EP2786002A1 - Method for operating an internal combustion engine, and control unit set up for carrying out the method - Google Patents
Method for operating an internal combustion engine, and control unit set up for carrying out the methodInfo
- Publication number
- EP2786002A1 EP2786002A1 EP12795389.1A EP12795389A EP2786002A1 EP 2786002 A1 EP2786002 A1 EP 2786002A1 EP 12795389 A EP12795389 A EP 12795389A EP 2786002 A1 EP2786002 A1 EP 2786002A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- time
- lambda
- probe
- value
- setpoint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 35
- 239000000523 sample Substances 0.000 claims abstract description 79
- 230000003197 catalytic effect Effects 0.000 claims abstract description 11
- 230000000737 periodic effect Effects 0.000 claims abstract description 3
- 230000004044 response Effects 0.000 claims description 18
- 230000035484 reaction time Effects 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- 239000003054 catalyst Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 20
- 239000007789 gas Substances 0.000 description 16
- 239000000446 fuel Substances 0.000 description 11
- 230000010355 oscillation Effects 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- -1 hydrocarbons HC Chemical class 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/101—Three-way catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1477—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
- F02D41/1482—Integrator, i.e. variable slope
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1477—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
- F02D41/1483—Proportional component
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1486—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
- F02D41/1488—Inhibiting the regulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1493—Details
- F02D41/1495—Detection of abnormalities in the air/fuel ratio feedback system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2474—Characteristics of sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1422—Variable gain or coefficients
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1431—Controller structures or design the system including an input-output delay
Definitions
- the invention relates to a method for operating an internal combustion engine, wherein an exhaust gas generated by the internal combustion engine is guided over a arranged in an exhaust passage 3-way catalyst.
- FIG. 1 shows schematically the structure of an internal combustion engine 10 with a downstream exhaust system.
- the internal combustion engine 10 may be a spark ignition engine (gasoline engine). With regard to their fuel supply, they can have a direct injection fuel supply, so working with internal mixture formation, or have a pilot fuel injection and thus work with external mixture formation.
- the internal combustion engine 10 can be operated homogeneously, wherein in the entire combustion chamber of a cylinder, there is a homogeneous air-fuel mixture at the ignition point, or in an inhomogeneous mode (stratified charge mode), in which at the time of ignition a comparatively rich air-fuel mixture, especially in the area of a spark plug, is present, which is surrounded by a very lean mixture in the remaining combustion chamber.
- the internal combustion engine 10 with a substantially stoichiometric air-fuel mixture can be operated, that is, with a mixture with a lambda value close to or equal to 1.
- various parameters of the internal combustion engine 10, in particular the engine speed and the engine load are read from the engine control unit 28.
- a controller implemented in the engine control unit 28 thus controls the operation of the internal combustion engine 10, in particular regulating the fuel supply and the air supply such that a desired fuel mass and a desired air mass supplied to represent a desired air-fuel mixture (the exhaust target lambda).
- the air-fuel mixture is determined as a function of the operating point of the internal combustion engine 10, in particular the engine speed and the engine load from maps.
- lambda modulation takes place as shown in FIG. 6 (actual lambda value from the probe signal: rich dark curve, control variable of the controller: bold bright curve, lambda nominal value ranges: bright rectangles).
- the switching of the controller direction takes place.
- P jump P component to reach the setpoint.
- the size of the P-jump can depend on various parameters. Among others, the P-jump may be dependent on a fixed desired amplitude. In a preferred embodiment, it may be determined here which portion of the specified desired amplitude is to be displayed via the P jump.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Analytical Chemistry (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011087399.6A DE102011087399B4 (en) | 2011-11-30 | 2011-11-30 | Method for operating an internal combustion engine and control unit set up for carrying out the method |
PCT/EP2012/073470 WO2013079405A1 (en) | 2011-11-30 | 2012-11-23 | Method for operating an internal combustion engine, and control unit set up for carrying out the method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2786002A1 true EP2786002A1 (en) | 2014-10-08 |
EP2786002B1 EP2786002B1 (en) | 2016-09-28 |
Family
ID=47290935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12795389.1A Active EP2786002B1 (en) | 2011-11-30 | 2012-11-23 | Method for operating a combustion engine and device for implementing the method |
Country Status (5)
Country | Link |
---|---|
US (1) | US9212584B2 (en) |
EP (1) | EP2786002B1 (en) |
CN (1) | CN103958868B (en) |
DE (1) | DE102011087399B4 (en) |
WO (1) | WO2013079405A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018007647B4 (en) * | 2018-09-27 | 2021-06-02 | Mtu Friedrichshafen Gmbh | Method for the model-based control and regulation of an internal combustion engine with an SCR catalytic converter |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3802444A1 (en) * | 1988-01-28 | 1989-08-10 | Vdo Schindling | METHOD FOR REGULATING THE FUEL-AIR RATIO OF AN INTERNAL COMBUSTION ENGINE |
DE60209723T8 (en) * | 2001-06-19 | 2007-04-05 | Honda Giken Kogyo K.K. | DEVICE, METHOD AND PROGRAMMUNICATION MEDIUM FOR CONTROLLING THE AIR-FUEL RATIO OF INTERNAL COMBUSTION ENGINES |
JP4213148B2 (en) * | 2005-08-09 | 2009-01-21 | 三菱電機株式会社 | Control device for internal combustion engine |
JP4380625B2 (en) * | 2005-11-24 | 2009-12-09 | トヨタ自動車株式会社 | Air-fuel ratio control device for internal combustion engine |
US8132400B2 (en) * | 2005-12-07 | 2012-03-13 | Ford Global Technologies, Llc | Controlled air-fuel ratio modulation during catalyst warm up based on universal exhaust gas oxygen sensor input |
JP2007231844A (en) * | 2006-03-01 | 2007-09-13 | Mitsubishi Electric Corp | Control device for internal combustion engine |
DE102006047188B4 (en) * | 2006-10-05 | 2009-09-03 | Continental Automotive Gmbh | Method and device for monitoring an exhaust gas probe |
DE102006049656B4 (en) | 2006-10-18 | 2016-02-11 | Volkswagen Ag | Lambda control with a jump lambda probe |
JP4256898B2 (en) * | 2007-04-20 | 2009-04-22 | 三菱電機株式会社 | Air-fuel ratio control device for internal combustion engine |
DE102007038478A1 (en) | 2007-08-14 | 2009-02-19 | Volkswagen Ag | Method for λ control in fuel-shortage or excess fuel areas in a Nernst probe |
JP4743443B2 (en) * | 2008-02-27 | 2011-08-10 | 株式会社デンソー | Exhaust gas purification device for internal combustion engine |
JP4877246B2 (en) * | 2008-02-28 | 2012-02-15 | トヨタ自動車株式会社 | Air-fuel ratio control device for internal combustion engine |
-
2011
- 2011-11-30 DE DE102011087399.6A patent/DE102011087399B4/en active Active
-
2012
- 2012-11-23 EP EP12795389.1A patent/EP2786002B1/en active Active
- 2012-11-23 WO PCT/EP2012/073470 patent/WO2013079405A1/en active Application Filing
- 2012-11-23 CN CN201280059333.0A patent/CN103958868B/en active Active
- 2012-11-23 US US14/361,088 patent/US9212584B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2013079405A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP2786002B1 (en) | 2016-09-28 |
CN103958868A (en) | 2014-07-30 |
US20140345256A1 (en) | 2014-11-27 |
CN103958868B (en) | 2017-06-30 |
WO2013079405A8 (en) | 2013-09-12 |
WO2013079405A1 (en) | 2013-06-06 |
DE102011087399B4 (en) | 2022-08-11 |
DE102011087399A1 (en) | 2013-06-06 |
US9212584B2 (en) | 2015-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69708594T2 (en) | Method and device for maintaining the catalytic capability of a nitrogen oxide trap | |
DE69106247T2 (en) | Method for determining the degradation of a motor vehicle catalytic converter on board. | |
DE19711295A1 (en) | System for determining deterioration in exhaust gas catalytic converter | |
DE102013202989A1 (en) | DYNAMIC CATALYST CONTROL AND REGULATION | |
DE102009028237A1 (en) | Method and device for the regeneration of a particulate filter with an exhaust gas downstream in the exhaust duct | |
DE10103772A1 (en) | Method for operating a three-way catalyst which contains an oxygen-storing component | |
DE3721572A1 (en) | Process for open-loop and closed-loop control of a catalyst | |
DE19851843B4 (en) | A process for sulfate regeneration of a NOx storage catalyst for a lean-burn engine | |
EP1718853A1 (en) | Method for determining the actual oxygen load of a 3-path catalyst of a lambda-controlled internal combustion engine | |
DE19612212A1 (en) | Air/fuel ratio regulator and diagnostic device for IC engine | |
DE102008059698A1 (en) | A method for operating a diesel engine with a nitrogen oxide storage catalyst having emission control system | |
DE102018218138B4 (en) | Exhaust aftertreatment method and exhaust aftertreatment system | |
DE102006061682A1 (en) | Lambda regulation pilot-control method for use during e.g. nitrogen oxide-storage catalyst, involves adjusting pilot controlled injection amount and/or air mass stream-reference value by transfer factor | |
DE19935968B4 (en) | Control unit for the air / fuel ratio of an engine | |
DE19844745C1 (en) | Regeneration of nitrogen oxides storage catalyst | |
EP2786002B1 (en) | Method for operating a combustion engine and device for implementing the method | |
EP2786001B1 (en) | Method and apparatus for controlling a fuel controller | |
EP2436899B1 (en) | Method for operating a combustion engine and device for implementing the method | |
DE10153901B4 (en) | Method and device for desulfurization of a diesel engine downstream NOx storage catalyst | |
DE102020202136A1 (en) | Lambda compensation with exhaust gas burner | |
EP1143131A2 (en) | Multiple exhaust gas system and method to regulate an air/fuel ratio and to control the regeneration of an NOx storage catalyst | |
DE102022204865A1 (en) | Method for monitoring and controlling an exhaust gas aftertreatment system with several catalytic converters connected in series | |
DE19923498A1 (en) | Controlling the regeneration of a nitrogen oxides storage catalyst in the exhaust gas channel of an IC engine comprises comparing the measured nitrogen oxides concentration with a set concentration after the storage catalyst | |
EP1244871B1 (en) | Device and method for controlling a rate of recirculated exhaust gas of an exhaust gas recirculation device for combustion engines during lean operation | |
EP2188511B1 (en) | Method for lambda regulation in operating areas with low fuel or excess fuel with a nernst sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140630 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HAHN, HERMANN |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502012008397 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F02D0041140000 Ipc: F01N0003100000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02D 41/14 20060101ALI20160113BHEP Ipc: F02D 41/24 20060101ALI20160113BHEP Ipc: F01N 3/10 20060101AFI20160113BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160503 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 832964 Country of ref document: AT Kind code of ref document: T Effective date: 20161015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012008397 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161229 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170128 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170130 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012008397 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20170629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161123 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 832964 Country of ref document: AT Kind code of ref document: T Effective date: 20171123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171123 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502012008397 Country of ref document: DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231121 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231123 Year of fee payment: 12 Ref country code: DE Payment date: 20231130 Year of fee payment: 12 |