EP2782992A2 - Verfahren zum abtrennen von algen, insbesondere mikroalgen aus einer wässrigen phase und eine vorrichtung zur durchführung dieses verfahrens - Google Patents

Verfahren zum abtrennen von algen, insbesondere mikroalgen aus einer wässrigen phase und eine vorrichtung zur durchführung dieses verfahrens

Info

Publication number
EP2782992A2
EP2782992A2 EP12813287.5A EP12813287A EP2782992A2 EP 2782992 A2 EP2782992 A2 EP 2782992A2 EP 12813287 A EP12813287 A EP 12813287A EP 2782992 A2 EP2782992 A2 EP 2782992A2
Authority
EP
European Patent Office
Prior art keywords
algae
clay mineral
aqueous
sediment
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12813287.5A
Other languages
English (en)
French (fr)
Inventor
Gerd Krüger
Rainer Dallwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIM Biotech GmbH
GMB GmbH
Original Assignee
FIM Biotech GmbH
GMB GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIM Biotech GmbH, GMB GmbH filed Critical FIM Biotech GmbH
Publication of EP2782992A2 publication Critical patent/EP2782992A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/22Settling tanks; Sedimentation by gravity
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0039Settling tanks provided with contact surfaces, e.g. baffles, particles
    • B01D21/0051Plurality of tube like channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/245Discharge mechanisms for the sediments
    • B01D21/2483Means or provisions for manually removing the sediments
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management

Definitions

  • the present application relates to a process for separating microorganisms from an aqueous phase according to the preamble of claim 1, an apparatus for carrying out this process according to claim 19, a composition preparable by this process according to claim 25 and the use of this composition according to claim 26.
  • Microalgae grow about 10 times faster than land plants, grow in salt, fresh water and wastewater and do not compete with agricultural land. They have a high diversity: about 30,000 described species therefore have great potential for a wide variety of substances that can be produced in the microalgae.
  • the CO 2 contained in the flue gas is fixed directly in the receiving biomass.
  • the desulfurized flue gas is passed through a solution of microalgae, resulting in exponential growth of the microalgae.
  • This type of C0 2 fixation is preferably carried out in a continuous process, for which a permanent removal of the biomass formed and its further processing are prerequisite.
  • the yield of dry matter in biomass depending on the optimization stage of the process between 0.3 and 0.8% by weight of dry matter. This means that an algal suspension consists of 99.2 to 99.7% by weight of water. Therefore, in addition to the increase in algae concentration, the treatment technology is essential. Due to the very small size of the microalgae from 5 to 15 ⁇ filtration is very difficult and centrifugation very energy-intensive and therefore very expensive. An estimated 85% of the total production costs are attributable to the processing technology for the dry product.
  • microalgae e.g. for biomass production for power generation
  • proteins for animal feed fine chemicals and foodstuffs to pharmaceuticals and cosmetics prices for the algae of 1 € / kg, 10 € / kg and 100 € / kg.
  • the current high producer prices have hitherto prevented the massive use of algae products, in particular for animal feed. Only through a strong reduction of processing costs can marketable prices be achieved.
  • DE 10 2009 030 712 A1 describes a process for the separation of microalgae in which magnetic particles are added to the biomass produced and the biomass provided with the magnetic particles is deposited in a magnetic separation stage. Further use of the thus deposited microalgae e.g. However, as feed separates due to the magnetic particles contained.
  • a process for separating algae, in particular microalgae, from an aqueous phase which comprises the following process steps: a) addition of at least one clay mineral, in particular a changeover clay mineral, to the aqueous algae-containing phase and mixing thereof, b) sedimentation of the formed aqueous suspension, in particular flocculent suspension, of algae and clay mineral and formation of an aqueous supernatant, and. c) separation of the sediment from algae and clay mineral from the aqueous supernatant.
  • the idea underlying the method according to the invention thus consists of adsorbing or reversibly binding the algae present in an aqueous phase to a suitable agent so as to effect a rapid and gentle enrichment or concentration of the algae.
  • a gentle treatment of the algae is important in order to avoid the destruction of the important cell constituents of the algae.
  • a specially prepared clay mineral with a high positive edge charge is coagulated by negatively charged algae by charge neutralization and then rapidly sedimented by flocculation of the clay particles and algae and preferably by means of metal salts as bridging images.
  • a vibration treatment By means of a vibration treatment, a further concentration is possible.
  • the algae-clay complex can be completely separated again into algae and clay mineral or the complex is further processed into a bio-mineral compound system of algae and clay mineral.
  • the clay mineral takes over the function of a drug delivery system by protecting the active ingredients of the digested algae from destruction.
  • microorganisms which include the microalgae - microscopically small organisms or organisms that are usually not recognizable as individuals with the naked eye. The microorganisms are predominantly unicellular, and some multicells of appropriate size are included. Microorganisms occur in different sizes. Some microorganisms are important for the nutrition, others are pathogens of infectious diseases.
  • microorganisms are bacteria z. As lactic acid bacteria, fungi z. B. baker's yeast S. cerevisiae, cyanobacteria (blue-green algae), microscopic algae z. B. chlorella, the u. a. be used as a dietary supplement, and protozoa z. B. the paramecium and the malaria parasite Plasmodium.
  • microalgae which are suitable for human and animal nutrition and health maintenance.
  • the class of microscopic algae or microalgae preferably used herein includes the extensive group of chlorella such as Chlorella vulgaris, Chlorella angustoellipsoidea, Chlorella botryoides, Chlorella capsulata, Chlorella ellipsoidea, Chlorella emersonii, Chlorella fusca, Chlorella homosphaera, Chlorella luteo-viridis, Chlorella marina , Chlorella miniata, Chlorella minutissima, Chlorella mirabilis, Chlorella ovalis, Chlorella parasitica, Chlorella peruviana, Chlorella rugosa, Chlorella saccharophila, Chlorella salina, Chlorella spaerckii, Chlorella sphaerica, Chlorella stigmatophora, Chlorella subsphaerica, Chlorella trebouxioides.
  • chlorella such as Chlorella vulgaris, Chlorella angustoellipsoidea, Chlor
  • microalgae are of the genus Pediastrum, e.g. Pediastrum dupl, Pediastrum boryanum and the genus Botryococcus such as e.g. Botryococcus braunii.
  • the separation of the algae from an aqueous phase using a clay mineral can be understood here in the general sense as adsorption in the form of a physical process in which substances adhere to the surface of another substance and accumulate on its surface.
  • the forces that cause adhesion are not chemical bonds but only physical forces. Therefore, this form of adsorption is called exact physical adsorption or physisorption.
  • the adsorbed substance adsorbate
  • the adsorbed substance does not form a chemical bond with the surface but instead adheres to weaker forces similar to adhesion. As a rule, only van der Waal's forces appear.
  • the physical adsorption is reversible.
  • adsorbents for the use of adsorbents, in particular for physisorption, their pore structure or the existing reaction surface is the most important factor. In order to ensure optimal utilization of the surface or the adsorption sites, the distribution of the cavities should be maximum, the wall thickness should be minimal. Therefore, the pore structure and the accessible surface per unit mass are often used as a quality criterion for an adsorbent.
  • adsorbents in particular those substances which have a high specific surface area or high porosity such as activated carbon, silica gel, sepiolite, zeolites or bentonites. These can be used in the form of beds or in structured form. Due to their very different ion uptake capacities, their application depends on the specific task.
  • clay minerals are used to separate the algae from an aqueous phase.
  • Clay minerals are generally classified into different groups depending on the layer structure. These include the group of kaolinites, smectites, lllites and chlorites.
  • montmorillonite belongs to the group of smectides as a three-layer dioctahedral silicate with a tetrahedral layer-octahedral layer-tetrahedral layer structure.
  • Montmorillonite is a three-layer silicate with a high swelling capacity and thixotropy. In the fully delaminated state it can reach an accessible surface of up to 750 m 2 / g. Montmorillonite is capable of ion exchange and chemical and physical adsorption. Most of the adsorption is via van der Waals forces and through hydrogen bonds.
  • the binding of organic substances to montmorillonite usually occurs through several mechanisms involving physical adsorption and chemosorption. Cationic substances are preferably exchanged for the cations contained in the montmorillonite and bound by chemosorption to the montmorillonite. These Mechanisms are controlled by the pH.
  • the binding of anionic substances to montmorillonite is preferably carried out by physical adsorption, so that the substance can be released rapidly. Nonionic substances are often bound to montmorillonite via van der Waals forces and hydrogen bonds.
  • Montmorillonite has a remarkable swelling capacity. Water causes the interlayer cations to build up through hydration. The swelling process is called “intergranular swelling.” Sodium montmorillonite can absorb six to seven times its dry weight of liquid, but in the presence of small amounts of solvent, the layers remain well-ordered, but as the solvent supply increases, the state of order is increasingly lost ,
  • montmorillonite is used in particular as a pharmaceutical excipient and as a bioactive agent, in particular as a detoxifier. Also, chemical agents can be bound and thus used for drug preparation.
  • Illit is the most common and common clay mineral and is found mostly in soils. It is also a dioctahedral three-layer silicate and shows a close relationship to the mica. It often arises from rock-forming aluminosilicates by diagenetic or hydrothermal processes and forms the main component of many marine clays. In addition to Si-Al replacement in the tetrahedra, their negative layer charge is also due to the replacement of Al 3+ by Mg 2+ and Fe 2+ in the octahedra. If illite particles are broken, additional positive edge charges result.
  • mixedlayer may consist of very different alternating layers of storage, e.g. Kaolinite / smectite, chlorite / vermiculite, mica / vermiculite or very frequently alternating storage of illite / smectite or illite / montmorillonite.
  • Kaolinite / smectite e.g. Kaolinite / smectite
  • chlorite / vermiculite e.g. Kaolinite / smectite
  • mica / vermiculite
  • very frequently alternating storage of illite / smectite or illite / montmorillonite e.g., more versatile exchange reactions of cations and anions are possible than with pure montmorillonites.
  • a clay mineral in the form of a changeover clay mineral is used.
  • a Komlagerungstonmineral of montmorillonite and illite / muscovite is used, which can be contained in this change storage mineral montmorillonite and illite / muscovite in a ratio of 60:40 to 40:60, with a ratio of 50:50 is preferred. That is, the montmorillonite and illite / muscovite may be contained at 50% by weight each.
  • the preferred clay mineral may also include portions of other clay minerals such as kaolinites and chlorites, carbonates, sulfides, oxides and sulfates.
  • the clay mineral has a Fe 2+ / Fe 3+ ratio between 0.3 and 1.0, preferably 0.45 and 1.0.
  • the Fe 2+ / Fe 3+ ratio is approximately 10 times higher than in other known clay minerals and, due to this increased Fe 2+ / Fe 3+ ratio, additionally has a high natural antioxidant potential.
  • the present clay mineral comprises on average 50-60% by weight, preferably 55% by weight of montmorillonite-muscovite alternating support, 15-25% by weight, preferably 20% by weight. 5-9% by weight, preferably 5% by weight of kaolinite / chlorite, 10-20% by weight, preferably 15% by weight of quartz, 1-2% by weight, preferably 1% by weight of calcite, 0.9-1.5, preferably 1% by weight Dolomite, 0.9-1.9% by weight, preferably 1% by weight of feldspar, 0.9-1.0% by weight, preferably 1% by weight of pyrite and 0.6-1.0% by weight, preferably 1% by weight of gypsum.
  • the chemical composition of the main elements can be given in% by weight as follows: Si0 2 57.9-59.5; Al 2 O 3 17.0-18.5; Fe 2 0 3 5.9-7.0; K 2 0 2.8-3.5; MgO 1, 5-2.6; Na 2 0 0.9-1.5; TiO 2 0.6-1.5; CaO 0.25-0.35; P 2 0 5 0.09-0.15; Other 8.9-10.5.
  • the clay mineral preferably used has an internal (BET) surface area of 50-100 m 2 / g, preferably 55-65 m 2 / g, particularly preferably 60 m 2 / g.
  • the inner surface of the clay mineral which is preferably used is thus relatively low, for example, in comparison with the highly swellable montmorillonites.
  • the average particle size of the mineral compound preferably used may be in a range of 0.1 to 10 ⁇ m, preferably 0.5 to 1 ⁇ m, in particular 0.5 ⁇ m.
  • the preferred clay mineral is isolated and processed from the clay deposits present in Germany in Mecklenburg-Western Pomerania, more precisely in the vicinity of Friedland in the eastern part of the Mecklenburg Lake District.
  • the clay mineral preferably used has, as already mentioned above, unique properties in which it differs substantially from other mineral matrices such as bentonite or montmorillonite.
  • the clay mineral used here is not only able to exchange cations in the existing montmorillonite layers, but also to bind anions.
  • the mechanism of action of the presently used mineral compound is therefore different from bentonites.
  • anionic substances are loosely bound to the break edges of the illites / muscovites contained in the mineral compound used.
  • the reason for this are missing or knocked out potassium ions, which ensure a charge balance in the mineral compound. This results in positive charges, where anions can be loosely bound.
  • bioactive anions have a relatively high molecular mass and thus diameter, the recesses formed at the fracture edges are not large enough to realize a firm bond.
  • the superficially negatively charged algal cells are transduced van der Waals forces are loosely bound to the positively charged clay edges, which have charges of Fe, Fe 3+ , Al 3+ , Mg 2+ .
  • 1 kg to 15 kg, preferably 2 kg to 10 kg, particularly preferably 3 to 8 kg of clay mineral per kg of dry algae in the aqueous phase was added.
  • the aqueous phase has an algal content of between 0.01 and 5 mass%, preferably between 0.1 and 1.5 mass%, in particular between 0.1 and 0.6 mass%.
  • typically up to 99.99% of the aqueous phase is water and the concentration of algae in the aqueous phase is correspondingly low.
  • At least one polyvalent cation in particular a divalent or trivalent cation, is added to the at least one clay mineral or a mixture of clay mineral and cation is produced.
  • the polyvalent cation is preferably selected from a group containing Fe 2+ , Ca 2+ , Mg 2+ , Fe 3+ and Al 3+ .
  • the polyvalent cation may be added in the form of a chloride salt and / or sulfate salt, with the addition of MgCl 2 and MgSO 4 being particularly preferred.
  • the amount of salt added, in particular of MgCl 2 or MgSO 4 is preferably from 1 kg to 10 kg, preferably from 1 kg to 5 kg, particularly preferably 2 kg per kg of algae dry mass in the aqueous phase.
  • magnesium chloride leads to bridging between the negative surfaces of the clay mineral and the algae. It produces flakes of algae-clay-magnesium, which sediment relatively quickly.
  • the precipitating flakes of algae-clay-magnesium include other disperse substances, such as very fine clay particles, in the resulting flakes.
  • MgCl 2 has the further advantage that an additional source of magnesium will be provided in a later use of the deposited system of algae and clay mineral as a food supplement for animal and human. This is an advantage, magnesium is essential for humans and animals.
  • the present method thus fulfills a number of conditions which enable efficient separation of algae and at the same time contribute to the formation of a biomineral composite system and its further use.
  • the components of the composite system complement each other synergistically and have positive effects on the state of health.
  • the mineral compound as part of the composite system also serves as a concentration aid for the microalgae biomass.
  • For flocculation only those polyvalent metal ions are used, which are essential for humans and animals.
  • the reuse of the process water from the Aigenbiomassesorb is ensured.
  • the concentration process takes place at neutral pH.
  • the mixing of the clay mineral as an adsorbent and the algae in the aqueous phase is preferably carried out using a stirrer or an optimal flocculation device, such as a stirrer.
  • a stirrer or an optimal flocculation device such as a stirrer.
  • the FlocFormer from Cutec.
  • a suspension By mixing the clay mineral with the aqueous phase containing the algae, a suspension is formed. Under a suspension is generally understood a heterogeneous mixture of a liquid and finely divided solids therein. A suspension is a coarsely dispersed dispersion and tends to sediment and phase separate.
  • the sedimentation rate is moreover dependent on geometric factors of the apparatus used for the adsorption and sedimentation, the properties of the clay mineral used as adsorbent and other supporting measures and under optimal conditions is at least 1.2 cm / min, preferably at least 1.5 cm / min.
  • the sediment of algae adsorbed on the clay mineral settles out as a solid, the end of the settling process being measured photometrically via the turbidity of the aqueous supernatant.
  • the algae-clay mineral sediment is preferably separated in the form of a thick matter mixture, preferably with a water content of 50-60% in step c).
  • concentration of the algae, in particular of the microalgae is increased by a factor of at least 30, preferably by a factor of 50, by the combination of adsorption and subsequent sedimentation.
  • the process water can be separated by up to 90%.
  • a residual water content of 70 to 90% by mass can be achieved, i.e., 10 to 30% dry matter consists of the algae clay mineral opt. Magnesium complex.
  • the algae-clay mineral complex which is preferably provided with cations such as magnesium ions, in a centrifugal field> 500 G again into its individual parts. This makes it possible to produce pure algae concentrates.
  • the separated clay particles can be returned to the flocculation process.
  • This centrifugal treatment of the algae-clay mineral complex can be carried out before separation from the aqueous supernatant as well as after separation from the aqueous supernatant.
  • a vibration treatment it is possible to densify the sediment of algae and clay mineral by means of a vibration treatment. This can be done before the separation of the sediment from the aqueous supernatant and after the separation.
  • a subsequent vibration treatment with a frequency of 500 to 1000 min "1 further compresses the algae-clay complex to a residual water content of 50 to 60% by mass.
  • This viscous suspension is well suited for digesting the algae cells with a high-pressure slit homogenizer or in a high-performance ultrasound field.
  • a pumpable, gel-like algae-clay-magnesium complex is available for further processing.
  • the separation of the sediment from algae and clay mineral from the aqueous supernatant can be carried out, for example, by means of decanting or other separation processes known to a person skilled in the art.
  • the separated aqueous supernatant is processed and returned to the production of algae.
  • the sediment separated in step c) from algae adsorbed on the clay mineral can be treated by means of ultrasound in a further step.
  • the ultrasound treatment in this step causes, on the one hand, a homogenization of the separated sediment and, on the other hand, a cell disruption of the microorganisms, such as e.g. the microalgae to release bioactive substances contained therein.
  • the released during the digestion process bioactive substances are stored in the clay-gel matrix and thus protected from environmental influences.
  • the result is a bio-mineral algae clay mineral opt. Magnesium complex.
  • the algae-clay mineral sediment separated according to step c) and / or the ultrasonically treated algae-clay mineral sediment may preferably be dried in a drying step.
  • the drying can be carried out by means of per se known methods such as spray drying, belt dryer or in the drying oven.
  • a preferred drying method is vacuum drying.
  • the drying temperatures should not exceed 50 ° C. By constantly moving in a thin layer, the drying energy is optimally utilized.
  • Another suitable drying method is spray drying.
  • the highly concentrated e.g. 50% algae-mineral suspension is pumpable and can be fed to the drying apparatus.
  • the injection creates a high drying surface, which ensures extremely fast and gentle drying.
  • the mineral in particular the swollen clay mineral, contracts and includes the digested components of the microorganisms, in particular the microalgae, by the formation of granules.
  • the drying is preferably carried out to a final moisture content of the algae-clay mineral sediment of about 5 to 15 Ma% H 2 0 content, in particular from 6 to 9 Ma% H 2 0 content.
  • the algal content of the dried algae-clay mineral sediment may be between 10-50 Ma%, preferably 20-40 Ma%, in particular 35 Ma%.
  • the drying process can be stopped at a residual moisture content of about 6% by mass, with a bio-mineral composite system of algae, clay and possibly magnesium is obtained with an algae content of about 35 Ma%.
  • the water is removed from the adsorbent, e.g. removed the layer interstices of clay minerals and the bioactive substances that were not accumulated by physical adsorption, bound by a form-locking composite.
  • the result is a reversible, biomineral composite system.
  • a material and positive bond between the particles of the mineral and the adsorbed and trapped bioactive substances of the microorganisms is produced.
  • the dried sediment from microorganisms such as e.g. Microalgae and adsorbents, e.g. Clay mineral, open-minded or non-unlocked, can then be packed and shipped.
  • the present method comprises the following steps:
  • composition of algae, in particular microalgae, and at least one clay mineral produced by means of the present process can be used for the production of animal feeds, nutritional supplements and / or pharmacologically active agents.
  • the clay mineral has two functions: the first task is the function of a drug delivery system.
  • the bioactive substances of the algae which are loosely integrated into the mineral matrix, are protected against destruction by gastric acidity during gastric passage.
  • the clay swells and releases the bioactive substances.
  • the clay serves as the second task as Toxic Clearance System for toxins in the gastrointestinal tract. This applies to both human and veterinary use.
  • the present method is preferably carried out in a device having the features of claim 19.
  • the device for carrying out a method for separating algae from an aqueous phase comprises at least two sections coupled to one another, wherein a first section is arranged above the second section relative to the direction of gravity.
  • the first portion and the second portion may be integral with each other e.g. be formed in the form of a reactor or can also be spatially separated from each other e.g. be arranged in the form of two separate containers.
  • the at least first portion consists of at least one container for holding the aqueous phase containing the algae and the at least one clay mineral as adsorbent
  • the at least second portion consists of at least one Tube for sedimentation of the aqueous suspension of algae and adsorbent formed in the first region.
  • the first section in the form of a container has at least one inlet for the aqueous phase containing the algae, at least one opening for adding the adsorbent and optionally at least one agitator.
  • This container thus, the mixing of the biomass from algae with the adsorbent and the addition of a multivalent cation salt and at the beginning of the sedimentation take place.
  • This first section is also called turbulent mixing zone.
  • the second section of the device comprises a tube system comprising at least two tubes, preferably from 2 to 10 tubes, particularly preferably from 2 to 5 tubes.
  • the tube system allows laminar sedimentation, so that the sedimentation of the seaweed-laden clay mineral is free of flow influences and takes place at the bottom of the respective tubes of the tube system.
  • the second section can thus be divided into a laminar settling zone and a compression zone.
  • the present device may incorporate one with the second section, i. Having the third system coupled to the tube system for the removal of accumulated at the bottom of the second section microorganism adsorbent sediment in the form of a sampling chamber.
  • the sampling chamber has an opening suitable for removing the sediment, e.g. in the form of a valve cock, which can be controlled manually or photometrically.
  • Figure 1 is a schematic representation of a device suitable for carrying out the method according to the invention.
  • Figure 1 shows a preferred embodiment of a device 1 in the form of a settling apparatus suitable for carrying out the method according to the invention.
  • the device 1 comprises two mutually coupled sections 2, 3, wherein the first section 2 is arranged with respect to the direction of gravity above the second section 3.
  • the first section 2 consists of at least one cylindrical container for receiving the aqueous, microalgae-containing phase 4 and a clay mineral 5 as adsorbent.
  • the second section 3 consists of a tube system of five tubes running parallel to one another for sedimentation of the aqueous suspension of microalgae and clay mineral formed in the first region 2.
  • the first section 2 in the form of a cylindrical container has an inlet for the microalgae-containing aqueous phase 4 and an opening in the form of a pouring opening for adding the clay mineral 5, through which the MgCl 2 is also supplied.
  • the container 2 in the embodiment of Figure 1 has a stirrer 6. In the container 2 thus takes place the mixing of the biomass of microalgae, clay mineral and MgCl 2 . This area can also be considered as a turbulent mixing zone.
  • the gravitationally controlled sedimentation of microalgae 4 adsorbed on the clay mineral 5 begins immediately in the tubes of the tube system 3.
  • the tube system allows laminar sedimentation so that sedimentation of the microalgae-containing adsorbent in the laminar settling zone 3b is free from Flow influences is.
  • the settled in the compression zone 7 in the lower region of the tube system 3 sediment is removed from the device 1 in a coupled to the tube system 3 sampling chamber 8.
  • the extraction chamber 8 has an opening suitable for removing the sediment, e.g. in the form of a valve cock, which can be controlled manually or photometrically.
  • An aqueous phase with a proportion of microalgae biomass of 0.3% is mixed with 9-12 kg of clay flour per 1 000 liter of algal biomass and mixed intensively with one another in the process vessel 2 of the settling apparatus 1 using an agitator.
  • the resulting suspension of microalgae and clay flour will then sediment at rest its solid content of microalgae and clay.
  • the process of sedimentation can be regarded as complete when the solid has collected in the form of a thick matter mixture at the foot of the tubes and only a slight turbidity is to be measured in the upper area.
  • the thick matter of microalgae and clay is removed from the removal chamber 8 of the settling apparatus 1 via a valve cock and has a moisture content of about 50% H 2 0.
  • An aqueous phase with a proportion of microalgae biomass of 0.3%, equivalent to 3 kg of algae dry matter, is mixed with 6 kg of treated clay mineral per 1 000 liter of algal biomass and mixed intensively with one another in the process vessel 2 of the settling apparatus 1 using an agitator. It comes to coagulation of algae and clay particles. Subsequently, the algae clay suspension 6kg MgCl 2 * 6H 2 0 is added. Bridges are formed between the negatively charged particles with the help of the positively charged magnesium ion. The resulting flakes of microalgae, mineral salt and clay mineral begin to sediment. The flock complex sediments in the tubes 3 below the process container 2, wherein it does not matter that all tubes absorb the same amount of solid. It is important that the sedimentation can take place free of flow.
  • the process of sedimentation can be regarded as complete when the solid has collected in the form of a thick matter mixture at the foot of the tubes and in the upper area only a clear supernatant can be seen.
  • the flaky sediment of microalgae, mineral salt and clay mineral is further compressed by a vibration treatment at about 800 min "1 .
  • the thick matter of microalgae and clay is removed from the removal chamber 8 of the settling apparatus 1 via a valve cock and has a moisture content of about 50% H 2 0.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Environmental Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Abtrennen von Algen, insbesondere Mikroalgen, aus einer wässrigen Phase mit den Verfahrensschritten: a) Zugabe von mindestens einem Tonmineral, insbesondere einem Wechsellagerungstonmineral, zur wässrigen, Algen enthaltenden Phase und Vermischen derselbigen, b) Sedimentation der gebildeten wässrigen Suspension aus Algen und Tonmineral unter Ausbildung eines wässrigen Überstandes, und c) Abtrennung des Sediments aus Algen und Tonmineral von dem wässrigen Überstand. Des Weiteren betrifft die Erfindung eine Vorrichtung zur Durchführung dieses Verfahrens.

Description

Verfahren zum Abtrennen von Algen, insbesondere Mikroalgen aus einer wässrigen Phase und eine Vorrichtung zur Durchführung dieses Verfahrens
Die vorliegende Anmeldung betrifft ein Verfahren zum Abtrennen von Mikroorganismen aus einer wässrigen Phase gemäß dem Oberbegriff des Anspruchs 1 , eine Vorrichtung zur Durchführung dieses Verfahrens nach Anspruch 19, eine Zusammensetzung herstellbar mit diesem Verfahren nach Anspruch 25 und die Verwendung dieser Zusammensetzung nach Anspruch 26.
Beschreibung
Im Hintergrund der weltweiten Bemühungen um die Reduzierung der C02-Emissionen tritt deren stoffliche Nutzung immer mehr in den Vordergrund. Derzeit wird verstärkt untersucht, ob die Verstoffwechselung des von Kraftwerken freigesetzten C02 durch in den Meeren vorkommenden Organismen wie Algen, Phytoplankton oder Cyanobakterien mittels Photosynthese ein gangbarer Weg sein kann. Die genannten Organismen sind etwa für die Hälfte der globalen Kohlenstofffixierung durch Photosynthese verantwortlich, wobei der größte Teil des fixierten Kohlenstoffs über die marine Nahrungskette wieder in Form von C02 an die Atmosphäre zurückgegeben wird. Ein kleinerer Teil des gebundenen C02 wird jedoch am Meeresboden abgelagert.
Es ist bekannt, mit Hilfe von Mikroalgen - ein- bis wenigzelligen Algen - eine Biomasse unter Verwendung von Rauchgas zu erreichen. Mikroalgen wachsen ca. 10x schneller als Landpflanzen, wachsen in Salz-, Süß- und Abwasser und konkurrieren nicht mit landwirtschaftlich genutzter Fläche. Sie besitzen eine hohe Diversität: etwa 30000 beschriebene Arten haben daher eine großes Potential für unterschiedlichste Stoffe, die in der Mikroalge produziert werden können.
Bei derartigen Verfahren wird das im Rauchgas enthaltende C02 unmittelbar in der erhaltenden Biomasse fixiert. Das entschwefelte Rauchgas wird durch eine Lösung aus Mikroalgen geleitet, wodurch es zu einem exponentiellen Wachstum der Mikroalgen kommt. Bevorzugt wird diese Art der C02-Fixierung in einem kontinuierlichen Verfahren durchgeführt, wozu eine ständige Entnahme der gebildeten Biomasse und deren Weiterverarbeitung Vorraussetzung sind. Die Ausbeute an Trockensubstanz an Biomasse beträgt je nach Optimierungsstufe des Verfahrens zwischen 0,3 und 0,8 Gew% Trockensubstanz. Dies bedeutet, dass eine Algensuspension zu 99,2 bis 99,7 Gew% aus Wasser besteht. Deshalb ist neben der Erhöhung der Algenkonzentration die Aufbereitungstechnik von wesentlicher Bedeutung. Durch die sehr kleine Größe der Mikroalgen von 5 bis 15 μηι ist eine Filtration sehr schwierig und eine Zentrifugation sehr energieintensiv und damit sehr teuer. Schätzungsweise 85% der gesamten Herstellungskosten entfallen auf die Aufbereitungstechnik zum Trockenprodukt.
Je nach Verwendungsmöglichkeit der Mikroalgen wie z.B. für die Biomasseproduktion für Energieerzeugung, Proteine für Futtermittel, Feinchemikalien und Nahrungsmittel bis Pharma und Kosmetik ergeben sich Preise für die Algen von 1 €/kg, 10€/kg und 100€/kg. Die derzeitigen hohen Herstellerpreise haben bisher den massenhaften Einsatz von Algenprodukte insbesondere für Tierfutter verhindert. Nur durch eine starke Reduzierung der Aufbereitungskosten sind marktfähige Preise zu erzielen.
Neben Filtration und Zentrifugation sind weitere Möglichkeiten zur Abtrennung der produzierten Biomasse aus Mikroalgen aus dem Stand der Technik bekannt.
So wird in der DE 10 2009 030 712 A1 ein Verfahren zur Abtrennung von Mikroalgen beschrieben, bei welchem der erzeugten Biomasse magnetische Partikel zugesetzt werden und die mit den magnetischen Partikeln versehene Biomasse in einer magnetischen Separationsstufe abgeschieden wird. Eine weitere Verwendung der so abgeschiedenen Mikroalgen z.B. als Futtermittel scheidet aufgrund der enthaltenen magnetischen Partikel jedoch aus.
Aus der US 6,524,486 B2 ist die Verwendung u.a. von modifizierter Stärke als Ausflockungsmittel bekannt. Die mit Stärke versetzte Algensuspension wird einer Flotationskolonne zugeführt, in welcher es durch Einleitung von gelöstem Gas zur Ausbildung eines Algenschaums kommt, der anschließend abgetrennt wird. Dieses Verfahren ist jedoch für einen großtechnischen Ansatz zur Rauchgasbehandlung nicht geeignet.
Es ist daher eine Aufgabe der vorliegenden Erfindung, ein Verfahren bereitzustellen, welches die Abtrennung von Mikroalgen aus einer wässrigen Phase ermöglicht, das in einem großtechnischen Maßstab einsetzbar ist und gleichzeitig eine weitere Verwendung der gewonnen Mikroalgen z.B. als Futtermittel ermöglicht.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 und eine Vorrichtung mit den Merkmalen des Anspruchs 19 gelöst.
Entsprechend wird ein Verfahren zur Abtrennung von Algen, insbesondere Mikroalgen, aus einer wässrigen Phase bereitgestellt, welches die folgenden Verfahrensschritte umfasst: a) Zugabe von mindestens einem Tonmineral, insbesondere einem Wechsellagerungstonmineral, zur wässrigen Algen enthaltenden Phase und Vermischen derselbigen, b) Sedimentation der gebildeten wässrigen Suspension, insbesondere Flockensuspension, aus Algen und Tonmineral und Ausbildung eines wässrigen Überstandes, und. c) Abtrennung des Sediments aus Algen und Tonmineral von dem wässrigen Überstand.
Die dem erfindungsgemäßen Verfahren zugrunde liegende Idee besteht somit darin, die sich in einer wässrigen Phase befindlichen Algen an einem geeigneten Mittel zu adsorbieren bzw. reversibel zu binden, um so eine schnelle und schonende Anreicherung oder Aufkonzentration der Algen zu bewirken. Eine schonende Behandlung der Algen ist dabei von Bedeutung, um eine Zerstörung der wichtigen Zellinhaltsstoffe der Algen zu vermeiden.
Insbesondere wird dabei ein speziell aufbereitetes Tonmineral mit einer hohen positiven Kantenladung mit negativ geladenen Algen durch Ladungsneutralisation koaguliert und anschließend durch Flocculation der Tonteilchen und Algen und bevorzugt mittels von Metallsalzen als Brückenbilder schnell sedimentiert. Mittels einer Vibrationsbehandlung ist eine weitere Konzentration möglich. In einem starken Zentrifugalfeld kann der Algen-Ton- Komplex wieder in Algen und Tonmineral vollständig getrennt werden oder der Komplex wird zu einem Bio-Mineralischen Verbundsystem aus Algen und Tonmineral weiterverarbeitet. Dabei übernimmt das Tonmineral die Funktion eines Drug Delivery Systems, indem es die Wirkstoffe der aufgeschlossenen Alge vor Zerstörung schützt. Allgemein sind Mikroorganismen- zu denen auch die Mikroalgen gehören - mikroskopisch kleine Lebewesen bzw. Organismen, die als Einzelwesen mit bloßem Auge meist nicht erkennbar sind. Bei den Mikroorganismen handelt es sich überwiegend um Einzeller, auch einige Mehrzeller entsprechender Größe gehören dazu. Mikroorganismen kommen in verschiedenen Größenordnungen vor. Einige Mikroorganismen sind etwa für die Ernährung von Bedeutung, andere sind Erreger von Infektionskrankheiten.
Beispiele für Mikroorganismen sind Bakterien z. B. Milchsäurebakterien, Pilze z. B. Backhefe S. cerevisiae, Cyanobakterien (Blaualgen), mikroskopische Algen z. B. Chlorellen, die u. a. als Nahrungsergänzungsmittel verwendet werden, und Protozoen z. B. das Pantoffeltierchen und der Malaria-Erreger Plasmodium.
Von besonderer Bedeutung für das vorliegende Verfahren sind Mikroalgen, die für die menschliche und tierische Ernährung und Gesunderhaltung geeignet sind.
Zur Klasse der vorliegend bevorzugt verwendeten mikroskopischen Algen bzw. Mikroalgen zählt die umfangreiche Gruppe der Chlorella, wie Chlorella vulgaris, Chlorella angustoellipsoidea, Chlorella botryoides, Chlorella capsulata, Chlorella ellipsoidea, Chlorella emersonii, Chlorella fusca, Chlorella homosphaera, Chlorella luteo -viridis, Chlorella marina, Chlorella miniata, Chlorella minutissima, Chlorella mirabilis, Chlorella ovalis, Chlorella parasitica, Chlorella peruviana, Chlorella rugosa, Chlorella saccharophila, Chlorella salina, Chlorella spaerckii, Chlorella sphaerica, Chlorella stigmatophora, Chlorella subsphaerica, Chlorella trebouxioides.
Weitere bevorzugte Mikroalgen gehören der Gattung Pediastrum wie z.B. Pediastrum dupl, Pediastrum boryanum und der Gattung Botryococcus wie z.B. Botryococcus braunii an.
Das Abtrennen der Algen aus einer wässrigen Phase unter Verwendung eines Tonminerals kann vorliegend im allgemeinen Sinne als Adsorption in Form eines physikalischen Prozess verstanden werden, bei dem Stoffe auf der Oberfläche eines anderen Stoffes haften bleiben und sich auf dessen Oberfläche anreichern. Die Kräfte, die die Anhaftung verursachen, sind keine chemischen Bindungen, sondern nur physikalische Kräfte. Daher wird diese Form der Adsorption exakter physikalische Adsorption oder Physisorption genannt. Der adsorbierte Stoff (Adsorbat) bildet jedoch mit der Oberfläche keine chemische Bindung aus, sondern haftet durch schwächere Kräfte ähnlich der Adhäsion. So treten in der Regel nur van der Waal'sche Kräfte auf. Die physikalische Adsorption ist reversibel.
Für die Nutzung von Adsorptionsmitteln insbesondere für die Physisorption ist deren Porenstruktur bzw. die vorhandene Reaktionsoberfläche der wichtigste Faktor. Um eine optimale Ausnutzung der Oberfläche oder der Adsorptionsplätze zu gewährleisten, sollte die Verteilung der Hohlräume maximal, die Wandstärke dagegen minimal sein. Deshalb werden die Porenstruktur und die zugängliche Oberfläche pro Masseneinheit oft als Qualitätskriterium für ein Adsorptionsmittel genutzt.
Daher können als Adsorbenzien insbesondere solche Stoffe zum Einsatz, die eine hohe spezifische Oberfläche bzw. hohe Porosität aufweisen wie beispielsweise Aktivkohle, Silicagel, Sepiolith, Zeolithe oder Bentonite. Diese können in Form von Schüttungen oder in strukturierter Form verwendet werden. Auf Grund ihrer sehr unterschiedlichen lonenaufnahmekapazitäten ist ihre Anwendung von der konkreten Aufgabenstellung abhängig.
Gemäß dem vorliegenden Verfahren werden Tonmineralien zum Abtrennen der Algen aus einer wässrigen Phase verwendet.
Tonmineralien werden allgemein in Abhängigkeit von der Schichtstruktur in verschiedene Gruppen eingeteilt. Dazu gehören die Gruppe der Kaolinite, Smektite, lllite und Chlorite.
Ein bekannter Vertreter der Tonmineralinen ist das Montmorillonit, welches als dioktaedrisches Dreischicht-Silikat mit Aufbau Tetraederschicht - Oktaederschicht - Tetraederschicht der Gruppe der Smektide angehört. Montmorrillonit ist ein Dreischicht- Silikat, welches ein großes Quellvermögen und Thixotropie aufweist. Im vollständig delaminierten Zustand kann er eine zugängliche Oberfläche von bis zu 750 m2/g erreichen. Montmorillonit ist des lonenaustausches und der chemischen und physikalischen Adsorption fähig. Die Adsorption erfolgt größtenteils über van-der-Waals- Kräfte und über Wasserstoffbrückenbindungen.
Die Bindung von organischen Substanzen an Montmorillonit vollzieht sich gewöhnlich durch mehrere Mechanismen unter Beteiligung der physikalischen Adsorption und Chemosorption. Kationische Substanzen werden bevorzugt gegen die im Montmorillonit enthaltenen Kationen ausgetauscht sowie mittels Chemosorption an das Montmorillonit gebunden. Diese Mechanismen sind vom pH-Wert gesteuert. Die Bindung von anionischen Substanzen an Montmorillonit erfolgt bevorzugt durch physikalische Adsorption, so dass die Substanz rasch freigesetzt werden kann. Nichtionische Substanzen werden häufig über van-der-Waals- Kräfte und Wasserstoffbrücken-Bindungen an den Montmorillonit gebunden.
Montmorillonit verfügt über eine bemerkenswerte Quellfähigkeit. Wasser bewirkt, dass sich die Zwischenschichtkationen durch Hydrathüllen aufbauen können. Der Quellvorgang wird als „interkristalline Quellung" bezeichnet. Natrium-Montmorillonit kann das sechs- bis siebenfache seiner Trockenmasse an Flüssigkeit aufnehmen. In Gegenwart von noch geringen Mengen an Lösungsmittel bleiben die Schichten gut geordnet, steigt aber das Lösungsmittelangebot, so geht der Ordnungszustand zunehmend verloren.
Aufgrund der aufgezeigten physikochemischen Eigenschaften wird insbesondere Montmorillonit als pharmazeutischer Hilfsstoff und als bioaktiver Wirkstoff, insbesondere als Detoxifikans, verwendet. Auch können chemische Wirkstoffe gebunden und somit zur Arzneimittelzubereitung eingesetzt werden.
Illit ist das häufigste und verbreitetste Tonmineral und findet sich meist in Böden. Es ist gleichfalls ein dioktaedrisches Dreischicht-Silikat und zeigt eine enge Verwandschaft zu den Glimmern. Es entsteht vielfach aus gesteinsbildenden Alumosilikaten durch diagenetische oder hydrothermale Prozesse und bildet die Hauptkomponente vieler mariner Tone. Ihre negative Schichtladung kommt außer durch Si-Al-Ersatz in den Tetraedern auch durch Ersatz von Al3+ durch Mg2+ und Fe2+ in den Oktaedern zustande. Werden Illit-Teilchen gebrochen, ergeben sich zusätzliche positive Kantenladungen.
Die häufig in der Natur vorkommenden mineralischen Verbindungen bzw. Matrizen, mit Wechsellagerungstonminerale (Mixedlayer) als Hauptbestandteil, werden auf Grund ihrer im Vergleich zu reinen Montmorillonitschichten geringeren messbaren spezifischen Oberflächen, Quellvermögen und Kationenaustauschkapazitäten seltener für adsorptive und katalytische Applikationen verwandt.
Es hat sich nunmehr herausgestellt, dass natürlich vorkommende mineralische Verbindungen bzw. Matrizen mariner Genese aus Mixedlayer oder Wechsellagerungsmineralien bestehen, die sich aus quellfähigen und nichtquellfähigen Schichten in unregelmäßiger Folge zusammensetzen und die ggf. noch anderen Minerale wie Silikate, Oxide, Carbonate, Sulfide und Sulfate enthalten, nach einer entsprechenden Aufbereitung durchaus adsorptive und andere interessante Eigenschaften aufweisen.
Mixedlayer können strukturell aus sehr unterschiedlichen Wechsellagerungsschichten bestehen z.B. Kaolinit/Smektit, Chlorit/Vermikulit, Glimmer/Vermikulit oder sehr häufig Wechsellagerung von Illit/Smektit oder Illit/Montmorillonit. Dadurch sind vielfältigere Austauschreaktionen von Kationen und Anionen möglich als bei reinen Montmorilloniten.
In einer Ausführungsform der vorliegenden Erfindung wird ein Tonmineral in Form eines Wechsellagerungstonminerals verwendet.
Besonders bevorzugt kommt dabei ein Wechsellagerungstonmineral aus Montmorillonit und Illit/Muskovit zum Einsatz, wobei in diesem Wechsellagerungsmineral Montmorillonit und Illit/Muskovit in einem Verhältnis von 60:40 bis 40:60 enthalten sein können, wobei ein Verhältnis von 50:50 bevorzugt ist. Dass heißt, das Montmorillonit und Illit/Muskovit zu jeweils 50 Gew% enthalten sein können.
Zusätzlich zu den Mineralien Montmorillonit und Illit/Muskovit kann das bevorzugt verwendete Tonmineral auch Anteile von anderen Tonmineralien, wie Kaolinite und Chlorite, Carbonate, Sulfide, Oxide und Sulfate aufweisen.
In einer bevorzugten Ausführungsform weist das Tonmineral ein Fe2+ / Fe3+ - Verhältnis zwischen 0,3 und 1 ,0, bevorzugt 0,45 und 1 ,0 auf. So ist in dem vorliegenden Tonmineral Verbindung das Fe2+ / Fe3+ - Verhältnis um das ca. 10fache höher als in anderen bekannten Tonmineralien und weist aufgrund dieses erhöhten Fe2+ / Fe3+ - Verhältnisses zusätzlich ein hohes natürliches antioxidatives Potential auf.
In einer besonders bevorzugten Ausführungsform umfasst das vorliegende Tonmineral durchschnittlich 50-60 Gew%, bevorzugt 55 Gew% Montmorillonit-Muskovit- Wechsellagerung, 15-25 Gew%, bevorzugt 20 Gew % lllit. 5-9 Gew%, bevorzugt 5 Gew% Kaolinit/Chlorit, 10-20 Gew%, bevorzugt 15 Gew% Quarz, 1 -2 Gew%, bevorzugt 1 Gew% Calcit, 0,9-1 ,5, bevorzugt 1 Gew% Dolomit, 0,9-1 ,9 Gew%, bevorzugt 1 Gew% Feldspat, 0,9 - 1 ,0 Gew%, bevorzugt 1 Gew% Pyrit und 0,6-1 ,0 Gew%, bevorzugt 1 Gew% Gips. Die chemische Zusammensetzung der Hauptelemente kann in Gew% wie folgt angegeben werden: Si02 57,9-59,5; Al203 17,0-18,5; Fe203 5,9-7,0; K20 2,8-3,5; MgO 1 ,5-2,6; Na20 0,9- 1 ,5; Ti02 0,6-1 ,5; CaO 0,25-0,35; P205 0,09-0,15; Sonstige 8,9-10,5.
Das bevorzugt verwendete Tonmineral weist eine innere (BET)-Oberfläche von 50 -100 m2/g, bevorzugt 55 - 65 m2/g, insbesondere bevorzugt von 60 m2/g auf. Die innere Oberfläche des bevorzugt verwendeten Tonminerals ist somit z.B. im Vergleich zu den hochquellfähigen Montmorilloniten relativ gering. Die mittlere Teilchengröße der bevorzugt verwendeten mineralischen Verbindung kann in einem Bereich von 0,1 bis 10 μηι, bevorzugt 0,5 bis 1 μηι, insbesondere bei 0,5 μηι liegen.
Das bevorzugt verwendete Tonmineral wird aus den in Deutschland in Mecklenburg- Vorpommern, genauer in der Nähe von Friedland im östlichen Teil der Mecklenburgischen Seenplatte, vorhandenen Tonvorkommen isoliert und aufbereitet.
Das bevorzugt verwendete Tonmineral weist, wie bereits oben erwähnt, einzigartige Eigenschaften auf, in denen es sich von anderen mineralischen Matrizen wie Bentonit oder Montmorillonit wesentlich unterscheidet.
So ist das vorliegend verwendete Tonmineral nicht nur in der Lage, Kationen in den vorhandenen Montmorillonitschichten auszutauschen, sondern auch Anionen zu binden. Der Wirkmechanismus der vorliegend zum Einsatz kommenden mineralischen Verbindung ist daher ein anderer als bei Bentoniten. So werden z.B. anionische Stoffe besonders gut an den Bruchkanten der in der verwendeten mineralischen Verbindung enthaltenen Illite/Muskovite locker gebunden. Ursache dafür sind fehlende bzw. herausgeschlagene Kaliumionen, die im Mineralverbund für einen Ladungsausgleich sorgen. So entstehen positive Ladungen, an denen Anionen locker gebunden werden können. Da bioaktive Anionen eine relativ hohe Molekularmasse und damit Durchmesser aufweisen, sind die an den Bruchkanten entstandenen Vertiefungen nicht groß genug, um eine feste Bindung zu realisieren. Dies gelingt nur mit kleineren Molekülen, wie die sehr hohe Adsorptionskraft für insbesondere sauerstoffhaltige Molekülanionen wie Phosphat P04 3~, Nitrat N03 ", Nitrit N02 " und andere beweist. Hier spielen auch die Fe2+ -Ionen an den Bruchkanten eine entscheidende Rolle, da diese als Gegenionen fungieren können.
Je höher die positive Kantenladung, umso besser ist der Abscheidegrad von den Algen, insbesondere der Mikroalgen. Die oberflächlich negativ geladenen Algenzellen werden über van-der-Waals- Kräfte locker an den positiv geladenen Tonkanten, die Ladungen von Fe , Fe3+, Al3+, Mg2+ aufweisen, gebunden.
In einer Ausführungsform werden 1 kg bis 15 kg, bevorzugt 2 kg bis 10 kg, insbesondere bevorzugt 3 bis 8 kg des Tonminerals pro kg Algentrockenmasse in der wässrigen Phase (eine wässrige Phase von 1000 I mit einem Algengehalt von 0,3% entspricht 3 kg Algentrockenmasse) zugegeben.
In einer Ausführungsform des vorliegenden Verfahrens weist die wässrige Phase einen Algenanteil zwischen 0,01 und 5 Massen%, bevorzugt zwischen 0,1 und 1 ,5 Massen%, insbesondere bevorzugt zwischen 0,1 und 0,6 Massen% auf. Somit sind typischerweise bis zu 99,99% der wässrigen Phase Wasser und die Konzentration an Algen in der wässrigen Phase entsprechend gering.
Bevorzugterweise wird dem mindestens einen Tonmineral mindestens ein mehrwertiges Kation, insbesondere einen zwei- oder dreiwertigem Kation, zugegeben bzw. wird eine Mischung aus Tonmineral und Kation hergestellt. Das mehrwertige Kation ist dabei bevorzugterweise ausgewählt aus einer Gruppe enthaltend Fe2+, Ca2+, Mg2+, Fe3+ und Al3+. Durch Zugabe der mehrwertigen Kationen wird insbesondere die Sedimentation bzw. Ausflockung des Alge-Tonmineral-Verbundes unterstützt, wie weiter unten noch ausführlicher beschreiben.
Das mehrwertige Kation kann in Form eines Chlorid-Salzes und/oder Sulfat-Salzes zugegeben, wobei besonders die Zugabe von MgCI2 und MgS04 bevorzugt ist. Die Menge an zugegebenen Salz, insbesondere an MgCI2 oder MgS04 beträgt bevorzugt 1 kg bis 10 kg, bevorzugt 1 kg bis 5 kg, insbesondere bevorzugt 2 kg pro kg Algentrockenmasse in der wässrigen Phase.
Durch die bevorzugte Verwendung von Magnesiumchlorid kommt es zu einer Brückenbildung zwischen den negativen Oberflächen des Tonminerals und den Algen. Es entstehen Flocken aus Alge-Ton-Magnesium, die relativ schnell sedimentieren. Die ausfallenden Flocken aus Alge-Ton-Magnesium schließen andere disperse Stoffe, wie sehr feine Tonteilchen, in die entstehenden Flocken ein. Man erhält ein vollständig geklärtes Prozesswasser aus der Biomasseproduktion mit einem neutralen pH-Wert, das wiederverwendet werden kann und z.B. für eine Kreislauffahrweise genutzt werden kann. Die Verwendung von MgCI2 hat den weiteren Vorteil, dass bei einer späteren Verwendung des abgeschiedenen Systems aus Algen und Tonmineral als Nahrungsergänzung für Tier und Mensch eine zusätzliche Magnesium-Quelle bereitgestellt wird. Dies ist von Vorteil, das Magnesium essentiell für Mensch und Tier ist.
Das vorliegende Verfahren erfüllt somit eine Reihe von Bedingungen bzw. Vorraussetzungen, die eine effiziente Algenabtrennung ermöglichen und gleichzeitig zur Bildung eines biomineralischen Verbundssystems und deren weiteren Nutzung beitragen. So werden nur solche Materialien für die Bildung des Bio-Mineralischen Verbundsystems verwendet werden, die die Gesundheit von Mensch und Tier nicht gefährden. Die Bestandteile des Verbundsystems ergänzen sich synergetisch und weisen positive Wirkungen auf den Gesundheitszustand auf. Die mineralische Verbindung als Bestandteil des Verbundsystems dient gleichzeitig als Konzentrierungshilfsmittel für die Mikroalgenbiomasse. Zur Flocculation werden nur solche mehrwertigen Metallionen genutzt werden, die für Mensch und Tier essentiell sind. Die Wiederverwendung des Prozesswassers aus der Aigenbiomasseproduktion wird gewährleistet. Der Konzentrierungsprozess läuft bei neutralem pH-Wert ab.
Das Vermischen des Tonminerals als Adsorptionsmittel und der sich in der wässrigen Phase befindlichen Algen erfolgt bevorzugt unter Verwendung eines Rührwerkes oder einer Einrichtung zur optimalen Flockenbildung, wie z.B. der FlocFormer der Firma Cutec.
Durch das Vermischen des Tonminerals mit der die Algen enthaltenden wässrigen Phase kommt es zur Ausbildung einer Suspension. Unter einer Suspension wird allgemein ein heterogenes Stoffgemisch aus einer Flüssigkeit und darin fein verteilten Festkörpern verstanden. Eine Suspension ist eine grobdisperse Dispersion und tendiert zur Sedimentation und Phasentrennung.
Wie beschrieben, wird die sich der Suspensionsausbildung anschließende gravitationsbedingte Sedimentation durch Zugabe von mehrwertigen Kationen unterstützt.
Die Sedimentationsgeschwindigkeit ist darüber hinaus von geometrischen Faktoren der für die Adsorption und Sedimentation verwendeten Vorrichtung, den Eigenschaften des als Adsorptionsmittels verwendeten Tonminerals und weiteren unterstützenden Maßnahmen abhängig und beträgt unter optimalen Bedingungen mindestens 1 ,2cm/min, bevorzugt mindestens 1 ,5cm/min. Das Sediment aus auf dem Tonmineral adsorbierten Algen setzt sich als Feststoff ab, wobei das Ende des Absetzvorganges über die Trübung des wässrigen Überstandes photometrisch gemessen wird.
Das Algen-Tonmineral-Sediment wird bevorzugt in Form eines Dickstoffgemisches, bevorzugt mit einem Wassergehalt von 50-60% in Schritt c) abgetrennt. Die Konzentration der Algen, insbesondere der Mikroalgen wird durch die Kombination von Adsorption und anschließender Sedimentation um mindestens den Faktor 30, bevorzugt um den Faktor 50 erhöht.
Durch die Flockung des Algen-Ton-Magnesium-Komplexes im Schwerkraftfeld kann je nach Wartezeit das Prozesswasser bis zu 90% abgetrennt werden. In der verbleibenden Alge- Tonmineral-Suspension kann ein Restwassergehalt von 70 bis 90 Ma% erreicht werden, d.h., 10 bis 30% Trockenmasse besteht aus dem Algen-Tonmineral-opt. Magnesium- Komplex.
In einem weiteren Verfahrensschritt ist es möglich, den Algen-Tonmineral-Komplex, der bevorzugt mit Kationen wie Magnesium-Ionen versehen ist, in einem Zentrifugalfeld >500G wieder in seine Einzelteile zu trennen. Damit ist es möglich, reine Algenkonzentrate herzustellen. Die abgetrennten Tonteilchen können dem Flockungsprozess wieder zugeführt werden. Diese zentrifugale Behandlung des Algen-Tonmineral-Komplexes kann vor der Abtrennung vom wässrigen Überstand als auch nach der Abtrennung vom wässrigen Überstand vorgenommen werden.
In einer weiteren Variante des Verfahrens ist es möglich, das Sediment aus Algen und Tonmineral mittels einer Vibrationsbehandlung zu verdichten. Dies kann vor der Abtrennung des Sedimentes vom wässrigen Überstand als auch nach der Abtrennung erfolgen. Eine nachträgliche Vibrationsbehandlung mit einer Frequenz von 500 bis 1000 min"1 verdichtet den Algen-Ton-Komplex weiter bis zu einem Restwassergehalt von 50 bis 60 Ma%. Diese zähflüssige Suspension ist gut geeignet für den Aufschluss der Algenzellen mit einem Hochdruckspalthomogenisator oder im Hochleistungsultraschallfeld.
Nach dem Flockungs- und Verdichtungsprozess liegt ein pumpfähiger, gelartiger Alge-Ton- Magnesium-Komplex zur weiteren Verarbeitung vor. Die Abtrennung des Sediments aus Algen und Tonmineral vom wässrigen Überstand kann z.B. mittels Dekantieren oder anderen, einem Fachmann bekannten Abtrennverfahren vorgenommen werden. Der abgetrennte wässrige Überstand wird aufbereitet und der Produktion der Algen wieder zugeführt.
In einer anderen Variante des vorliegenden Verfahrens kann das in Schritt c) abgetrennte Sediment aus auf dem Tonmineral adsorbierten Algen in einem weiteren Schritt mittels Ultraschall behandelt werden. Die Ultraschallbehandlung in diesem Schritt bewirkt zum einen eine Homogenisierung des abgetrennten Sediments und zum anderen einen Zellaufschluss der Mikroorganismen wie z.B. der Mikroalgen zur Freisetzung von darin enthaltenden bioaktiven Stoffen. Die während des Aufschlussprozesses freigesetzten bioaktiven Stoffe werden in die Ton-Gel-Matrix eingelagert und dadurch vor Umwelteinflüssen geschützt. Es entsteht ein Bio-Mineralischer Algen-Tonmineral-opt. Magnesium-Komplex.
Anschließend kann das gemäß Schritt c) abgetrennte Algen-Tonmineral-Sediment und/oder das mittels Ultraschall behandelte Algen-Tonmineral-Sediment bevorzugterweise in einem Trocknungsschritt getrocknet werden. Die Trocknung kann mittels an sich bekannter Verfahren wie Sprühtrocknung, Bandtrockner oder im Trockenschrank durchgeführt werden.
Eine bevorzugte Trocknungsmethode ist die Vakuumtrocknung. Die Trocknungstemperaturen sollten 50°C nicht überschreiten. Durch ständiges Bewegen in einer dünnen Schicht wird die Trocknungsenergie optimal ausgenutzt.
Ein weiteres geeignetes Trocknungsverfahren stellt die Sprühtrocknung dar. Die hochkonzentrierte z.B. 50%ige Algen-Mineral-Suspension ist pumpfähig und kann dem Trocknungsapparat zugeführt werden. Durch das Eindüsen entsteht eine hohe Trocknungsoberfläche, die eine außerordentlich schnelle und schonende Trocknung gewährleistet. Beim Trocknen kontrahiert das Mineral, insbesondere das gequollene Tonmineral, und schließt die aufgeschlossenen Bestandteile der Mikroorganismen, insbesondere der Mikroalgen durch Bildung von Granulaten ein.
Die Trocknung erfolgt bevorzugterweise bis zu einer Endfeuchte des Algen-Tonmineral- Sedimentes von etwa 5 bis 15 Ma% H20-Gehalt, insbesondere von 6 bis 9 Ma% H20-Gehalt. Der Algengehalt des getrockneten Algen-Tonmineral-Sedimentes kann zwischen 10-50 Ma%, bevorzugt 20 bis 40 Ma%, insbesondere 35 Ma% betragen. So kann der Trocknungsvorgang bei einer Restfeuchte von ca. 6 Ma% beendet werden, wobei ein Bio-Mineralisches Verbundsystem aus Algen, Ton und ggf. Magnesium mit einem Algenanteil von ca. 35 Ma% erhalten wird.
Durch den Trocknungsvorgang wird das Wasser aus dem Adsorptionsmittel, wie z.B. den Schichtzwischenräumen von Tonmineralien entfernt und die bioaktiven Stoffe, die nicht durch physikalische Adsorption akkumuliert wurden, durch einen formschlüssigen Verbund gebunden. Es entsteht ein reversibles, biomineralisches Verbundsystem. In Folge der Adsorption und Trocknung wird ein Stoff- und formschlüssiger Verbund zwischen den Teilchen des Minerals und den adsorbierten und eingeschlossenen bioaktiven Stoffen der Mikroorganismen hergestellt.
Es kommt dabei zur Ausbildung von reversiblen Aggregaten, die durch Zugabe eines geeigneten Lösungsmittels, insbesondere von Wasser, in Dispersion gebracht bzw. desaggregiert werden können.
Das getrocknete Sediment aus Mikroorganismen wie z.B. Mikroalgen und Adsorptionsmittel, wie z.B. Tonmineral, aufgeschlossen oder nicht-aufgeschlossen, kann anschließend verpackt und versand werden.
In einer besonders bevorzugten Ausführungsform umfasst das vorliegende Verfahren die folgenden Schritte:
- Zugabe von mindestens einem Tonmineral, insbesondere einem aufbereiteten Wechsellagerungstonmineral, zur wässrigen, Algen enthaltenden, Phase und Vermischen der selbigen zur Koagulation von Tonteilchen und Alge,
- Zugabe eines Metallsalzes zur Brückenbildung zwischen den negativ geladenen Teilchen und der optimalen Ausbildung von Flocken,
- Sedimentation der gebildeten Flocken aus Algen, Tonmineral und Metallsalz im Schwerkraft- und/oder Zentrifugalfeld, und
- Verdichtung des Sediments aus Algen und Tonmineral mittels einer Vibrationsbehandlung. Vollständige Trennung des Algen-Ton-Metallion-Komplexes im starken Zentrifugalfeld in Alge und Tonmineral oder
- Algenaufschluss innerhalb des gelartigen Alge-Ton-Metallion-Komplexes mittels eines Hochdruckspalthomogenisators oder im Hochleistungsultraschallfeld.
Die mittels des vorliegenden Verfahrens hergestellte Zusammensetzung aus Algen, insbesondere Mikroalgen, und mindestens einem Tonmineral sind zur Herstellung von Futtermitteln, Nahrungsergänzüngsmitteln und/oder pharmakologisch wirksamen Mitteln einsetzbar.
An Tiermodellen konnte nachgewiesen werden, dass aufgeschlossene Algenzellen eine wesentlich bessere Verdaubarkeit und Wirksamkeit aufweisen. Sowohl die Zellinhaltsstoffe als auch die bioaktiven Substanzen in der Zellmembran können Wirkstoffe darstellen.
In dem vorliegenden Bio-Mineralischen Verbundsystem hat das Tonmineral zwei Aufgaben: die erste Aufgabe ist die Funktion eines Drug Delivery Systems. Die locker in die mineralische Matrix eingebauten bioaktiven Stoffe der Alge werden bei der Magenpassage vor der Zerstörung durch die Magensäure geschützt. Bei einem pH-Wert von ca. 7,5 im Dünndarm quellt der Ton und gibt die bioaktiven Stoffe wieder frei. Danach dient der Ton als zweite Aufgabe als Toxic Clearance System für Toxine im Magen-Darm-Trakt. Dies gilt sowohl für die humane als auch für die Veterinäre Anwendung.
Das vorliegende Verfahren wird bevorzugterweise in einer Vorrichtung mit den Merkmalen des Anspruchs 19 durchgeführt.
Entsprechend umfasst die Vorrichtung zur Durchführung eines Verfahrens zum Abtrennen von Algen aus einer wässrigen Phase mindestens zwei miteinander gekoppelte Abschnitte, wobei ein erster Abschnitt bezogen auf die Gravitationsrichtung oberhalb des zweiten Abschnitt angeordnet ist. Der erste Abschnitt und der zweite Abschnitt können einstückig miteinander z.B. in Form eines Reaktors ausgebildet sein oder können auch räumlich getrennt voneinander z.B. in Form von zwei separaten Behältern angeordnet sein.
Der mindestens erste Abschnitt besteht aus mindestens einem Behälter zur Aufnahme der wässrigen die Algen enthaltenden Phase und des mindestens einen Tonminerals als Adsorptionsmittels, und der mindestens zweite Abschnitt besteht aus mindestens einer Röhre zur Sedimentation der im ersten Bereich gebildeten wässrigen Suspension aus Algen und Adsorptionsmittel.
In einer Variante weist der erste Abschnitt in Form eines Behälters mindestens einen Zulauf für die wässrige, die Algen enthaltende Phase, mindestens eine Öffnung zur Zugabe des Adsorptionsmittels und ggf. mindestens ein Rührwerk auf. In diesem Behälter kann somit das Mischen der Biomasse aus Algen mit dem Adsorptionsmittel sowie die Zugabe eines mehrwertigen Kation-Salzes und zum Beginn der Sedimentation erfolgen. Dieser erste Abschnitt wird auch turbulente Durchmischungszone genannt.
In einer weiteren Variante umfasst der zweite Abschnitt der Vorrichtung ein Röhrensystem aus mindestens 2 Röhren, bevorzugt aus 2 bis 10 Röhren, insbesondere bevorzugt aus 2 bis 5 Röhren. Das Röhrensystem ermöglicht eine laminare Sedimentation, so dass die Sedimentation des mit den Algen behafteten Tonminerals frei von Strömungseinflüssen ist und am Boden der jeweiligen Röhren des Röhrensystems erfolgt. Der zweite Abschnitt kann somit in eine laminare Absetzzone und in eine Verdichtungszone aufgeteilt werden.
Darüber hinaus kann die vorliegende Vorrichtung einen mit dem zweiten Abschnitt, d.h. dem Röhrensystem gekoppelten dritten Abschnitt zur Entnahme des am Boden des zweiten Abschnitts angesammelten Mikroorganismen-Adsorptionsmittel-Sedimentes in Form einer Entnahmekammer aufweisen. Die Entnahmekammer weist eine zur Entnahme des Sedimentes geeignete Öffnung z.B. in Form eines Ventilhahnes auf, die manuell oder photometrisch gesteuert werden kann.
Die vorliegende Erfindung wird nachfolgend anhand mehrerer Ausführungsbeispiele unter Bezugnahme auf die Figur näher erläutert. Es zeigt
Figur 1 eine schematische Darstellung einer Vorrichtung geeignet zur Durchführung des erfindungsgemäßen Verfahrens.
Figur 1 zeigt eine bevorzugte Ausführungsform einer Vorrichtung 1 in Form eines Absetzapparates geeignet zur Durchführung des erfindungsgemäßen Verfahrens. Die Vorrichtung 1 umfasst zwei miteinander gekoppelte Abschnitte 2, 3, wobei der erste Abschnitt 2 bezogen auf die Gravitationsrichtung oberhalb des zweiten Abschnitts 3 angeordnet ist. Der erste Abschnitt 2 besteht aus mindestens einem zylindrischen Behälters zur Aufnahme der wässrigen, Mikroalgen enthaltenden Phase 4 und eines Tonminerals 5 als Adsorptionsmittels. Der zweite Abschnitt 3 besteht aus einem Röhrensystem aus fünf parallel zueinander verlaufenden Röhren zur Sedimentation der im ersten Bereich 2 gebildeten wässrigen Suspension aus Mikroalgen und Tonmineral.
Der erste Abschnitt 2 in Form eines zylindrischen Behälters weist einen Zulauf für die mikroalgenhaltige wässrige Phase 4 und eine Öffnung in Form einer Schüttöffnung zur Zugabe des Tonminerals 5 auf, durch welche auch das MgCI2 zugeführt wird.
Darüber hinaus verfügt der Behälter 2 in der Ausführungsform der Figur 1 über ein Rührwerk 6. Im Behälter 2 erfolgen somit das Mischen der Biomasse aus Mikroalgen, Tonmineral und MgCI2. Dieser Bereich kann auch als turbulente Durchmischungszone angesehen werden.
Nach Einstellung des geeigneten isoelektrischen Punktes beginnt unmittelbar die gravitationsgesteuerte Sedimentation von auf dem Tonmineral 5 adsorbierten Mikroalgen 4 in den Röhren des Röhrensystems 3. Das Röhrensystem ermöglicht eine laminare Sedimentation, so dass die Sedimentation des mit den Mikroalgen behafteten Adsorptionsmittels in der laminaren Absetzzone 3b frei von Strömungseinflüssen ist.
Das sich in der Verdichtungszone 7 im unteren Bereich des Röhrensystems 3 abgesetzte Sediment wird in einer an das Röhrensystem 3 gekoppelten Entnahmekammer 8 aus der Vorrichtung 1 entnommen. Die Entnahmekammer 8 weist eine zur Entnahme des Sedimentes geeignete Öffnung z.B. in Form eines Ventilhahnes auf, die manuell oder photometrisch gesteuert werden kann.
Ausführunqsbeispiel 1
Eine wässrige Phase mit einem Mikroalgenbiomasseanteil von 0,3% wird mit 9-12 kg Tonmehl pro 1 .000 Liter Algenbiomasse versetzt und unter Verwendung eines Rührwerkes intensiv miteinander im Prozessbehälter 2 des Absetzapparates 1 vermischt. Die so entstandene Suspension aus Mikroalgen und Tonmehl wird danach im Ruhezustand seinen Feststoffanteil aus Mikroalgen und Ton sedimentieren. Der Feststoff sedimentiert in den Röhren 3 unterhalb des Prozessbehälters 2, wobei es nicht darauf ankommt, dass alle Röhren gleich viel Feststoff aufnehmen. Wichtig ist, dass das Sedimentieren frei von Strömung erfolgen kann. Der Prozess des Sedimentierens kann als abgeschlossen gelten, wenn der Feststoff sich in Form eines Dickstoffgemischs am Fu ße der Röhren gesammelt hat und im oberen Bereich nur noch eine leichte Trübung zu messen ist.
Der Dickstoff aus Mikroalgen und Ton wird aus der Entnahmekammer 8 der Absetzapparatur 1 über einen Ventilhahn entnommen und weist eine Feuchtigkeit von rund 50% H20 auf.
Die weitere Verarbeitung erfolgt mittels Sprühtrocknung bei einer kurzzeitigen Trocknungstemperatur von bis zu Ι δδ'Ό. Die getrocknete Zusammensetzung wird anschließend pelletisiert.
Bei Einsatz von einer Ausgangsmasse an Mikroalgen mit einem Feststoffanteil von 0,3 % ergeben sich so 3 kg Algentrockenmasse pro 1000 I Algenbiomasse und bei Zugabe von 9 - 12 kg Tonmehl pro 1000 I Algenbiomasse ergeben sich 12-15 kg Trockenmasse des Wirkstoffgemisches.
Ausführunqsbeispiel 2
Eine wässrige Phase mit einem Mikroalgenbiomasseanteil von 0,3%, entspricht 3kg Algentrockenmasse, wird mit 6 kg aufbereitetes Tonmineral pro 1 .000 Liter Algenbiomasse versetzt und unter Verwendung eines Rührwerkes intensiv miteinander im Prozessbehälter 2 des Absetzapparates 1 vermischt. Es kommt zu Koagulation von Algen und Tonteilchen. Anschließend wird der Algen-Ton-Suspension 6kg MgCI2 * 6H20 zugemischt. Es entstehen Brücken zwischen den negativ geladenen Teilchen mit Hilfe des positiv geladenen Magnesium-Ions. Die so entstandenen Flocken aus Mikroalgen, Mineralsalz und Tonmineral fangen an zu sedimentieren. Der Flockenkomplex sedimentiert in den Röhren 3 unterhalb des Prozessbehälters 2, wobei es nicht darauf ankommt, dass alle Röhren gleich viel Feststoff aufnehmen. Wichtig ist, dass das Sedimentieren frei von Strömung erfolgen kann.
Der Prozess des Sedimentierens kann als abgeschlossen gelten, wenn der Feststoff sich in Form eines Dickstoffgemischs am Fu ße der Röhren gesammelt hat und im oberen Bereich nur noch ein klarer Überstand zu sehen ist. Das flockige Sediment aus Mikroalgen, Mineralsalz und Tonmineral wird durch eine Vibrationsbehandlung bei ca. 800 min"1 weiter verdichtet. Der Dickstoff aus Mikroalgen und Ton wird aus der Entnahmekammer 8 der Absetzapparatur 1 über einen Ventilhahn entnommen und weist eine Feuchtigkeit von rund 50% H20 auf.
Die weitere Verarbeitung erfolgt mittels Vakuumtrocknung bei einer Oberflächentemperatur von 50 'Ό in einer dünnen bewegten Schicht. Bei einer Restfeuchte von 6 Ma% können ca. 10kg des Bio-Mineralische Verbundsystems aus Alge, Magnesium und Tonmineral rieselfähig dem Apparat entnommen werden.

Claims

Patentansprüche
1 . Verfahren zum Abtrennen von Algen, insbesondere Mikroalgen, aus einer wässrigen Phase gekennzeichnet durch die Verfahrensschritte a) Zugabe von mindestens einem Tonmineral, insbesondere einem Wechsellagerungstonmineral, zur wässrigen, Algen enthaltenden Phase und Vermischen derselbigen, b) Sedimentation der gebildeten wässrigen Suspension aus Algen und Tonmineral unter Ausbildung eines wässrigen Überstandes, und c) Abtrennung des Sediments aus Algen und Tonmineral von dem wässrigen Überstand.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die wässrige Phase einen Algenanteil zwischen 0,01 und 5 Massen%, bevorzugt zwischen 0,1 und 1 ,5 Massen%, insbesondere bevorzugt zwischen 0,1 und 0,6 Massen% aufweist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das mindestens eine Tonmineral in einer Mischung mit mindestens einem mehrwertigen Kation, insbesondere einen zwei- oder dreiwertigem Kation, der wässrigen Algenphase zugegeben wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das mehrwertige Kation ausgewählt ist aus einer Gruppe enthaltend Fe2+, Ca2+, Mg2+, Fe3+ oder Al3+.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das mehrwertige Kation in Form eines Chlorid-Salzes und/oder Sulfat-Salzes zugegeben wird.
6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass das Salz des mehrwertigen Kations, insbesondere MgCI2 oder MgS04 in einer Menge von 1 kg bis 10 kg, bevorzugt 1 kg bis 5 kg, insbesondere bevorzugt 2 kg pro kg Algentrockenmasse in der wässrigen Phase verwendet wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Tonmineral ein Wechsellagerungstonmineral bestehend aus Montmorillonit und Illit/Muskovit verwendet wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Tonmineral ein Wechsellagerungstonmineral umfassend Montmorillonit und Illit/Muskovit zu jeweils mindestens 50 Gew% verwendet wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Tonmineral weitere Tonminerale wie Kaolinite und Chlorite enthält.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Tonmineral ein Fe2+ / Fe3+ - Verhältnis zwischen 0,3 und 1 , 0, bevorzugt 0,45 und 1 ,0 aufweist.
1 1 . Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Tonmineral 50-60 Gew% Montmorillonit-Muskovit-WL, 15-25 Gew% Illit/Muskovit, 5-9 Gew% Kaolinit/Chlorit, 10-20 Gew% Quarz, 1 -2 Gew% Calcit, 0,9- 1 ,5 Gew% Dolomit, 0,9-1 ,9 Gew% Feldspat, 0,9-2,0 Gew% Pyrit und 0,6-1 ,0 Gips umfasst.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Tonmineral eine BET-Oberfläche von 50 -100 m2/g, bevorzugt 55 -65 m2/g, insbesondere bevorzugt von 60 m2/g aufweist.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Tonmineral Partikel mit einer mittleren Teilchengröße von 0,1 bis 10 μηι, bevorzugt 0,5 bis 1 μιτι, insbesondere von 0,5 μηι umfasst.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Algen-Tonmineral-Sediment in Form eines Dickstoffgemisches in Schritt c) abgetrennt wird.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das in Schritt c) abgetrennte Algen-Tonmineral-Sediment in einem weiteren Schritt mittels Vibration behandelt und verdichtet wird.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das gemäß Schritt c) abgetrennte Algen-Tonmineral-Sediment und/oder mittels Vibration behandelte Algen-Tonmineral-Sediment zur Auftrennung von Alge und Tonmineral zentrifugiert wird.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Algen des Algen-Tonmineral-Sediment aufgeschlossen werden.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Algen-Tonmineral-Sediment, insbesondere das aufgeschlossene Algen- Tonmineral-Sediment getrocknet wird.
19. Vorrichtung (1 ) zur Durchführung eines Verfahrens mit den Verfahrensschritten nach einem der vorhergehenden Ansprüche umfassend
- mindestens zwei miteinander gekoppelte Abschnitte (2, 3), wobei der erste Abschnitt (2) bezogen auf die Gravitationsrichtung oberhalb des zweiten Abschnitt (3) angeordnet ist, und wobei
- der mindestens erste Abschnitt (2) aus mindestens einem Behälter zur Aufnahme der wässrigen, Algen enthaltenden Phase (4) und des mindestens einem Tonmineral (5) besteht, und
- der mindestens zweite Abschnitt (3) aus mindestens einer Röhre (3a) zur Sedimentation der im ersten Bereich (2) gebildeten wässrigen Suspension aus Algen und Tonmineral besteht.
20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass die mindestens zwei Abschnitte (2, 3) einstückig oder räumlich getrennt voneinander angeordnet sind.
21 . Vorrichtung nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass der zweite Abschnitt (3) aus mindestens einer Röhre (3a) in mindestens eine laminare Absetzzone (3b) und eine Verdichtungszone (7) unterteilt ist.
22. Vorrichtung nach einem der Ansprüche 19 bis 21 , dadurch gekennzeichnet, dass der erste Abschnitt (2) als turbulente Durchmischungszone mindestens einen Zulauf für die wässrige, Algen enthaltende Phase (4), mindestens eine Öffnung zur Zugabe des Tonminerals (5) und ggf. mindestens ein Rührwerk (6) aufweist.
23. Vorrichtung nach einem der Ansprüche 19 bis 22, dadurch gekennzeichnet, dass der zweite Abschnitt (3) ein Röhrensystem aus mindestens 2 Röhren, bevorzugt aus 2 bis 10 Röhren, insbesondere bevorzugt aus 2 bis 5 Röhren umfasst.
24. Vorrichtung nach einem der Ansprüche 19 bis 23, gekennzeichnet durch einen mit dem zweiten Abschnitt (3) gekoppelten dritten Abschnitt (8) zur Entnahme des im zweiten Abschnitt (3) gebildeten Algen-Tonmineral-Sedimentes.
25. Zusammensetzung aus Algen, insbesondere Mikroalgen, und mindestens einem Tonmineral, insbesondere in Form eines bio-mineralischen Verbundsystems hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 18.
26. Verwendung einer Zusammensetzung aus Algen, insbesondere Mikroalgen, und mindestens einem Tonmineral nach Anspruch 25 zur Herstellung von Futtermitteln, Nahrungsergänzüngsmitteln und/oder pharmakologisch wirksamen Mitteln.
EP12813287.5A 2011-11-25 2012-11-20 Verfahren zum abtrennen von algen, insbesondere mikroalgen aus einer wässrigen phase und eine vorrichtung zur durchführung dieses verfahrens Withdrawn EP2782992A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011087137A DE102011087137A1 (de) 2011-11-25 2011-11-25 Verfahren zum Abtrennen von Mikroorganismen aus einer wässrigen Phase und eine Vorrichtung zur Durchführung dieses Verfahrens
PCT/EP2012/073088 WO2013076072A2 (de) 2011-11-25 2012-11-20 Verfahren zum abtrennen von algen, insbesondere mikroalgen aus einer wässrigen phase und eine vorrichtung zur durchführung dieses verfahrens

Publications (1)

Publication Number Publication Date
EP2782992A2 true EP2782992A2 (de) 2014-10-01

Family

ID=47552951

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12813287.5A Withdrawn EP2782992A2 (de) 2011-11-25 2012-11-20 Verfahren zum abtrennen von algen, insbesondere mikroalgen aus einer wässrigen phase und eine vorrichtung zur durchführung dieses verfahrens

Country Status (3)

Country Link
EP (1) EP2782992A2 (de)
DE (1) DE102011087137A1 (de)
WO (1) WO2013076072A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101629882B1 (ko) * 2015-04-21 2016-06-13 가톨릭관동대학교산학협력단 마그네슘-세리사이트(Mg-Sericite) 응집제를 이용한 미세조류 수확방법
CN111068368A (zh) * 2020-01-15 2020-04-28 开封嘉骏生物科技有限公司 一种用于沉淀畜禽用中药提取液中杂质的组方及其应用
CN114604996B (zh) * 2022-03-09 2023-04-28 无锡工源环境科技股份有限公司 一种水体应用的蓝藻快速混凝气浮清除系统
CN115159683B (zh) * 2022-06-27 2023-05-16 生态环境部南京环境科学研究所 一种仿真式沉积物团聚体及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011000931A1 (de) * 2009-07-02 2011-01-06 Ernst-Moritz-Arndt-Universität Greifswald Biomasse aus cyanobakterien mit antimykotischer wirkung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD110612A1 (de) * 1974-03-21 1975-01-05
US4554390A (en) * 1981-10-07 1985-11-19 Commonwealth Scientific And Industrial Research Organization Method for harvesting algae
EP0874043A1 (de) * 1997-04-10 1998-10-28 Preussag AG Verfahren zur Herstellung von Biomasse mittels Photosynthese
US6524486B2 (en) 2000-12-27 2003-02-25 Sepal Technologies Ltd. Microalgae separator apparatus and method
WO2009082696A1 (en) * 2007-12-21 2009-07-02 Aurora Biofuels, Inc. Methods for concentrating microalgae
DE102008056094A1 (de) * 2008-11-04 2010-05-06 Fim Biotech Gmbh Verfahren zur Konzentrierung von bioaktiven Stoffen aus Pflanzen unter Verwendung von Mineralien und Bildung von reversiblen biomineralischen Verbundsystemen
DE102009030712A1 (de) 2009-06-26 2010-12-30 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur Entnahme von CO2 aus einem Rauch-oder Abgas eines Verbrennungsprozesses
ES2549390T3 (es) * 2010-06-17 2015-10-27 Neste Oil Oyj Un método para cosechar algas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011000931A1 (de) * 2009-07-02 2011-01-06 Ernst-Moritz-Arndt-Universität Greifswald Biomasse aus cyanobakterien mit antimykotischer wirkung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013076072A2 *

Also Published As

Publication number Publication date
DE102011087137A1 (de) 2013-05-29
WO2013076072A3 (de) 2013-09-26
WO2013076072A2 (de) 2013-05-30

Similar Documents

Publication Publication Date Title
DE69737463T2 (de) Sanierungsmaterial und sanierungsverfahren für sedimente
WO2008129079A2 (de) Biokatalysatoren, verfahren zu ihrer herstellung und ihre verwendung
DE202013012947U1 (de) Aufschlämmung zur Behandlung von Oxyanionenverunreinigungen im Wasser
EP2782992A2 (de) Verfahren zum abtrennen von algen, insbesondere mikroalgen aus einer wässrigen phase und eine vorrichtung zur durchführung dieses verfahrens
EP2828213A1 (de) Verfahren zur behandlung von klärschlamm durch zusatz von organischem polymer sowie aus dem verfahren erhaltene granulate
Lodi et al. Chromium (III) removal by Spirulina platensis biomass
DE2654909B2 (de) Verfahren zur Beseitigung von Verschmutzungen des Wassers durch Erdölprodukte
RU2471549C2 (ru) Сорбент
DE102014200922A1 (de) Verwendung von Tonmineral als Futterzusatzstoff und/oder als Ergänzungsfutter für aquatische Organismen
Mamun et al. A comparative study of the adsorption capacity of tea leaves and orange peel for the removal of Fe (III) ion from wastewater
WO2011060904A1 (de) Verfahren zur herstellung von bodenzusatzstoffen zur verbesserung der kationenaustauschkapazität, der nährstoff- und der wasserhaltefähigkeit von böden
Lee et al. Harvesting of microalgae species using Mg–sericite flocculant
EP2854823B1 (de) Tonmineral zur reduzierung von anorganischen phosphaten, insbesondere im rahmen einer nierenersatztherapie
DE19807406C2 (de) Bioaktives Verbundprodukt auf der Basis von Zeolithmehl, seine Herstellung und Verwendung zur Abwasserbehandlung
DE10237518A1 (de) Verwendung von Schichtdoppelhydroxiden zur An- bzw. Abreicherung von Biomolekülen aus flüssigen oder fluiden Medien
WO2015070844A1 (de) Verfahren zum bekämpfen von algenblüte
EP1812551B1 (de) Verfahren zur abtrennung von bakterien aus einer fermentationsbrühe
DE102016220224A1 (de) Mikroalgen-Photochemische-Kultivierungsvorrichtung
DE2354842A1 (de) Verfahren zur entfernung organischer verunreinigungen aus fluessigkeits- und gasstroemen
DE10237517B4 (de) Verfahren zur An- bzw. Abreicherung von Biomolekülen aus flüssigen oder fluiden Medien unter Verwendung von Schichtdoppelhydroxiden und Verwendung von an einem Schichtdoppelhydroxid an- oder eingelagerten Biomolekülen als anorganischer Vektor
DE102009053867A1 (de) Verfahren zur Herstellung von Bodenzusatzstoffen zur Verbesserung der Kationenaustauschkapazität, der Nährstoff- und der Wasserhaltefähigkeit von Böden
WO2010052242A1 (de) Verfahren zur konzentrierung von bioaktiven stoffen aus pflanzen unter verwendung von mineralen und bildung von reversiblen biomineralischen verbundsystemen
DE102021117120B4 (de) Verfahren zur Herstellung eines phosphorhaltigen Düngemittels unter Verwendung von Mikrokapseln umfassend Ammoniummagnesiumphosphat-bildende Bakterien und eine Magnesiumquelle
CH701117A2 (de) Zusammensetzung, insbesondere als metabolisch inerter gasabsorber, leckelement, verfahren zu dessen herstellung und anwendung.
Ezeamaku et al. Removal of Copper Ions from Waste Water by Coagulation by Using Magnesium Chloride and Aloe Vera Leaves

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140625

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160429

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161110