EP2785267B1 - Appareil et procédé destinés à supporter un bras robotique - Google Patents
Appareil et procédé destinés à supporter un bras robotique Download PDFInfo
- Publication number
- EP2785267B1 EP2785267B1 EP11876682.3A EP11876682A EP2785267B1 EP 2785267 B1 EP2785267 B1 EP 2785267B1 EP 11876682 A EP11876682 A EP 11876682A EP 2785267 B1 EP2785267 B1 EP 2785267B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- robotic
- robotic arm
- curved support
- support
- surgical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 20
- 238000001356 surgical procedure Methods 0.000 claims description 46
- 238000002432 robotic surgery Methods 0.000 claims description 2
- 230000033001 locomotion Effects 0.000 description 35
- 230000007246 mechanism Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J18/00—Arms
- B25J18/005—Arms having a curved shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/02—Manipulators mounted on wheels or on carriages travelling along a guideway
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0084—Programme-controlled manipulators comprising a plurality of manipulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
- A61B2090/506—Supports for surgical instruments, e.g. articulated arms using a parallelogram linkage, e.g. panthograph
Definitions
- the present specification here relates in general to a field of robotic instruments, and more particularly, to a robotic system for use in surgery.
- MIS minimal invasive surgery
- US5746362A describes a method and apparatus for determining positional information about an object and then using this information to position instruments in relation to the object.
- US6264665B1 describes a system for ocular ultramicrosurgery which isolates the hands of a surgeon from the patient and provides increased positioning accuracy and speed to make practical the routine application of ultramicrosurgical operations to the eye.
- US2009041565A1 describes a mechanism which constrains the spatial location of a working or a focal point of a tool and has a manipulator and a remote centre mechanism mounted thereon.
- JP2008017903A describes an endoscope holding device composed of an arm to bring the distal end of the endoscope to the upper part of the affect region of a patient.
- WO2010068005A2 describes a bed mount surgical robot for performing a surgical procedure on a patient lying on an operating bed using a surgical instrument mounted on an end portion of a robot arm.
- JP2003079638A describes am operating robot comprising treatment instrument connected to the leading end of a manipulator
- US2008019607A1 describes methods and systems to correct for various types of ring artifacts, including circular artifacts, partial ring artifacts, elliptical artifacts and variable intensity artifacts.
- US2007156122A1 describes an apparatus including a linkage and a balancing mechanism coupled to the linkage around a pivotal joint.
- WO2011122862A2 describes a fixed four-node link in which four links are joined together in a hinged fashion.
- the member may be configured to position the curved support relative to a surface of a surgical table.
- the curved support may be further configured to support the robotic arm at a plurality of locations.
- the curved support may include a support rail disposed on the curved support.
- the curved support includes a plurality of robotic arm rails disposed on the curved support.
- the robotic arm rails are configured to slidably support the robotic arms.
- the member may include a first portion and a second portion.
- the first portion pivotally is connected to the second portion.
- the curved support may be rotatably connected to the second end of the member.
- the base unit 120 can also house various other components.
- the base unit 120 can include mechanical controls (not shown), or electrical controls (not shown), or both.
- the mechanical controls can control gears, cables or other motion transfer mechanisms (not shown) connected to a motor, or other mechanical driver such as a hydraulic system, for moving various components of the surgical apparatus 108 and/or the robotic arm 128.
- a control panel is disposed on the base 120 and configured to receive input associated with a movement of a component of the surgical apparatus 108, such as the member 124 or the robotic arm 128.
- electrical signals or electromagnetic signals can be received from an external input device (not shown) to control the movements of other components of the surgical apparatus 108.
- the member 124 is generally configured to support the curved support 126, the robotic arm 128, and their associated movements. Therefore, in the present embodiment the member 124 acts as a support connected to the base 120 at a first end and to the curved support 126 at a second end.
- the member 124 is constructed of materials that are mechanically structured to support the weight of the curved support 126, the robotic arm 128, and their associated movements.
- the member 124 can be constructed from materials such that it is rigid enough to be suspended above the patient P.
- suitable materials from which the member 124 can be constructed include steel, titanium, aluminum, plastics, composites and other materials commonly used to provide structural support.
- the curved support 126 is generally configured to support the robotic arm 128 and its associated movements.
- the curved support 126 is substantially "C-shaped" and is connected to the member 124 approximately at the center. It is to be understood that the connection point of the curved support 126 is not particularly limited.
- the curved support 126 can be connected to the member 124 at one end of the curved support in certain applications.
- the curved support 126 can be constructed of materials that are mechanically structured to support the weight of the robotic arm 128 and its associated movements. Some examples of suitable materials from which the curved support 126 is constructed include steel, titanium, aluminum, plastics, composites and other materials commonly used to provide structural support.
- the degrees of freedom of the robotic arm 128 are not particularly limited and the robotic arm 128 can have any number of degrees of freedom as well as different types of degrees of freedom.
- a degree of freedom refers to an ability to move according to a specific motion.
- a degree of freedom can include a rotation of the robotic arm 128 or a component thereof about a single axis. Therefore, for each axis of rotation, the robotic arm 128 is said to have a unique degree of freedom.
- Another example of a degree of freedom can include a translational movement along a path.
- the robotic arm 128 can include an actuator for extending and contracting a portion of the robotic arm 128 linearly. It will now be apparent that each additional degree of freedom increases the versatility of the robotic arm 128.
- the member 124 can also include various degrees of freedom. It will now be apparent that each additional degree of freedom increases the versatility of the surgical apparatus 108.
- the degrees of freedom of the robotic arm 128 fall generally into two different categories.
- One category includes non-surgical degrees of freedom.
- Non-surgical degrees of freedom refer to degrees of freedom which are adjusted prior to the surgical procedure. Once the surgical procedure has begun, the non-surgical degrees of freedom are generally not adjusted. Therefore, the purpose of the non-surgical degrees of freedom is to allow for the robotic instrument 132 to be positioned near a target area of patient P prior to surgery.
- the target area is the area where the surgical procedure is performed on the patient P.
- the other category of degrees of freedom includes surgical degrees of freedom. In contrast with non-surgical degrees of freedom, the surgical degrees of freedom are generally not adjusted prior to surgery and are intended to be adjusted during the surgical procedure to allow for the robotic instrument 132 to be moved accordingly as part of the surgical procedure.
- the robotic instrument 132 is generally configured for performing MIS and is responsive to inputs received from an input device.
- the input device is under the control of a trained medical professional performing the MIS.
- the configuration of the robotic instrument 132 is not particularly limited.
- the robotic instrument 132 generally can move in accordance with at least one degree of freedom based on the received input.
- the robotic instrument can include working members which are also not particularly limited. It is to be appreciated that the number of degrees of freedom as well as the type and number of working members of the robotic instrument can be modified to meet the needs of the type of surgical procedure to be performed.
- the robotic instrument 132 can include two working members wherein each working member corresponds to a jaw of a pair of forceps.
- the working members can be part of other surgical instruments such as scissors, blades, graspers, clip appliers, staplers, retractors, clamps or bi-polar cauterizers or combinations thereof.
- the robotic instrument 132 can also only include a single working member such as imaging equipment, for example a camera or light source, or surgical instruments such as scalpels, hooks, needles, catheters, spatulas or mono-polar cauterizers.
- the ability to position the robotic instrument 132 by adjusting the robotic arm 128 and the member 124 is advantageous because it can facilitate positioning the patient P on the surgical table 104 prior to surgery without interference from the surgical apparatus 108.
- the surgical apparatus 108 is adjusted to allow the robotic instrument 132 to reach the target area.
- the target area refers to the general area where incisions are made and the robotic instruments are inserted into the patient P.
- the surgical apparatus 108a includes a base unit 120a, a member 124a, and a curved support 126a for supporting a robotic arm 128a, which in turn supports a robotic instrument 132a.
- the base unit 120a is generally configured to support other components of the surgical apparatus 108a which includes a member 124a, and a curved support 126a.
- the base 120a is also configured to support a robotic arm 128a connected to the curved support 126a.
- the base unit 120a is mechanically structured to support the weight and movement of the member 124a, the curved support 126a and the robotic arm 128a.
- the base unit 120a has a mass such that the base unit 120a can support the member 124a, the curved support 126a and the robotic arm 128a.
- the means for supporting the robotic arm 128a is not particularly limited and can include bolting the robotic arm to various positions, magnetically (or electromagnetically) attaching the robotic arm, or attaching the robotic arm using a pin locking mechanism.
- the curved support 126a can be modified to be a curved robotic arm holder that uses a clamping system to hold the robotic arm 128a.
- the curved support 126a is generally positioned for a surgical procedure such that each robotic arm mount of the plurality of robotic arm mounts 164a is substantially equidistant from a target area 160a where incisions are made for the robotic instruments 132a to be inserted.
- FIG. 4 another embodiment of a curved structure 126b is shown.
- Like components of the curved structure 126b bear like reference to their counterparts in the curved structure 126a, except followed by the suffix "b".
- the curved support 126b is generally configured to support a robotic arm (not shown in Figure 4 ) and its associated movements.
- FIG. 6 and 7 another embodiment of a curved structure 126c is shown. Like components of the curved structure 126c bear like reference to their counterparts in the curved structure 126a, except followed by the suffix "c".
- the curved support 126c is generally configured to support a robotic arm and its associated movements.
- the robotic arm rail 172c extends substantially along the entire length of the curved support 126c. In other embodiments, the robotic arm rail 172c can only extend for a portion of the length of the curved support 126c. Alternatively, the robotic arm rail 172c can also extend beyond the length of the curved support 126c in some embodiments to provide a larger range of motion. In other embodiments still, the curved support 126c can be modified to use another mechanism to provide a slidable motion.
- other mechanisms can include the use of slots or tracks which allow for a sliding motion.
- the surgical apparatus 108d includes a base unit 120d, a member 124d, and a curved support 126d for supporting a plurality of robotic arms 128d, 129d, 130d and 131d.
- the robotic arms 128d, 129d, 130d and 131d further support a plurality of robotic instruments 132d, 133d, 134d, and 135d, respectively.
- the robotic instruments 132d, 133d, 134d, and 135d generally have different structures which include different types of surgical instruments. Therefore, it is to be appreciated that the plurality of arms allows for different tools to be used in a surgical procedure.
- the robotic arms 128d, 129d, 130d and 131d can be interchanged with each other. Therefore, for surgical procedures which contemplate placement of the robotic arms 128d, 129d, 130d and 131d in different positions, the change can be made prior to the surgical procedure. Furthermore, it is to be appreciated that when the curved support 126d is designed such that each robotic arm mount of the curved support 126d is substantially equidistant from a target area, the interchanging of robotic arms 128d, 129d, 130d and 131d is facilitated since the length of each of the robotic arms 128d, 129d, 130d and 131d would be similar.
- the design of the curved support 126d allows for the lengths of the robotic arms 128d, 129d, 130d and 131d to be decreased when compared with using a straight robotic arm support. Therefore, the physical footprint and volume of space occupied by the surgical apparatus will be decreased since the robotic arms would have to extend further to reach the target area. It is to be understood that this is particularly advantageous in an operating theater where space is often limited due to the large amount of equipment used in a surgical procedure.
- the curved support 126e is generally configured to support a plurality of robotic arms 128e, 129e, 130e and 131e and their associated movements.
- the curved support 126e includes a plurality of robotic arm rails 172e, 173e, 174e, and 175e which are slidably connected to the robotic arms 128e, 129e, 130e and 131e, respectively.
- the robotic arm rails 172e, 173e, 174e, and 175e are configured to allow the robotic arms 128e, 129e, 130e and 131e, respectively, to slide independently relative to the curved support 126e. Therefore, an additional non-surgical degree of freedom will be provided for each robotic arm. Therefore, since the robotic arm arms 128e, 129e, 130e and 131e provide a non-surgical degree of freedom, locking mechanisms are also generally included to prevent movement during the surgical procedure.
- each of the robotic arms 128e, 129e, 130e and 131e is connected to a separate track, the robotic arms 128e, 129e, 130e and 131e interchange positions by simply sliding past each other if space permits.
- FIG. 11 another embodiment of a plurality of robotic arms 128f, 129f, 130f and 131f is shown. Like components bear like reference to their counterparts, except followed by the suffix "f".
- the plurality of robotic arms 128f, 129f, 130f and 131f are generally configured allow for an addition non-surgical degree of freedom using off-axis apparatus 180f, 181f, 182f, and 183f.
- the off-axis apparatus 180f, 181f, 182f, and 183f provides extension members 188f, 189f, 190f, and 191f, respectively, which rotate about axes 196f, 197f, 198f, and 199f. It is to be understood that the rotation about the axes 196f, 197f, 198f, and 199f allows the robotic arms 128f, 129f, 130f and 131f to be staggered relative to the curved support 126f.
- the member 124g is generally configured to support the curved support 126g, the robotic arm 128g and their associated movements.
- the member 124g is connected to the base 120g at a first end and to the curved support 126g at a second end.
- the member 124g of the present embodiment differs from the member 124a of a previous embodiment by including four-bar linkages.
- a first bar 250g and a second bar 254g are pivotally connected to a first connector 264g and a second connector 268g of the member 124g to form a first four-bar linkage.
- the curved support 126d of the surgical apparatus 108d can be modified with teachings of the curved support 126c having a single robotic arm rail 172c. It is to be appreciated that in this embodiment, the robotic arms 128d, 129d, 130d and 131d would no longer be able to interchange positions by sliding past each other since the robotic arms 128d, 129d, 130d and 131d would then share the same track.
- the non-surgical positioning of the robotic arms 128d, 129d, 130d and 131d as well as the member 124d and curved support 126d can be calculated and stored using a simulation program prior to a surgical procedure.
- the simulation program can use patient specific data such as Magnetic Resonance Imaging (MRI), CT Scan and/or X-ray results to calculate a pre-configured position. It is to be appreciated that by using pre-configured positions determined outside of an operating theater, valuable time spent in the operating theater can be saved.
- MRI Magnetic Resonance Imaging
- CT Scan CT Scan
- X-ray results to calculate a pre-configured position.
- the method 500 will be discussed primarily in connection with the surgical apparatus 108 shown in Figure 1 . It is to be emphasized that the reference to the surgical apparatus 108 does not limit the application of the method 500 discussed below to only the surgical apparatus 108. Furthermore, the method 500 can be carried out using a processor programmed to control motors for adjusting non-surgical degrees of freedom.
- Block 510 comprises adjusting the member 124 to position the curved support 126 above the patient P.
- the manner in which the adjustment is carried out is not particularly limited.
- the member can only be rotated about the axis 136. It is to be understood that in other embodiments, the member can have more degrees of freedom to allow for further adjustments. In other embodiments still, a motor can be used to facilitate the adjustment.
- Block 530 comprises adjusting the robotic arm 128 in accordance with non-surgical adjustments such that the robotic instrument 132 is within range of a target area.
- the manner in which the adjustment is carried out is not important.
- the robotic arm 128 includes joints which can be adjusted according to a non-surgical degree of freedom and locked in place.
- motors can drive a gear, lead screw or harmonic drive to carry out the adjustment.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Robotics (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Manipulator (AREA)
- Endoscopes (AREA)
Claims (13)
- Appareil (108) pour des procédures médicales, l'appareil comprenant :une pluralité de bras robotiques (128e, 129e, 130e, 131e) ;une base (120) ;un élément (124) ayant des première et seconde extrémités, la première extrémité étant reliée à la base ; etun support incurvé (126) relié à la seconde extrémité de l'élément, le support incurvé comprenant une pluralité de rails de bras robotiques (172e, 173e, 174e, 175e), chaque rail de bras robotique étant configuré pour supporter de manière coulissante un bras respectif de la pluralité de bras robotiques de telle sorte que les bras robotiques peuvent changer de position en glissant les uns devant les autres.
- Appareil selon la revendication 1, l'élément étant configuré pour positionner le support incurvé.
- Appareil selon la revendication 2, l'élément étant articulable.
- Appareil selon la revendication 1, chaque rail incurvé étant configuré pour supporter le bras robotique respectif à une pluralité d'emplacements.
- Appareil selon la revendication 4, le support incurvé étant configuré pour être positionnable de telle sorte que chaque emplacement de la pluralité d'emplacements est sensiblement équidistant d'une zone cible.
- Appareil selon la revendication 1, un premier bras robotique de la pluralité de bras robotiques étant interchangeable avec un second bras robotique de la pluralité de bras robotiques.
- Appareil selon la revendication 1, le support incurvé comprenant un rail de support (168b) disposé sur le support incurvé et le rail de support étant relié à la seconde extrémité de l'élément de telle sorte que le support incurvé est configuré pour glisser par rapport à l'élément.
- Appareil selon la revendication 1, la première extrémité de l'élément étant reliée de manière pivotante à la base.
- Appareil selon la revendication 1, l'élément comprenant une première partie et une seconde partie, la première partie étant reliée de manière pivotante à la seconde partie.
- Appareil selon la revendication 1, le support incurvé étant relié de manière pivotante à la seconde extrémité de l'élément.
- Appareil selon la revendication 1, la première extrémité de l'élément étant reliée de manière rotative à la base.
- Appareil selon la revendication 1, le support incurvé étant relié de manière rotative à la seconde extrémité de l'élément.
- Procédé de positionnement d'un instrument robotique pour réaliser une chirurgie robotique, avant une procédure chirurgicale, le procédé comprenant :l'ajustement d'un élément (124) pour positionner un support incurvé (126) comprenant une pluralité de rails de bras robotiques (172e, 173e, 174e, 175e) configurés chacun pour supporter de manière coulissante un bras robotique respectif (128e, 129e, 130e, 131e) de telle sorte que les bras robotiques peuvent changer de position en glissant les uns devant les autres ;le positionnement d'un bras robotique à un emplacement le long d'un rail de bras robotique respectif sur le support incurvé ; etl'ajustement du bras robotique en fonction d'un réglage non chirurgical de telle sorte que l'instrument robotique se situe dans le champ d'une région cible.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161565498P | 2011-11-30 | 2011-11-30 | |
US201161570560P | 2011-12-14 | 2011-12-14 | |
PCT/CA2011/001386 WO2013078529A1 (fr) | 2011-11-30 | 2011-12-21 | Appareil et procédé destinés à supporter un bras robotique |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2785267A1 EP2785267A1 (fr) | 2014-10-08 |
EP2785267A4 EP2785267A4 (fr) | 2015-07-22 |
EP2785267B1 true EP2785267B1 (fr) | 2022-01-12 |
Family
ID=48534549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11876682.3A Active EP2785267B1 (fr) | 2011-11-30 | 2011-12-21 | Appareil et procédé destinés à supporter un bras robotique |
Country Status (3)
Country | Link |
---|---|
US (3) | US20140249546A1 (fr) |
EP (1) | EP2785267B1 (fr) |
WO (1) | WO2013078529A1 (fr) |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9107683B2 (en) | 1999-09-17 | 2015-08-18 | Intuitive Surgical Operations, Inc. | Systems and methods for cancellation of joint motion using the null-space |
US10029367B2 (en) | 1999-09-17 | 2018-07-24 | Intuitive Surgical Operations, Inc. | System and method for managing multiple null-space objectives and constraints |
US9517106B2 (en) | 1999-09-17 | 2016-12-13 | Intuitive Surgical Operations, Inc. | Systems and methods for commanded reconfiguration of a surgical manipulator using the null-space |
US9510911B2 (en) | 1999-09-17 | 2016-12-06 | Intuitive Surgical Operations, Inc. | System and methods for managing multiple null-space objectives and SLI behaviors |
US10092359B2 (en) | 2010-10-11 | 2018-10-09 | Ecole Polytechnique Federale De Lausanne | Mechanical manipulator for surgical instruments |
JP5715304B2 (ja) | 2011-07-27 | 2015-05-07 | エコール ポリテクニーク フェデラル デ ローザンヌ (イーピーエフエル) | 遠隔操作のための機械的遠隔操作装置 |
CN104334109B (zh) | 2012-06-01 | 2017-06-23 | 直观外科手术操作公司 | 用于使用零空间的外科手术操纵器的命令的重新配置的系统和方法 |
JP6262216B2 (ja) | 2012-06-01 | 2018-01-17 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法 |
CN104334110B (zh) | 2012-06-01 | 2017-10-03 | 直观外科手术操作公司 | 使用零空间回避操纵器臂与患者碰撞 |
KR20240024323A (ko) | 2012-06-01 | 2024-02-23 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 멀티포트 수술 로봇 시스템 구조 |
WO2014160086A2 (fr) | 2013-03-14 | 2014-10-02 | Board Of Regents Of The University Of Nebraska | Procédés, systèmes et dispositifs associés à des dispositifs chirurgicaux robotiques, des effecteurs finaux et des unités de commande |
CN105050526B (zh) | 2013-03-15 | 2018-06-01 | 直观外科手术操作公司 | 利用零空间以便利进入笛卡尔坐标空间的边缘的系统和方法 |
WO2014146095A1 (fr) | 2013-03-15 | 2014-09-18 | Intuitive Surgical Operations, Inc. | Système et procédés de gestion de multiples objectifs de zone morte et de comportements sli |
EP2969404B1 (fr) | 2013-03-15 | 2021-08-11 | Intuitive Surgical Operations, Inc. | Systèmes d'utilisation de l'espace nul pour accentuer un mouvement d'articulation de manipulateur de manière anisotrope |
JP2016516487A (ja) | 2013-03-15 | 2016-06-09 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | ゼロ空間運動と同時にゼロ直交空間内でのクラッチングによりマニピュレータアームを位置決めするためのシステム及び方法 |
CN105338920B (zh) | 2013-03-15 | 2018-01-26 | 直观外科手术操作公司 | 用于利用零空间跟踪路径的系统和方法 |
US9820819B2 (en) * | 2014-01-09 | 2017-11-21 | St. Jude Medical, Cardiology Division, Inc. | Suspension system for remote catheter guidance |
CN106659540B (zh) | 2014-02-03 | 2019-03-05 | 迪斯塔莫申股份公司 | 包括能互换远端器械的机械遥控操作装置 |
DE102014203921B4 (de) * | 2014-03-04 | 2017-11-09 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Führungssysteme |
KR102332119B1 (ko) | 2014-03-17 | 2021-11-29 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 원격 조종 의료 시스템에서 미리 설정된 암 위치를 가지는 자동화된 구조 |
EP3119329B1 (fr) | 2014-03-17 | 2022-07-20 | Intuitive Surgical Operations, Inc. | Installation guidée de dispositif médical commandé à distance |
EP2946759A1 (fr) * | 2014-05-19 | 2015-11-25 | The University of Dundee | Système de support d'équipement médical encastré entre sol et plafond |
EP3185808B1 (fr) | 2014-08-27 | 2022-02-23 | DistalMotion SA | Système chirurgical pour techniques de microchirurgie |
CN107205787B (zh) | 2014-12-19 | 2020-03-20 | 迪斯透莫森公司 | 用于微创手术的可再用手术器械 |
US11039820B2 (en) | 2014-12-19 | 2021-06-22 | Distalmotion Sa | Sterile interface for articulated surgical instruments |
US10864049B2 (en) | 2014-12-19 | 2020-12-15 | Distalmotion Sa | Docking system for mechanical telemanipulator |
US10864052B2 (en) | 2014-12-19 | 2020-12-15 | Distalmotion Sa | Surgical instrument with articulated end-effector |
WO2016097873A2 (fr) | 2014-12-19 | 2016-06-23 | Distalmotion Sa | Poignée articulée pour télémanipulateur mécanique |
US9974619B2 (en) * | 2015-02-11 | 2018-05-22 | Engineering Services Inc. | Surgical robot |
WO2016162752A1 (fr) | 2015-04-09 | 2016-10-13 | Distalmotion Sa | Dispositif mécanique télécommandé pour manipulation à distance |
WO2016162751A1 (fr) | 2015-04-09 | 2016-10-13 | Distalmotion Sa | Instrument manuel articulé |
WO2016164824A1 (fr) | 2015-04-09 | 2016-10-13 | Auris Surgical Robotics, Inc. | Système chirurgical doté de bras mécaniques configurables montés sur rail |
CN107645924B (zh) | 2015-04-15 | 2021-04-20 | 莫比乌斯成像公司 | 集成式医学成像与外科手术机器人系统 |
US9636184B2 (en) | 2015-05-15 | 2017-05-02 | Auris Surgical Robotics, Inc. | Swivel bed for a surgical robotics system |
EP3340897B1 (fr) | 2015-08-28 | 2024-10-09 | DistalMotion SA | Instrument chirurgical doté d'une force d'actionnement accrue |
US10695133B2 (en) | 2016-07-12 | 2020-06-30 | Mobius Imaging Llc | Multi-stage dilator and cannula system and method |
US10737400B2 (en) * | 2016-08-29 | 2020-08-11 | Gb Ii Corporation | Retractable knife for rapid manual deployment while fully grasped |
CN109862845B (zh) * | 2016-09-16 | 2022-12-30 | 莫比乌斯成像公司 | 用于在手术机器人系统中安装机器人臂的系统和方法 |
US11185455B2 (en) * | 2016-09-16 | 2021-11-30 | Verb Surgical Inc. | Table adapters for mounting robotic arms to a surgical table |
US11389360B2 (en) * | 2016-09-16 | 2022-07-19 | Verb Surgical Inc. | Linkage mechanisms for mounting robotic arms to a surgical table |
WO2018075784A1 (fr) | 2016-10-21 | 2018-04-26 | Syverson Benjamin | Procédés et systèmes pour régler des trajectoires et des emplacements cibles pour une chirurgie guidée par image |
US11751948B2 (en) | 2016-10-25 | 2023-09-12 | Mobius Imaging, Llc | Methods and systems for robot-assisted surgery |
EP3544539A4 (fr) | 2016-11-22 | 2020-08-05 | Board of Regents of the University of Nebraska | Dispositif de positionnement grossier amélioré et systèmes et procédés associés |
WO2018112199A1 (fr) | 2016-12-14 | 2018-06-21 | Virtual Incision Corporation | Dispositif de fixation libérable destiné à être accouplé à des dispositifs médicaux et systèmes et procédés associés |
WO2018112441A1 (fr) | 2016-12-15 | 2018-06-21 | Progenity Inc. | Dispositif pouvant être ingéré et procédés associés |
US10682129B2 (en) | 2017-03-23 | 2020-06-16 | Mobius Imaging, Llc | Robotic end effector with adjustable inner diameter |
US11058503B2 (en) | 2017-05-11 | 2021-07-13 | Distalmotion Sa | Translational instrument interface for surgical robot and surgical robot systems comprising the same |
US11660145B2 (en) | 2017-08-11 | 2023-05-30 | Mobius Imaging Llc | Method and apparatus for attaching a reference marker to a patient |
US11534211B2 (en) * | 2017-10-04 | 2022-12-27 | Mobius Imaging Llc | Systems and methods for performing lateral-access spine surgery |
AU2018346790B2 (en) | 2017-10-05 | 2024-09-26 | Mobius Imaging, Llc | Methods and systems for performing computer assisted surgery |
WO2019143459A1 (fr) | 2018-01-17 | 2019-07-25 | Auris Health, Inc. | Plate-forme chirurgicale équipée de supports de bras réglables |
CA3089681A1 (fr) | 2018-02-07 | 2019-08-15 | Distalmotion Sa | Systemes robotiques chirurgicaux comportant des telemanipulateurs robotises et une laparoscopie integree |
US11458641B2 (en) | 2018-05-23 | 2022-10-04 | General Electric Company | Robotic arm assembly construction |
WO2019227129A1 (fr) * | 2018-05-29 | 2019-12-05 | Monash University | Système chirurgical |
US11931525B2 (en) * | 2018-10-04 | 2024-03-19 | Edwards Lifesciences Corporation | Stabilizer for a delivery system |
JP6820389B2 (ja) * | 2018-10-05 | 2021-01-27 | 川崎重工業株式会社 | 外科手術システムの患者側装置および外科手術システム |
US11648067B2 (en) * | 2018-10-05 | 2023-05-16 | Kawasaki Jukogyo Kabushiki Kaisha | Medical manipulator and surgical system including the same |
JP6894954B2 (ja) * | 2018-10-05 | 2021-06-30 | 川崎重工業株式会社 | 医療用マニピュレータおよびこれを備えた外科手術システム |
EP3890645A4 (fr) | 2019-02-22 | 2022-09-07 | Auris Health, Inc. | Plate-forme chirurgicale équipée de bras motorisés pour supports de bras réglables |
CN113613612B (zh) | 2019-03-08 | 2022-08-02 | 奥瑞斯健康公司 | 用于医疗系统和应用的倾斜机构 |
US10939970B2 (en) | 2019-05-22 | 2021-03-09 | Titan Medical Inc. | Robotic surgery system |
JP2023532977A (ja) * | 2020-07-06 | 2023-08-01 | バーチャル インシジョン コーポレイション | 外科用ロボット位置決めシステム並びに関連する装置及び方法 |
US11596567B2 (en) | 2020-10-05 | 2023-03-07 | Mazor Robotics Ltd. | Systems and methods for determining and maintaining a center of rotation |
JP7393383B2 (ja) * | 2021-05-24 | 2023-12-06 | 川崎重工業株式会社 | 手術支援ロボットおよび多関節ロボットの作動方法 |
EP4401666A1 (fr) | 2021-09-13 | 2024-07-24 | DistalMotion SA | Instruments pour système robotique chirurgical et interfaces pour ceux-ci |
DE102022131662A1 (de) | 2022-11-30 | 2024-06-06 | Karl Storz Se & Co. Kg | Chirurgische Vorrichtung |
US11844585B1 (en) | 2023-02-10 | 2023-12-19 | Distalmotion Sa | Surgical robotics systems and devices having a sterile restart, and methods thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2239605A (en) * | 1990-01-05 | 1991-07-10 | Univ Bristol | An arrangement for supporting and positioning a mobile article |
US6245028B1 (en) * | 1999-11-24 | 2001-06-12 | Marconi Medical Systems, Inc. | Needle biopsy system |
JP2003079638A (ja) * | 1993-12-28 | 2003-03-18 | Olympus Optical Co Ltd | 手術ロボット |
US6665554B1 (en) * | 1998-11-18 | 2003-12-16 | Steve T. Charles | Medical manipulator for use with an imaging device |
US20070156122A1 (en) * | 2005-01-24 | 2007-07-05 | Cooper Thomas G | Compact counter balance for robotic surgical systems |
WO2007133065A1 (fr) * | 2006-05-17 | 2007-11-22 | Technische Universiteit Eindhoven | Robot chirurgical |
US20080019607A1 (en) * | 2006-07-21 | 2008-01-24 | Josh Star-Lack | System and method for correcting for ring artifacts in an image |
WO2010068005A2 (fr) * | 2008-12-12 | 2010-06-17 | Rebo | Robot chirurgical |
US20110077523A1 (en) * | 2009-09-28 | 2011-03-31 | Angott Paul G | Multi-modality breast cancer test system |
WO2011122862A2 (fr) * | 2010-03-31 | 2011-10-06 | 한양대학교 산학협력단 | Dispositif de tringlerie à un degré de liberté, bras-robot l'utilisant et robot chirurgical comportant celui-ci |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3115140A (en) * | 1960-08-18 | 1963-12-24 | Baltimore Instr Company | Apparatus for stereotaxic brain operations |
US3196875A (en) * | 1962-12-10 | 1965-07-27 | Pfeiffer Andrew | Manipulating device |
DE8800986U1 (de) * | 1988-01-28 | 1988-08-25 | Dornier Medizintechnik GmbH, 8034 Germering | Kreisbahnführung |
US5201742A (en) * | 1991-04-16 | 1993-04-13 | Hasson Harrith M | Support jig for a surgical instrument |
US5279309A (en) * | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
US5417210A (en) * | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5746362A (en) | 1994-09-21 | 1998-05-05 | Cross Tread Industries, Inc. | Heavy duty vehicle rack |
US5665095A (en) * | 1994-12-15 | 1997-09-09 | Jacobson; Robert E. | Stereotactic guidance device |
AUPN929096A0 (en) * | 1996-04-17 | 1996-05-09 | Lions Eye Institute | A system for ocular ultramicrosurgery |
CA2412879A1 (fr) * | 2000-06-22 | 2001-12-27 | Nuvasive, Inc. | Bati de guidage chirurgical a coordonnees polaires |
JP2002165804A (ja) * | 2000-09-22 | 2002-06-11 | Mitaka Koki Co Ltd | 医療用スタンド装置 |
DE10055293A1 (de) * | 2000-11-03 | 2002-05-29 | Storz Karl Gmbh & Co Kg | Vorrichtung zum Halten und Positionieren eines endoskopischen Instruments |
WO2003018132A1 (fr) * | 2001-08-24 | 2003-03-06 | Mitsubishi Heavy Industries, Ltd. | Appareil de radiotherapie |
US6666554B2 (en) * | 2001-12-27 | 2003-12-23 | Deborah C. Mulvey | Protective eyewear kit |
SG165160A1 (en) * | 2002-05-06 | 2010-10-28 | Univ Johns Hopkins | Simulation system for medical procedures |
US7155316B2 (en) * | 2002-08-13 | 2006-12-26 | Microbotics Corporation | Microsurgical robot system |
DE04705321T1 (de) * | 2003-01-28 | 2006-08-31 | Intest Ip Corp. | Handgelenk zum Positionieren eines Testkopfes |
CN1809321A (zh) * | 2003-06-20 | 2006-07-26 | Gpa股份有限公司 | 摄影用升降架 |
US7379769B2 (en) * | 2003-09-30 | 2008-05-27 | Sunnybrook Health Sciences Center | Hybrid imaging method to monitor medical device delivery and patient support for use in the method |
US8088058B2 (en) * | 2005-01-20 | 2012-01-03 | Neuronetics, Inc. | Articulating arm |
GB0521281D0 (en) * | 2005-10-19 | 2005-11-30 | Acrobat Company The Ltd | hybrid constrant mechanism |
JP2008017903A (ja) | 2006-07-11 | 2008-01-31 | Gifu Univ | 内視鏡保持装置 |
US9084622B2 (en) * | 2006-08-02 | 2015-07-21 | Omnitek Partners Llc | Automated laser-treatment system with real-time integrated 3D vision system for laser debridement and the like |
JP2008213060A (ja) * | 2007-03-01 | 2008-09-18 | Honda Motor Co Ltd | 多関節ロボット |
US8655430B2 (en) * | 2007-12-26 | 2014-02-18 | National Health Research Institutes | Positioning system for thermal therapy |
US8792964B2 (en) * | 2008-03-12 | 2014-07-29 | Siemens Aktiengesellschaft | Method and apparatus for conducting an interventional procedure involving heart valves using a robot-based X-ray device |
US8888789B2 (en) * | 2009-09-23 | 2014-11-18 | Intuitive Surgical Operations, Inc. | Curved cannula surgical system control |
DE102010011643B4 (de) * | 2010-03-16 | 2024-05-29 | Christian Buske | Vorrichtung und Verfahren zur Plasmabehandlung von lebendem Gewebe |
US8961537B2 (en) * | 2011-08-24 | 2015-02-24 | The Chinese University Of Hong Kong | Surgical robot with hybrid passive/active control |
US8584994B2 (en) * | 2011-10-21 | 2013-11-19 | Endure Medical, Inc. | Floor stand with angled arm for microscope |
-
2011
- 2011-12-21 WO PCT/CA2011/001386 patent/WO2013078529A1/fr unknown
- 2011-12-21 EP EP11876682.3A patent/EP2785267B1/fr active Active
-
2014
- 2014-05-16 US US14/279,828 patent/US20140249546A1/en not_active Abandoned
-
2020
- 2020-02-25 US US16/800,941 patent/US20200289236A1/en active Pending
-
2022
- 2022-11-29 US US18/059,963 patent/US20230090057A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2239605A (en) * | 1990-01-05 | 1991-07-10 | Univ Bristol | An arrangement for supporting and positioning a mobile article |
JP2003079638A (ja) * | 1993-12-28 | 2003-03-18 | Olympus Optical Co Ltd | 手術ロボット |
US6665554B1 (en) * | 1998-11-18 | 2003-12-16 | Steve T. Charles | Medical manipulator for use with an imaging device |
US6245028B1 (en) * | 1999-11-24 | 2001-06-12 | Marconi Medical Systems, Inc. | Needle biopsy system |
US20070156122A1 (en) * | 2005-01-24 | 2007-07-05 | Cooper Thomas G | Compact counter balance for robotic surgical systems |
WO2007133065A1 (fr) * | 2006-05-17 | 2007-11-22 | Technische Universiteit Eindhoven | Robot chirurgical |
US20080019607A1 (en) * | 2006-07-21 | 2008-01-24 | Josh Star-Lack | System and method for correcting for ring artifacts in an image |
WO2010068005A2 (fr) * | 2008-12-12 | 2010-06-17 | Rebo | Robot chirurgical |
US20110077523A1 (en) * | 2009-09-28 | 2011-03-31 | Angott Paul G | Multi-modality breast cancer test system |
WO2011122862A2 (fr) * | 2010-03-31 | 2011-10-06 | 한양대학교 산학협력단 | Dispositif de tringlerie à un degré de liberté, bras-robot l'utilisant et robot chirurgical comportant celui-ci |
Also Published As
Publication number | Publication date |
---|---|
US20230090057A1 (en) | 2023-03-23 |
EP2785267A4 (fr) | 2015-07-22 |
WO2013078529A1 (fr) | 2013-06-06 |
EP2785267A1 (fr) | 2014-10-08 |
US20200289236A1 (en) | 2020-09-17 |
US20140249546A1 (en) | 2014-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2785267B1 (fr) | Appareil et procédé destinés à supporter un bras robotique | |
US20190167369A1 (en) | Cable tensioning in a robotic surgical system | |
US20240173875A1 (en) | Apparatus and method for controlling an end-effector assembly | |
JP6935376B2 (ja) | ロボット手術システム | |
US9480533B2 (en) | Telescoping insertion axis of a robotic surgical system | |
US6788018B1 (en) | Ceiling and floor mounted surgical robot set-up arms | |
EP2773277B1 (fr) | Appareil de commande d'un ensemble effecteur terminal | |
US9027431B2 (en) | Remote centre of motion positioner | |
EP1681029A1 (fr) | Dispositif et procès pour manipuler des instruments médicals | |
WO2022269633A1 (fr) | Dispositif chirurgical portable pour chirurgies mini-invasives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140509 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20150624 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B25J 18/00 20060101ALN20150618BHEP Ipc: B25J 9/00 20060101ALI20150618BHEP Ipc: A61B 19/00 20060101AFI20150618BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190611 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61B 34/30 20160101ALI20210203BHEP Ipc: B25J 18/00 20060101ALN20210203BHEP Ipc: A61B 90/50 20160101AFI20210203BHEP Ipc: B25J 9/00 20060101ALI20210203BHEP |
|
INTG | Intention to grant announced |
Effective date: 20210302 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602011072400 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: A61B0019000000 Ipc: A61B0090500000 |
|
INTC | Intention to grant announced (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61B 90/50 20160101AFI20210714BHEP Ipc: B25J 9/00 20060101ALI20210714BHEP Ipc: A61B 34/30 20160101ALI20210714BHEP Ipc: B25J 18/00 20060101ALN20210714BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210907 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011072400 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1461886 Country of ref document: AT Kind code of ref document: T Effective date: 20220215 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220112 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1461886 Country of ref document: AT Kind code of ref document: T Effective date: 20220112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220512 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220412 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220512 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011072400 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 |
|
26N | No opposition filed |
Effective date: 20221013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221221 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231211 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231221 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231227 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220112 |