. In a preferred embodiment, the isobutyric acid is prepared by contacting isobutane or another suitable alkane precursor with a suitable monooxygenase, preferably alkane hydroxylase, which in a particularly preferred embodiment is an alkyd hydroxylase of the AlkBGT type or a variant thereof. In a preferred embodiment, the term "alkane hydroxylase" as used herein means an oxidoreductase capable of oxidizing saturated hydrocarbons, particularly isobutane or 3-hydroxyisobutane, to the carboxylic acid, preferably at a terminal carbon atom Technique describes a number of suitable microorganisms and enzymes: Patel et al (Journal of Applied Biochemistry, 1983, 5 (1-2), 107-120) describe 16 new strains of bacteria capable of producing gaseous alkanes Grant et al. (2011) describe the oxidation of alkanes to corresponding acids by means of the alkB-alkane hydroxylase (Grant, C, Woodley, J & Baganz, et al , F 2011, 'Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli', Enzyme and Mic Robial Technology, vol 48, no. 6-7, pp. 480-486).
Andererseits besteht die Möglichkeit, Isobuttersäure durch geeignete Stämme von Mikroorganismen herzustellen, die natürlich oder durch genetische Modifikation mit Stoffwechselwegen ausgestattet sind, die die Herstellung von Isobuttersäure bei Fütterung mit geeigneten Kohlenstoffquellen, beispielsweise Glukose, umfassen. Beispielhafte Mikroorganismen umfassen z. B. Yarrowia lipolytica, Candida rugosa, Hanseniaspora valbyensis, Hansenula anomala, Trichosporon aculeatum, Trichosporon fennicum, Endomyces reessii, Geotrichum loubieri, Micrococcus flavus, Micrococcus luteus, Micrococcus lysodeikticum, Candida parapsilosis, Pichia membranaefaciens, Torulopsis Candida, Coccidioides posadasii, Coccidioides immitis, Verticillium dahliae, Gibberella zeae, Thielavia terrestris, Metarhizium acridum, Magnaporthe oryzae, Sordaria macrospora, Metarhizium nisopliae, Ajellomyces dermatitidis, Chaetomium globosum, Paracoccidioides brasiliensis, Nectria haematococca, Neurospora tetrasperma, Chaetomium thermophilum und Neurospora crassa. On the other hand, it is possible to prepare isobutyric acid by suitable strains of microorganisms naturally or genetically modified with metabolic pathways involving the production of isobutyric acid when fed with suitable carbon sources, for example glucose. Exemplary microorganisms include e.g. B. Yarrowia lipolytica, Candida rugosa, Hanseniaspora valbyensis, Hansenula anomala, Trichosporon aculeatum, Trichosporon fennicum, Endomyces reessii, Geotrichum loubieri, Micrococcus flavus, Micrococcus luteus, Micrococcus lysodeikticum, Candida parapsilosis, Pichia membranaefaciens, Torulopsis Candida, Coccidioides posadasii, Coccidioides immitis, Verticillium dahliae, zeae, Gibberella, Thielavia terrestris, Metarhizium acridum oryzae Magnaporthe, Sordaria macrospora, Metarhizium nisopliae, Ajellomyces dermatitidis, Chaetomium globosum, Paracoccidioides brasiliensis, Nectria haematococca, Neurospora tetrasperma, Chaetomium thermophilum and Neurospora crassa.
In einer bevorzugten Ausführungsform wird die Isobuttersäure durch Oxidation von Isobutan durch die Oxidoreduktase AlkB aus dem AlkBGT-System aus Pseudomonas putida oder einer Variante davon bereitgestellt. AlkB stellt eine Oxidoreduktase aus dem AlkBGT-System aus Pseudomonas putida dar, die für ihre Alkanhydroxylase-Aktivität bekannt ist. Diese ist von zwei weiteren Polypeptiden, AlkG und AlkT abhängig. AlkT wird als FAD-abhängige Rubredoxin- Reduktase charakterisiert, die Elektronen aus NADH an AlkG weitergibt. AlkG ist ein Rubredoxin, ein eisenhaltiges Redoxprotein, das als direkter Elektronendonor für AlkB fungiert. In einer bevorzugten Ausführungsform wird unter dem Begriff „Alkanhydrohylase des AlkBGT- Typs", wie hierein verwendet, eine membranständige Alkanmonooxidase verstanden. In einer weiteren bevorzugten Ausführungsform wird unter dem selben Begriff „Alkanhydrohylase des AlkBGT-Typs" ein Polypeptid mit einer Sequenzhomologie von zunehmend bevorzugt wenigstens 75, 80, 85, 90, 92, 94, 96, 98 oder 99 % zur Sequenz des AlkB von Pseudomonas putida Gpo1 (Datenbankcode: CAB54050.1 ) verstanden. In einer weiteren bevorzugten Ausführungsform wird unter dem Begriff eine Cytochrom-unabhängige Monooxygenase verstanden. In einer weiteren bevorzugten Ausführungsform wird unter dem Begriff „„Alkanhydrohylase des AlkBGT-Typs" eine Cytochrom-unabhängige Monooxygenase verstanden, die wenigstens ein Rubredoxin oder Homologon als Elektronendonor verwendet. In einer besonders bevorzugten Ausführungsform wird unter dem Begriff eine membranständige, Cytochrom-unabhänige Alkanmonooxygenase mit zunehmend bevorzugt wenigstens 60, 70, 80, 80, 85, 90, 92, 94, 96, 98 oder 99 % zur Sequenz des AlkB von Pseudomonas putida Gpo1 verstanden, die als Elektronendonor wenigstens AlkG (CAB54052.1 ), bevorzugt aber die Kombination von AlkG mit der Reduktase AlkT (CAB54063.1 ) benötigt, wobei es sich bei alkG und/oder alkT auch um ein Homologon des jeweiligen Polypeptides handeln kann. Der Begriff „Sequenz", wie hierin verwendet, kann sich auf die Aminosäuresequenz eines Polypeptides und/oder die dafür codierende Nukleinsäuresequenz beziehen. In einer weiteren bevorzugten Ausführungsform handelt es sich bei einer „Oxidoreduktase des alkB-Typs", wie hierin verwendet, um eine Cytochrom-unabhängige Oxidoreduktase, d.h. eine Oxidoreduktase, die nicht Cytochrom als Cofaktor umfasst. In a preferred embodiment, the isobutyric acid is provided by oxidation of isobutane by the oxidoreductase AlkB from the alkBGT system from Pseudomonas putida or a variant thereof. AlkB represents an oxidoreductase from the alkBGT system from Pseudomonas putida, which is known for its alkane hydroxylase activity. This is dependent on two other polypeptides, AlkG and AlkT. AlkT is characterized as FAD-dependent rubredoxin reductase, which transfers electrons from NADH to AlkG. AlkG is a rubredoxin, an iron-containing redox protein that acts as a direct electron donor for AlkB. In a preferred embodiment, the term "AlkBGT-type alkane hydrahydroylase" as used herein is understood to mean a membrane-bound alkane monooxidase In a further preferred embodiment, a polypeptide having a sequence homology of increasingly preferred is the same term "alkBGT-type alkane hydrohylase" at least 75, 80, 85, 90, 92, 94, 96, 98 or 99% to the sequence of the AlkB of Pseudomonas putida Gpo1 (database code: CAB54050.1) understood. In a further preferred embodiment, the term is understood to mean a cytochrome-independent monooxygenase. In a further preferred embodiment, the term "alkBGT-type alkanohydrohylase" is understood to mean a cytochrome-independent monooxygenase which uses at least one rubredoxin or homologue as electron donor In a particularly preferred embodiment, the term "membrane-active, cytochrome-independent alkanoneoxygenase" is used with more preferably at least 60, 70, 80, 80, 85, 90, 92, 94, 96, 98 or 99% to the sequence of the AlkB of Pseudomonas putida Gpo1, which as electron donor at least AlkG (CAB54052.1), but preferably the Combination of AlkG with the reductase AlkT (CAB54063.1), where alkG and / or alkT may also be a homologue of the respective polypeptide The term "sequence" as used herein may refer to the amino acid sequence of a polypeptide and / or the nucleic acid sequence coding therefor. In another preferred embodiment, it is an "alkB-type oxidoreductase" as herein used to produce a cytochrome-independent oxidoreductase, ie an oxidoreductase that does not contain cytochrome as a cofactor.
Es besteht die Möglichkeit, zu diesem Zweck gereinigte Komponenten des AlkBGT-Systems mit Isobutan zu kontaktieren, insbesondere AlkB. In einer bevorzugten Ausführungsform wird Isobutan mit einem AlkBGT-haltigen Ganzzellkatalysator kontaktiert, in einer bevorzugtesten Ausführungsform mit einem rekombinanten £.co//'-Stamm der heterologes AlkBGT exprimiert. Die Lehre der vorliegenden Erfindung kann nicht nur unter Verwendung der exakten Aminosäure- oder Nukleinsäuresequenzen der hierin beschriebenen biologischen Makromoleküle ausgeführt werden, sondern auch unter Verwendung von Varianten derartiger Makromoleküle, die durch Deletion, Addition oder Substitution einer oder mehr als einer Aminosäuren oder Nukleinsäuren erhalten werden können. In einer bevorzugten Ausführungsform bedeutet der Begriff „Variante" einer Nukleinsäuresequenz oder Aminosäuresequenz, im Folgenden gleichbedeutend und austauschbar mit dem Begriff „Homologon" gebraucht, wie hierin verwendet, eine andere Nukleinsäure- oder Aminosäuresequenz, die mit Hinblick auf die entsprechende ursprüngliche Wildtyp- Nukleinsäure- oder -Aminosäuresequenz eine Homologie, hier gleichbedeutend mit Identität verwendet, von 70, 75, 80, 85, 90, 92, 94, 96, 98, 99 % oder mehr Prozent aufweist, wobei bevorzugt andere als die das katalytisch aktive Zentrum ausbildende Aminosäuren oder für die Struktur oder Faltung essentielle Aminosäuren deletiert oder substituiert sind oder letztere lediglich konservativ substituiert sind, beispielsweise ein Glutamat statt einem Aspartat oder ein Leucin statt einem Valin. Der Stand der Technik beschreibt Algorithmen, die verwendet werden können, um das Ausmaß von Homologie von zwei Sequenzen zu berechnen, z. B. Arthur Lesk (2008), Introduction to bioinformatics, 3rd edition. In einer weiteren bevorzugteren Ausführungsform der vorliegenden Erfindung weist die Variante einer Aminosäure- oder Nukleinsäuresequenz, bevorzugt zusätzlich zur oben genannten Sequenzhomologie, im Wesentlichen die gleiche enzymatische Aktivität des Wildtypmoleküls bzw. des ursprünglichen Moleküls auf. Zum Beispiel weist eine Variante eines als Protease enzymatisch aktiven Polypeptids die gleiche oder im Wesentlichen die gleiche proteolytische Aktivität wie das Polypeptidenzym auf, d.h. die Fähigkeit, die Hydrolyse einer Peptidbindung zu katalysieren. In einer besonderen Ausführungsform bedeutet der Begriff „im Wesentlichen die gleiche enzymatische Aktivität" eine Aktivität mit Hinblick auf die Substrate des Wildtyp-Polypeptids, die deutlich über der Hintergrundaktivität liegt oder/und sich um weniger als 3, bevorzugter 2, noch bevorzugter eine Größenordnung von den KM- und/oder kcat- Werten unterscheidet, die das Wldtyppolypeptid mit Hinblick auf die gleichen Substrate aufweist. In einer weiteren bevorzugten Ausführungsform umfasst der Begriff „Variante" einer Nukleinsäure- oder Aminosäuresequenz wenigstens einen aktiven Teil/oder Fragment der Nukleinsäure- bzw. Aminosäuresequenz. In einer weiteren bevorzugten Ausführungsform bedeutet der Begriff „aktiver Teil", wie hierin verwendet, eine Aminosäuresequenz oder eine Nukleinsäuresequenz, die eine geringere als die volle Länge der Aminosäuresequenz aufweist bzw. für eine geringere als die volle Länge der Aminosäuresequenz kodiert, wobei die Aminosäuresequenz oder die kodierte Aminosäuresequenz mit geringerer Länge als der Wldtyp-Aminosäuresequenz im Wesentlichen die gleiche enzymatische Aktivität wie das Wldtyppolypeptid oder eine Variante davon aufweist, beispielsweise als Alkoholdehydrogenase, Monooxygenase oder Transaminase. In einer besonderen Ausführungsform umfasst der Begriff „Variante" einer Nukleinsäure eine Nukleinsäure, deren komplementärer Strang, bevorzugt unter stringenten Bedingungen, an die Wildtyp-Nukleinsäure bindet. Die Stringenz der Hybridisierungsreaktion ist für den Fachmann leicht bestimmbar und hängt im Allgemeinen von der Länge der Sonde, den Temperaturen beim Waschen und der Salzkonzentration ab. Im Allgemeinen benötigen längere Sonden höhere Temperaturen zum Hybridisieren, wohingegen kürzere Proben mit geringen Temperaturen auskommen. Ob Hybridisierung stattfindet, hängt im Allgemeinen von der Fähigkeit der denaturierten DNA ab, an komplementäre Stränge zu anellieren, die in ihrer Umgebung vorhanden sind, und zwar unterhalb der Schmelztemperatur. Die Stringenz von Hybridisierungsreaktion und entsprechende Bedingungen sind ausführlicher in Ausubel et al. 1995 beschrieben. In einer bevorzugten Ausführungsform umfasst der Begriff „Variante" einer Nukleinsäure, wie hierin verwendet, eine beliebige Nukleinsäuresequenz, die für die gleiche Aminosäuresequenz wie die ursprüngliche Nukleinsäure oder eine Variante dieser Aminosäuresequenz im Rahmen der Degeneriertheit des genetischen Codes kodiert. It is possible to contact for this purpose purified components of the AlkBGT system with isobutane, in particular AlkB. In a preferred embodiment, isobutane is contacted with a AlkBGT-containing whole-cell catalyst, expressed in a bevorzugtesten embodiment with a recombinant £ .co // 'strain of heterologous AlkBGT. The teachings of the present invention may be made not only by using the exact amino acid or nucleic acid sequences of the biological macromolecules described herein, but also by using variants of such macromolecules obtained by deletion, addition or substitution of one or more amino acids or nucleic acids can. In a preferred embodiment, the term "variant" of a nucleic acid sequence or amino acid sequence, hereinafter synonymous and interchangeable with the term "homologue" as used herein, means another nucleic acid or amino acid sequence that is unique with respect to the corresponding original wild-type nucleic acid sequence. or amino acid sequence has a homology, here used as identity, of 70, 75, 80, 85, 90, 92, 94, 96, 98, 99% or more percent, preferably other than the catalytically active center forming amino acids or for the structure or folding essential amino acids are deleted or substituted or the latter are only conservatively substituted, for example, a glutamate instead of an aspartate or a leucine instead of a valine. The prior art describes algorithms that can be used to calculate the extent of homology of two sequences, e.g. B. Arthur Lesk (2008), Introduction to bioinformatics, 3 rd edition. In a further preferred embodiment of the present invention, the variant of an amino acid or nucleic acid sequence, preferably in addition to the sequence homology mentioned above, has essentially the same enzymatic activity of the wild-type molecule or the original molecule. For example, a variant of a polypeptide enzymatically active as protease has the same or substantially the same proteolytic activity as the polypeptide enzyme, ie the ability to catalyze the hydrolysis of a peptide bond. In a particular embodiment, the term "substantially the same enzymatic activity "means an activity with respect to the substrates of the wild-type polypeptide that is significantly above the background activity and / or that differs by less than 3, more preferably 2, more preferably an order of magnitude from the K M and / or k cat values In a further preferred embodiment, the term "variant" of a nucleic acid or amino acid sequence comprises at least one active part or fragment of the nucleic acid or amino acid sequence. In a further preferred embodiment, the term "active part" as used herein means an amino acid sequence or nucleic acid sequence which is less than full length of the amino acid sequence or less than full length of the amino acid sequence encoding the amino acid sequence or amino acid sequence the encoded amino acid sequence of lesser length than the Wldtype amino acid sequence has substantially the same enzymatic activity as the Wldtype polypeptide or a variant thereof, for example as alcohol dehydrogenase, monooxygenase or transaminase In a particular embodiment, the term "variant" of a nucleic acid comprises a nucleic acid whose complementary strand, preferably under stringent conditions, binds to the wild-type nucleic acid. The stringency of the hybridization reaction is readily determinable by those skilled in the art and generally depends on the length of the probe, the temperatures of washing and the salt concentration. In general, longer probes require higher temperatures for hybridization, whereas shorter probes manage at low temperatures. Whether hybridization takes place generally depends on the ability of denatured DNA to anneal to complementary strands present in their environment, below the melting temperature. The stringency of hybridization reaction and corresponding conditions are more fully described in Ausubel et al. 1995 described. In a preferred embodiment, the term "variant" of a nucleic acid as used herein includes any nucleic acid sequence encoding the same amino acid sequence as the original nucleic acid or a variant of that amino acid sequence in the context of degeneracy of the genetic code.
Nach dem Bereitstellen von Isobuttersäure wird diese erfindungsgemäß mit einem Enzym oder Enzym-System kontaktiert, das in der Lage ist, sie zu Isobutyryl-CoA umzuwandeln. Möglich ist das Kontaktieren von Isobuttersäure mit der Kombination aus Isobutyrat-Kinase und Phosphortransisobutyrylase. Unter dem Begriff „Isobutyrat-Kinase", wie hierin verwendet, wird dabei ein Enzym verstanden, das in der Lage ist, Isobuttersäure unter Hydrolyse von ATP zu phosphorylieren. In einer besonders bevorzugten Ausführungsform wird unter dem Begriff „Phosphotransisobutyrylase", wie hierin verwendet, ein Enzym verstanden, das die Umsetzung der phosphorylierten Buttersäure unter Verbrauch von Coenzym A zu Isobutyryl-CoA zu katalysieren. Geeignete Enzyme kann der Fachmann dem Stand der Technik entnehmen beispielsweise: NP_348286.1, YP_001311072.1, YP_001311673.1, YP_003845108.1, CCC57671.1, ZP_02993103.1, YP_001255907.1, YP_001788766.1 , YP_001783065.1, ZP_02613551.1, ZP_05129586.1, NP_783068.1, ZP_02616584.1, YP_001392779.1, ZP_02642313.1, YP_697036.1, NP_563263.1, YP_699607.1, ZP_05129585.1, ZP_05394270.1, ZP_04821992.1, YP_001086582.1, YP_001884532.1, YP_001919732.1 , YP_001513941.1, YP_001322041.1, NP_349675.1, YP_001307350.1 , ZP_02074622.1 , AAA75487.1, ZP_05979314.1, ZP_02950703.1, YP_003935519.1 , YP_001126403.1, ZP_03147541.1, BAD11094.1, ZP_08532470.1 , CBK83142.1, ZP_02027123.1 , ZP_02206646.1, ZP_03226899.1, ZP_05791023.1, YP_002950277.1 , YP_003825217.1, ZP_08609344.1, YP_004819378.1, YP_001376086.1, ZP_06425397.1, ZP_04152833.1, ZP_03292064.1, ZP_07525976.1, YP_003477715.1, YP_001664465.1, ZP_04218902.1 , YP_003677577.1, ZP_02211576.1, ZP_04187800.1, ZP_04302360.1, ZP_04098303.1, ZP_00394509.1, YP_085496.1, NP_846616.1, ZP_04313571.1, YP_896508.1, NP_980529.1, ZP_04170515.1, YP_001646798.1, ZP_00240356.1 , ZP_04269443.1, ZP_04291055.1, ZP_04176201.1, ZP_01860365.1, ZP_03237173.1, YP_001471381.1, ZP_08211979.1 , ZP_04208847.1, YP_004820818.1, ZP_04103879.1, YP_003666354.1 , NP_833876.1, ZP_04285820.1, ZP_04086212.1, ZP_04147476.1, NP_623752.1, ZP_03231885.1, ZP_04066826.1, ZP_08211238.1, ZP_07709086.1 , YP_002315321.1, YP_002447739.1, ZP_00741048.1, ZP_04073820.1, YP_003988617.1, YP_002368967.1 , YP_148233.1, YP_003251443.1, AEN87678.1, YP_003564885.1, YP_004660977.1 , YP_004587379.1, NP_349675.1, AAA75487.1, YP_001788766.1, YP_001255907.1 , ZP_02993103.1, YP_001783065.1, ZP_02613551.1, ZP_02616584.1, YP_001392779.1, ZP_05394270.1 , NP_783068.1, CCC57671.1, YP_697036.1, NP_563263.1, YP_699607.1, ZP_02642313.1 , YP_001919732.1, ZP_07525976.1, YP_001884532.1, ZP_04821992.1, ZP_03292064.1, ZP_05129586.1, YP_001307350.1, ZP_02950703.1, ZP_05129585.1, YP_001086582.1 , YP_001311072.1, YP_001513941.1, YP_003845108.1, YP_001322041.1 , ZP_06425397.1, YP_001311673.1, YP_003935519.1, NP_348286.1, ZP_02027123.1, ZP_08532470.1 , YP_001664465.1, YP_002950277.1, YP_004820818.1, ZP_07709086.1 , ZP_08211979.1 , ZP_02211576.1, ZP_05979314.1, ZP_02074622.1, YP_003677577.1 , CBK83142.1, YP_003477715.1, Z P_02206646.1 , BAD11094.1, ZP_01860365.1, ZP_03226899.1After providing isobutyric acid, this invention is contacted with an enzyme or enzyme system capable of converting it to isobutyryl-CoA. It is possible to contact isobutyric acid with the combination of isobutyrate kinase and phosphorotransisobutyrylase. By the term "isobutyrate kinase" as used herein is meant an enzyme capable of adding isobutyric acid with hydrolysis of ATP phosphorylate. In a particularly preferred embodiment, the term "phosphotransisobutyrylase" as used herein means an enzyme which catalyzes the reaction of the phosphorylated butyric acid with consumption of coenzyme A to form isobutyryl-CoA .. Suitable enzymes can be taken from the prior art, for example : NP_348286.1, YP_001311072.1, YP_001311673.1, YP_003845108.1, CCC57671.1, ZP_02993103.1, YP_001255907.1, YP_001788766.1, YP_001783065.1, ZP_02613551.1, ZP_05129586.1, NP_783068.1, ZP_02616584 .1, YP_001392779.1, ZP_02642313.1, YP_697036.1, NP_563263.1, YP_699607.1, ZP_05129585.1, ZP_05394270.1, ZP_04821992.1, YP_001086582.1, YP_001884532.1, YP_001919732.1, YP_001513941.1 , YP_001322041.1, NP_349675.1, YP_001307350.1, ZP_02074622.1, AAA75487.1, ZP_05979314.1, ZP_02950703.1, YP_003935519.1, YP_001126403.1, ZP_03147541.1, BAD11094.1, ZP_08532470.1, CBK83142 .1, ZP_02027123.1, ZP_02206646.1, ZP_03226899.1, ZP_05791023.1, YP_002950277.1, YP_003825 215.1, ZP_0409145, ZP_0363, 015, ZP_0403, 0351, ZP_06425397.1, ZP_06425397.1 ZP_04187800.1, ZP_04302360.1, ZP_04098303.1, ZP_00394509.1, YP_085496.1, NP_846616.1, ZP_04313571.1, YP_896508.1, NP_980529.1, ZP_04170515.1, YP_001646798.1, ZP_00240356.1, ZP_04269443. 1, ZP_04291055.1, ZP_04176201.1, ZP_01860365.1, ZP_03237173.1, YP_001471381.1, ZP_08211979.1, ZP_04208847.1, YP_004820818.1, ZP_04103879.1, YP_003666354.1, NP_833876.1, ZP_04285820.1, ZP_04086212.1, ZP_04147476.1, NP_623752.1, ZP_03231885.1, ZP_04066826.1, ZP_08211238.1, ZP_07709086.1, YP_002315321.1, YP_002447739.1, ZP_00741048.1, ZP_04073820.1, YP_003988617.1, YP_002368967. 1, YP_148233.1, YP_003251443.1, AEN87678.1, YP_003564885.1, YP_004660977.1, YP_004587379.1, NP_349675.1, AAA75487.1, YP_001788766.1, YP_001255907.1, ZP_02993103.1, YP_001783065.1, ZP_02613551.1, ZP_02616584.1, YP_001392779.1, ZP_05394270 .1, NP_783068.1, CCC57671.1, YP_697036.1, NP_563263.1, YP_699607.1, ZP_02642313.1, YP_001919732.1, ZP_07525976.1, YP_001884532.1, ZP_04821992.1, ZP_03292064.1, ZP_05129586.1 , YP_001307350.1, ZP_02950703.1, ZP_05129585.1, YP_001086582.1, YP_001311072.1, YP_001513941.1, YP_003845108.1, YP_001322041.1, ZP_06425397.1, YP_001311673.1, YP_003935519.1, NP_348286.1, ZP_02027123 .1, ZP_08532470.1, YP_001664465.1, YP_002950277.1, YP_004820818.1, ZP_07709086.1, ZP_08211979.1, ZP_02211576.1, ZP_05979314.1, ZP_02074622.1, YP_003677577.1, CBK83142.1, YP_003477715.1, Z P_02206646.1, BAD11094.1, ZP_01860365.1, ZP_03226899.1
NP_623752.1, YP_003988617.1, ZP_08005605.1, YP_003599607.1 , YP_003831638.1NP_623752.1, YP_003988617.1, ZP_08005605.1, YP_003599607.1, YP_003831638.1
YP_003564885.1, YP_004587379.1, AEN87678.1, YP_001376086.1 , YP_004819378.1YP_003564885.1, YP_004587379.1, AEN87678.1, YP_001376086.1, YP_004819378.1
ZP_04152833.1, YP_001126403.1, ZP_03147541.1, ZP_04218902.1, ZP_08609344.1 ZP_00240356.1, YP_002368967.1, ZP_04147476.1, ZP_04176201.1, ZP_04269443.1ZP_04152833.1, YP_001126403.1, ZP_03147541.1, ZP_04218902.1, ZP_08609344.1 ZP_00240356.1, YP_002368967.1, ZP_04147476.1, ZP_04176201.1, ZP_04269443.1
YP_003666354.1, ZP_04073820.1, ZP_04103879.1, NP_833876.1, ZP_04285820.1YP_003666354.1, ZP_04073820.1, ZP_04103879.1, NP_833876.1, ZP_04285820.1
ZP_04187800.1, ZP_04313571.1, ZP_03231885.1, ZP_03237173.1, ZP_04086212.1ZP_04187800.1, ZP_04313571.1, ZP_03231885.1, ZP_03237173.1, ZP_04086212.1
ZP_04302360.1, ZP_08094177.1, NP_980529.1, ZP_04098303.1, YP_085496.1ZP_04302360.1, ZP_08094177.1, NP_980529.1, ZP_04098303.1, YP_085496.1
ZP_04170515.1, YP_002447739.1, BAD11089.1, ZP_00394509.1, YP_001646798.1 YP_002315321.1, NP_846616.1, ZP_04066826.1, YP_896508.1, YP_003866727.1 ZP_00741048.1, YP_001487375.1, ZP_06875892.1, ZP_04291055.1 ZP_04170515.1, YP_002447739.1, BAD11089.1, ZP_00394509.1, YP_001646798.1 YP_002315321.1, NP_846616.1, ZP_04066826.1, YP_896508.1, YP_003866727.1 ZP_00741048.1, YP_001487375.1, ZP_06875892.1, ZP_04291055.1
Sämtliche in dieser Anmeldung für die Angabe von Sequenzen aus dem Stand der Technik verwendete Datenbankencodes stammen aus der Datenbank NCBI (National Center for Biotechnology Information, Zugriffsdatum: 19.10.2011), genauer unter Verwendung des am 19.10.2011 online verfügbaren Releases. All database codes used in this application for indicating sequences of the prior art are from the database NCBI (National Center for Biotechnology Information, access date: 19.10.2011), more precisely using the available on 19.10.2011 online release.
Alternativ kann Isobutyryl-CoA unter Verwendung von Isobutyryl-Coenzym A-Synthetase oder -Ligase aus Isobuttersäure erhalten werden. In einer bevorzugten Ausführungsform wird unter dem Begriff „Isobutyryl-Coenzym A-Ligase", wie hierin verwendet, ein Enzym verstanden, das die Umwandlung von Isobuttersäure zu Isobutyryl-CoA unter Verbrauch von Coenzym A und Nucleotid-Triphosphat katalysiert. In einer besonders bevorzugten Ausführungsform wird unter dem Begriff„Isobutyryl-Coenzym A-Synthetase", wie hierin verwendet, eine Isobutyryl-Coenzym A-Ligase verstanden, wobei es sich bei dem im Zuge der Reaktion hydrolysierten NTP um ATP handelt. Geeignete Enzyme kann der Fachmann dem Stand der Technik entnehmen beispielsweise: NP_579516.1, NP_125992.1, YP_004423263.1, YP_004070968.1, YP_182878.1, YP_002306709.1 , YP_002959654.1 , YP_004762301.1 , YP_002581616.1, YP_002994502.1, YP_004623157.1, NP_143577.1, YP_002307387.1 , NP_579566.1, YP_004623106.1, YP_004763660.1, YP_002583149.1, YP_002959108.1 , YP_002993622.1, YP_001736558.1, YP_003649375.1 , YP_004423314.1, ZP_04874839.1, YP_183356.1, ZP_04874991.1, YP_001041242.1, YP_003860266.1 , NP_126044.1, NP_143628.1, YP_003669211.1, YP_002428622.1, YP_001013511.1, YP_004175933.1 , YP_004174284.1, YP_001012369.1, YP_004781520.1, ΥΡ_004071372.1, ΝΡ_769799.1, ΥΡ_429257.1, CAJ70793.1, ΖΡ_08257475.1, ΥΡ_930006.1, ΝΡ_618478.1, ΖΡ_08667208.1, ΥΡ_001239140.1, ΥΡ_004438172.1, ΥΡ_003400029.1 , ΥΡ_001206872.1 , ΝΡ_070039.1, ΥΡ_003727548.1, ΥΡ_004625200.1 , ΖΡ_08422040.1, ΥΡ_460839.1, ΖΡ_08631067.1, ΖΡ_02883796.1, ΥΡ_002953381.1, ΖΡ_08110577.1, ΥΡ_003542795.1 , ΖΡ_08905433.1 , ΖΡ_06908198.1, ΥΡ_001581540.1, ΝΡ_632517.1, ΥΡ_004519194.1 , ΥΡ_004515899.1, ΥΡ_004120624.1, ΖΡ_07293826.1, CAJ73927.1, ΖΡ_07331643.1, ΥΡ_001278815.1, ΖΡ_08840735.1, ΥΡ_002289530.1, ΥΡ_001637486.1, ΥΡ_004342727.1 , ΖΡ_07026137.1, ΖΡ_08112481.1, ΥΡ_003487360.1, ΥΡ_001540910.1, ΖΡ_07946223.1 , ΥΡ_685524.1, ΥΡ_004812635.1, ΖΡ_08677213.1, ΖΡ_08803651.1, ADI05837.1, ΥΡ_874976.1, ΥΡ_002465105.1, ΥΡ_003355503.1, ΖΡ_07026765.1 , ΥΡ_001430231.1, ΥΡ_004893707.1 , ΥΡ_003766745.1, ΥΡ_004627663.1, ΥΡ_003649567.1 , ΖΡ_07307686.1, ΥΡ_001546514.1 , ΥΡ_686303.1, ΥΡ_002992636.1 , ΥΡ_004516207.1, ΥΡ_001154008.1 , ΥΡ_004338243.1, ΥΡ_003357973.1 Alternatively, isobutyryl-CoA can be obtained using isobutyryl-coenzyme A synthetase or ligase from isobutyric acid. In a preferred embodiment, the term "isobutyryl-coenzyme A ligase" as used herein refers to an enzyme which catalyzes the conversion of isobutyric acid to isobutyryl-CoA consuming coenzyme A and nucleotide triphosphate, in a particularly preferred embodiment For example, the term "isobutyryl-coenzyme A synthetase" as used herein means an isobutyryl-coenzyme A ligase wherein the NTP hydrolyzed in the course of the reaction is ATP. Suitable enzymes can be found by those skilled in the art, for example: NP_579516.1, NP_125992.1, YP_004423263.1, YP_004070968.1, YP_182878.1, YP_002306709.1, YP_002959654.1, YP_004762301.1, YP_002581616.1, YP_002994502. 1, YP_004623157.1, NP_143577.1, YP_002307387.1, NP_579566.1, YP_004623106.1, YP_004763660.1, YP_002583149.1, YP_002959108.1, YP_002993622.1, YP_001736558.1, YP_003649375.1, YP_004423314.1, ZP_04874839.1, YP_183356.1, ZP_04874991.1, YP_001041242.1, YP_003860266.1, NP_126044.1, NP_143628.1, YP_003669211.1, YP_002428622.1, YP_001013511.1, YP_004175933.1, YP_004174284.1, YP_001012369.1, YP_004781520.1, ΥΡ_004071372.1, ΝΡ_769799.1, ΥΡ_429257.1, CAJ70793.1, ΖΡ_08257475.1, ΥΡ_930006.1, ΝΡ_618478.1, ΖΡ_08667208.1, ΥΡ_001239140.1, ΥΡ_004438172.1, ΥΡ_003400029. 1, ΥΡ_001206872.1, ΝΡ_070039.1, ΥΡ_003727548.1, ΥΡ_004625200.1, ΖΡ_08422040.1, ΥΡ_460839.1, ΖΡ_08631067.1, ΖΡ_02883796.1, ΥΡ_002953381.1, ΖΡ_08110577.1, ΥΡ_003542795.1, ΖΡ_08905433.1, ΖΡ_06908198.1, ΥΡ_001581540.1, ΝΡ_632517.1, ΥΡ_004519194.1, ΥΡ_004515899.1, ΥΡ_004120624.1, ΖΡ_07293826.1, CAJ73927.1, ΖΡ_07331643.1, ΥΡ_001278815.1, ΖΡ_08840735.1, ΥΡ_002289530.1, ΥΡ_001637486. 1, ΥΡ_004342727.1, ΖΡ_07026137.1, ΖΡ_08112481.1, ΥΡ_003487360.1, ΥΡ_001540910.1, ΖΡ_07946223.1, ΥΡ_685524.1, ΥΡ_004812635.1, ΖΡ_08677213.1, ΖΡ_08803651.1, ADI05837.1, ΥΡ_874976.1, ΥΡ_002465105.1, ΥΡ_003355503.1, ΖΡ_07026765.1, ΥΡ_001430231.1, ΥΡ_004893707.1, ΥΡ_003766745.1, ΥΡ_004627663.1, ΥΡ_003649567.1, ΖΡ_073076 86.1, ΥΡ_001546514.1, ΥΡ_686303.1, ΥΡ_002992636.1, ΥΡ_004516207.1, ΥΡ_001154008.1, ΥΡ_004338243.1, ΥΡ_003357973.1
Schließlich kann Isobutyryl-CoA aus Isobuttersäure mittels Isobutyrat-Coenzym A-Transferase hergestellt werden. In einer bevorzugten Ausführungsform handelt es sich bei dem Begriff „Isobutyrat-Coenzym A-Transferase", wie hierin verwendet, um ein Enzym, das die Herstellung von Isobutyryl-CoA aus Isobuttersäure unter Transfer von Coenzym A von einem als Donor fungierenden Acyl-CoA katalysiert. Geeignete Enzyme kann der Fachmann dem Stand der Technik entnehmen beispielsweise: NP_149326.1, AAB53234.1, YP_001310904.1, AAD54947.1, AAP42564.1, CAQ57984.1, YP_001886322.1, NP_622378.1, ZP_08693244.1, ZP_07926619.1, ZP_08555875.1, ZP_04390377.1 , ZP_01867058.1, ZP_04573915.1 , ZP_07913714.1, ZP_07923474.1 , ZP_08691337.1, ZP_08600063.1 , ZP_02692961.1 , ZP_08582386.1, ZP_00144733.1, ZP_05815087.1, ZP_06524353.1 , ZP_07952599.1 , YP_004254308.1, YP_003039857.1, YP_003828410.1, ZP_06175535.1, NP_602657.1, ZP_06748826.1, ZP_06749807.1 , ZP_04970682.1, AD077683.1, AA018070.1, ZP_05887867.1, AEJ99145.1, EGB63075.1, NP_931005.1, YP_003968227.1 , ZP_08327315.1 , ZP_06025832.1, YP_003260518.1, YP_003016746.1, YP_001452140.1 , EGW68380.1, ZP_02424926.1, ZP_03828051.1, EGB72667.1, EFW53769.1, ZP_03001766.1, ZP_05402063.1, YP_049390.1, ZP_08690265.1 , YP_003936148.1 , YP_002382110.1, NP_416725.1, YP_003941041.1, YP_001744415.1, YP_003296165.1 , ZP_07151665.1 , NP_754650.1, YP_002413271.1, EGC06740.1, YP_001459023.1, ZP_05272741.1 ZP_04005084.1, YP_541501.1, YP_002335226.1 , YP_001089188.1 , ZP_04054428.1 YP_001784143.1, YP_001306376.1, ZP_07820010.1, ZP_03065638.1, YP_004441693.1 NP_905281.1, YP_001321984.1, ZP_06636026.1, YP_003296060.1 , ZP_07903700.1 YP_004509865.1, ZP_08626421.1, YP_002933615.1, YP_002771575.1 , ZP_06715088.1 ZP_01548307.1, ZP_06982396.1 , ZP_08643079.1 , YP_002497558.1 , YP_001513889.1 NP_438933.1, YP_248482.1, YP_531878.1, YP_002746872.1 , YP_002744076.1 ZP_01792337.1, YP_002940319.1, YP_001471175.1 , ZP_01220381.1Finally, isobutyryl-CoA can be prepared from isobutyric acid by means of isobutyrate-coenzyme A transferase. In a preferred embodiment, the term "isobutyrate-coenzyme A transferase" as used herein is an enzyme that catalyzes the production of isobutyryl-CoA from isobutyric acid to transfer coenzyme A from a donor-acting acyl-CoA Suitable enzymes can be found by the person skilled in the art, for example: NP_149326.1, AAB53234.1, YP_001310904.1, AAD54947.1, AAP42564.1, CAQ57984.1, YP_001886322.1, NP_622378.1, ZP_08693244.1, ZP_07926619 .1, ZP_08555875.1, ZP_04390377.1, ZP_01867058.1, ZP_04573915.1, ZP_07913714.1, ZP_07923474.1, ZP_08691337.1, ZP_08600063.1, ZP_02692961.1, ZP_08582386.1, ZP_00144733.1, ZP_05815087.1 , ZP_06524353.1, ZP_07952599.1, YP_004254308.1, YP_003039857.1, YP_003828410.1, ZP_06175535.1, NP_602657.1, ZP_06748826.1, ZP_06749807.1, ZP_04970682.1, AD077683.1, AA018070.1, ZP_05887867 .1, AEJ99145.1, EGB63075.1, NP_931005.1, YP_003968227.1, ZP_08327315.1, ZP_06025832.1, YP_003260518.1, YP_003016746.1, YP_001452140.1, EGW68380.1, ZP_02424926.1, ZP_03828051.1, EGB72667.1, EFW53769.1, ZP_03001766.1, ZP_05402063.1, YP_049390.1, ZP_08690265.1, YP_003936148.1, YP_002382110.1, NP_416725. 1, YP_003941041.1, YP_001744415.1, YP_003296165.1, ZP_07151665.1, ZP_05275011.1, YP_541501.1, YP_002335226.1, YP_001089188.1, ZP_04054428.1 YP_001784143.1, YP_001306376.1, ZP_07820010.1, ZP_03065638.1, YP_004441693.1 NP_905281.1, YP_001321984.1, ZP_06636026.1, YP_003296060.1, ZP_07903700.1 YP_004509865.1, ZP_08626421.1, YP_002933615.1, YP_002771575.1, ZP_06715088.1 ZP_01548307.1, ZP_06982396 .1, ZP_08643079.1, YP_002497558.1, YP_001513889.1 NP_438933.1, YP_248482.1, YP_531878.1, YP_002746872.1, YP_002744076.1 ZP_01792337.1, YP_002940319.1, YP_001471175.1, ZP_01220381.1
YP_002123783.1,NP_149327.1, CAQ57985.1, YP_001886321.1 , AAD54948.1 YP_001310905.1, AAP42565.1, ZP_05092257.1, NP_622379.1, ZP_08555876.1 ZP_02692960.1, YP_002335225.1, YP_001306375.1, ZP_08693245.1, YP_001513888.1 YP_001321983.1, ZP_07926620.1 , ZP_02424916.1 , YP_001409735.1, ZP_06983458.1 YP_003828409.1, YP_004707898.1, YP_003936149.1, ZP_07577382.1, YP_001089189.1 YP_001471174.1, ZP_05272742.1, YP_002940318.1, ZP_05402064.1, YP_004254317.1 YP_003968226.1, CBK81879.1, ZP_07819217.1, YP_001740168.1 , YP_049389.1 ZP_08709179.1, YP_001918401.1, YP_003016745.1, NP_905290.1, YP_004509856.1 ZP_03828050.1, YP_426559.1, YP_001929287.1, YP_001568118.1 , ZP_04390271.1 ZP_07913715.1, ZP_07820042.1, YP_003260519.1, ZP_08691338.1, ZP_01548308.1 ZP_08327314.1, ZP_04970681.1, ZP_04054413.1, ZP_08690266.1 , ZP_05887868.1 ZP_06748825.1, YP_001918068.1, ZP_08731713.1, NP_602656.1, ZP_06524354.1 ZP_01867057.1, ZP_04573916.1, ZP_05815086.1, ZP_06025831.1, ZP_00144734.1 ZP_08600062.1, YP_001784144.1, EGQ80092.1, ZP_06175534.1 , AD077682.1 ZP_01220382.1, YP_597732.1, YP_003945474.1, YP_004219013.1 , YP_002562694.1 YP_001788168.1, YP_002285170.1, NP_268527.1, YP_001392125.1 , CBZ04738.1 ZP_06921170.1, ZP_07461446.1, YP_531879.1, YP_002805353.1 , YP_003452384.1 YP_001255346.1, YP_001385091.1, YP_878775.1, EGC06741.1, NP_663914.1 YP_059486.1, YP_002382109.1, YP_001884900.1, ZP_07307813.1, ZP_02621896.1 ZP_07903699.1, ZP_08729700.1, YP_001309762.1, YP_001768507.1 , YP_602949.1 EGL48602.1, XP_501388.1, XP_002841479.1, XP_002481641.1, XP_002147496.1 XP_001879757.1, XP_661332.1, XP_003295652.1, XP_001936644.1 , AAK40365.1 XP_001802255.1, XP_002383405.1, XP_001390976.1, XP_001212457.1 , EGP83670.1 XP_001227675.1, XP_003176313.1, XP_001268294.1, XP_751117.1, EGF82407.1 XP_001258382.1, EFW13413.1, XP_003065510.1, EGD93452.1, EEH22314.1 XP_001247983.1, EGE09225.1, XP_003022194.1, CBX98353.1, XP_003014185.1 XP_002564448.1, XP_003239146.1, EGX51025.1, EGO01287.1, XP_002792936.1 EFQ30503.1, XP_001838038.1, XP_002847737.1, EGO55093.1, XP_957979.1 XP_001547410.1, EGR48848.1, XP_003038014.1, EER44122.1, EFY99528.1, EGC42434.1 EEH09119.1, EFY92418.1, EGS22244.1, XP_002629107.1 , XP_002548743.1 XP_001904655.1, EFX03923.1, XP_716276.1, XP_002422356.1 , XP_388121.1 XP_001586993.1, EGX96527.1, XP_368380.1, NP_595848.1 , XP_003345762.1 , XP_759662.1 XP_003001963.1, EGG06029.1, XP_002175297.1, XP_001386078.2, XP_003040746.1 XP_459426.2, EDK36000.2, CBQ73919.1, EGU85384.1, XP_001525161.1 , XP_001731221.1 XP_002490853.1, XP_001486721.1 YP_002123783.1, NP_149327.1, CAQ57985.1, YP_001886321.1, AAD54948.1 YP_001310905.1, AAP42565.1, ZP_05092257.1, NP_622379.1, ZP_08555876.1 ZP_02692960.1, YP_002335225.1, YP_001306375.1, ZP_08693245.1, YP_001513888.1 YP_001321983.1, ZP_07926620.1, ZP_02424916.1, YP_001409735.1, ZP_06983458.1 YP_003828409.1, YP_004707898.1, YP_003936149.1, ZP_07577382.1, YP_001089189.1 YP_001471174.1, ZP_05272742 .1, YP_002940318.1, ZP_05402064.1, YP_004254317.1 YP_003968226.1, CBK81879.1, ZP_07819217.1, YP_001740168.1, YP_049389.1 ZP_08709179.1, YP_001918401.1, YP_003016745.1, NP_905290.1, YP_004509856 . ZP_03828050.1, YP_426559.1, YP_001929287.1, YP_001568118.1, ZP_04390271.1 ZP_07913715.1, ZP_07820042.1, YP_003260519.1, ZP_08691338.1, ZP_01548308.1 ZP_08327314.1, ZP_04970681.1, ZP_04054413. 1, ZP_08690266.1, ZP_05887868.1 ZP_06748825.1, YP_001918068.1, ZP_08731713.1, NP_602656.1, ZP_06524354.1 ZP_01867057.1, ZP_04573916.1, ZP_05815086.1, ZP_06025831.1, ZP_00144734.1 ZP_08600062.1 , YP_001784144.1, EC ZP_01220382.1, YP_597732.1, YP_003945474.1, YP_004219013.1, YP_002562694.1 YP_001788168.1, YP_002285170.1, NP_268527.1, YP_001392125.1, CBZ04738.1 ZP_06921170, ZP_06175534.1, AD077682.1 .1, ZP_07461446.1, YP_531879.1, YP_002805353.1, YP_003452384.1 YP_001255346.1, YP_001385091.1, YP_878775.1, EGC06741.1, NP_663914.1 YP_059486.1, YP_002382109.1, YP_001884900.1, ZP_07307813 .1, ZP_02621896.1 ZP_07903699.1, ZP_08729700.1, YP_001309762.1, YP_001768507.1, YP_602949.1 EGL48602.1, XP_501388.1, XP_002841479.1, XP_002481641.1, XP_002147496.1 XP_001879757.1, XP_661332. 1, XP_003295652.1, XP_001936644.1, AAK40365.1 XP_001802255.1, XP_002383405.1, XP_001390976.1, XP_001212457.1, EGP83670.1 XP_001227675.1, XP_003176313.1, XP_001268294.1, XP_751117.1, EGF82407. 1 XP_001258382.1, EFW13413.1, XP_003065510.1, EGD93452.1, EEH22314.1 XP_001247983.1, EGE09225.1, XP_003022194.1, CBX98353.1, XP_003014185.1 XP_002564448.1, XP_003239146.1, EGX51025.1, EGO01287.1, XP_002792936.1 EFQ30503.1, XP_001838038.1, XP_002847737.1, EGO55093.1, XP_957979.1 XP_001547410.1, EGR48848.1, XP_003038014.1, EER44122.1, EFY99528.1, EGC42434.1 EEH09119.1, EFY92418.1, EGS22244.1, XP_002629107.1, XP_002548743.1 XP_001904655 .1, EFX03923.1, XP_716276.1, XP_002422356.1, XP_388121.1 XP_001586993.1, EGX96527.1, XP_368380.1, NP_595848.1, XP_003345762.1, XP_759662.1 XP_003001963.1, EGG06029.1, XP_002175297 .1, XP_001386078.2, XP_003040746.1 XP_459426.2, EDK36000.2, CBQ73919.1, EGU85384.1, XP_001525161.1, XP_001731221.1 XP_002490853.1, XP_001486721.1
Der nächste Schritt bei der erfindungsgemäßen biotechnologischen Synthese von 3-Hydroxyisobuttersäure umfasst das Kontaktieren des Produktes aus Schritt b), dem Isobutyryl-CoA, mit einer Isobutyryl-Coenzym A-Dehydrogenase. In einer bevorzugten Ausführungsform wird unter dem Begriff „Isobutyryl-Coenzym A-Dehydrogenase", wie hierin verwendet, ein Enzym verstanden, das die Oxidation von Isobutyryl-Coenzym A zu Methacrylyl- Coenzym A unter Freisetzung von Reduktionsäquivalenten katalysiert. Geeignete Beispiele umfassen die aus dem Stand der Technik bekannten Polypeptide mit den Datenbankcodes XP_501919.2, EDP50227.1, XP_001267173.1, XP_751977.1, EFW17827.1, XP_001241675.1 , XP_003070631.1, XP_002376988.1, EGS22147.1, XP_001271742.1 , XP_002794645.1 , XP_001214528.1, XP_959931.1, EG055678.1, EEH46977.1, XP_002543210.1 , XP_001401697.1, EEH07104.1, BAE59223.1, EGU83504.1, XP_002627767.1 , XP_002483661.1, EFX03379.1, XP_003048205.1, EGX54111.1, XP_002150528.1 , EFQ35634.1, XP_001548029.1, XP_659303.1, XP_002841387.1 , XP_001791413.1 , XP_001904778.1, XP_390966.1, XP_003015640.1, EGD94205.1, XP_003233609.1 , XP_003018507.1, XP_002561081.1, XP_360875.1, EFY92504.1, XP_003344493.1 , CBX95087.1, EGC41158.1, EGX92432.1, XP_003169516.1, EFZ00003.1, EGR49157.1, EGP87134.1, XP_002849756.1 , XP_003302688.1 , XP_001937377.1 , EEH 18077.1, XP_001227538.1, XP_001586947.1, AAK63186.1, XP_001538624.1 , AAQ04622.1, EGF84480.1, EER45206.1, XP_502873.1, EGS21840.1, XP_752854.1, XP_003170973.1 , CBF88712.1, XP_001264273.1, XP_003232243.1 , EGD97329.1, XP_002479178.1, XP_658428.1, XP_002844533.1, EGE05996.1, XP_001223344.1 , EGX95352.1, XP_001389698.2, CAK37343.1, EGR51332.1, XP_003068884.1 , XP_002146883.1 , XP_001243830.1, CAP65331.1, XP_001268770.1 , XP_001818195.1 , EFQ34732.1, XP_001210950.1, XP_962250.1, EEH50726.1, XP_001804465.1 , XP_003023750.1 , EG058886.1, CBX97678.1, XP_002561648.1, EEH15844.1, XP_389837.1, XP_363106.2, EFY97392.1, EFY90016.1, EGU81915.1, XP_002621381.1 , EEQ89840.1, EGX53945.1, XP_003295397.1, XP_003011911.1, EER38173.1, XP_002792725.1 , XP_003045885.1, XP_001935173.1, EGP88451.1, XP_001584930.1, XP_001836878.1 , EGG04035.1, XP_003005525.1, XP_001553916.1, XP_762332.1, CBQ71452.1, EFX05387.1, XP_568632.1, XP_001884381.1, EGO01481.1, XP_003332014.1, XP_003197572.1 , XP_001731213.1 , XP_003026264.1, EGF80206.1, XP_003346492.1 , XP_003324899.1 , EEH09831.1, XP_002582344.1, EGT41105.1, XP_002640134.1, CBJ32167.1, XP_002607968.1 , EFW43327.1, XP_003099748.1, CAF95757.1, NP_491859.1, XP_002471089.1 , YP_001611803.1, XP_002904727.1, EGG17601.1, EFX71478.1, CBN81547.1, XP_002640162.1, ADY46184.1, XP_003099703.1, EFA76871.1, AAH82665.1, 2JIF_A, XP_001658431.1, CAD38535.2, AAH13756.1, NP_001124722.1, NP_001600.1, XP_003255101.1, XP_003283361.1, CAJ81939.1, XP_002640145.1 , NP_491871.1, XP_001104844.1 , AAH 54428.1 The next step in the biotechnological synthesis of 3-hydroxyisobutyric acid according to the invention comprises contacting the product from step b), the isobutyryl-CoA, with an isobutyryl-coenzyme A dehydrogenase. In a preferred embodiment, the term "isobutyryl-coenzyme A dehydrogenase" as used herein means an enzyme which catalyzes the oxidation of isobutyryl coenzyme A to methacrylyl coenzyme A to release reducing equivalents Prior art known polypeptides with the database codes XP_501919.2, EDP50227.1, XP_001267173.1, XP_751977.1, EFW17827.1, XP_001241675.1, XP_003070631.1, XP_002376988.1, EGS22147.1, XP_001271742.1, XP_002794645. 1, XP_001214528.1, XP_959931.1, EG055678.1, EEH46977.1, XP_002543210.1, XP_001401697.1, EEH07104.1, BAE59223.1, EGU83504.1, XP_002627767.1, XP_002483661.1, EFX03379.1, XP_003048205.1, EGX54111.1, XP_002150528.1, EFQ35634.1, XP_001548029.1, XP_659303.1, XP_002841387.1, XP_001791413.1, XP_001904778.1, XP_390966.1, XP_003015640.1, EGD94205.1, XP_003233609. 1, XP_003018507.1, XP_002561081.1, XP_360875.1, EFY92504.1, XP_003344493.1, CBX95087.1, EGC41158.1, EGX 92432.1, XP_003169516.1, EFZ00003.1, EGR49157.1, EGP87134.1, XP_002849756.1, XP_003302688.1, XP_001937377.1, EEH 18077.1, XP_001227538.1, XP_001586947.1, AAK63186.1, XP_001538624.1, AAQ04622 .1, EGF84480.1, EER45206.1, XP_502873.1, EGS21840.1, XP_752854.1, XP_003170973.1, CBF88712.1, XP_001264273.1, XP_003232243.1, EGD97329.1, XP_002479178.1, XP_658428.1 , XP_002844533.1, EGE05996.1, XP_001223344.1, EGX95352.1, XP_001389698.2, CAK37343.1, EGR51332.1, XP_003068884.1, XP_002146883.1, XP_001243830.1, CAP65331.1, XP_001268770.1, XP_001818195.1, EFQ34732.1, XP_001210950.1, XP_962250.1, EEH50726.1, XP_001804465.1, XP_003023750.1, EG058886.1, CBX97678.1, XP_002561648. 1, EEH15844.1, XP_389837.1, XP_363106.2, EFY97392.1, EFY90016.1, EGU81915.1, XP_002621381.1, EEQ89840.1, EGX53945.1, XP_003295397.1, XP_003011911.1, EER38173.1, XP_002792725.1, XP_003045885.1, XP_001935173.1, EGP88451.1, XP_001584930.1, XP_001836878.1, EGG04035.1, XP_003005525.1, XP_001553916.1, XP_762332.1, CBQ71452.1, EFX05387.1, XP_568632. 1, XP_001884381.1, EGO01481.1, XP_003332014.1, XP_003197572.1, XP_001731213.1, XP_003026264.1, EGF80206.1, XP_003346492.1, XP_003324899.1, EEH09831.1, XP_002582344.1, EGT41105.1, XP_002640134.1, CBJ32167.1, XP_002607968.1, EFW43327.1, XP_003099748.1, CAF95757.1, NP_491859.1, XP_002471089.1, YP_001611803.1, XP_002904727.1, EGG17601.1, EFX71478.1, CBN81547. 1, XP_002640162.1, ADY46184.1, XP_003099703.1, EFA76871.1, AAH82665.1, 2JIF_A, XP_001658431.1, CAD38535. 2, AAH13756.1, NP_001124722.1, NP_001600.1, XP_003255101.1, XP_003283361.1, CAJ81939.1, XP_002640145.1, NP_491871.1, XP_001104844.1, AAH 54428.1
Der nächste Schritt des erfindungsgemäßen Verfahrens umfasst die Hydratisierung von Methacrylyl-Coenzym A unter Bildung von 3-Hydroxyisobutyryl-CoA mittels eines Methacrylyl- Coenzym A-Hydratase. In einer bevorzugten Ausführungsform wird unter dem Begriff „Methacrylyl-Coenzym A-Hydratase", wie hierin verwendet, ein Enzym verstanden, das die Anlagerung eines Wassermoleküls an Methacrylyl-Coenzym A unter Bildung von 3- Hydroxyisobuttersäure katalysiert. Beispiele umfassen die aus dem Stand der Technik bekannten Polypeptide mit den Datenbankencodes XP_502475.1, XP_003067220.1, XP_001239658.1, XP_002567879.1, XP_002145078.1 , XP_001259415.1 , CAK97202.1, XP_001211164.1, XP_001401252.2, XP_753374.1, XP_664448.1, CBF71576.1, XP_001274572.1, XP_002340305.1, XP_002845201.1, XP_001824127.1 , XP_002795848.1 , XP_003304302.1, EGC44435.1, EER38804.1, EEH09966.1, XP_001936195.1 , EEH50797.1, EEH 15784.1, EG061149.1, XP_003170409.1, XP_961123.1, EGS18121.1, XP_001554659.1 , XP_003230996.1, EGE07573.1, XP_002621253.1, EGE81015.1, EEQ89969.1, XP_361538.2, XP_001224889.1, XP_002381216.1, CBX96718.1, EFY95366.1, XP_001595164.1 , XP_001911969.1, EGX51365.1, EFY87978.1, EFQ29854.1, EGU81865.1, XP_003050469.1 , XP_003352189.1, XP_002839588.1, XP_003002061.1, EGD96635.1, XP_003022976.1 , XP_003010670.1, EFX03685.1, EGR47862.1, XP_002584325.1, XP_387195.1, EGX94938.1, XP_002616791.1, XP_462069.2, XP_001800531.1 The next step of the process of the invention involves the hydration of methacrylyl coenzyme A to give 3-hydroxyisobutyryl CoA by means of a methacrylyl coenzyme A hydratase. In a preferred embodiment, the term "methacrylyl-coenzyme A hydratase" as used herein means an enzyme which catalyzes the attachment of a water molecule to methacrylyl coenzyme A to form 3-hydroxyisobutyric acid Known polypeptides with the database codes XP_502475.1, XP_003067220.1, XP_001239658.1, XP_002567879.1, XP_002145078.1, XP_001259415.1, CAK97202.1, XP_001211164.1, XP_001401252.2, XP_753374.1, XP_664448.1, CBF71576.1, XP_001274572.1, XP_002340305.1, XP_002845201.1, XP_001824127.1, XP_002795848.1, XP_003304302.1, EGC44435.1, EER38804.1, EEH09966.1, XP_001936195.1, EEH50797.1, EEH 15784.1 , EG061149.1, XP_003170409.1, XP_961123.1, EGS18121.1, XP_001554659.1, XP_003230996.1, EGE07573.1, XP_002621253.1, EGE81015.1, EEQ89969.1, XP_361538.2, XP_001224889.1, XP_002381216 .1, CBX96718.1, EFY95366.1, XP_001595164.1, XP_001911969.1, EGX51365.1, EFY87978.1, EFQ29854.1, EGU81865.1 , XP_003050469.1, XP_003352189.1, XP_002839588.1, XP_003002061.1, EGD96635.1, XP_003022976.1, XP_003010670.1, EFX03685.1, EGR47862.1, XP_002584325.1, XP_387195.1, EGX94938.1, XP_002616791.1, XP_462069.2, XP_001800531.1
Schließlich ist zur Freisetzung des gewünschten Produktes 3-Hydroxyisobuttersäure die Hydrolyse des Produktes aus Schritt d), dem 3-Hydroxyisobutyryl-CoA, erforderlich. Hierzu besteht zunächst die Möglichkeit, das Produkt durch Zugabe von Säure oder Base extremen pH-Bedingungen auszusetzen, die die Hydrolyse ohne Einwirkung eines weiteren Enzyms begünstigen. In einer besonders bevorzugten Ausführungsform erfolgt die Hydrolyse jedoch durch Kontaktieren des Produktes aus Schritt c) mit einer 3-Hydroxyisobutyryl-Coenzym A- Hydrolase. In einer bevorzugten Ausführungsform wird unter dem Begriff„3-Hydroxyisobutyryl- Coenzym A-Hydrolase", wie hierin verwendet, ein Enzym verstanden, das 3-Hydroxyisobutyryl- Coenzym A zu 3-Hydroxyisobuttersäure und Coenzym A hydrolysiert. Als Beispiele können hier folgende Proteine genannt werden: XP_504911.1, XP_003066853.1, XP_001246264.1, XP_385460.1, EFY92465.1, XP_363761.1, XP_003346508.1, EFY97405.1, EEQ90955.1, XP_002623105.1, XP_001223375.1, XP_002794385.1, XP_003046454.1 , EGO58901.1, EEH47368.1, EGS21819.1, EEH18429.1, AAK07843.1, XP_002540650.1 , XP_002484211.1 , XP_002150057.1, EFQ36202.1, EDP49675.1, XP_750988.1, XP_003235672.1, EGR51338.1, XP_003013762.1, XP_003019423.1, EGE05569.1, XP_003169276.1 , EGD98503.1, EEH06901.1, XP_001544047.1, EGC47721.1, XP_001821058.1, EGE82172.1, XP_002842837.1, XP_002835633.1 , EGX53716.1, EFX05960.1, XP_001590627.1 , XP_001552254.1, XP_962266.2, EGX95378.1, XP_001392906.1 , XP_003302932.1 , CBF89164.1, EGU77782.1, EGP84417.1, XP_001258223.1 , XP_001268201.1 , XP_002569077.1, XP_001214240.1, EER38573.1, ADD19825.1, XP_001939164.1, XP_658197.1, XP_001248657.1, XP_315590.3, XP_003047713.1 , EFR21351.1, EGP83804.1, EFX82586.1, EFN83706.1, XP_001799030.1, XP_002423077.1 , XP_002073789.1 , XP_001987737.1, XP_002050275.1, XP_002091863.1, XP_002005175.1 , XP_001974736.1 , EGF81169.1, EFW47689.1, XP_002149358.1, XP_002149354.1, CBY01415.1, NP_611373.1, CAP65353.1, XP_002569208.1 , AAL39202.2, XP_002543763.1 , XP_001664110.1 , XP_002034506.1, XP_002565243.1 , XP_003049329.1 , XP_001360407.1, XP_001865614.1 Erfindungsgemäß werden in Schritt b) bis d) biologisch aktive Enzyme verwendet. Dabei kann es sich, solange wenigstens eines der Enzyme in Form einer Zelle verwendet wird, die eine ihrem Wildtyp gegenüber verringerte Aktivität einer 3-Hydroxyisobuttersäure-Dehydrogenase oder einer Variante davon aufweist, wie bei allen erfindungsgemäß eingesetzten enzymatisch aktiven Polypeptiden um Zellen umfassend enzymatisch aktive Polypeptide oder deren Lysate oder Präparationen der Polypeptide in sämtlichen Aufreinigungsstufen, von der intakten Zelle oder ihrem kruden Lysat bis zum reinen Polypeptid, handeln, die das jeweilige biologisch aktive Enzym in endogener oder rekombinanter Form aufweisen, bevorzugt überexprimiert. Dem Fachmann auf dem Gebiet sind zahlreiche Verfahren bekannt, mit denen enzymatisch aktive Polypeptide in geeigneten Zellen überexprimiert und aufgereinigt bzw. isoliert werden können. So können zur Expression der Polypeptide sämtliche dem Fachmann zur Verfügung stehende Expressionssysteme verwendet werden, beispielsweise Vektoren vom Typ pET oder pGEX. Zur Aufreinigung kommen chromatographische Verfahren in Frage, beispielsweise die affinitätschromatographische Aufreinigung eines mit einem Tag versehenen rekombinanten Proteins unter Verwendungen eines immobilisierten Liganden, beispielsweise eines Nickelions im Falle eines Histidin-Tags, von immobilisiertem Glutathion im Falle einer an das Zielprotein fusionierten Glutathion-S-Transferase oder von immobilisierter Maltose im Falle eines Tags umfassend Maltose-bindendes Protein. Dem Fachmann sind weiterhin bekannt, wie er im Rahmen routinemäßigen Experimentierens geeignete Reaktionsbedingungen herausarbeiten kann, unter denen das interessierende Enzym Aktivität, bevorzugt optimale Aktivität, zeigt. Diese Bedingungen umfassen beispielsweise die Wahl geeigneter Puffer, die Ermittlung und Einstellung des optimalen pH-Wertes, einer bestimmten Salz- und einer bestimmten minimalen Proteinkonzentration, siehe beispielsweise Cornish-Bowden, 1995. Werden für das erfindungsgemäße Verfahren aufgereinigte Enzyme und nicht intakte lebende Zellen eingesetzt, so können erstere entweder in löslicher Form oder immobilisiert eingesetzt werden. Dem Fachmann sind geeignete Verfahren bekannt, mit denen Polypeptide an organischen oder anorganischen Festphasen kovalent oder nichtkovalent immobilisiert werden können, beispielsweise durch Sulfhydryl-Kopplungs-Chemie (z.B. Kits der Firma Pierce). Finally, to release the desired product 3-hydroxyisobutyric acid, the hydrolysis of the product from step d), the 3-hydroxyisobutyryl-CoA, is required. For this, it is initially possible to expose the product to extreme pH conditions by adding acid or base, which promote hydrolysis without the action of another enzyme. In a particularly preferred embodiment, however, the hydrolysis is carried out by contacting the product from step c) with a 3-hydroxyisobutyryl-coenzyme A hydrolase. In a preferred embodiment, the term "3-hydroxyisobutyryl-coenzyme A-hydrolase" as used herein means an enzyme which hydrolyzes 3-hydroxyisobutyryl-coenzyme A to 3-hydroxyisobutyric acid and coenzyme A. As examples, the following proteins may be mentioned are: XP_504911.1, XP_003066853.1, XP_001246264.1, XP_385460.1, EFY92465.1, XP_363761.1, XP_003346508.1, EFY97405.1, EEQ90955.1, XP_002623105.1, XP_001223375.1, XP_002794385.1, XP_003046454.1, EGO58901.1, EEH47368.1, EGS21819.1, EEH18429.1, AAK07843.1, XP_002540650.1, XP_002484211.1, XP_002150057.1, EFQ36202.1, EDP49675.1, XP_750988.1, XP_003235672. 1, EGR51338.1, XP_003013762.1, XP_003019423.1, EGE05569.1, XP_003169276.1, EGD98503.1, EEH06901.1, XP_001544047.1, EGC47721.1, XP_001821058.1, EGE82172.1, XP_002842837.1, XP_002835633.1, EGX53716.1, EFX05960.1, XP_001590627.1, XP_001552254.1, XP_962266.2, EGX95378.1, XP_001392906.1, XP_003302932.1, CBF89164.1, EGU77782.1, EGP84417.1, XP_001258 223.1, XP_001268201.1, XP_002569077.1, XP_001214240.1, EER38573.1, ADD19825.1, XP_001939164.1, XP_658197.1, XP_001248657.1, XP_315590.3, XP_003047713.1, EFR21351.1, EGP83804.1, EFX82586.1, EFN83706.1, XP_001799030.1, XP_002423077.1, XP_002073789.1, XP_001987737.1, XP_002050275.1, XP_002091863.1, XP_002005175.1, XP_001974736.1, EGF81169.1, EFW47689.1, XP_002149358. 1, XP_002149354.1, CBY01415.1, NP_611373.1, CAP65353.1, XP_002569208.1, AAL39202.2, XP_002543763.1, XP_001664110.1, XP_002034506.1, XP_002565243.1, XP_003049329.1, XP_001360407.1, XP_001865614.1 According to the invention, biologically active enzymes are used in step b) to d). It may, as long as at least one of the enzymes is used in the form of a cell having a reduced their wild type activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof, as in all the invention used enzymatically active polypeptides to cells comprising enzymatically active polypeptides or whose lysates or preparations of the polypeptides in all purification stages, from the intact cell or its crude lysate to the pure polypeptide, which have the respective biologically active enzyme in endogenous or recombinant form, are preferably overexpressed. Numerous methods are known to those skilled in the art for over-expressing and isolating enzymatically-active polypeptides in suitable cells. Thus, for the expression of the polypeptides all expression systems available to the person skilled in the art can be used, for example vectors of the type pET or pGEX. Purification can be carried out by chromatographic methods, for example the affinity chromatographic purification of a tagged recombinant protein using immobilized ligands, for example a nickel ion in the case of a histidine tag, of immobilized glutathione in the case of glutathione S-transferase fused to the target protein or immobilized maltose in the case of a tag comprising maltose-binding protein. It is further known to those skilled in the art how to work out, under routine experimentation, suitable reaction conditions under which the enzyme of interest exhibits activity, preferably optimal activity. These conditions include, for example, the selection of suitable buffers, the determination and adjustment of the optimum pH, a certain salt concentration, and a certain minimum protein concentration, see, for example, Cornish-Bowden, 1995. If purified enzymes and non-living living cells are used in the process of the invention Thus, the former can be used either in soluble form or immobilized. Suitable methods are known to the person skilled in the art with which polypeptides can be immobilized covalently or noncovalently on organic or inorganic solid phases, for example by sulfhydryl coupling chemistry (eg kits from Pierce).
Da sich das erfindungsgemäße Verfahren jedoch mehrerer Enzyme mit unterschiedlichen Cofaktoren bedient, die im Falle aufgereinigter Polypeptide möglicherweise stöchiometrisch zugesetzt werden, werden die für das Verfahren erforderlichen Enzyme in einer besonders bevorzugten Ausführungsform in Form eines einzigen Ganzzellkatalysators bereitgestellt, d.h. in Form einer lebensfähigen, stoffwechselaktiven Zelle. Dabei können die Enzyme an der Oberfläche des Ganzzellkatalysators präsentiert werden, wie im Stand der Technik, beispielsweise in der DE 60216245 beschrieben ist. Ganz besonders bevorzugt ist jedoch, dass die von zu regenerienden Cofaktoren abhängigen Enzyme, noch bevorzugter alle Enzyme, derart lokalisiert sind, dass ihre aktiven Zentren mit dem Inneren der Zelle in Kontakt stehen, so dass die benötigten Cofaktoren und Cosubstrate aus dem Stoffwechsel der Zelle bezogen und wieder nachgeliefert werden. However, since the method of the present invention employs several enzymes having different cofactors, which may be stoichiometrically added in the case of purified polypeptides, the enzymes required for the process become particularly unique preferred embodiment in the form of a single whole-cell catalyst, ie in the form of a viable, metabolically active cell. The enzymes can be presented on the surface of the whole-cell catalyst, as described in the prior art, for example in DE 60216245. Most preferably, however, the enzymes to be regenerated by cofactors, more preferably all enzymes, are located so that their active sites are in contact with the interior of the cell, so that the required cofactors and cosubstrates are obtained from the metabolism of the cell and be redelivered.
Die Herstellung von Mutanten einer Zelle, die eine bestimmte enzymatische Aktivität aufweist, mit dem Ziel, diese enzymatische Aktivität bei der zu erhaltenen Mutante gegenüber dem Wildtyp der Zelle zu verringern, ist dem Fachmann unter Verwendung von Standardverfahren auf dem Gebiet der Molekularbiologie, der Genetik und der Mikrobiologie (Sambrook et ai, 1989) möglich. Beispielsweise ist eine ungerichtete Mutagenese durch Behandlung von Wldtyp-Zellen mit radioaktiver Strahlung gefolgt von einem Schritt zur Selektion geeigneter Mutanten durch Bestimmung der enzymatischen Aktivität isolierter Kolonien unter Verwendung von geeigneten Assays möglich, die für zahlreiche Enzyme im Stand der Technik beschrieben sind (Cornish-Bowden, 1995). Weitere Verfahren umfassend die Einfügung von deaktivierenden Punktmutationen, beispielsweise in den Promoter oder ins aktive Zentrum des enzymatisch aktiven Polypeptides, ein ebenfalls seit Jahrzehnten etabliertes Verfahren (Fersht and Winter, 2008). The production of mutants of a cell which has a certain enzymatic activity, with the aim of reducing this enzymatic activity in the mutant to be obtained compared to the wild type of the cell, is known to those skilled in the art using standard techniques in the field of molecular biology, genetics and microbiology (Sambrook et ai, 1989). For example, undirected mutagenesis is possible by treating Wld-type cells with radioactive radiation followed by a step of selecting appropriate mutants by determining the enzymatic activity of isolated colonies using appropriate assays described for numerous enzymes in the art (Cornish-Bowden , 1995). Further methods comprise the insertion of deactivating point mutations, for example into the promoter or into the active center of the enzymatically active polypeptide, a likewise established method for decades (Fersht and Winter, 2008).
In einer bevorzugten Ausführungsform handelt es sich bei der verwendeten Zelle um eine prokaryotische, bevorzugt um eine bakterielle Zelle. In einer weiteren bevorzugten Ausführungsform handelt es sich um eine Säugetierzelle. In einer weiteren bevorzugten Ausführungsform handelt es sich um eine niedere eukaryotische Zelle, bevorzugt um eine Hefezelle. Beispielhafte prokaryotische Zellen umfassen Escherichia, besonders Escherichia coli, und Stämme der Gattung Pseudomonas und Corynebacterium. Beispielhafte niedere eukaryotische Zellen umfassen die Gattungen Saccharomyces, Candida, Pichia, Yarrowia, Schizosaccharomyces, besonders die Stämme Candida tropicalis, Schizosaccharomyces pombe, Pichia pastoris, Yarrowia lipolytica und Saccharomyces cerivisiae. In der bevorzugtesten Ausführungsform handelt es sich um Yarrowia lipolytica. Ein für die erfindungsgemäße Lehre wesentlicher Aspekt besteht darin, dass eine Zelle verwendet wird, deren 3-Hydroxyisobuttersäure-Dehydrogenase-Aktivität oder die Aktivität einer Varianten davon verringert ist. In einer bevorzugten Ausführungsform wird unter dem Begriff„3- Hydroxyisobuttersäure-Dehydrogenase-Aktivität", wie hierin verwendet, die Aktivität eines Enzyms verstanden, das 3-Hydroxyisobuttersäure zum Aldehyd oxidiert. In einer bevorzugten Ausführungsform handelt es sich bei der 3-Hydroisobuttersäure-Dehydrogenase um ein Enzyme aus der Gruppe, die die aus dem Stand der Technik bekannten Polypeptide XP_504911.1, XP_003066853.1, XP_001246264.1 , XP_385460.1, EFY92465.1, XP_363761.1, XP_003346508.1, EFY97405.1, EEQ90955.1, XP_002623105.1, XP_001223375.1 , XP_002794385.1, XP_003046454.1, EGO58901.1, EEH47368.1, EGS21819.1, EEH 18429.1, AAK07843.1, XP_002540650.1 , XP_002484211.1, XP_002150057.1, EFQ36202.1, EDP49675.1, XP_750988.1, XP_003235672.1, EGR51338.1, XP_003013762.1 , XP_003019423.1, EGE05569.1, XP_003169276.1, EGD98503.1, EEH06901.1, XP_001544047.1, EGC47721.1, XP_001821058.1, EGE82172.1, XP_002842837.1 , XP_002835633.1, EFX05960.1, XP_001590627.1, XP_001552254.1 , XP_962266.2, XP_001392906.1, XP_003302932.1, CBF89164.1, EGP84417.1, XP_001258223.1 , XP_001268201.1, XP_002569077.1, XP_001214240.1 , EER38573.1, XP_001939164.1 , XP_658197.1, XP_001248657.1, XP_003047713.1, EGP83804.1, XP_001799030.1 , EGF81169.1, XP_002149358.1, XP_002149354.1 , CBY01415.1, CAP65353.1, XP_002569208.1, XP_002543763.1, XP_002565243.1, XP_003049329.1 , XP_001933034.1 , XP_002551090.1, XP_001209304.1, XP_001796105.1 , XP_003305815.1 , CBY01417.1, XP_002144318.1, XP_003035025.1, XP_003047232.1 , EDK39415.2, XP_003070936.1 , XP_001878640.1, XP_001833463.1, XP_001484132.1, XP_003051032.1 , XP_719244.1, XP_001796108.1, XP_456589.2, XP_001384410.2, XP_002421055.1 , XP_719127.1, XP_001524095.1, XP_003336106.1, EGN96107.1, XP_003043164.1 , XP_001903154.1 , XP_758336.1, XP_003051445.1, CBX93804.1, XP_002614534.1 , EFW22385.1, XP_003047715.1, XP_003009661.1, XP_001903159.1, XP_002144320.1 , XP_754672.2, EGG05569.1 umfasst, noch bevorzugter um ein Enzyme aus der Gruppe, die XP_504911.1, XP_003066853.1, XP_001246264.1, XP_385460.1, EFY92465.1, XP_363761.1, XP_003346508.1, EFY97405.1, EEQ90955.1, XP_002623105.1, XP_001223375.1 , XP_002794385.1, XP_003046454.1, EGO58901.1, EEH47368.1, EGS21819.1, EEH 18429.1, AAK07843.1, XP_002540650.1 , XP_002484211.1, XP_002150057.1, EFQ36202.1, EDP49675.1, XP_750988.1, XP_003235672.1, EGR51338.1, XP_003013762.1 , XP_003019423.1, EGE05569.1, XP_003169276.1, EGD98503.1, EEH06901.1, XP_001544047.1, EGC47721.1, XP_001821058.1, EGE82172.1, XP_002842837.1 , XP_002835633.1, EFX05960.1, XP_001590627.1, XP_001552254.1 , XP_962266.2, XP_001392906.1, XP_003302932.1, CBF89164.1, EGP84417.1, XP_001258223.1 , XP_001268201.1, XP_002569077.1, XP_001214240.1 , EER38573.1, XP_001939164.1 , XP_658197.1, XP_001248657.1, XP_003047713.1 , XP_002551090.1 , EDK39415.2, XP_001484132.1, XP_719244.1, XP_456589.2, XP_001384410.2, XP_002421055.1 , XP_719127.1, XP_001524095.1, XP_002614534.1 , XP_504911.1, besonders bevorzugt XP_504911.1 XP_002551090.1, EDK39415.2, XP_001484132.1, XP_719244.1, XP_456589.2, XP_001384410.2, XP_002421055.1, XP_719127.1, XP_001524095.1, XP_002614534.1 , und am bevorzugtesten um XP_504911.1. In a preferred embodiment, the cell used is a prokaryotic, preferably a bacterial cell. In a further preferred embodiment, it is a mammalian cell. In a further preferred embodiment, it is a lower eukaryotic cell, preferably a yeast cell. Exemplary prokaryotic cells include Escherichia, especially Escherichia coli, and strains of the genus Pseudomonas and Corynebacterium. Exemplary lower eukaryotic cells include the genera Saccharomyces, Candida, Pichia, Yarrowia, Schizosaccharomyces, especially the strains Candida tropicalis, Schizosaccharomyces pombe, Pichia pastoris, Yarrowia lipolytica and Saccharomyces cerivisiae. The most preferred embodiment is Yarrowia lipolytica. An aspect which is essential for the teaching according to the invention is that a cell is used whose 3-hydroxyisobutyric acid dehydrogenase activity or the activity of a variant thereof is reduced. In a preferred embodiment, the term "3-hydroxyisobutyric acid dehydrogenase activity" as used herein means the activity of an enzyme that oxidizes 3-hydroxyisobutyric acid to the aldehyde, In a preferred embodiment, the 3-hydroisobutyric acid dehydrogenase an enzyme from the group comprising the polypeptides known from the prior art XP_504911.1, XP_003066853.1, XP_001246264.1, XP_385460.1, EFY92465.1, XP_363761.1, XP_003346508.1, EFY97405.1, EEQ90955. 1, XP_002623105.1, XP_001223375.1, XP_002794385.1, XP_003046454.1, EGO58901.1, EEH47368.1, EGS21819.1, EEH 18429.1, AAK07843.1, XP_002540650.1, XP_002484211.1, XP_002150057.1, EFQ36202 .1, EDP49675.1, XP_750988.1, XP_003235672.1, EGR51338.1, XP_003013762.1, XP_003019423.1, EGE05569.1, XP_003169276.1, EGD98503.1, EEH06901.1, XP_001544047.1, EGC47721.1 , XP_001821058.1, EGE82172.1, XP_002842837.1, XP_002835633.1, EFX05960.1, XP_001590627.1, XP_001552254.1, XP_ 962266.2, XP_001392906.1, XP_003302932.1, CBF89164.1, EGP84417.1, XP_001258223.1, XP_001268201.1, XP_002569077.1, XP_001214240.1, EER38573.1, XP_001939164.1, XP_658197.1, XP_001248657.1, XP_003047713.1, EGP83804.1, XP_001799030.1, EGF81169.1, XP_002149358.1, XP_002149354.1, CBY01415.1, CAP65353.1, XP_002569208.1, XP_002543763.1, XP_002565243.1, XP_003049329.1, XP_001933034. 1, XP_002551090.1, XP_001209304.1, XP_001796105.1, XP_003305815.1, CBY01417.1, XP_002144318.1, XP_003035025.1, XP_003047232.1, EDK39415.2, XP_003070936.1, XP_001878640.1, XP_001833463.1, XP_001484132.1, XP_003051032.1, XP_719244.1, XP_001796108.1, XP_456589.2, XP_001384410.2, XP_002421055.1, XP_719127.1, XP_001524095.1, XP_003336106.1, EGN96107.1, XP_003043164.1, XP_001903154. 1, XP_758336.1, XP_003051445.1, CBX93804.1, XP_002614534.1, EFW22385.1, XP_003047715.1, XP_003009661.1, XP_001903159.1, XP_002144320.1, XP_754672.2, EGG05569.1, even more preferably an enzyme from the group, the XP_50491 1.1, XP_003066853.1, XP_001246264.1, XP_385460.1, EFY92465.1, XP_363761.1, XP_003346508.1, EFY97405.1, EEQ90955.1, XP_002623105.1, XP_001223375.1, XP_002794385.1, XP_003046454.1, EGO58901.1, EEH47368.1, EGS21819.1, EEH 18429.1, AAK07843.1, XP_002540650.1, XP_002484211.1, XP_002150057.1, EFQ36202.1, EDP49675.1, XP_750988.1, XP_003235672.1, EGR51338.1 , XP_003013762.1, XP_003019423.1, EGE05569.1, XP_003169276.1, EGD98503.1, EEH06901.1, XP_001544047.1, EGC47721.1, XP_001821058.1, EGE82172.1, XP_002842837.1, XP_002835633.1, EFX05960.1, XP_001590627. 1, XP_001552254.1, XP_962266.2, XP_001392906.1, XP_003302932.1, CBF89164.1, EGP84417.1, XP_001258223.1, XP_001268201.1, XP_002569077.1, XP_001214240.1, EER38573.1, XP_001939164.1, XP_658197.1, XP_001248657.1, XP_003047713.1, XP_002551090.1, EDK39415.2, XP_001484132.1, XP_719244.1, XP_456589.2, XP_001384410.2, XP_002421055.1, XP_719127.1, XP_001524095.1, XP_002614534. 1, XP_504911.1, more preferably XP_504911.1 XP_002551090.1, EDK39415.2, XP_001484132.1, XP_719244.1, XP_456589.2, XP_001384410.2, XP_002421055.1, XP_719127.1, XP_001524095.1, XP_002614534.1 , and most preferably XP_504911.1.
In einer bevorzugten Ausführungsform handelt es sich bei der 3-Hydroxyisobuttersäure- Dehydrogenase ume eine 3-Hydroxyisobuttersäure-Dehydrogenase aus der Gruppe, die die aus dem Stand der Technik bekannten Polypeptide BAC82381.1, NP_746775.1, YP_004703920.1, YP_001670886.1, ADR61938.1, YP_001269834.1 , YP_001747642.1, YP_606441.1, BAJ07617.1, YP_257885.1, EGH62730.1, ZP_06461142.1, ZP_05642104.1 , YP_004351842.1, EGH86869.1, YP_002874705.1, EGH24275.1, ZP_07777517.1, ZP_07003462.1, ZP_07264531.1, EGH72043.1, YP_233798.1, EGH66664.1, EGH33025.1, EGH77479.1, EGH54475.1, EFW86611.1, EGH13085.1, ZP_03399204.1 , NP_790630.1, YP_346429.1, ZP_04590292.1, EGH46911.1, YP_004681354.1 , YP_840711.1, YP_002007768.1, YP_298456.1, ZP_06495709.1 , YP_001777122.1 , YP_837675.1, YP_624179.1, YP_001117046.1, YP_555519.1, YP_004360017.1 , ZP_07673810.1, YP_004714189.1, YP_003607711.1, YP_557465.1, YP_001810630.1 , YP_003749513.1, ZP_08140457.1, AEA83842.1, YP_001861262.1, YP_001892508.1, ZP_03264187.1 , ADY83615.1, YP_001844789.1, YP_002233766.1 , ZP_02893156.1, ZP_06693498.1 , YP_001705868.1, YP_001715485.1, YP_775329.1, ADX90568.1, ZP_06059137.1 , ADX01770.1, ZP_05825497.1, ZP_06069662.1, YP_372791.1, YP_002254778.1 , AEG71628.1, YP_001584514.1, ZP_02358230.1, ZP_03569839.1, YP_439994.1, ZP_02365286.1, YP_554218.1, YP_004473140.1, YP_001889364.1, ZP_03585594.1 , YP_110641.1, YP_003734018.1, ZP_06839562.1, YP_001583635.1, ZP_00944342.1, ZP_03573494.1, YP_001115788.1, ZP_03582471.1, YP_776268.1, YP_623275.1, ZP_04522920.1 , ZP_04947734.1, ZP_02910304.1, YP_371475.1, YP_001811564.1 , YP_002798276.1, YP_003910785.1, YP_004230293.1, ΖΡ_02881368.1, ΖΡ_03822695.1, ΖΡ_02891780.1, ΖΡ_06726280.1, CBJ40252.1, ΖΡ_02376988.1 , ΖΡ_05359923.1, ΥΡ_002908300.1 , ΥΡ_004348870.1, ΥΡ_001172440.1 , ΥΡ_003747923.1, ΥΡ_046276.1, ΝΡ_522210.1, ΥΡ_001156335.1, ΖΡ_03268101.1, ΖΡ_07236476.1 , ΥΡ_001861075.1, ΖΡ_05136769.1 , ΥΡ_293155.1, ΥΡ_001083192.1, ΥΡ_001970187.1, ΥΡ_002026611.1 , ΥΡ_003776462.1, ΖΡ_02381313.1, ADP96674.1, EGF41785.1, ΖΡ_08410855.1 , ΖΡ_05911432.1 , AEL06416.1, ΖΡ_01989307.1, ΖΡ_06178628.1, ΝΡ_636638.1, ΖΡ_01260019.1, ΖΡ_04929809.1, ΖΡ_08460617.1, ΥΡ_004068587.1, ΥΡ_002553266.1 , ΖΡ_06877402.1, ΥΡ_002439068.1, ΝΡ_800628.1, ΖΡ_08100296.1, ΝΡ_252259.1, ΥΡ_001279202.1, ΖΡ_01367000.1 , ΥΡ_001346959.1, ΖΡ_01133887.1, EGM 15746.1, ΥΡ_339977.1, ΖΡ_04921053.1, ΖΡ_04764368.1, ΝΡ_762450.2, ΥΡ_986257.1, ΥΡ_789596.1, ΥΡ_004191179.1, ΥΡ_004416219.1, ΝΡ_937094.1, ΥΡ_002794225.1 , ΖΡ_02244049.1, ΖΡ_05943914.1 , ΥΡ_450771.1, ΥΡ_200485.1, ΖΡ_08178115.1, ΝΡ_717293.1, ΖΡ_06730192.1 , ΖΡ_04958952.1, ΖΡ_03698449.1 , ΖΡ_04922804.1 , ΥΡ_003288698.1 , ΥΡ_001141739.1, ΖΡ_08188278.1, ΥΡ_786279.1, ΖΡ_05127790.1, ΥΡ_363098.1, ΖΡ_01104144.1 , ΖΡ_05886382.1, ΖΡ_05620602.1, ΖΡ_01614260.1, ΝΡ_641651.1, ΖΡ_06705559.1, ΖΡ_01260775.1, ΖΡ_06182137.1, ΖΡ_05879122.1, ΥΡ_001631119.1 , ΖΡ_08552251.1 , ΖΡ_08570660.1, ΖΡ_01738211.1, ΖΡ_01893199.1, ΖΡ_08520681.1, ΖΡ_08182597.1 , ΥΡ_264191.1, ΥΡ_001414164.1, ΖΡ_08638362.1, ΥΡ_422950.1, EGF41343.1, ΖΡ_00056040.1, ΖΡ_08700476.1 , ΝΡ_800135.1, ΖΡ_08272093.1 , ΖΡ_08181910.1 , ΖΡ_02194300.1, ΖΡ_03698989.1, ΥΡ_004235082.1 umfasst, bevorzugt um ein Enzym aus der Gruppe, die die Enzyme BAC82381.1, NP_746775.1, YP_004703920.1, YP_001670886.1, ADR61938.1, YP_001269834.1, YP_001747642.1, YP_606441.1, BAJ07617.1, YP_257885.1, EGH62730.1, ZP_06461142.1, ZP_05642104.1, YP_004351842.1 , EGH86869.1, YP_002874705.1, EGH24275.1, ZP_07777517.1, ZP_07003462.1, ZP_07264531.1, EGH72043.1, YP_233798.1, EGH66664.1, EGH33025.1, EGH77479.1, EGH54475.1, EFW86611.1, EGH13085.1, ZP_03399204.1, NP_790630.1, YP_346429.1, ZP_04590292.1 , EGH46911.1, ZP_06495709.1 , YP_004714189.1, ZP_08140457.1, AEA83842.1, ADY83615.1, YP_001844789.1, ZP_06693498.1 , YP_001705868.1, YP_001715485.1 , ADX90568.1, ZP_06059137.1, ADX01770.1, ZP_05825497.1 , ZP_06069662.1, YP_004473140.1 , YP_003734018.1, YP_002798276.1, ZP_03822695.1 , ZP_06726280.1, ZP_05359923.1, YP_001172440.1, YP_046276.1, ZP_07236476.1 , YP_001083192.1 , ZP_04929809.1, ZP_08460617.1, ZP_06877402.1, YP_002439068.1, NP_252259.1, YP_001279202.1 , ZP_01367000.1 , YP_001346959.1 , EGM 15746.1 , YP_789596.1 , ZP_05620602.1 , YP_264191.1 , YP_580776.1 , YP_792542.1 , YP_004379211.1 , ZP_06880384.1 , YP_001 186868.1 , ZP_04932430.1 , ZP_01364121.1 , YP_002442182.1 , NP_249434.1 , YP_0013501 19.1 , EGH98403.1 , 30BB_A, 3Q3C_A umfasst. In einer bevorzugten Ausführungsform bedeutet die Formulierung „eine Zelle, die eine gegenüber ihrem Wildtyp verringerte Aktivität einer 3-Hydroxyisobuttersäure-Dehydrogenase oder einer Variante davon aufweist", dass es sich um eine Zelle handelt, die ihrem Wildtyp gegenüber derartig gentechnisch verändert ist, dass die Aktivität einer 3-Hydroxyisobuttersäure-Dehydrogenase oder einer Variante bei dieser Zelle gegenüber der Aktivität der gleichen 3- Hydroyxisobuttersäure-Dehydrogenase oder der entsprechenden Variante beim Wldtyp der Zelle verringert ist, bevorzugt um wenigstens 10, 20, 30, 50, 75, 90, 95 oder 99 %. In einer besonders bevorzugten Ausführungsform ist die Aktivität des Enzyms bei der gentechnisch veränderten Zelle nicht mehr nachweisbar. In einer weiteren besonders bevorzugten Ausführungsform betrifft die gentechnische Modifikation, mit der die Aktivitätsverringerung bewerkstelligt wird, ausschließlich die Aktivität einer spezifischen 3-Hydroyxisobuttersäure- Dehydrogenase der Zelle, im Gegensatz zu der Möglichkeit, dass unspezifisch mehrere enzymatische Aktivitäten der Zelle verringert sind, beispielsweise durch einen Defekt in der Faltungsmaschinerie der Zelle, der bewirken könnte, dass zahlreiche enzymatische Aktivitäten der Zelle defekt sind. Ein Vergleich der enzymatischen Aktivitäten der gentechnisch veränderten Zelle und ihres Wildtyps erfolgt dabei unter gleichen Bedingungen und unter Verwendungen von Standardassays zur Bestimmung einer Dehydrogenaseaktivität. So lässt sich die Dehydrogenaseaktivität beispielsweise in einem kontinuierlichen spektrophotometrischen Assay verfolgen, wenn das Enzym, rein oder in Form eines Zellysates, mit Substrat, d.h. 3-Hydroxyisobuttersäure und Redoxfaktor inkubiert wird und der Reaktionsfortschritt anhand der Extinktion des Redoxfaktors verfolgt wird. In a preferred embodiment, the 3-hydroxyisobutyric acid dehydrogenase is a 3-hydroxyisobutyric acid dehydrogenase from the group comprising the polypeptides known from the prior art BAC82381.1, NP_746775.1, YP_004703920.1, YP_001670886.1, ADR61938.1, YP_001269834.1, YP_001747642.1, YP_606441.1, BAJ07617.1, YP_257885.1, EGH62730.1, ZP_06461142.1, ZP_05642104.1, YP_004351842.1, EGH86869.1, YP_002874705.1, EGH24275. 1, ZP_07777517.1, ZP_07003462.1, ZP_07264531.1, EGH72043.1, YP_233798.1, EGH66664.1, EGH33025.1, EGH77479.1, EGH54475.1, EFW86611.1, EGH13085.1, ZP_03399204.1, NP_790630.1, YP_346429.1, ZP_04590292.1, EGH46911.1, YP_004681354.1, YP_840711.1, YP_002007768.1, YP_298456.1, ZP_06495709.1, YP_001777122.1, YP_837675.1, YP_624179.1, YP_001117046. 1, YP_555519.1, YP_004360017.1, ZP_07673810.1, YP_004714189.1, YP_003607711.1, YP_557465.1, YP_001810630.1, YP_003749513.1, ZP_08140457.1, AEA83842.1, YP_001861262.1, YP_001892508.1, ZP_03264187. 1, ADY83615.1, YP_001844789.1, YP_002233766.1, ZP_02893156.1, ZP_06693498.1, YP_001705868.1, YP_001715485.1, YP_775329.1, ADX90568.1, ZP_06059137.1, ADX01770.1, ZP_05825497.1, ZP_06069662.1, YP_372791.1, YP_002254778.1, AEG71628.1, YP_001584514.1, ZP_02358230.1, ZP_03569839.1, YP_439994.1, ZP_02365286.1, YP_554218.1, YP_004473140.1, YP_001889364.1, ZP_03585594. 1, YP_110641.1, YP_003734018.1, ZP_06839562.1, YP_001583635.1, ZP_00944342.1, ZP_03573494.1, YP_001115788.1, ZP_03582471.1, YP_776268.1, YP_623275.1, ZP_04522920.1, ZP_04947734.1, ZP_02910304.1, YP_371475.1, YP_001811564.1, YP_002798276.1, YP_003910785.1, YP_004230293.1, ΖΡ_02881368.1, ΖΡ_03822695.1, ΖΡ_02891780.1, ΖΡ_06726280.1, CBJ40252.1, ΖΡ_02376988.1, ΖΡ_05359923.1, ΥΡ_002908300.1, ΥΡ_004348870.1, ΥΡ_001172440.1, ΥΡ_003747923. 1, ΥΡ_046276.1, ΝΡ_522210.1, ΥΡ_001156335.1, ΖΡ_03268101.1, ΖΡ_07236476.1, ΥΡ_001861075.1, ΖΡ_05136769.1, ΥΡ_293155.1, ΥΡ_001083192.1, ΥΡ_001970187.1, ΥΡ_002026611.1, ΥΡ_003776462.1, ΖΡ_02381313.1, ADP96674.1, EGF41785.1, ΖΡ_08410855.1, ΖΡ_05911432.1, AEL06416.1, ΖΡ_01989307.1, ΖΡ_06178628.1, ΝΡ_636638.1, ΖΡ_01260019.1, ΖΡ_04929809.1, ΖΡ_08460617.1, ΥΡ_004068587. 1, ΥΡ_002553266.1, ΖΡ_06877402.1, ΥΡ_002439068.1, ΝΡ_800628.1, ΖΡ_08100296.1, ΝΡ_252259.1, ΥΡ_001279202.1, ΖΡ_01367000.1, ΥΡ_001346959.1, ΖΡ_01133887.1, EGM 15746.1, ΥΡ_339977.1, ΖΡ_04921053 .1, ΖΡ_04764368.1, ΝΡ_762450.2, ΥΡ_986257.1, ΥΡ_789596.1, ΥΡ_004191179.1, ΥΡ_004416219.1, ΝΡ_937094.1, ΥΡ_002794225.1, ΖΡ_02244049.1, ΖΡ_05943914.1, ΥΡ_450771.1, ΥΡ_200485.1, ΖΡ_08178115.1, ΝΡ_717293.1, ΖΡ_06730192.1, ΖΡ_04958952.1, ΖΡ_03698449.1, ΖΡ_04922804.1, ΥΡ_003288698.1, ΥΡ_001141739.1, ΖΡ_08188278.1, ΥΡ_786279. 1, ΖΡ_05127790.1, ΥΡ_363098.1, ΖΡ_01104144.1, ΖΡ_05886382.1, ΖΡ_05620602.1, ΖΡ_01614260.1, ΝΡ_641651.1, ΖΡ_06705559.1, ΖΡ_01260775.1, ΖΡ_06182137.1, ΖΡ_05879122.1, ΥΡ_001631119.1, ΖΡ_08552251.1, ΖΡ_08570660.1, ΖΡ_01738211.1, ΖΡ_01893199.1, ΖΡ_08520681.1, ΖΡ_08182597.1, ΥΡ_264191.1, ΥΡ_001414164.1, ΖΡ_08638362.1, ΥΡ_422950.1, EGF41343.1, ΖΡ_00056040.1, ΖΡ_08700476. 1, ΝΡ_800135.1, ΖΡ_08272093.1, ΖΡ_08181910.1, ΖΡ_02194300.1, ΖΡ_03698989.1, ΥΡ_004235082.1, preferably to an enzyme from the group comprising the enzymes BAC82381.1, NP_746775.1, YP_004703920.1, YP_001670886.1, ADR61938.1, YP_001269834.1, YP_001747642.1, YP_606441.1, BAJ07617.1, YP_257885.1, EGH62730.1, ZP_06461142.1, ZP_05642104.1, YP_004351842.1 , EGH86869.1, YP_002874705.1, EGH24275.1, ZP_07777517.1, ZP_07003462.1, ZP_07264531.1, EGH72043.1, YP_233798.1, EGH66664.1, EGH33025.1, EGH77479.1, EGH54475.1, EFW86611 .1, EGH13085.1, ZP_03399204.1, NP_790630.1, YP_346429.1, ZP_04590292.1, EGH46911.1, ZP_06495709.1, YP_004714189.1, ZP_08140457.1, AEA83842.1, ADY83615.1, YP_001844789.1 , ZP_06693498.1, YP_001705868.1, YP_001715485.1, ADX90568.1, ZP_06059137.1, ADX01770.1, ZP_05825497.1, ZP_06069662.1, YP_004473140.1, YP_003734018.1, YP_002798276.1, ZP_03822695.1, ZP_06726280 .1, ZP_05359923.1, YP_001172440.1, YP_046276.1, ZP_07236476.1, YP_001083192.1, ZP_04929809.1, ZP_08460617.1, ZP_06877402.1, YP_002439068.1, NP_252259.1, YP_001279202.1, ZP_01367000.1, YP_001346959.1, EGM 15746.1, YP_789596.1, ZP_05620602.1, YP_264191.1, YP_580776.1, YP_792542.1, YP_004379211.1, ZP_06880384.1, YP_001 186868.1, ZP_04932430.1, ZP_01364121.1, YP_002442182.1, NP_249434.1, YP_0013501 19.1, EGH98403.1, 30BB_A, 3Q3C_A. In a preferred embodiment, the phrase "a cell which has a reduced activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof compared to its wild type" means that it is a cell genetically engineered with respect to its wild-type, that the Activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant in this cell is reduced compared to the activity of the same 3-hydroyxisobutyric acid dehydrogenase or the corresponding variant in the Wld type of the cell, preferably by at least 10, 20, 30, 50, 75, 90, 95 or 99% In a particularly preferred embodiment, the activity of the enzyme is no longer detectable in the genetically engineered cell In a further particularly preferred embodiment, the genetic engineering effecting the activity reduction relates solely to the activity of a specific 3-hydroxy-butyric acid dehydrogenase of the cell, in contrast to the possibility that nonspecifically several enzymatic activities of the cell are reduced, for example by a defect in the folding machinery of the cell, which could cause numerous enzymatic activities of the cell are defective. A comparison of the enzymatic activities of the genetically modified cell and its wild type is carried out under the same conditions and with the use of standard assays for the determination of a dehydrogenase activity. Thus, for example, the dehydrogenase activity can be monitored in a continuous spectrophotometric assay when the enzyme, either pure or in the form of a cell lysate, is incubated with substrate, ie 3-hydroxyisobutyric acid and redox factor, and the reaction progress is monitored by the extinction of the redox factor.
Zur Durchführung des erfindungsgemäßen Verfahrens kommen verschiedene Bedingungen in Frage. Die Temperatur kann dabei mit der Maßgabe, dass im Falle der Verwendung einer lebenden Zelle bzw. einer Präparation geeigneter Enzyme die gewählte Zelle bzw. die gewählten Enzyme lebensfähig sind bzw. Aktivität zeigen, mehr als 20 °C, 30 °C, 40, 50, 60, 70 °C oder mehr als 80 °C, bevorzugt bis 100 °C betragen. Dem Fachmann ist bekannt, welche Organismen bei welchen Temperaturen lebensfähig sind, beispielsweise aus Lehrbüchern wie Fuchs/Schlegel, 2007. Im Falle einer lebenden Hefezelle kann die Temperatur 5 bis 45 °C, bevorzugter 15 bis 42 °C, noch bevorzugter 20 bis 30 °C betragen. Im Falle eines Gramnegativen Bakteriums, bevorzugt eines Bakteriums aus der Familie der Enterobacteriaceae, am bevorzugtesten E. coli, kann die Temperatur 5 bis 45 °C, bevorzugter 15 bis 42 °C, noch bevorzugter 20 bis 30 °C, am bevorzugtesten 35 bis 40 °C betragen. Various conditions may be used to carry out the process according to the invention. The temperature may be more than 20 ° C, 30 ° C, 40, 50 with the proviso that in the case of using a living cell or a preparation of suitable enzymes, the selected cell or enzymes are viable or show activity , 60, 70 ° C or more than 80 ° C, preferably to 100 ° C. The person skilled in the art knows which organisms are viable at which temperatures, for example from textbooks such as Fuchs / Schlegel, 2007. In the case of a living yeast cell, the temperature may be 5 to 45 ° C, more preferably 15 to 42 ° C, even more preferably 20 to 30 ° C. In the case of a Gram-negative bacterium, preferably a bacterium of the family Enterobacteriaceae, most preferably E. coli, the temperature may be 5 to 45 ° C, more preferably 15 to 42 ° C, even more preferably 20 to 30 ° C, most preferably 35 to 40 ° C.
Zur Anzucht der erfindungsgemäßen Zelle kommen zahlreiche Kulturmedien in Frage, im Falle der Verwendung einer Hefezelle beispielsweise YPD, YPN und YNB, die mit Aminosäuren, beispielsweise mit 0,01 g/L Tryptophan, oder mit Glucose, beispielsweise in einer Konzentration von 1 % (w/v), supplementiert sein können. Im Falle der Verwendung eines Bakteriums aus der Familie der Enterobacteriaceae, bevorzugt E. coli, kommen zur Anzucht Vollmedien wie LB- Medium oder Hochzelldichtemedium (HZD-Medium) bestehend aus NH4S04 1 ,76 g, K2HP04 19,08 g, KH2P0 12,5 g, Hefeextrakt 6,66 g, Na3-Citrat 1,96 g , NH Fe-Citrat (1 %) 17 ml, Spurenelementelösung US3 5 ml, Feedlösung (Glucose 50 % w/v, MgS0 [x 7 H20 0,5 % w/v, NH4CI 2,2 % w/v) 30 ml pro Liter in Frage. For cultivation of the cell according to the invention numerous culture media are suitable, in the case of using a yeast cell, for example YPD, YPN and YNB, with amino acids, for example with 0.01 g / L tryptophan, or with glucose, for example in a concentration of 1% ( w / v) can be supplemented. In the case of using a bacterium from the family Enterobacteriaceae, preferably E. coli, come to grow full media such as LB medium or high cell density medium (HZD medium) consisting of NH 4 S0 4 1, 76 g, K 2 HP0 4 19.08 g, KH 2 PO 12.5 g, yeast extract 6.66 g, Na 3 citrate 1.96 g, NH Fe citrate (1%) 17 ml, trace element solution US3 5 ml, feed solution (glucose 50% w / v, MgS0 [x 7 H 2 0 0.5% w / v, NH 4 Cl 2.2% w / v) 30 ml per liter in question.
In einer bevorzugten Ausführungsform werden im erfindungsgemäßen Verfahren verwendete Zellen in einem anderen Medium als demjenigen herangezogen, das für die Schritte a) bis d) des Verfahrens verwendet wird. In einer besonders bevorzugten Ausführungsform handelt es sich bei dem für die Anzucht verwendeten Medium um ein Vollmedium und um das für die Schritte a) bis d) verwendete Medium um ein Minimalmedium. Das erfindungsgemäße Verfahren, sofern es unter Verwendung lebensfähiger Zellen durchgeführt wird, wird nach Anzucht der Zellen bevorzugt in Transformationspuffer durchgeführt der pro Liter (NH )H2P04 8 g, NaCI 0,5 g, MgS0 x 7 H20 0,48 g, Spurenelementlösung US3 15 ml. 1 Liter der Spurenelementelösung US 3 setzte sich zusammen aus HCl 37 % 36,5 g, MnCI2 x 4H20 1 ,91 g, ZnS04 x 7H20 1 ,87 g, Na-EDTA x 2H20 0,8 g, H3B03 0,3 g, Na2Mo04 x 2H20 0,25 g, CaCI2 x 2H20 4,7 g, FeS04 x 7 H20 17,8 g, CuCI2 x 2H20 0,15 g umfasst und dessen pH auf 5,4 eingestellt wird. In a preferred embodiment, cells used in the method according to the invention are used in a medium other than that used for steps a) to d) of the method. In a particularly preferred embodiment, the medium used for the cultivation is a complete medium and the medium used for the steps a) to d) is a minimal medium. The method according to the invention, if it is carried out using viable cells, is preferably carried out after transformation of the cells in transformation buffer per liter of (NH) H 2 PO 4 8 g, NaCl 0.5 g, MgS 0 × 7 H 2 O 0.48 1 ml of the trace element solution US 3 was composed of HCl 37% 36.5 g, MnCl 2 × 4H 2 0 1, 91 g, ZnSO 4 × 7H 2 0 1, 87 g, Na EDTA x 2H 2 0 0.8 g, H 3 B0 3 0.3 g, Na 2 Mo0 4 x 2H 2 0 0.25 g, CaCl 2 x 2H 2 0 4.7 g, FeS0 4 x 7 H 2 0 17 , 8 g, CuCl 2 x 2H 2 0 0.15 g, and its pH is adjusted to 5.4.
Die Konzentration von Isobuttersäure, sofern diese zu Beginn des Verfahrens als fertiges Edukt bereitgestellt wird, beträgt zu Beginn der Reaktion 0,01 bis 2, bevorzugter 0,05 bis 1 , am bevorzugtesten 0,1 bis 0,2 % (w/v). Wird 3-Hydroxyisobuttersäure unter Verwendung von Glucose als Kohlenstoffquelle hergestellt, die über einen dazu befähigten Stamm zu geeigneten Vorläufern verstoffwechselt wird, so beträgt deren Konzentration zu Beginn im Medium bevorzugt 1 % (w/v). The concentration of isobutyric acid, if provided as a ready-to-use starting material at the beginning of the process, is from 0.01 to 2, more preferably from 0.05 to 1, most preferably from 0.1 to 0.2% (w / v) at the beginning of the reaction. , When 3-hydroxyisobutyric acid is prepared using glucose as a carbon source which is suitable for use via a competent strain Precursors is metabolized, their concentration is initially in the medium preferably 1% (w / v).
Die Schritte a) bis d) des erfindungsgemäßen Verfahrens werden bevorzugt bei Atmosphärendruck durchgeführt. Im Falle der Herstellung von Isobuttersäure aus Isobutan kann es vorteilhaft sein, die Alkanhydroxylase die Reaktion in Anwesenheit höherer Drücke in Anwesenheit eines Gasgemisches umfassend, bevorzugt überwiegend umfassend Isobutan. In einer bevorzugten Ausführungsform beträgt der Druck mehr als 1 ,5, 2, 3 oder 4 bar. In einer weiteren Ausführungsform beträgt der Druck 0,5 bis 4, bevorzugt 1 bis 3, am bevorzugtesten 1 bis 1 ,5 bar. The steps a) to d) of the process according to the invention are preferably carried out at atmospheric pressure. In the case of production of isobutyric acid from isobutane, it may be advantageous for the alkane hydroxylase to comprise the reaction in the presence of higher pressures in the presence of a gas mixture, preferably predominantly comprising isobutane. In a preferred embodiment, the pressure is more than 1, 5, 2, 3 or 4 bar. In a further embodiment, the pressure is 0.5 to 4, preferably 1 to 3, most preferably 1 to 1, 5 bar.
In einer bevorzugtesten Ausführungsform der vorliegenden Erfindung wird die der Erfindung zu Grunde liegende Aufgabe dadurch gelöst, dass eine Zelle der Gattung Yarrowia, bevorzugt Yarrowia lipolytica, bei der die Aktivität der Hydroxyisobuttersäure-Dehydrogenase YaliOF02607g oder einer Variante davon durch Deletion gegenüber der Aktivität der entsprechenden Wildtypzelle gegenüber verringert ist, in wässriger Lösung mit Isobuttersäure kontaktiert wird In a most preferred embodiment of the present invention, the object underlying the invention is achieved in that a cell of the genus Yarrowia, preferably Yarrowia lipolytica, in which the activity of the hydroxyisobutyric acid dehydrogenase YaliOF02607g or a variant thereof by deletion from the activity of the corresponding wild-type cell is reduced, is contacted in aqueous solution with isobutyric acid
Die vorliegende Erfindung wird weiterhin durch die folgenden Figuren und nicht beschränkenden Beispiele veranschaulicht, denen weitere Merkmale, Ausführungsformen, Aspekte und Vorteile der vorliegenden Erfindung entnommen werden können. The present invention will be further illustrated by the following figures and non-limiting examples to which further features, embodiments, aspects and advantages of the present invention may be derived.
Fig. 1 zeigt eine besonders bevorzugte erfindungsgemäße Sequenz von enzymatisch katalysierten Reaktionen umfassend die der Überführung von Isobuttersäure zu Isobutyryl-CoA durch aus Isobutyrat-Kinase und Phosphotransisobutyrylase oder Isobutyryl-Coenzym A- Synthetase/Ligase oder Isobutyrat-Coenzym A-Transferase in Schritt b), die Oxidation von Isobutyryl-Coenzym A zu Methacrylyl-Coenzym A durch Isobutyryl-Coenzym A-Dehydrogenase in Schritt c), die Addition von Wasser an Methacrylyl-Coenzym A unter Entstehung von 3- Hydroisobutyryl-Coenzym A in Schritt d) und dessen Hydrolyse zu 3-Hydroxyisobuttersäure in Schritt e). Beispiele 1 shows a particularly preferred sequence according to the invention of enzymatically catalyzed reactions comprising the conversion of isobutyric acid to isobutyryl-CoA by isobutyrate kinase and phosphotransisobutyrylase or isobutyryl-coenzyme A synthetase / ligase or isobutyrate-coenzyme A transferase in step b) , the oxidation of isobutyryl-coenzyme A to methacrylyl-coenzyme A by isobutyryl-coenzyme A-dehydrogenase in step c), the addition of water to methacrylyl-coenzyme A to give 3-hydroisobutyryl-coenzyme A in step d) and its hydrolysis to 3-hydroxyisobutyric acid in step e). Examples
Beispiel 1 example 1
Herstellung einer rekombinanten Yarrowia lipolytica-Zelle mit abgeschwächter 3- Hydroxyisobuttersäure-Dehydrogenase-Aktivität  Preparation of a recombinant Yarrowia lipolytica cell with attenuated 3-hydroxyisobutyric acid dehydrogenase activity
1. Konstruktion der Gendisruptionscassette GDC-YI02607PT zur Deletion des 3-Hvdroxyisobuttersäure- Dehvdroqenase-Gens Ya//QF02607q Accession-Nummer: XP_50491 1.1) 1. Construction of the gene disruption cassette GDC-YI02607PT for the deletion of the 3-hydroxybutyric acid dehydrogenase gene Ya // QF02607q Accession Number: XP_50491 1.1)
Zur Konstruktion einer Va//0F02607g /(noc/roi/f-Mutante in Y. lipolytica wurde die Promotor- und Terminatorregion des Gens Va//0F02607g kloniert. Chromosomale DNA aus Y. lipolytica H222 (MATa) diente als Matrize für die PCR. Der Gen-knockout wurde in den folgenden Stämmen durchgeführt: V. lipolytica H222-41 (MATa ura3-41) und Y. lipolytica H222-SW4-2 (MATa ura3-302 SUC2 ku70A-1572 trp1A-1199). Der Promotor- und Terminatorbereich des für die 3-Hydroxyisobuttersäure-Dehydrogenase (Va//0F02607g) kodierenden Gens wurde mit Hilfe der Oligonukleotide 3HIBDH-Pfw (SEQ.-ID-Nr. 01), 3HIBDH-Prv (SEQ.-ID-Nr. 02) (Promotorbereich), 3HIBDH-Tfw (SEQ.-ID-Nr. 03) und 3HIBDH-Trv (SEQ.-ID-Nr. 04) (Terminatorbereich) aus der chromosomalen DNA von Y. lipolytica H222 in einer PCR amplifiziert. Folgende Parameter wurden für die PCR eingesetzt: Promotorbereich, 1 x: initiale Denaturierung, 98 °C, 3 min; 35 x: Denaturierung, 98 °C, 0:10 min, Annealing, 59,5 °C, 0:45 min; Elongation, 72 °C, 0:35 min; 1 x: terminale Elongation, 72 °C, 5 min. Terminatorbereich, 1 x: initiale Denaturierung, 98 °C, 3 min; 35 x: Denaturierung, 98 °C, 0:10 min, Annealing, 59,5 °C, 0:45 min; Elongation, 72 °C, 0:35 min; 1 x: terminale Elongation, 72 °C, 5 min. Für die Amplifikation wurde der PhusionTM High-Fidelity Master Mix von New England Biolabs (Frankfurt) entsprechend den Empfehlungen des Herstellers verwendet. Auf diesem Wege wurde das Promotorfragment am 3'-Ende mit einer I-Scel-Schnittstelle und das Terminatorfragment am 5'-Ende mit einer I-Scel-Schnittstelle versehen. Dafür wurden die folgenden Oligonukleotide eingesetzt:  To construct a Va // 0F02607g / (noc / roi / f mutant in Y. lipolytica, the promoter and terminator region of the Va // 0F02607g gene was cloned Chromosomal DNA from Y. lipolytica H222 (MATa) served as the template for the PCR The gene knockout was carried out in the following strains: V. lipolytica H222-41 (MATa ura3-41) and Y. lipolytica H222-SW4-2 (MATa ura3-302 SUC2 ku70A-1572 trp1A-1199). and terminator region of the gene coding for the 3-hydroxyisobutyric acid dehydrogenase (Va // 0F02607g) was determined using the oligonucleotides 3HIBDH-Pfw (SEQ ID NO: 01), 3HIBDH-Prv (SEQ ID NO: 02) (Promoter region), 3HIBDH-Tfw (SEQ ID NO: 03) and 3HIBDH-Trv (SEQ ID NO: 04) (terminator region) were amplified from the chromosomal DNA of Y. lipolytica H222 in a PCR were used for the PCR: promoter region, 1 x: initial denaturation, 98 ° C, 3 min; 35 x: denaturation, 98 ° C, 0:10 min, annealing, 59.5 ° C, 0:45 min; elongation, 72 ° C, 0:35 min; 1 x: terminal elongation, 72 ° C, 5 min. Terminator area, 1 x: initial denaturation, 98 ° C, 3 min; 35x: denaturation, 98 ° C, 0:10 min, annealing, 59.5 ° C, 0:45 min; Elongation, 72 ° C, 0:35 min; 1 x: terminal elongation, 72 ° C, 5 min. For amplification, the Phusion ™ High-Fidelity Master Mix from New England Biolabs (Frankfurt) was used according to the manufacturer's recommendations. In this way, the promoter fragment at the 3 'end was provided with an I-Scel interface and the terminator fragment at the 5' end with an I-Scel interface. The following oligonucleotides were used for this:
3HIBDH-Pfw: 3HIBDH-Pfw:
5'- CAC ACA TCC AGA GCT CTA TG -3' (SEQ.-ID-Nr. 01) 3HIBDH-Prv:  5'-CAC ACA TCC AGA GCT CTA TG -3 '(SEQ ID NO: 01) 3HIBDH-Prv:
5'-TAT ATA CTA TAT TAC CCT GTT ATC CCT AGC GTA ACT ACA AAT ACA AGT TTT AAG CTG -3' (SEQ.-ID-Nr. 02, beinhaltend eine I-Scel-Erkennungssequenz am 5'-Ende) 3HIBDH-Tfw: 5'-TAT ATA CTA TAT TAC CCT GTT ATC CCT AGC GTA ACT ACA AAT ACA AGT TTT AAG CTG -3 '(SEQ ID NO: 02, containing an I-Scel recognition sequence at the 5' end) 3HIBDH-Tfw:
5'- TAT ATA AGT TAC GCT AGG GAT AAC AGG GTA ATA TAG GCT GTG TAT GTG TTA GGG TG - 3' (SEQ.-ID-Nr. 03, beinhaltend eine /-Sce/-Erkennungssequenz am 5'-Ende) 3HIBDH-Trv:  5'-TAT ATA AGT TAC GCT AGG GAT AAC AGG GTA ATA TAG GCT GTG TAT GTG TTA GGG TG - 3 '(SEQ ID NO: 03, containing a / -Sce / recognition sequence at the 5' end) 3HIBDH -Trv:
5'- GGT GAC CTT CAG GTG CAC CA -3' (SEQ.-ID-Nr. 04)  5'-GGT GAC CTT CAG GTG CAC CA -3 '(SEQ ID NO: 04)
2. Fusion des Promotor- und Terminatorfragments 2. Fusion of the promoter and terminator fragments
Die PCR-Produkte des Promotor- und Terminatorbereichs (1060 bzw. 970 Basenpaare) wurden mittels des„QIAquick PCR-Purification Kits" (Qiagen, Hilden) gemäß den Angaben des Herstellers aufgereinigt. In einer anschließenden crossover-PCR wurden die beiden PCR-Produkte als Matrize eingesetzt und eine Amplifikation mit den Primern 3HIBDH-Pfw (SEQ.-ID-Nr. 01) und 3HIBDH-Trv (SEQ.-ID-Nr. 04) durchgeführt. Folgende Parameter wurden für die PCR eingesetzt: 1 x: initiale Denaturierung, 98 °C, 3 min; 35 x: Denaturierung, 98 °C, 0:10 min, Annealing, 59,5 °C, 0:45 min; Elongation, 72 °C, 1 :00 min; 1 x: terminale Elongation, 72 °C, 5 min. Durch die Komplementarität der /-Sce/-Restriktionsschnittstelle entstand ein 2,071 Kilobasenpaar großes PCR-Produkt (SEQ.-ID-Nr. 05). Zur Isolierung der DNA aus einem Agarosegel wurde die Ziel-DNA mit einem Skalpell aus dem Gel herausgeschnitten und mit dem „Quick Gel Extraktion Kit" (Qiagen, Hilden) aufgereinigt. Die Durchführung erfolgte nach den Angaben des Herstellers. Im nächsten Schritt wurde das PCR-Produkt in den Vektor pCR-Blunt Il-Topo (Zero Blunt TOPO PCR Cloning Kit with One Shot TOP10 Chemically Competent E. coli, Invitrogen, Karlsruhe) ligiert. Das resultierende Plasmid pCRBIuntllTopo::P_T_3HIBDH_YI (SEQ.-ID-Nr. 06) ist 5,59 Kilobasenpaare groß. Die Ligation sowie die Transformation chemisch kompetenter E. coli erfolgten nach Angaben des Herstellers. Die Authentizität des Plasmids wurde durch eine Restriktionsanalyse mit EcoRI, Xho\ und Psti überprüft.  The PCR products of the promoter and terminator region (1060 or 970 base pairs) were purified by means of the "QIAquick PCR Purification Kit" (Qiagen, Hilden) according to the manufacturer's instructions In a subsequent crossover PCR, the two PCR products used as a template and amplification was carried out with the primers 3HIBDH-Pfw (SEQ ID No. 01) and 3HIBDH-Trv (SEQ ID No. 04) The following parameters were used for the PCR: 1 ×: initial Denaturation, 98 ° C, 3 min; 35x: denaturation, 98 ° C, 0:10 min, annealing, 59.5 ° C, 0:45 min; elongation, 72 ° C, 1: 00 min; 1 x: terminal elongation, 72 ° C, 5 min. Complementarity of the / -Sce / restriction site resulted in a 2.071 kilobase pair PCR product (SEQ ID NO: 05). Cut the DNA out of the gel with a scalpel and clean with the "Quick Gel Extraction Kit" (Qiagen, Hilden). The procedure was carried out according to the manufacturer's instructions. In the next step, the PCR product was ligated into the vector pCR-Blunt II-Topo (Zero Blunt TOPO PCR Cloning Kit with One Shot TOP10 Chemically Competent E. coli, Invitrogen, Karlsruhe). The resulting plasmid pCRBIuntllTopo :: P_T_3HIBDH_YI (SEQ ID NO: 06) is 5.59 kilobase pairs. The ligation and the transformation of chemically competent E. coli were carried out according to the manufacturer. The authenticity of the plasmid was checked by restriction analysis with EcoRI, Xho \ and Psti.
3. Konstruktion der /cnoc/couf-Mutanten Y. lipolytica H222-SW- -2 Δ 3HIBDH und Y. lipolytica H222-41 A3HIBDH 3. Construction of the / cnoc / couf mutants Y. lipolytica H222-SW- -2 Δ 3HIBDH and Y. lipolytica H222-41 A3HIBDH
Zur Konstruktion der /(noc/« /i-Mutante ist die Integration eines Markergens notwendig. Dazu wurde das 1 ,3 Kilobasenpaare große„loxP-URA3-loxR" DNA-Fragment, welches das URA3-Gen enthält, mittels einer /-Sce/-Restriktion aus dem Vektor pJMP113 (Fickers et al., 2003) herausgeschnitten. Das„loxP- l/fi/A3-/ox/?'-Fragment wurde mit Hilfe des„Quick Gel Extraktion Kit' (Qiagen, Hilden) gemäß den Angaben des Herstellers über ein Agarosegel aufgereinigt. Das resultierende Fragment wurde in den mit I-Scel geschnittenen Vektor pCRBIuntllTopo::P_T_3HIBDH_YI (SEQ.-ID-Nr. 06) ligiert. Das resultierende Plasmid pCRBIuntllTopo::P_T_3HIBDH_YI_ura (SEQ.-ID-Nr. 07) ist 6,899 Kilobasenpaare groß. Die Ligation sowie die Transformation chemisch kompetenter E. coli DH5a-Zellen (New England Biolabs, Frankfurt) erfolgten in einer dem Fachmann bekannter Art und Weise. Die Authentizität des Plasmids wurde durch eine Restriktion mitXmal, Seal und Sad überprüft. For the construction of the / (noc / "/ i mutant, the integration of a marker gene is necessary, for which the 1.3 kilobase pair" loxP-URA3-loxR "DNA fragment containing the URA3 gene was amplified by means of a - -Sce / Restriction out of the vector pJMP113 (Fickers et al., 2003) The "loxP-l / fi / A3 / ox / '' fragment was prepared using the Quick Gel Extraction Kit (Qiagen, Hilden) according to The resulting fragment was ligated into the I-Scel cut vector pCRBIuntllTopo :: P_T_3HIBDH_YI (SEQ ID NO: 06) resulting plasmid pCRBIuntllTopo :: P_T_3HIBDH_YI_ura (SEQ ID NO: 07) is 6.899 kilobase pairs in size. The ligation and the transformation of chemically competent E. coli DH5a cells (New England Biolabs, Frankfurt) were carried out in a manner known to those skilled in the art. The authenticity of the plasmid was checked by restriction with Xmal, Seal and Sad.
Um die für den Gen-knockout notwendige Gendisruptionscassette GDC-YI02607PT zur Deletion von ORF Va//0F02607g zu erhalten, wurde das Plasmid pCRBIuntllTopo::P_T_3HIBDH_YI_ura (SEQ.-ID- Nr. 07) als Matrize für die PCR mit den folgenden Oligonukleotiden und Parametern eingesetzt: 3HIBDH- Pfw (SEQ.-ID-Nr. 01) und 3HIBDH-Trv (SEQ.-ID-Nr. 04); 1 x: initiale Denaturierung, 98 °C, 3 min; 35 x: Denaturierung, 98 °C, 0:10 min, Annealing, 65 °C, 0:45 min; Elongation, 72 °C, 1 :45 min; 1 x: terminale Elongation, 72 °C, 5 min. Das gewünschte 3,38 Kilobasenpaare Fragment (SEQ.-ID-Nr. 8) wurde mit Hilfe des„Quick Gel Extraktion Kit" (Qiagen, Hilden) gemäß den Angaben des Herstellers über ein Agarosegel aufgereinigt, überprüft durch die Restriktion mit Xmal und XmnI und für die integrative Transformation von Y. lipolytica H222-SW4-2 und Y. lipolytica H222-41 eingesetzt. In order to obtain the gene disruption cassette GDC-YI02607PT necessary for the gene knockout to delete ORF Va // 0F02607g, the plasmid pCRBIuntllTopo :: P_T_3HIBDH_YI_ura (SEQ ID NO: 07) was used as a template for the PCR with the following oligonucleotides and Parameters employed: 3HIBDH-Pfw (SEQ ID NO: 01) and 3HIBDH-TRV (SEQ ID NO: 04); 1 x: initial denaturation, 98 ° C, 3 min; 35x: denaturation, 98 ° C, 0:10 min, annealing, 65 ° C, 0:45 min; Elongation, 72 ° C, 1:45 min; 1 x: terminal elongation, 72 ° C, 5 min. The desired 3.38 kilobase pair fragment (SEQ.ID.NO.:8) was purified using the "Quick Gel Extraction Kit" (Qiagen, Hilden) according to the manufacturer's instructions on an agarose gel, checked by restriction with Xmal and XmnI and for the integrative transformation of Y. lipolytica H222-SW4-2 and Y. lipolytica H222-41.
Die Transformation erfolgte mittels der Lithium-Acetat-Methode (Barth G and Gaillardin C (1996) Yarrowia lipolytica. In: Wolf, K. (eds) Nonconventional yeasts in biotechnology. Springer, Berlin Heidelberg New York, pp 313-388). Die erhaltenen Uracil-prototrophen Transformanten wurden mittels Kolonie-PCR überprüft. Folgende Parameter wurden für die PCR eingesetzt: 1 x: initiale Denaturierung, 98 °C, 3 min; 35 x: Denaturierung, 98 °C, 0:10 min, Annealing, 60 °C, 0:45 min; Elongation, 72 °C, 1:30 min; 1 x: terminale Elongation, 72 °C, 5 min. Dazu wurden folgende Oligonukleotide eingesetzt: fw-3HIBDH-ah: The transformation was carried out by the lithium acetate method (Barth G and Gaillard C (1996) Yarrowia lipolytica.) In: Wolf, K. (eds) Nonconventional yeasts in biotechnology Springer, Berlin Heidelberg New York, pp 313-388). The obtained uracil-prototrophic transformants were checked by colony PCR. The following parameters were used for the PCR: 1 ×: initial denaturation, 98 ° C., 3 min; 35x: denaturation, 98 ° C, 0:10 min, annealing, 60 ° C, 0:45 min; Elongation, 72 ° C, 1:30 min; 1 x: terminal elongation, 72 ° C, 5 min. The following oligonucleotides were used: fw-3HIBDH-ah:
5'- GAG TCG CAG ATT CAG GAA AT -3' (SEQ.-ID-Nr. 09) rv-3HIBDH-ah:  5'-GAG TCG CAG ATT CAG GAA AT -3 '(SEQ ID NO: 09) rv-3HIBDH-ah:
5'- TCA CCT TCT GAT CAC GGT GT -3' (SEQ.-ID-Nr. 10)  5'-TCA CCT TCT GAT CAC GGT GT -3 '(SEQ ID NO: 10)
Im Falle einer erfolgreichen Disruption des für die 3-Hydroxyisobuttersäure-Dehydrogenase kodierenden Gens Ya//0F02607g sollte ein 1,005 Kilobasenpaare großes Fragment amplifiziert werden. In der Tat konnten entsprechende Klone identifiziert werden, die im Folgenden weiter bearbeitet wurden. 4. Wiederherstellung der Uracil-Auxotrophie In the event of a successful disruption of the Ya // 0F02607g gene encoding the 3-hydroxyisobutyric acid dehydrogenase, a 1.005 kilobase pair fragment should be amplified. In fact, corresponding clones could be identified, which were further processed in the following. 4. Restoration of uracil auxotrophy
Die Wederherstellung der Uracil-Auxotrophie in den Uracil-prototrophen Transformanten erfolgte nach Fickers et al, 2003. Zunächst wurden kompetente Zellen hergestellt. Dazu wurden die Transformanten in 5 mL YPD pH 4 (10 g/L Hefeextrakt, 10 g/L Pepton, 10,5 g/L Zitronensäure, 2 % (w/v) Glucose und 0,5 M Natriumeitrat zur pH-Wert Einstellung) für 8 h bei 30 °C und 190 rpm in 100 mL Schikanenkolben kultiviert. Nach 8 h wurde diese Vorkultur genutzt, um 10 mL YPD-Medium pH 4 in 250 mL- Schikanenkolben mit einer optischen Dichte (OD600) von 0,05 zu inokulieren. Alle Kolben wurden bei 30 °C und 190 rpm inkubiert. Am nächsten Tag bei Erreichen einer Zellzahl zwischen 9-107 und 1 ,5-107 pro ml (Auszählung mittels der Neubauer-Kammer) wurden diese Vorkulturen geerntet (500 g, 5 min, RT), zweimal in 10 mL TE-Puffer (10 mM Tris-HCI, 1 mM Na-EDTA, pH-Wert 8) gewaschen, anschließend in 30 mL 0,1 % (w/v) Lithium-Acetat verdünnt und 1 h bei 28 °C und 60 rpm inkubiert. Anschließend wurden die Zellen erneut zentrifugiert (500 g, 5 min, RT), in 3 mL 0,1 % (w/v) Lithium-Acetat resuspendiert, in 100 aliquotiert und sofort verwendet. Alle weiteren Schritte wurden auf Eis durchgeführt. Für die Transformation des Plasmids pUB4Cre (Fickers et al, 2003) wurden 100 μί kompetente Zellen mit 200 - 800 ng Plasmid-DNA und 2,5 aufgekochter Lachsperma-DNA (10 mg/mL) (Invitrogen, Karlsruhe) gemischt. Nach Zugabe von 0,7 mL 40 % PEG4000 (w/v; gelöst in 0,1 M Lithium-Acetat, pH- Wert 6) wurden die Zellen 1 h bei 28 °C unter Schütteln inkubiert. Der Hitzeschock bei 39 °C folgte für 10 min im Wasserbad. Es wurden 1 ,2 mL 0,1 % (w/v) Lithium-Acetat zu den Zellen gegeben und zweimal 250 sehr vorsichtig auf YPD-Platten mit 500 μg/mL Hygromycin aufgetragen.  Neither the production of uracil auxotrophy in the uracil prototrophic transformants was carried out according to Fickers et al., 2003. First, competent cells were prepared. To do this, transformants were added in 5 mL of YPD pH 4 (10 g / L yeast extract, 10 g / L peptone, 10.5 g / L citric acid, 2% (w / v) glucose, and 0.5 M sodium citrate for pH adjustment ) for 8 h at 30 ° C and 190 rpm in 100 mL baffled flasks. After 8 h, this preculture was used to inoculate 10 mL of YPD medium pH 4 in 250 mL baffled flasks with an optical density (OD600) of 0.05. All flasks were incubated at 30 ° C and 190 rpm. The next day, when a cell count between 9-107 and 1, 5-107 per ml was counted (counted using the Neubauer chamber), these precultures were harvested (500 g, 5 min, RT), twice in 10 mL TE buffer (10 mM Tris-HCl, 1 mM Na-EDTA, pH 8), then diluted in 30 mL of 0.1% (w / v) lithium acetate and incubated for 1 h at 28 ° C and 60 rpm. The cells were then recentrifuged (500 g, 5 min, RT), resuspended in 3 mL of 0.1% (w / v) lithium acetate, aliquoted into 100 and used immediately. All further steps were done on ice. For the transformation of the plasmid pUB4Cre (Fickers et al, 2003), 100 μί competent cells were mixed with 200-800 ng of plasmid DNA and 2.5 boiled salmon sperm DNA (10 mg / ml) (Invitrogen, Karlsruhe). After addition of 0.7 ml of 40% PEG4000 (w / v, dissolved in 0.1 M lithium acetate, pH 6), the cells were incubated for 1 h at 28 ° C. with shaking. The heat shock at 39 ° C followed for 10 min in a water bath. 1, 2 mL of 0.1% (w / v) lithium acetate was added to the cells and twice 250 applied very carefully to YPD plates with 500 μg / mL hygromycin.
Nach 3 bis 10 Tagen Inkubation bei 30 °C wurden die erhaltenen Klone phänotypisch auf Agarplatten mit YNB-Medium (6,7 g/L DifcoTM Yeast Nitrogen Base w/o Amino Acids) und Glucose mit oder ohne Uracil überprüft. Um das Plasmid pUB4Cre aus der Zelle zu entfernen, wurden die Tranformanten mehrfach in 10 mL YPD-Medium in 100 mL Schikanenkolben bei 30 °C und 190 rpm für 24 h inkubiert und auf YPD- Platten ausgestrichen. Die resultierenden Klone wurden mittels PCR (wie in Punkt 3 beschrieben) und phänotypisch auf Agarplatten kontrolliert. After 3 to 10 days of incubation at 30 ° C, the resulting clones were phenotypically tested on agar plates with YNB medium (6.7 g / L Difco ™ Yeast Nitrogen Base w / o amino acids) and glucose with or without uracil. In order to remove the plasmid pUB4Cre from the cell, the tranformants were incubated several times in 10 mL YPD medium in 100 mL baffled flasks at 30 ° C. and 190 rpm for 24 h and spread on YPD plates. The resulting clones were monitored by PCR (as described in point 3) and phenotypically on agar plates.
Auf diese Weise wurden folgende Stämme konstruiert: In this way, the following strains were constructed:
- H222-SW4-2 Ä3HIBDH - H222-SW4-2 Ä3HIBDH
- H222-41 Ä3HIBDH Beispiel 2 - H222-41 Ä3HIBDH Example 2
Produktion von 3-Hydroxyisobuttersäure mit Glucose als alleiniger Kohlenstoffquelle mittels gentechnisch veränderter Y. Hpolytica-ZeWen, bei denen die Aktivität der 3- Hydroxyiosbuttersäure-Dehydrogenase abgeschwächt wurde  Production of 3-hydroxyisobutyric acid with glucose as the sole carbon source by means of genetically engineered Y. Hpolytica cells in which the activity of 3-hydroxyiosbutyric acid dehydrogenase was attenuated
Der in Beispiel 1 konstruierte V. // o/yfca-Stamm H222-41 Ä3HIBDH wurden im Vergleich mit dem korrespondierenden Wildtyp H222-41 in 10 mL YNB-Medium (6,7 g/L DifcoTM Yeast Nitrogen Base w/o Amino Acids) mit 0,2 g/L Uracil, 0,01 g/L Tryptophan und 5 % (w/v) Glucose über Nacht bei 28 °C und 190 rpm kultiviert. Am nächsten Morgen wurden diese Vorkulturen genutzt, um je 20 mL YNB-Medium mit 0,2 g/L Uracil, 0,01 g/L Tryptophan und 1 % (w/v) Glucose in 100 mL-Schikanenkolben mit einer optischen Dichte (OD600) von 0,5 zu inokulieren. Alle Kolben wurden bei 28 °C und 190 rpm inkubiert. The V. // o / yfca strain H222-41 Ä3HIBDH constructed in Example 1 was compared to the corresponding wild type H222-41 in 10 mL YNB medium (6.7 g / L Difco ™ Yeast Nitrogen Base w / o Amino Acids ) were cultured with 0.2 g / L uracil, 0.01 g / L tryptophan and 5% (w / v) glucose overnight at 28 ° C. and 190 rpm. The next morning, these precultures were used to mix 20 mL of YNB medium with 0.2 g / L uracil, 0.01 g / L tryptophan and 1% (w / v) glucose in 100 mL baffled flasks with an optical density ( OD600) of 0.5 inoculate. All flasks were incubated at 28 ° C and 190 rpm.
Nach einem Zeitraum von 70 h wurde 1 g/L Ammoniumsulfat zugegeben und nach 95 h wurden die Konzentrationen von 3-Hydroxyisobuttersäure in den Ansätzen per IC analysiert. Für die chromatographische Auftrennung in der ICS-2000 RFIC (Dionex, Corporation, Synnyvale, USA) wurde die RFICTM TonPac Säule (2 χ 250 mm, Säulentemperatur 30 °C, + Vorsäule AG15 4 χ 50 mm, Durchflussrate 0,38 mlJmin) verwendet. After a period of 70 hours, 1 g / L of ammonium sulfate was added and after 95 hours, the concentrations of 3-hydroxyisobutyric acid in the batches were analyzed by IC. For the chromatographic separation in the ICS-2000 RFIC (Dionex Corporation, Synnyvale, USA) was the RFICTM TonPac column (2 χ 250 mm, column temperature 30 ° C, + precolumn AG15 4 χ 50 mm, flow rate 0.38 mlJmin) used ,
Die Stämme erreichten eine OD600 von ca. 30. Während der Kontrollstamm Y. lipolytica H222-41 keinerlei 3-Hydroxyisobuttersäure produzierte, konnte im Fall des daraus abgeleiteteten Y. lipolytica H222-41 Ä3HIBDH die Bildung von 4,5 mg/L 3-Hydroxyisobuttersäure nachgewiesen werden. The strains reached an OD600 of about 30. While the control strain Y. lipolytica H222-41 did not produce any 3-hydroxyisobutyric acid, in the case of the Y. lipolytica H222-41 Ä3HIBDH derived therefrom, the formation of 4.5 mg / L 3-hydroxyisobutyric acid be detected.
Beispiel 3 Example 3
Produktion von 3-Hydroxyisobuttersäure ausgehend von Isobuttersäure mit gentechnisch veränderten Y. Hpolytica-ZeWen, bei denen die Aktivität der 3-Hydroxyisobuttersäure- Dehydrogenase abgeschwächt wurde  Production of 3-hydroxyisobutyric acid from isobutyric acid with genetically engineered Y. Hpolytica cells, in which the activity of 3-hydroxyisobutyric acid dehydrogenase was attenuated
Die in Beispiel 1 konstruierten Y. //po/yfca-Stämme H222-SW-4-2 Ä3HIBDH und H222-41 Ä3HIBDH wurden im Vergleich mit einem unmodifizierten Kontroll-Stamm (H222-SW-4-2) in 10 mL YNB-Medium (6,7 g/L DifcoTM Yeast Nitrogen Base w/o Amino Acids) mit 0,01 g/L Tryptophan und 1 % (w/v) Glucose über Nacht bei 30 °C und 190 rpm kultiviert. Am nächsten Morgen wurden diese Vorkulturen genutzt, um je 20 mL YNB-Medium mit 0,2 g/L Uracil, 0,01 g/L Tryptophan, 1 % (w/v) Glucose und 0,2 % (w/v) Isobuttersäure (mit NaOH titriert, pH-Wert: 5,1 ; nach 24 h wurde erneut 0,2 % Isobuttersäure zugesetzt) in 100 mL-Schikanenkolben mit einer optischen Dichte (OD600) von 0,5 zu inokulieren. Alle Kolben wurden bei 30 °C und 190 rpm inkubiert. Die H222-SW4-2-Stämme erreichten eine OD600 von 2-3 während die H222-41- Stämme bis zu einer OD600 von ca. 10 wuchsen. The Y. // po / yfca strains H222-SW-4-2 Ä3HIBDH and H222-41 Ä3HIBDH constructed in Example 1 were compared to an unmodified control strain (H222-SW-4-2) in 10 mL YNB- Medium (6.7 g / L Difco ™ Yeast Nitrogen Base w / o Amino Acids) with 0.01 g / L tryptophan and 1% (w / v) glucose cultured overnight at 30 ° C and 190 rpm. The next morning, these precultures were used to mix 20 mL of YNB medium with 0.2 g / L uracil, 0.01 g / L tryptophan, 1% (w / v) glucose, and 0.2% (w / v). Isobutyric acid (titrated with NaOH, pH = 5.1, 0.2% isobutyric acid added after 24 h) is inoculated into 100 mL baffled flasks with an optical density (OD600) of 0.5. All flasks were incubated at 30 ° C and 190 rpm. The H222-SW4-2 strains achieved an OD600 of 2-3 while the H222-41 strains grew to an OD600 of about 10.
Nach einem Zeitraum von 24 h und 48 h wurden die Konzentrationen von 3-Hydroxyisobuttersäure in allen Ansätzen per IC analysiert (siehe Abb. 1). Der Kulturüberstand wurde mit ddH20 1:10 verdünnt, so dass die Messwerte in dem Kalibrierbereich lagen. Für die chromatographische Auftrennung in der ICS- 2000 RFIC (Dionex, Corporation, Synnyvale, USA) wurde die RFICTM TonPac Säule (2 χ 250 mm, Säulentemperatur 30 °C, + Vorsäule AG154 χ 50 mm, Durchflussrate 0,38 mlJmin) verwendet. After a period of 24 h and 48 h, the concentrations of 3-hydroxyisobutyric acid in all batches were analyzed by IC (see FIG. 1). The culture supernatant was diluted 1:10 with ddH20 so that the readings were within the calibration range. For the chromatographic separation in the ICS 2000 RFIC (Dionex Corporation, Synnyvale, USA) was the RFICTM TonPac column (2 χ 250 mm, column temperature 30 ° C, + precolumn AG154 χ 50 mm, flow rate 0.38 mlJmin) was used.
Nach 24 h erreichten alle Y. //po/yfca-Stämme die stationäre Wachstumsphase. Der pH-Wert bei den H222-41 -Stämmen fiel während des Wachstums auf 3,3 bis 3,7 ab, bei den H222-SW-4-2-Stämmen wurden pH-Werte von 2 detektiert. Nach 24 h und 48 h erreichten die modifizierten Y. //po/yfca-Stämme H222-SW-4-2 Ä3HIBDH und H222-41 Ä3HIBDH Ä3HIBDH und H222-41 Ä3HIBDH eine höhere Ausbeute als die jeweiligen unmodifizerten Stämme H222-SW^l-2 und H222-41. Y. lipolytica H222- 41Ä3HIBDH setzt über 90 % Isobuttersäure zu 3-Hydroxyisobuttersäure nach 24 h und über 80 % nach 48 h um. Durch die Deletion von Ya//0F02607g in Y. lipolyica H222-41 bzw. H222-SW^l-2 konnte die Ausbeute der 3-Hydroxyisobuttersäure-Produktion aus Isobuttersäure deutlich gesteigert werden (siehe Abb. 1). Beispiel 4 After 24 h all Y. // po / yfca strains reached the stationary growth phase. The pH of the H222-41 strains decreased to between 3.3 and 3.7 during growth, and to pH values of 2 in the H222-SW-4-2 strains. After 24 h and 48 h, the modified Y. // po / yfca strains H222-SW-4-2 Ä3HIBDH and H222-41 Ä3HIBDH Ä3HIBDH and H222-41 Ä3HIBDH achieved a higher yield than the respective unmodified strains H222-SW1 -2 and H222-41. Y. lipolytica H222-41A3HIBDH converts over 90% isobutyric acid to 3-hydroxyisobutyric acid after 24 h and over 80% after 48 h. By the deletion of Ya // 0F02607g in Y. lipolyica H222-41 or H222-SW ^ l-2, the yield of 3-hydroxyisobutyric acid production from isobutyric acid could be significantly increased (see Fig. 1). Example 4
Produktion von 3-Hydroxybuttersäure (3-HIB) aus Glucose oder Isobuttersäure (IBA) als alleiniger Kohenstoffquelle durch Y. Iipolytica H222 (Wildtyp, WT) und gentechnische veränderten Y. Iipolytica H222 Ä3HIBDH (ura)-8 mit abgeschwächter 3-Hydroxyisobuttersäure- Dehydrogenaseaktivität (Δ). a) Biomasseproduktion im Schüttelkolbenmaßstab  Production of 3-hydroxybutyric acid (3-HIB) from glucose or isobutyric acid (IBA) as sole carbon source by Y. Iipolytica H222 (wild type, WT) and genetically engineered Y. Iipolytica H222 Ä3HIBDH (ura) -8 with attenuated 3-hydroxyisobutyric acid dehydrogenase activity (Δ). a) Biomass production on a shake flask scale
Kryokulturen von Y. Iipolytica H222 Ä3HIBDH (ura)-8 (im folgenden bezeichnet als Δ) und Y. Iipolytica H222 (im folgenden bezeichnet als Wildtyp (WT)) wurden auf YPD-Agarplatten pro Liter hergestellt aus Hefeextrakt 10g, Pepton 20g, Agar-Agar 12g autoklaviert und mit separat autoklavierter Glucose 10g komplementiert, ausgestrichen und für 24h bei 28°C inkubiert. Cryocultures of Y. Iipolytica H222 λ3HIBDH (ura) -8 (hereinafter referred to as Δ) and Y. Iipolytica H222 (hereinafter referred to as wild type (WT)) were prepared on YPD agar plates per liter from yeast extract 10g, peptone 20g, agar -Agar 12g autoclaved and complemented with separately autoclaved glucose 10g, streaked and incubated for 24h at 28 ° C.
Pro Stamm wurden jeweils 2 1000 ml-Schüttelkolben mit Schikanen mit 100 ml YPD-Medium (obiges Medium ohne Agar-Agar, mit je 3 Tropfen Antischaum Delamex) gefüllt, mit je 2 vollen Impfösen von den Agarplatten beimpft und für 20h bei 30°C mit 180rpm (Amplitude 2,5cm) inkubiert (Restglucose Og/I, OD >20). 2 1000 ml shake flasks with chicanes per 100 ml of YPD medium (above medium without agar-agar, each with 3 drops of Delamite antifoam) were filled in each strain, inoculated with 2 full inoculation loops from the agar plates and for 20 h at 30 ° C. incubated at 180rpm (amplitude 2.5cm) (residual glucose Og / I, OD> 20).
Tab.1 Table 1
Die Kulturen wurden dann steril in 50ml Falcons abgefüllt und bei 5000rpm abzentrifugiert. Die Pellets wurden 4x mit 0,9% Saline gewaschen. Danach wurden je 2 Pellets eines Stammes in 50 ml Transformationspuffer resuspendiert und vereinigt. Der Transformationspuffer setzte sich pro sterilfiltriertem Liter zusammen aus (NH4)H2P04 8g,The cultures were then sterile-filled in 50 ml Falcons and spun down at 5000 rpm. The pellets were washed 4x with 0.9% saline. Thereafter, 2 pellets of each strain were resuspended in 50 ml of transformation buffer and pooled. The transformation buffer was composed per sterile-filtered liter of (NH 4 ) H 2 P0 4 8 g,
NaCI 0,5g, MgS04 x 7 H20 0,48 g, Spurenelementlösung US3 15 ml. 1 Liter der Spurenelementelösung US 3 setzte sich zusammen aus HCl 37% 36,5g, MnCI2 x 4H20 1,91g, ZnS04 x 7H20 1 ,87g, Na-EDTA x 2H20 0,8g, H3B03 0,3g, Na2Mo04 x 2H20 0,25g, CaCI2 x 2H20 4,7g, FeS0 x 7 H20 17,8g, CuCI2 x 2H20 0,15g. Diese Lösung wurde separat sterilfiltriert und steril dem Puffer zugegeben. Der pH des Puffers wurde auf 5,4 eingestellt. Biotransformation NaCl 0.5 g, MgSO 4 × 7 H 2 O 0.48 g, trace element solution US3 15 ml. 1 liter of the trace element solution US 3 was composed of HCl 37% 36.5 g, MnCl 2 × 4H 2 O 1.91 g, ZnS0 4 x 7H 2 0 1, 87g, Na-EDTA x 2H 2 0 0.8g, H 3 B0 3 0.3g, Na 2 Mo0 4 x 2H 2 0 0.25g, CaCl 2 x 2H 2 0 4.7g, FeS0 x 7 H 2 O 17,8g, CuCl 2 x 2H 2 0 0,15g. This solution was separately sterile filtered and added to the buffer under sterile conditions. The pH of the buffer was adjusted to 5.4. biotransformation
In 4 1000 ml-Schüttelkolben mit Schikanen wurden steril je 50 ml des genannten Transformationspuffer pH 5,4 mit je 3 Tropfen Antischaum Delamex gegeben. Pro Stamm wurden in einen Schüttelkolben steril für ein Endvolumen von 100ml 0,2% (w/v) Isobuttersäure, in einen zweiten Schüttelkolben 1% (w/v) Glucose gegeben. Je ein Schüttelkolben mit IBA und einer mit Glucose wurde mit je 50 ml resuspendiertem Pelltet von Y. lipolytica H222 aus a) inokuliert. Ebenso wurde mit Y. lipolytica H222 Ä3HIBDH (ura)-8 verfahren. Die Start-OD lag bei ca. 14. Die Schüttelkolben wurden mit 180rpm bei 30°C inkubiert Die Probennahmen erfolgten nach 0, 6 und 24 Stunden. Mikroskopische Kontrollen zeigten über die gesamte Zeit in keinem Ansatz Lysezellen. Die Messung der Glucose erfolgte mit einem YSI Messgerät der Firma Kreienbaum, die Messung von Isobuttersäure und der 3-Hydroxyisobuttersäure erfolgte mittels HPLC über eine Aminex-Säule, die Messung der OD mit einem Spectralphotometer bei 600nm. In 4 1000 ml shake flasks with baffles, 50 ml each of the above-mentioned transformation buffer pH 5.4 with 3 drops of Delamex antifoam were added sterile. Per strain, sterile were placed in a shake flask for a final volume of 100 ml of 0.2% (w / v) isobutyric acid, in a second shake flask 1% (w / v) glucose. One shake flask each with IBA and one with glucose was inoculated with 50 ml resuspended Pelltet of Y. lipolytica H222 from a). Similarly, Y. lipolytica H222 Ä3HIBDH (ura) -8 was used. The starting OD was about 14. The shake flasks were incubated at 180 rpm at 30 ° C. Samples were taken after 0, 6 and 24 hours. Microscopic controls did not show lysis cells in any approach throughout. The measurement of the glucose was carried out with a YSI measuring instrument Kreienbaum, the measurement of isobutyric acid and 3-hydroxyisobutyric acid was carried out by HPLC over an Aminex column, the measurement of OD with a spectrophotometer at 600nm.
Ergebnisse: Results:
Tab. 2 Tab. 2
OD OD
Die Glucose wurde zum Teil zum Biomasseaufbau verstoffwechselt. Mit IBA als alleinige C- Quelle fand keine Biomasseproduktion statt. The glucose was partially metabolized to the biomass structure. With IBA as the sole source of C, no biomass production took place.
Tab. 3 Tab. 3
Konzentration Substrate IBA / Glucose [mg/l]  Concentration substrates IBA / glucose [mg / l]
Stamm WT IBA WT Glucose Δ IBA Δ Glucose  Strain WT IBA WT glucose Δ IBA Δ glucose
t [h] IBA Glucose IBA Glucose IBA Glucose IBA Glucose  t [h] IBA Glucose IBA Glucose IBA Glucose IBA Glucose
0 1914 20 0 8450 1808 10 0 8520  0 1914 20 0 8450 1808 10 0 8520
6 676 0 0 3240 1267 0 0 1770  6 676 0 0 3240 1267 0 0 1770
24 0 0 0 0 422 0 0 0 Beide Substrate wurden sowohl von Y. Iipolytica H222, als auch von Y. Iipolytica H222 Ä3HIBDH (ura)-8 verstoffwechselt. Tab.4 24 0 0 0 0 422 0 0 0 Both substrates were metabolized by both Y. Iipolytica H222 and Y. Iipolytica H222 Ä3HIBDH (ura) -8. Table 4
Konzentration 3-HIB [mg/l]  Concentration 3-HIB [mg / l]
Bei Y. Iipolytica H222 konnte nur mit IBA als Substrat 3-HIB kurzzeitig als Stoffwechselprodukt nachgewiesen werden. In Y. Iipolytica H222, 3-HIB could only be detected as a metabolite for a short time with IBA as the substrate.
Bei Y. Iipolytica H222 Ä3HIBDH (ura)-8 konnten mit Glucose als Substrat geringe Mengen freies 3-HIB nachgewiesen werden. Vom eingesetzten IBA wurden 15,7 mmol/l verbraucht. Daraus können theoretisch 18,6 mmol/l 3-HIB entstehen. Gemessen wurden 19,6 mmol/l. Das verbrauchte IBA wird also vollständig zu 3-HIB umgesetzt. With Y. Iipolytica H222 Ä3HIBDH (ura) -8, small amounts of free 3-HIB could be detected with glucose as the substrate. The IBA used consumed 15.7 mmol / l. From this theory, 18.6 mmol / l of 3-HIB can be formed. Measured were 19.6 mmol / l. The spent IBA is thus fully converted to 3-HIB.
Beispiel 5 Example 5
Produktion von 3-Hydroxyisobuttersäure ausgehend von Ketoisovalerat mit gentechnisch veränderten Y. Hpolytica-ZeWen, bei denen die Aktivität der 3-Hydroxyisobuttersäure- Dehydrogenase abgeschwächt wurde  Production of 3-hydroxyisobutyric acid from ketoisovalerate with genetically engineered Y. Hpolytica cells, in which the activity of 3-hydroxyisobutyric acid dehydrogenase was attenuated
Der in Beispiel 1 konstruierte Y. //po/yfca-Stamm H222-41 Ä3HIBDH wurde im Vergleich mit dem korrespondierenden Wildtypstamm Y. lipolytica H222-41 in 10 ml_ YNB-Medium (6,7 g/L DifcoTM Yeast Nitrogen Base w/o Amino Acids) mit 0,2 g/L Uracil, 0,01 g/L Tryptophan und 1 % (w/v) Glucose über Nacht bei 30 °C und 190 rpm kultiviert. Am nächsten Tag wurden diese Vorkulturen genutzt, um je 25 mL YNB-Medium mit 0,2 g/L Uracil, 0,01 g/L Tryptophan, 6 % (w/v) Glucose und 0,65 % (w/v) Ketoisovalerat (nach 25,5 h wurden erneut 0,5 % (w/v) Ketoisovalerat und nach 49,5 h 0,3 % (w/v) Ketoisovalerat zu der Kultur gegeben) in 100 mL-Schikanenkolben mit einer optischen Dichte (OD600) von 0,5 zu inokulieren. Alle Kolben wurden bei 30 °C und 190 rpm inkubiert. Über den Verlauf der Zeit wurde die optische Dichte (OD600) bestimmt und der 3-Hydroxyisobuttersäure- Gehalt in allen Ansätzen per IC analysiert. Während der Kulturführung war zu jedem Zeitpunkt ausreichend Glucose und Ketoisovalerat im Medium vorhanden. Nach ca. 24 h erreichten alle Y. lipolytica-Stämme die stationäre Wachstumsphase. Der pH-Wert fiel während des Wachstums auf ca. 3 ab. Y. // po / yfca strain H222-41 Ä3HIBDH constructed in Example 1 was compared to the corresponding wild-type strain Y. lipolytica H222-41 in 10 ml of YNB medium (6.7 g / L Difco ™ Yeast Nitrogen Base w / o amino Acids) with 0.2 g / L uracil, 0.01 g / L tryptophan and 1% (w / v) glucose overnight at 30 ° C and 190 rpm cultivated. The next day, these precultures were used to mix 25 mL of YNB medium with 0.2 g / L uracil, 0.01 g / L tryptophan, 6% (w / v) glucose, and 0.65% (w / v). Ketoisovalerate (after 25.5 h, 0.5% (w / v) of ketoisovalerate and, after 49.5 h, 0.3% (w / v) of ketoisovalerate were again added to the culture) in 100 ml baffled flasks with an optical density ( OD600) of 0.5 inoculate. All flasks were incubated at 30 ° C and 190 rpm. Over time, the optical density (OD600) was determined and the 3-hydroxyisobutyric acid content was analyzed by IC in all batches. During the culture run, sufficient glucose and ketoisovalerate were present in the medium at all times. After about 24 h all Y. lipolytica strains reached the stationary growth phase. The pH dropped to about 3 during growth.
Durch die Deletion von Ya//0F02607g in Y. lipolyica H222-41 konnte die 3-Hydroxyisobuttersäure- Produktion aus Ketoisovalerat von 2 g/L 3-Hydroxyisobuttersäure auf über 5 g/L 3-Hydroxyisobuttersäure gesteigert werden (siehe Abb. 2). The deletion of Ya // 0F02607g in Y. lipolyica H222-41 increased the 3-hydroxyisobutyric acid production from ketoisovalerate from 2 g / L 3-hydroxyisobutyric acid to more than 5 g / L 3-hydroxyisobutyric acid (see Fig. 2).
Beispiel 6 Example 6
Produktion von 3 Hydroxyisobuttersäure mit einem 2 Stufenprozeß ausgehend von iso-Butan mit gentechnisch veränderten E. co//'W3110 mit der Monooxygenase (alkBGT) aus P. putida GP01 zu Isobuttersäure, die von gentechnisch veränderten Y. Iipolytica H222 (ura)-8, bei denen die Aktivität der 3-Hydroxyisobuttersäure-Dehydrogenase abgeschwächt wurde, mit IBA als alleiniger Kohlenstoffquelle weiter umgesetzt wird. Production of 3-hydroxyisobutyric acid with a 2-step process starting from iso-butane using genetically modified E. co // 'W3110 monooxygenase (alkBGT) from P. putida GP01 to isobutyric acid, the genetically modified Y. Iipolytica H222 (ura) -8 in which the activity of 3-hydroxyisobutyric acid dehydrogenase has been attenuated, is further reacted with IBA as the sole carbon source.
Stufe 1 step 1
Produktion von Isobuttersäure aus Iso-Butan durch E. coli W3110 mit der Monooxygenase (alkBGT) aus P. putida GP01. a) Produktion von Biomasse im 101 Maßstab  Production of isobutyric acid from iso-butane by E. coli W3110 with the monooxygenase (alkBGT) from P. putida GP01. a) Production of biomass on 101 scale
Preseedkultur: 1 Liter LB Medium mit 50μΙ Kanamycin wurde aus einer Lösung von Hefeextrakt 5g, Pepton 10g, NaCI 0,5g und 50μΙ Kanamycin hergestellt. Der pH wurde mit 5% NH40H auf 7,4 eingestellt. Die Lösung wird 20 Minuten bei 121 °C autoklaviert.  Preseed culture: 1 liter of LB medium containing 50μΙ kanamycin was prepared from a solution of yeast extract 5g, peptone 10g, NaCl 0.5g, and 50μΙ kanamycin. The pH was adjusted to 7.4 with 5% NH40H. The solution is autoclaved at 121 ° C for 20 minutes.
Von dieser Lösung wurden je 5 x 25ml in 100 ml-Schüttelkolben mit Schikanen gefüllt und mit jeweils 200μΙ einer Glycerin-Kryokultur von E. coli W3110 pBT10 (DE10200710060705) angeimpft. Diese Kulturen wurden für 18 Stunden bei 37°C und 180rpm (Amplitude 2,5cm) inkubiert. From this solution, 5 × 25 ml each in 100 ml shake flasks were filled with baffles and each inoculated with 200μΙ of a glycerol cryoculture of E. coli W3110 pBT10 (DE10200710060705). These cultures were incubated for 18 hours at 37 ° C and 180rpm (amplitude 2.5cm).
Seedkultur: 1 Liter Hochzelldichtemedium (HZD-Medium) bestehend aus NH4S04 1 ,76g, K2HP04 19,08g, KH2P04 12,5g, Hefeextrakt 6,66g, Na3-Citrat 1 ,96g , NH4Fe-Citrat (1%) 17ml, Spurenelementelösung US3 5ml, Feedlösung (Glucose 50% w/v, MgS04 [x 7 H20 0,5% w/v, NH CI 2,2% w/v) 30ml, sowie 50 μg Kanamycin wurde mit VE-Wasser angesetzt. 1 Liter derSeed culture: 1 liter of high cell density medium (HZD medium) consisting of NH 4 SO 4 1, 76 g, K 2 HP0 4 19.08 g, KH 2 PO 4 12.5 g, yeast extract 6.66 g, Na 3 citrate 1, 96 g, NH 4 Fe citrate (1%) 17ml, trace element solution US3 5ml, feed solution (glucose 50% w / v, MgS0 4 [x 7 H 2 0 0.5% w / v, NH CI 2.2% w / v) 30ml , and 50 ug kanamycin was prepared with deionized water. 1 liter of
Spurenelementelösung US 3 setzt sich zusammen aus HCl 37% 36,5g, MnCI2 x 4H20 1,91g, ZnS04 x 7H20 1 ,87g, Na-EDTA x 2H20 0,8g, H3BO3 0,3g, Na2Mo04 x 2H20 0,25g, CaCI2 x 2H204,7g, FeS0 x 7 H20 17,8g, CuCI2 x 2H20 0,15g. 948ml Lösung mit NH4S0 bis Na3-Citrat werden autoklaviert, der Rest wurde jeweils getrennt steril filtriert und im Anschluss steril zugegeben. Der pH lag bei 6,8. Trace element solution US 3 is composed of HCl 37% 36.5 g, MnCl 2 x 4H 2 O 1.91 g, ZnSO 4 x 7H 2 O 1, 87 g, Na EDTA x 2H 2 O 0.8 g, H 3 BO 3 0 , 3g, Na 2 Mo0 4 x 2H 2 0 0.25g, CaCl 2 x 2H 2 04.7g, FeS0 x 7H 2 0 17.8g, CuCl 2 x 2H 2 0 0.15g. 948 ml of solution with NH 4 S0 to Na 3 citrate are autoclaved, the remainder was separately sterile filtered and then added sterile. The pH was 6.8.
5 x 75 ml des HZD- Mediums in 1000 ml-Schüttelkolben mit Schikanen wurden mit jeweils 25 ml Preseedkultur inokuliert und für 30h bei 37°C und 180rpm (Amplitude 2,5cm) kultiviert. Induktionskultur: Je 25 ml der Kulturbrühe wurden in 75 ml modifiziertes M9-Medium (steril filtriert) mitfolgender Zusammensetzung pro Liter: 15 g Glucose, 6,79 g Na2P04, 3 g KH2P04, 0,5 g NaCI, 2 g, NH4CI, 15 g Hefeextrakt, 0,49 g MgS04*7H20, 1 ml Spurenelementlösung (wie in der Seedkultur) und 50 μg Kanamycin in 1000 ml Schüttelkolben überimpft. Die Kulturen werden für 7h bei 35°C und 180rpm (Amplitude 2,5cm) inkubiert. 5 × 75 ml of the HZD medium in 1000 ml shake flasks with baffles were inoculated with 25 ml preseed culture each and cultured for 30 h at 37 ° C. and 180 rpm (amplitude 2.5 cm). Induction culture: 25 ml each of the culture broth was poured into 75 ml of modified M9 medium (sterile filtered) with the following composition per liter: 15 g glucose, 6.79 g Na 2 PO 4 , 3 g KH 2 PO 4 , 0.5 g NaCl, 2 g, NH 4 Cl, 15 g yeast extract, 0.49 g MgS0 4 * 7H 2 0, 1 ml of trace element solution (as in seed culture) and 50 μg kanamycin in 1000 ml shake flasks. The cultures are incubated for 7h at 35 ° C and 180rpm (amplitude 2.5cm).
Ein steriler 10 I-Fermenter wurde mit 7 I eines sterilen Mediums mit der Zusammensetzung (pro Liter) (NH4)2S04 1 ,75 g, K2HP04 x 3 H20 19 g, KH2P04 12,5g, Hefeextrakt 6,6 g, Na3-Citrat x 2H20 2,24 g, Glucose 15 g, MgS04 x 7 H20 0,49 g, NH4Fe-Citrat (1% w/v) 16,6ml, Spurenelementlösung (wie in der Seedkultur) 15ml und Kanamycin 50μg und 2 ml Antischaummittel Delamex befüllt. Als Feed wurde eine autoklavierte Lösung von Glucose (50% w/v) mit MgS04 x 7H20 10g/l angeschlossen, zur pH Korrektur 0,5M H2S04 und 25% NH4OH. A sterile 10 L fermentor was charged with 7 L of a sterile medium having the composition (per liter) (NH 4 ) 2 S0 4 1, 75 g, K 2 HP0 4 x 3 H 2 0 19 g, KH 2 P0 4 12, 5 g, yeast extract 6.6 g, Na 3 citrate x 2H 2 O 2.24 g, glucose 15 g, MgS0 4 × 7 H 2 0 0.49 g, NH 4 Fe citrate (1% w / v) 16 , 6ml, trace element solution (as in seed culture) 15ml and Kanamycin 50μg and 2ml defoamer Delamex. The feed was an autoclave solution of glucose (50% w / v) with MgS0 4 x 7H 2 0 10g / l, for pH correction 0.5M H 2 S0 4 and 25% NH 4 OH.
Die Kulturen aus den Schüttelkolben wurden steril vereinigt und über eine Transferflasche in den Fermenter inokuliert. Als Fermentationsbedingungen wurden eingestellt p02 30%, Airflow 6nlpm, Rührer 400 - 1200rpm Temperatur 37°C, pH7, Feedstart 8 h, Feedrate 150 -250 g/h. Nach 19 h wurde die Temperatur auf 30°C gesenkt, der Feed gestoppt und mit 0,4 mM DCPK induziert. Nach 23 Stunden beträgt die OD im Fermenter ca.100, die Kulturbrühe wurde steril entnommen und bei 8000 rpm mit 500 ml in 1000 ml-Zentrifugenbechern abzentrifugiert. Der Überstand wurde verworfen, die Pellets wurden so in sterile Falcons aliquotiert, dass ein resuspendiertes Pellet in 180 ml Trafopuffer eine OD von ca. 20 ergibt. Die Pellets konnten dann sofort in der Biotransformation eingesetzt werden, oder bei -80°C für spätere Verwendung eingefroren werden. b) Biotransformation iso-Butan zu Isobuttersäure The cultures from the shake flasks were combined sterile and inoculated via a transfer bottle into the fermenter. The fermentation conditions were set p0 2 30%, Airflow 6nlpm, stirrer 400 - 1200rpm temperature 37 ° C, pH7, feed start 8 h, feed rate 150-250 g / h. After 19 h, the temperature was lowered to 30 ° C, the feed stopped and induced with 0.4 mM DCPK. After 23 hours, the OD in the fermenter is about 100, the culture broth was removed under sterile conditions and centrifuged off at 8000 rpm with 500 ml in 1000 ml centrifuge beakers. The supernatant was discarded, the pellets were aliquoted into sterile falcons so that a resuspended pellet in 180 ml of Trafopuffer gave an OD of about 20. The pellets could then be used immediately in the biotransformation, or frozen at -80 ° C for later use. b) Biotransformation iso-butane to isobutyric acid
Die Pellets aus 200 ml Kultur wurden in 10 ml Konversionspuffer resuspendiert. Der Konversionspuffer bestand aus 70 mM (NH4)H2P04 Puffer, pH 7 pro Liter mit 8g (NH4)H2P04, 0,5 g NaCI, 0,49 g MgS04 x 7H20, 1 ml TE und 50 μg Kanamycin. Die pH-Einstellung erfolgte hier mit 5 % NH4OH. The pellets from 200 ml of culture were resuspended in 10 ml of conversion buffer. The conversion buffer consisted of 70 mM (NH 4 ) H 2 PO 4 buffer, pH 7 per liter with 8 g (NH 4 ) H 2 PO 4 , 0.5 g NaCl, 0.49 g MgSO 4 .7H 2 O, 1 ml TE and 50 μg kanamycin. The pH was adjusted here with 5% NH 4 OH.
150 ml Puffer mit ca. 3 Tropfen autokaviertem Antischaum (Delamex) wurden in einem 300 ml- Fermenter vorgelegt. Der Fermenter wurde mit einem Gasgemisch aus einer Gasflasche mit 5 bar Anfangsdruck von 25 % iso-Butan und 75 % synthetischer Luft über einen Metallsinterperlator mit einer Porengröße von 0,2 μηι mit einer Flussrate von 12,5NI/h begast. Der Fermenter wurde in einem Wasserbad auf 35°C temperiert und mit Hilfe eines Magnetrührers mit 900rpm gerührt. Die Abluft wurde durch eine Waschflasche, die mit 150 ml Wasser gefüllt ist, abgeleitet. 150 ml of buffer with about 3 drops of autoclaved antifoam (Delamex) were placed in a 300 ml fermenter. The fermenter was filled with a gas mixture from a gas bottle of 5 bar initial pressure of 25% iso-butane and 75% synthetic air via a Metallsinterperlator with a pore size of 0.2 μηι gassed at a flow rate of 12.5Nl / h. The fermenter was heated to 35 ° C. in a water bath and stirred at 900 rpm using a magnetic stirrer. The exhaust air was discharged through a wash bottle filled with 150 ml of water.
Der Fermenter wurde über ein Probenahmerohr mit 30 ml eines in a) hergestellten und in Puffer resuspendierten Pellets angeimpft. Die Reaktion wurde mit dem Start eines Glucosefeedes (oder bei Iso auch Glucosebatch oder Vorlage + Feed....) von 1 ,5 g/lh begonnen. Nach 4,5 Stunden wurde eine Konzentration von Isobuttersäure von > 350mg/l erreicht (3,97mmol/kg). The fermenter was inoculated via a sampling tube with 30 ml of a pellet prepared in a) and resuspended in buffer. The reaction was started with the start of a Glucosefeedes (or iso also glucose batch or template + feed ....) of 1, 5 g / lh. After 4.5 hours, a concentration of isobutyric acid of> 350 mg / l was achieved (3.97 mmol / kg).
Der pH wurde mit 1 M H2S04 auf 5,4 eingestellt und die Begasung auf Druckluft mit einer Flußrate von 12,5NI/h umgestellt, die Temperatur auf 30 Grad gesenkt, (alternativ): The pH was adjusted to 5.4 with 1 MH 2 S0 4 and the gassing was changed to compressed air at a flow rate of 12.5 NI / h, the temperature lowered to 30 degrees, (alternatively):
• Aus den Fermentern wurden jeweils 50 ml Transferpufferpuffer mit Kanüle und Spritze steril entnommen zum Resuspendieren der Va/row/akulturen (siehe Stufe 2a) • 50 ml transfer buffer buffers with cannula and syringe were taken sterile from the fermenters to resuspend the vaccines / cultures (see step 2a)
• die Kultur steril abgeerntet und die Biomasse mittels Zentrifugation bei 8000rpm mit 500ml in 1000ml Zentrifugenbechern abgetrennt, und der Überstand bis zur Transformation mit den Ya/row/'akulturen bei -20°C aufbewahrt. • The culture was harvested sterile and the biomass separated by centrifugation at 8000rpm with 500ml in 1000ml centrifuge beakers, and the supernatant stored at -20 ° C until transformation with the Ya / row / ' cultures.
Stufe 2 Level 2
Produktion von 3-Hvdroxyisobuttersäure aus Isobuttersäure aus Stufe 1 durch gentechnisch veränderte Y. lipolvtica H222 A3HIBDH (ura)-8 im Vergleich zum Wldtyp Y. lipolytica H222. a) Produktion von Biomasse im Schüttelkolbenmaßstab (oder wahlweise auch im Fermenter) Kryokulturen von Y. lipolytica H222 Ä3HIBDH (ura)-8 und Y. lipolytica H222 wurden auf YPD- Agarplatten pro Liter hergestellt aus Hefeextrakt 10g, Pepton 20g, Agar-Agar 12g autoklaviert und mit separat autoklavierter Glucose 10g komplementiert, ausgestrichen und für 24h bei 28°C inkubiert. Von den Platten wurden je Stamm jeweils 2 1000 ml-Schüttelkolben mit Schikanen gefüllt mit 100 I YPD-Medium (obiges Medium ohne Agar-Agar, mit je 3 Tropfen Antischaum Delamex) mit je 2 vollen Impfösen angeimpft und für 20h bei 30°C mit 180rpm (Amplitude 2,5cm) inkubiert (Restglucose Og/I, OD >20). Die Kulturen wurden dann steril in 50ml Falcons abgefüllt und bei 5000rpm abzentrifugiert. Die Pellets wurden 4x mit 0,9% Saline gewaschen. Danach wurden je 2 Pellets eines Stammes in 50 ml Trafopuffer (aus Stufe 1 b) -frisch oder aufgetaut resuspendiert und vereinigt. b) Biotransformation von Isobuttersäure zu 3-Hydroxyisobuttersäure Production of 3-hydroxyisobutyric acid from isobutyric acid from stage 1 by genetically engineered Y. lipolvtica H222 A3HIBDH (ura) -8 compared to the Wldtype Y. lipolytica H222. a) Production of biomass on shake flask scale (or optionally also in the fermenter) Cryocultures of Y. lipolytica H222 Ä3HIBDH (ura) -8 and Y. lipolytica H222 were prepared on YPD agar plates per liter from yeast extract 10g, peptone 20g, agar-agar 12g autoclaved and complemented with separately autoclaved glucose 10 g, streaked and incubated for 24 h at 28 ° C. 2 1000 ml shake flasks filled with baffles were each inoculated from the plates with 100 l of YPD medium (above medium without agar-agar, with 3 drops of Delamex antifoam) each with 2 full inoculation loops and incubated at 30 ° C. for 20 h 180rpm (amplitude 2.5cm) incubated (residual glucose Og / I, OD> 20). The cultures were then sterile-filled in 50 ml Falcons and spun down at 5000 rpm. The pellets were washed 4x with 0.9% saline. Then 2 pellets each of a strain were resuspended in 50 ml of Trafopuffer (from stage 1b) fresh or thawed and combined. b) Biotransformation of isobutyric acid to 3-hydroxyisobutyric acid
Je ein mal 50ml der resuspendierten Pellets von Y. lipolytica H222 Ä3HIBDH (ura)-8 und Y. lipolytica H222 wurden in einem 300ml Fermenter mit dem Trafopuffer aus Stufe 1b) inokuliert und für 24h bei pH 5,4, 30°C und 900rpm gerührt und mit 1 ,2vvm Druckluft begast. Once 50 ml of the resuspended pellets of Y. lipolytica H222 Ä3HIBDH (ura) -8 and Y. lipolytica H222 were inoculated in a 300 ml fermenter with the Trafopuffer from step 1b) and for 24 h at pH 5.4, 30 ° C and 900rpm stirred and fumigated with 1, 2vvm compressed air.
Nach 24 Stunden konnte im Überstand beim Wildtyp Y. lipolytica H222 keine Isobuttersäure und keine 3-Hyrdoxyisobuttersäure nachgewiesen werden. Bei Y. lipolytica H222 Ä3HIBDH (ura)-8 konnte nach 24h im Überstand keine Isobuttersäure mehr nachgewiesen werden. An 3- Hydroxyisobuttersäure wurden entsprechend den am Ende von Stufe 1b) gemessenen Isobuttersäurewerten von > 3,97 mmol Konzentrationen von >413mg/l. After 24 hours, no isobutyric acid and no 3-hydroxybutyric acid were detected in the supernatant in the wild-type Y. lipolytica H222. In Y. lipolytica H222 Ä3HIBDH (ura) -8 no more isobutyric acid could be detected in the supernatant after 24 h. 3-Hydroxyisobutyric acid corresponding to the isobutyric acid values of> 3.97 mmol measured at the end of step 1b) had concentrations of> 413 mg / l.
Literaturstellen: References:
A. Cornish-Bowden (1995), Fundamentals of Enzym Kinetics, Portland Press Limited, 1995 DE 60216245 (2007): FUNCTIONAL DISPLAY OF POLYPEPTIDES A. Cornish-Bowden (1995), Fundamentals of Enzyme Kinetics, Portland Press Limited, 1995 DE 60216245 (2007): FUNCTIONAL DISPLAY OF POLYPEPTIDES
DE10200710060705 (2007): ω-Aminocarbonsäuren oder ihre Lactame, herstellende, rekombinante Zellen Sambrook/Fritsch/Maniatis (1989): Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2nd edition DE10200710060705 (2007): ω-aminocarboxylic acids or their lactams, producing, recombinant cells Sambrook / Fritsch / Maniatis (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2 nd edition
William Bauer, Jr. "Methacrylic Acid and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wley-VCH, Weinheim William Bauer, Jr. "Methacrylic Acid and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wley-VCH, Weinheim
Hasegawa et al. (1981), J. Ferment. Technol. 59, pp 203-208 Hasegawa et al. (1981) J. Ferment. Technol. 59, pp 203-208
Hasegawa (1981 b), Agric. Biol. Chem. 45, pp 2899-2901. Hasegawa et al. (1982), J. Ferment. Technol. 60, pp 501 -508 Hasegawa (1981b), Agric. Biol. Chem. 45, pp 2899-2901. Hasegawa et al. (1982) J. Ferment. Technol. 60, pp 501-508
WO 2007/141208: MICROBIOLOGICAL PRODUCTION OF 3-HYDROXYISOBUTYRIC ACID WO 2007/141208: MICROBIOLOGICAL PRODUCTION OF 3-HYDROXYISOBUTYRIC ACID
WO 2008/119738: ENZYME FOR THE PRODUCTION OF METHYLMALONYL COENZYME A OR ETHYLMALONYL COENZYME A, AND USE THEREOF WO 2008/119738 ENZYME FOR THE PRODUCTION OF METHYLMALONYL COENZYME A OR ETHYLMALONYL COENZYME A, AND USE THEREOF
Patel RN et al. (1983), Journal of Applied Biochemistry 5 (1 - 2), 107 - 120) Patel RN et al. (1983), Journal of Applied Biochemistry 5 (1-2), 107-120)
Barth G and Gaillardin C (1996) Yarrowia lipolytica. In: Wolf, K. (eds) Nonconventional yeasts in biotechnology. Springer, Berlin Heidelberg New York, pp 313-388 Barth G and Gaillard C (1996) Yarrowia lipolytica. In: Wolf, K. (eds) Nonconventional yeasts in biotechnology. Springer, Berlin Heidelberg New York, pp 313-388
Van Beilen et al. (2002): Functional Analysis of Alkane Hydroxylases from Gram-Negative and Gram-Positive Bacteria", Journal of Bacteriology, 2002, 184 (6), pp. 1733-1742). Fersht A R and Winter G (2008): Redesigning Enzymes by Site-Directed Mutagenesis, Ciba Foundation Symposium 1 11 - Enzymes in Organic Synthesis Van Beilen et al. (2002): Functional Analysis of Alkane Hydroxylases from Gram-Negative and Gram-Positive Bacteria ", Journal of Bacteriology, 2002, 184 (6), pp. 1733-1742.) Fersht AR and Winter G (2008): Redesigning Enzymes by Site-Directed Mutagenesis, Ciba Foundation Symposium 1 11 - Enzymes in Organic Synthesis
Fuchs/Schlegel (2007) Allgemeine Mikrobiologie, 2008, Georg Thieme Verlag William Bauer, Jr. "Methacrylic Acid and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wley-VCH, Weinheim Fuchs / Schlegel (2007) General Microbiology, 2008, Georg Thieme Verlag William Bauer, Jr. "Methacrylic Acid and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wley-VCH, Weinheim

Claims

Ansprüche claims
Verfahren umfassend die folgenden Schritte: a) Bereitstellen von Isobuttersäure, b) Kontaktieren von Isobuttersäure mit der Kombination aus Isobutyrat-Kinase und Phosphotransisobutyrylase und/oder Isobutyryl-Coenzym A-Synthetase/Ligase und/oder Isobutyrat-Coenzym A-Transferase, c) Kontaktieren des Produktes aus Schritt b) mit Isobutyryl-Coenzym A-Dehydrogenase, d) Kontaktieren des Produktes aus Schritt c) mit Methacrylyl-Coenzym A-Hydratase, und e) Hydrolyse des Produktes aus Schritt d) unter Bildung von 3-Hydroxyisobuttersäure, wobei wenigstens eines der in den Schritten b), c) und d) verwendeten Enzyme aus der Gruppe umfassend Isobutyrat-Kinase, Phosphotransisobutyrylase, Isobutyryl-Coenzym A- Synthetase/Ligase und Isobutyrat-Coenzym A-Transferase, bevorzugt alle, in Form einer Zelle bereitgestellt wird, die eine ihrem Wildtyp gegenüber verringerte Aktivität einer 3- Hydroxyisobuttersäure-Dehydrogenase oder einer Variante davon aufweist. A process comprising the following steps: a) providing isobutyric acid, b) contacting isobutyric acid with the combination of isobutyrate kinase and phosphotransisobutyrylase and / or isobutyryl-coenzyme A synthetase / ligase and / or isobutyrate-coenzyme A transferase, c) contacting the product from step b) with isobutyryl-coenzyme A dehydrogenase, d) contacting the product from step c) with methacrylyl-coenzyme A hydrate, and e) hydrolysing the product from step d) to give 3-hydroxyisobutyric acid, wherein at least one of the enzymes used in steps b), c) and d) from the group comprising isobutyrate kinase, phosphotransisobutyrylase, isobutyryl-coenzyme A synthetase / ligase and isobutyrate-coenzyme A transferase, preferably all, is provided in the form of a cell having a reduced activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof compared to its wild-type.
Verfahren nach Anspruch 1 , wobei die Isobuttersäure durch Kontaktieren von Isobutan mit einer Monooxygenase, bevorzugt einer Alkanhydroxylase, noch bevorzugter einer des AlkBGT-Typs oder einer Variante davon, gebildet wird. The process of claim 1 wherein the isobutyric acid is formed by contacting isobutane with a monooxygenase, preferably an alkane hydroxylase, more preferably one of the AlkBGT type or a variant thereof.
3. Verfahren nach einem der Ansprüche 1 bis 2, wobei die Hydrolyse in Schritt d) durch Kontaktieren des Produktes aus Schritt d) mit einer 3-Hydroxisobutyryl-Coenzym A- Hydrolase erreicht wird. 3. The method according to any one of claims 1 to 2, wherein the hydrolysis in step d) by contacting the product of step d) with a 3-Hydroxisobutyryl-coenzyme A hydrolase is achieved.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Zelle sowohl die Isobutyryl- Coenzym A-Dehydrogenase in Schritt c) als auch die MethacrylyI-Coenzym A-Hydratase in Schritt d) als auch die Kombination aus Isobutyrat-Kinase und Phosphotransisobutyrylase und/oder 4. The method according to any one of claims 1 to 3, wherein the cell both the isobutyryl-coenzyme A dehydrogenase in step c) and the MethacrylyI coenzyme A hydrate in step d) and the combination of isobutyrate kinase and phosphotransisobutyrylase and /or
Isobutyryl-Coenzym A-Synthetase/Ligase und/oder Isobutyrat-Coenzym A-Transferase, aufweist. Isobutyryl-coenzyme A synthetase / ligase and / or isobutyrate-coenzyme A-transferase.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Zelle zusätzlich eine Alkanhydroxylase, bevorzugt eine des AlkBGT-Typs oder eine Variante davon, aufweist. 5. The method according to any one of claims 1 to 4, wherein the cell additionally comprises an alkane hydroxylase, preferably one of the AlkBGT type or a variant thereof.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei es sich bei der 3- Hydroxyisobuttersäure-Dehydrogenase um XP_504911.1 oder eine Variante davon handelt. 6. The method according to any one of claims 1 to 5, wherein it is 3-hydroxyisobutyric acid dehydrogenase to XP_504911.1 or a variant thereof.
7. Zelle, die wenigstens ein Enzym aus der Gruppe umfassend Isobutyryl-Coenzym A- Synthetase/Ligase, Isobutyrat-Coenzym A-Transferase, Isobutyrat-Kinase,7. cell comprising at least one enzyme from the group comprising isobutyryl-coenzyme A synthetase / ligase, isobutyrate-coenzyme A transferase, isobutyrate kinase,
Phosphotransisobutyrylase, Isobutyryl-Coenzym A-Dehydrogenase-, und MethacrylyI- Coenzym A-Hydratase und eine gegenüber ihrem Wildtyp verringerte Aktivität einer 3- Hydroxyisobuttersäure-Dehydrogenase oder einer Variante davon aufweist. 8. Zelle nach Anspruch 7, wobei die Zelle zusätzlich zu einer Isobutyryl-Coenzym A- Dehydrogenase und zusätzlich zu einer MethacrylyI-Coenzym A-Hydratase die Kombination aus Isobutyrat-Kinase und Phosphotransisobutyrylase und/oder Isobutyryl-Coenzym A-Synthetase/Ligase und/oder Isobutyrat-Coenzym A-Transferase, bevorzugt darüber hinaus eine 3-Hydroxisobutyryl-Coenzym A-Hydrolase, aufweist. Phosphotransisobutyrylase, isobutyryl-coenzyme A dehydrogenase, and MethacrylyI coenzyme A hydratase and a reduced compared to their wild type activity of a 3-hydroxyisobutyric acid dehydrogenase or a variant thereof. The cell of claim 7, wherein the cell comprises, in addition to an isobutyryl-coenzyme A dehydrogenase and in addition to a methacrylyl coenzyme A hydratase, the combination of isobutyrate kinase and phosphotransisobutyrylase and / or Isobutyryl-coenzyme A synthetase / ligase and / or isobutyrate-coenzyme A-transferase, preferably furthermore a 3-hydroxysobutyryl-coenzyme A-hydrolase.
9. Zelle nach einem der Ansprüche 7 bis 8, weiter umfassend eine Alkanhydroxylase, bevorzugt eine des AlkBGT-Typs oder eine Variante davon. A cell according to any one of claims 7 to 8, further comprising an alkane hydroxylase, preferably one of the AlkBGT type or a variant thereof.
10. Zelle nach einem der Ansprüche 6 bis 8, wobei es sich bei der 3-Hydroxyisobuttersäure- Dehydrogenase um XP_50491 1.1 oder eine Variante davon handelt. 10. A cell according to any one of claims 6 to 8, wherein it is in the 3-hydroxyisobutyric acid dehydrogenase to XP_50491 1.1 or a variant thereof.
1 1. Verwendung der Zelle nach einem der Ansprüche 7 bis 10 zur Herstellung von 3- Hydroxyisobuttersäure. 1 1. Use of the cell according to any one of claims 7 to 10 for the preparation of 3-hydroxyisobutyric acid.
12. Verwendung nach Anspruch 1 1 , wobei es sich bei der 3-Hydroxyisobuttersäure- Dehydrogenase um XP_50491 1.1 oder eine Variante davon handelt. 13. Verfahren nach einem der Ansprüche 1 bis 6, Zelle nach einem der Ansprüche 7 bis 10 oder Verwendung nach einem der Ansprüche 11 bis 12, wobei es sich bei der Zelle um eine bakterielle oder niedere eukaryontische Zelle handelt. 12. Use according to claim 1 1, wherein it is in the 3-hydroxyisobutyric acid dehydrogenase to XP_50491 1.1 or a variant thereof. 13. The method according to any one of claims 1 to 6, cell according to any one of claims 7 to 10 or use according to any one of claims 11 to 12, wherein the cell is a bacterial or lower eukaryotic cell.
14. Verfahren nach einem der Ansprüche 1 bis 5 oder 13, Zelle nach einem der Ansprüche 7 bis 10 oder 13 oder Verwendung nach einem der Ansprüche 11 bis 13, wobei es sich um eine Hefezelle aus der Gruppe von Gattungen handelt, die Yarrowia, Candida, Saccharomyces, Schizosaccharomyces und Pichia umfasst und es sich bevorzugt um Yarrowia lipolytica handelt. 15. Reaktionsmischung umfassend die Zelle nach einem der Ansprüche 7 bis 10 oder 13 bis 14 sowie Isobutan oder Isobuttersäure. 14. The method according to any one of claims 1 to 5 or 13, cell according to any one of claims 7 to 10 or 13 or use according to one of claims 11 to 13, which is a yeast cell from the group of genera, the Yarrowia, Candida , Saccharomyces, Schizosaccharomyces and Pichia, and is preferably Yarrowia lipolytica. 15. A reaction mixture comprising the cell according to any one of claims 7 to 10 or 13 to 14 and isobutane or isobutyric acid.
EP12784273.0A 2011-12-05 2012-11-14 Biotechnological production of 3-hydroxyisobutyric acid Withdrawn EP2788494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12784273.0A EP2788494A1 (en) 2011-12-05 2012-11-14 Biotechnological production of 3-hydroxyisobutyric acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11191923.9A EP2602329A1 (en) 2011-12-05 2011-12-05 Biotechnological production of 3-hydroxyisobutyric acid
EP12784273.0A EP2788494A1 (en) 2011-12-05 2012-11-14 Biotechnological production of 3-hydroxyisobutyric acid
PCT/EP2012/072594 WO2013083374A1 (en) 2011-12-05 2012-11-14 Biotechnological production of 3-hydroxyisobutyric acid

Publications (1)

Publication Number Publication Date
EP2788494A1 true EP2788494A1 (en) 2014-10-15

Family

ID=47172641

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11191923.9A Withdrawn EP2602329A1 (en) 2011-12-05 2011-12-05 Biotechnological production of 3-hydroxyisobutyric acid
EP12784273.0A Withdrawn EP2788494A1 (en) 2011-12-05 2012-11-14 Biotechnological production of 3-hydroxyisobutyric acid

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11191923.9A Withdrawn EP2602329A1 (en) 2011-12-05 2011-12-05 Biotechnological production of 3-hydroxyisobutyric acid

Country Status (10)

Country Link
US (1) US20150218600A1 (en)
EP (2) EP2602329A1 (en)
KR (1) KR20140101890A (en)
CN (1) CN103958691A (en)
BR (1) BR112014013474A2 (en)
CA (1) CA2857986A1 (en)
PH (1) PH12014501161A1 (en)
RU (1) RU2014127326A (en)
SG (2) SG11201402979PA (en)
WO (1) WO2013083374A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602328A1 (en) * 2011-12-05 2013-06-12 Evonik Industries AG Method of Oxidation of alkanes employing an AlkB alkane 1-monooxygenase
EP2607479A1 (en) 2011-12-22 2013-06-26 Evonik Industries AG Biotechnological production of alcohols and derivatives thereof
EP2631298A1 (en) 2012-02-22 2013-08-28 Evonik Industries AG Biotechnological method for producing butanol and butyric acid
EP2647696A1 (en) 2012-04-02 2013-10-09 Evonik Degussa GmbH Method for aerobic production of alanine or a compound arising using alanine
DE102012207921A1 (en) * 2012-05-11 2013-11-14 Evonik Industries Ag Multi-stage synthesis process with synthesis gas
EP2746400A1 (en) 2012-12-21 2014-06-25 Evonik Industries AG Preparation of amines and diamines from a carboxylic acid or dicarboxylic acid or a monoester thereof
EP2759598A1 (en) 2013-01-24 2014-07-30 Evonik Industries AG Process for preparing alpha, omega alkanediols
EP2944696A1 (en) 2014-05-13 2015-11-18 Evonik Degussa GmbH Method of producing organic compounds
EP2944697A1 (en) 2014-05-13 2015-11-18 Evonik Degussa GmbH Method of producing nylon
CA2937594A1 (en) 2015-02-26 2016-08-26 Evonik Degussa Gmbh Alkene production
EP3390622B1 (en) 2015-12-17 2020-05-13 Evonik Operations GmbH A genetically modified acetogenic cell
US11124813B2 (en) 2016-07-27 2021-09-21 Evonik Operations Gmbh N-acetyl homoserine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60216245T2 (en) 2001-03-02 2007-06-21 Universität des Saarlandes Wissens- und Technologietransfer GmbH FUNCTIONAL SURFACE DISPLAY OF POLYPEPTIDES
DE102004005280B4 (en) * 2004-01-29 2007-02-22 Rotop Pharmaka Gmbh Process and pharmaceutical kit for the preparation of rhenium-188 labeled microspheres
DE102006025821A1 (en) 2006-06-02 2007-12-06 Degussa Gmbh An enzyme for the production of Mehylmalonatsemialdehyd or Malonatsemialdehyd
DE102007015583A1 (en) 2007-03-29 2008-10-02 Albert-Ludwigs-Universität Freiburg An enzyme for the production of methylmalonyl-coenzyme A or ethylmalonyl-coenzyme A and its use
CN101679187B (en) * 2007-06-01 2013-06-05 赢创罗姆有限责任公司 A process for preparing methacrylic acid or methacrylic esters
DE102007060705A1 (en) 2007-12-17 2009-06-18 Evonik Degussa Gmbh ω-aminocarboxylic acids or their lactams, producing, recombinant cells
CA2868113A1 (en) * 2011-03-22 2012-09-27 Opx Biotechnologies, Inc. Microbial production of chemical products and related compositions, methods and systems

Also Published As

Publication number Publication date
SG10201604562PA (en) 2016-07-28
US20150218600A1 (en) 2015-08-06
CA2857986A1 (en) 2013-06-13
WO2013083374A1 (en) 2013-06-13
CN103958691A (en) 2014-07-30
KR20140101890A (en) 2014-08-20
SG11201402979PA (en) 2014-11-27
BR112014013474A2 (en) 2019-09-24
PH12014501161A1 (en) 2014-08-11
EP2602329A1 (en) 2013-06-12
RU2014127326A (en) 2016-02-10

Similar Documents

Publication Publication Date Title
EP2788494A1 (en) Biotechnological production of 3-hydroxyisobutyric acid
EP2788493B1 (en) Use of an alkb alkane 1-monooxygenase for the oxidation of propane and butane
DE69832624T2 (en) HEFESTAMMS FOR THE PREPARATION OF MILKY ACID
EP2794898B1 (en) Method for improved separation of a hydrophobic organic solution from an aqueous culture medium
EP2041264A2 (en) Production of d-lactic acid with yeast
EP2948555B1 (en) Process for preparing alpha, omega alkanediols
WO2006061137A1 (en) Gdh mutant having improved chemical stability
KR101642583B1 (en) Method for the production of 13-hydroxylinoleic acid by lipoxygenase from Burkholderia thailandensis and composition therefor
EP2410047A1 (en) Oxidoreductase and its use for the reduction of secodione derivatives
DE69920568T2 (en) Process for the preparation of optically active 4-halo-3-hydroxybutyric acid ester
EP1437401B1 (en) Oxidoreductase
JP2008035732A (en) Method for producing organic acid
DE102007059248A1 (en) Recombinant cell capable of converting bicarbonate to organic compounds utilizes a 16-step metabolic pathway starting with acetyl coenzyme A
JP2007082490A (en) Production method by extraction/fermentation of organic acid and organic acid-producing yeast used for the production method
EP1323827A2 (en) Method for producing optically active 2-hydroxycycloalkanecarboxylic acid ester
DE69920470T2 (en) NOVEL GENE AND TRANSFORMANT, WHICH INCLUDES THIS
EP3591043A1 (en) A long-chain dibasic acid with low content of fatty acid impurity and a method of producing the same
DE60303644T2 (en) Process for the preparation of 3-hydroxycyclohexanone
WO2014198871A2 (en) Method for biocatalytic synthesis of substituted or unsubstituted phenylacetic acids and ketones having enzymes of microbial styrene degradation
DE102013104418A1 (en) Biocatalytic process for the preparation of (R) -3-quinuclidinol
DE102007051452A1 (en) Microbial reaction system, useful for the fermentative preparation of alpha-ketoglutaric acid, comprises recombinant microorganism and reaction medium, where an inactivation of the glutamate dehydrogenase is present in the microorganism
JP2013172682A (en) Mutation-type reductase and utilization thereof
DE102007051451A1 (en) Microbial reaction system, useful for the fermentative preparation of alpha-ketoglutaric acid, comprises recombinant microorganism and reaction medium, where an inactivation of the glutamate dehydrogenase is present in the microorganism
DE102011006459A1 (en) Preparing an aryl aldehyde/ketone from a cyclic aryl epoxide, useful e.g. as a flavoring agent, where process takes place in a cell-free reaction mixture comprising styrene-oxide isomerase in an aqueous solution and the aryl epoxide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160624

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161105