EP2778291B1 - Method for producing a foundation panel that eliminates the effect of earthquakes for at least one building - Google Patents

Method for producing a foundation panel that eliminates the effect of earthquakes for at least one building Download PDF

Info

Publication number
EP2778291B1
EP2778291B1 EP13159022.6A EP13159022A EP2778291B1 EP 2778291 B1 EP2778291 B1 EP 2778291B1 EP 13159022 A EP13159022 A EP 13159022A EP 2778291 B1 EP2778291 B1 EP 2778291B1
Authority
EP
European Patent Office
Prior art keywords
foundation
reinforcement
foundation slab
foundation plate
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13159022.6A
Other languages
German (de)
French (fr)
Other versions
EP2778291A1 (en
Inventor
Hamid Dr. Sadegh Azar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochtief Solutions AG
Original Assignee
Hochtief Solutions AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochtief Solutions AG filed Critical Hochtief Solutions AG
Priority to EP13159022.6A priority Critical patent/EP2778291B1/en
Publication of EP2778291A1 publication Critical patent/EP2778291A1/en
Application granted granted Critical
Publication of EP2778291B1 publication Critical patent/EP2778291B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/34Foundations for sinking or earthquake territories

Definitions

  • the invention relates to a method for producing a seismically passive foundation plate with at least one structure arranged on the foundation plate. Furthermore, the invention relates to a seismically passive foundation plate with at least one arranged on the foundation plate structure.
  • foundation plates as well as foundation plates are from the practice, eg from the EP 1 413 681 A2 , basically known. It has proven useful to assign a foundation plate to a building, so that the establishment of a complex of different buildings has a plurality of individual foundation slabs, each building is assigned a respective foundation plate.
  • the known from practice foundation plates tear in the event of an earthquake slightly apart (cracking in the concrete), since the concrete used to form the foundation plates can absorb any tensile forces.
  • the foundation plates of the individual buildings are separated by joints or press joints. In the event of an earthquake, earthquake waves hit the individual foundation plates, causing them and the buildings on the individual foundation plates to vibrate. As a result, each building is stimulated differently and vibrates independently of neighboring buildings.
  • the invention is therefore the technical problem of providing a method for producing a seismic passive foundation plate, which is simple and reliable executable and can be produced with the earthquake resistant foundation plates and structures. Furthermore, the invention is the technical problem of specifying a seismic passive foundation plate, which reduces the effects of earthquakes. Above all, seismic passive means that the foundation slab or structure is less likely to vibrate and no further, especially active, measures are required.
  • the invention teaches a method for producing a seismic passive foundation plate with at least one arranged on the foundation plate structure, wherein the foundation plate is provided with such a designed reinforcing reinforcement, which reinforcing reinforcement is preferably arranged and dimensioned so that through the foundation plate Traction power is absorbed, which tensile force is at least as large as acting on the foundation plate by an earthquake force normal force N A , and wherein the at least one building created on the foundation plate and connected to the foundation plate.
  • the invention teaches a method of making a seismic passive foundation plate having at least one structure disposed on the foundation plate, the foundation plate being provided with a reinforcement reinforcement arranged and dimensioned such that By an earthquake in the foundation plate embossed forced normal forces N A can be taken with a defined safety distance and wherein the at least one building created on the foundation plate and connected to the foundation plate.
  • the seismic passive foundation plate is preferably free of storage facilities with which storage facilities ground dislocations and / or vibrations of a structure arranged on the foundation plate are braked or eliminated.
  • the invention is based on the finding that earthquake waves incoherently impinge on a foundation plate. This means that different floor areas, which floor areas each abut principally on a foundation plate underside, are located in different phases of the seismic wave according to the phase difference caused by the respective different timing at which the seismic wave meets the floor area. Depending on the distance of individual floor areas from one another and accordingly on the time difference with which the seismic wave strikes these floor areas, the phase difference of two floor areas can be so great that an opposite direction of vibration results between them.
  • dg is the design floor displacement and the distance Lg is the length of the route measured from the ground surface or foundation plate, from which the earthquake vibration is considered to be uncorrelated.
  • the distance Lg is 200 to 700 m and mainly 300 to 600 m.
  • the design floor displacement can be 3 mm to 10 cm and, for example, 5 mm to 5 cm.
  • the reinforcement reinforcement is designed so that it can absorb the relative displacement d ri or the resulting force normal force.
  • the reinforcing reinforcement be arranged in the foundation plate with the proviso that the tensile force generated by the earthquake and oriented parallel or essentially parallel to the earth's surface is absorbed by the foundation plate.
  • the tensile force which is preferably exclusively horizontal, absorbs the tensile force generated by the earthquake. Due to the reinforcing reinforcement, the resistance of the foundation plate to tensile forces or tensile stresses is increased such that the foundation plate withstands earthquake-induced tensile stresses without damage.
  • the tensile forces of the earthquake acting on the foundation plate are advantageously absorbed by the reinforcing reinforcement, whereby a tearing apart of a concrete mass forming the foundation plate is prevented.
  • the reinforcing reinforcement is oriented horizontally or approximately parallel to a foundation underside or foundation surface.
  • the reinforcement reinforcement is oriented in both horizontal main directions of the foundation plate.
  • at least two and preferably a plurality of layers of the reinforcing reinforcement are arranged on the foundation underside and the foundation surface in the foundation plate.
  • the reinforcing reinforcement is preferably made of reinforcing steel, in particular reinforcing steel bars and / or welded mesh.
  • fiber-reinforced or textile-reinforced concrete and / or high-performance reinforced high-strength concrete can be used for producing or reinforcing the foundation plate.
  • the reinforcing steel and / or the reinforcing steel mats have the highest possible elongation at break.
  • the reinforcing steel and / or the reinforcing steel mat has an elongation at break of, for example, up to 50 ⁇ . If necessary, the reinforcing steel and / or the reinforcing steel mat has an elongation at break of up to 25 ⁇ . It is possible that the reinforcing steel and / or the reinforcing steel mat has an elongation at break of 20 to 50 ⁇ .
  • the yield strength of the reinforcing steel f yk is greater than 400 N / mm 2 , preferably at least 500 N / mm 2 . It is recommended that the reinforcing bars have a diameter of 6 mm to 40 mm, and preferably from 12 mm to 32 mm. Conveniently, the reinforcing reinforcement is arranged parallel to the vibration plane of the earthquake or the horizontal seismic waves.
  • the coupling elements connect the existing reinforcements, which are preferably present on the upper and lower sides of the individual foundation plates as orthogonal reinforcing nets, with each other in a force-fit manner.
  • the coupling elements must be designed so that they are able to absorb the force normal forces determined according to the formulas described above. Furthermore, it is a prerequisite of this method that the reinforcement present in the individual foundation plates is able to absorb the normal forces determined according to the formulas described above.
  • the coupling elements can be designed so that they take over this function of the joint bridging.
  • the invention for solving the technical problem teaches a method for producing a seismic passive foundation plate with at least one structure arranged on the foundation plate, wherein the structure is erected on the foundation plate, wherein the foundation plate is provided with a stiffening reinforcement such that with the stiffening reinforcement Thrust V A and / or a moment M A is / are receivable, which thrust V A and / or which moment M A is initiated by the excited by an earthquake, vibrating structure in the foundation plate / are.
  • an earth-side or ground-surface-side end face of the foundation plate has a reinforcing profiling by which the thrust force V A and / or the moment M A is preferably added in addition to the stiffening reinforcement, which thrust force V A or which Moment M A is introduced through the vibrating, arranged on the foundation plate structure in the foundation plate.
  • the stiffening reinforcement ensures that shear forces and / or moments introduced transversely to the building-side surface of the foundation plate into the foundation plate are absorbed and in this way tensile stresses acting on the foundation plate are absorbed.
  • the thrust force V A and / or the moment M A which thrust force V A and / or which moment M A , act in each point of the foundation, advantageously result from a dynamic analysis of the soil-structure interaction. It is recommended that as part of the dynamic analysis of the soil-structure interaction a modeling of the structure on the existing soil stratification is made.
  • the building or the structures or the various rising structures of the respective structure with their masses, stiffness and damping is modeled on the foundation plate. Every single structure of a structure has a frequency with which it vibrates horizontally. Typically, these horizontal frequencies are between 0.5 to 10 Hz.
  • the soil (ground) below the foun- dation board is modeled in the context of the invention with its mass, stiffness and damping. The entire system of soil layers, the foundation plate and the structure is stimulated by earthquakes. Due to the vibration of the masses of the individual structures and the resulting inertial forces, the moments M A and shear forces V A are determined in each point of the foundation plate.
  • the incorporation of the reinforcing reinforcement and / or stiffening reinforcement in the foundation plate is characterized by a high resistance to the initiated moments and shear forces, so that a tearing apart of the foundation plate in the event of an earthquake is avoided.
  • the total earthquake excitation further reduced, for example, by an increased radiation damping of the large and massive Fundamtplatte in the ground.
  • the mutual oscillations or tilting vibrations of the structures are reduced.
  • the reinforcement is expediently arranged in the foundation in such a way that the foundation plate can receive the moments M A and / or the thrust forces V A in the respective cross-section of the foundation plate.
  • the reinforcing reinforcement and / or reinforcing reinforcement is arranged horizontally and / or parallel to the foundation surface or foundation underside.
  • the reinforcing reinforcement and / or stiffening reinforcement is also oriented in both main horizontal directions. This is preferably carried out with two or more superimposed reinforcement layers, which are preferably arranged near the foundation top or foundation underside.
  • a thickness of the foundation plate at each location of the foundation plate is selected such that the torque which can be absorbed by the reinforcement reinforcement and / or reinforcing reinforcement is greater than the moment M A.
  • the thickness of the foundation plate is chosen at each location so that the absorbable thrust and / or shear force is greater than the shear forces V A.
  • the thickness of the foundation plate means an extension of the foundation plate transversely to the earth's surface. It is recommended that the characteristic cylinder compressive strength f ck of the concrete is as high as possible, preferably greater than 20 N / mm 2 .
  • inclined reinforcing rods (diagonal bars) and / or mats and / or steel bracket can be installed in the foundation plate.
  • inclined shear force reinforcement preferably a slope which is 45 ° or about 45 °. This results in a profiling of the foundation plate.
  • a resulting thickness of the foundation plate should preferably not be more than 10 m and not less than 1 m.
  • reinforcing steel and / or welded mesh are preferably used as stiffening reinforcement.
  • a fiber-reinforced and / or textile-reinforced concrete and / or a high-performance reinforced micro-reinforced concrete is used for the training or local reinforcement of the foundation plate.
  • the stiffening reinforcement or the reinforcing steel and / or the welded mesh has the highest possible elongation at break.
  • the elongation at break of the reinforcing steel and / or the welded mesh is 50 ⁇ or approximately 50 ⁇ .
  • an elongation at break of at least 25 ⁇ or even less than 25 ⁇ is sufficient.
  • the yield strength of the reinforcing steel f yk should be greater than 400N / mm2, preferably it should be 500 N / mm2 or approximately 500 N / mm2.
  • the diameter of the reinforcing steel or reinforcing steel bars may be, for example, 6 mm to 40 mm, and preferably 12 to 32 mm.
  • the building is anchored to the foundation plate.
  • the building is, for example, a power plant or an industrial plant. In principle, it is possible that the building is formed from a plurality or plurality of buildings. According to one embodiment, the building is designed as a building.
  • the foundation plate is preferably placed directly on the ground. According to a preferred embodiment, no further bearing elements are provided between the foundation plate and the ground or the earth's surface. It is recommended that the foundation plate rests on the ground or surface without being stored.
  • the structure is connected directly and / or bearing-free to the foundation plate. Due to the bearing-free arrangement of the structure on the foundation plate and the bearing-free support of the foundation plate on the ground, the foundation plate is formed as a passive foundation plate.
  • the foundation plate designed according to the invention can be combined with other foundation measures known from the prior art.
  • the foundation plate is integrally formed. It is within the scope of the invention that the foundation plate as a joint-free, one-piece Foundation plate is formed. This means that the structure or the majority of the structures are arranged on one or the same foundation plate.
  • the invention relates to solving the technical problem, a seismic passive foundation plate with at least one arranged on the foundation plate structure, wherein the foundation plate is made in particular according to a method of claims 1 to 11,
  • the foundation plate is provided with a reinforcing reinforcement, wherein the reinforcing reinforcement is formed with the proviso that a tensile force can be absorbed by the foundation plate, which tensile force is at least as large as the tensile force N A acting on the foundation plate by an earthquake and or wherein the foundation plate is provided with a stiffening reinforcement, wherein the reinforcing reinforcement is formed with the proviso that with the stiffening reinforcement a thrust force V A and / or a moment M A of standing on the foundation plate, for example, earthquake-induced vibration building is receivable / are or recorded will be.
  • the invention is based on the finding that the foundation plate according to the invention is excited by an earthquake low or practically not excited.
  • the reinforcing reinforcement and / or stiffening reinforcement preclude a tearing apart of the foundation plate in an earthquake.
  • the earthquake can not make the foundation plate with the peak acceleration stimulate.
  • Large dimensions means, for example, that the foundation plate has a length of at least 100 m and / or a width of at least 100 m.
  • earthquake accelerations compensate each other or overlap such that the foundation plate in the case of an earthquake undergoes no or only an insignificant change in position. As a result, can be minimized with the foundation plate according to the invention, in particular tilting vibrations of tall, slender structures.
  • a foundational depth of the foundation plate according to the invention essentially corresponds to the foundation depth of the known from practice Einzelfundamentplatten, each of which only a building or only a building is assigned.
  • the foundation plate can be placed on piles or stake groups or the foundation plate may represent the pile head plate of such a pile group.
  • the foundation plate according to the invention may also consist of existing Einzelelfundamentplatten which are positively connected to each other by coupling elements.
  • Fig. 1 shows a foundation plate 1, on the three structures 2, 3, 4 are arranged.
  • the foundation plate 1 has a reinforcing reinforcement 5, which reinforcing reinforcement 5 is oriented parallel to the earth's surface 6.
  • the earth's surface 6 vibrates in the horizontal direction, which is indicated by the arrow P in Fig. 2 is indicated. Due to the fact that the earthquake waves strike the earth's surface 6 at points A, B at different points in time from an exciter center (not shown), the earth's surface 6 has a different deflection at the point A than at the point B.
  • the foundation plate 1 with the structures 2, 3, 4 arranged thereon Fig. 3 essentially corresponds to the foundation plate 1 with the structures 2, 3, 4 arranged thereon according to FIGS Fig. 1 and 2 , However, the foundation plate 1 according to Fig. 3 one of the reinforcement or reinforcing reinforcement 5 of the foundation plate 1 according to the Fig. 1 and 2 various reinforcements or stiffening reinforcements 7 on.
  • a lateral force V A1 and a moment M A1 which is caused by tilting vibrations of the structures 2 and 3.
  • a thrust force V A2 and a moment M A2 is shown at the point D, which is caused by the tilting vibrations of the structures 3 and 4.
  • the in the 3 and 4 shown stiffening reinforcement 7 is designed with the proviso that the moments M A1 and M A2 and the thrust forces V A1 and V A2 received by the reinforcing reinforcement 7 and so damage the foundation plate 1 according to the 3 and 4 be excluded.
  • the foundation plate 1 on the ground floor or on its surface facing away from the structures has a profiling 8, through which the foundation plate 1 in conjunction with the reinforcing reinforcement 5 and the stiffening reinforcement 7 undergoes additional reinforcement.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer seismisch passiven Fundamentplatte mit zumindest einem auf der Fundamentplatte angeordneten Bauwerk. Weiterhin betrifft die Erfindung eine seismisch passive Fundamentplatte mit zumindest einem auf der Fundamentplatte angeordneten Bauwerk.The invention relates to a method for producing a seismically passive foundation plate with at least one structure arranged on the foundation plate. Furthermore, the invention relates to a seismically passive foundation plate with at least one arranged on the foundation plate structure.

Verfahren zu Herstellung von Fundamentplatten sowie Fundamentplatten sind aus der Praxis, Z.B. aus der EP 1 413 681 A2 , grundsätzlich bekannt. Dabei hat es sich bewährt, einem Gebäude eine Fundamentplatte zuzuordnen, so dass die Gründung eines Komplexes aus verschiedenen Gebäuden eine Mehrzahl von Einzelfundamentplatten aufweist, wobei jedem Gebäude jeweils eine Fundamentplatte zugeordnet ist. Die aus der Praxis bekannten Fundamentplatten reißen im Falle eines Erdbebens leicht auseinander (Rissbildung im Beton), da der zur Bildung der Fundamentplatten eingesetzte Beton keine Zugkräfte aufnehmen kann. Die Fundamentplatten der einzelnen Gebäude sind durch Fugen oder Pressfugen voneinander getrennt. Im Falle eines Erdbebens treffen Erdbebenwellen auf die einzelnen Fundamentplatten und versetzen diese sowie die auf den einzelnen Fundamentplatten angeordneten Gebäude in Schwingungen. Infolgedessen wird jedes Gebäude unterschiedlich angeregt und schwingt unabhängig von Nachbargebäuden. Der zeitliche Verlauf, die Amplituden sowie die Bewegungsformen der einzelnen Fundamentplatten und Gebäuden sind dabei unterschiedlich, wobei zwischen benachbarten Gebäuden und/oder Fundamentplatten sogar gegenläufige Bewegungen möglich sind. Dabei können benachbarte Gebäude miteinander verbindende Bauteile, beispielsweise Leitungen, beschädigt werden, was durch komplizierte Anschlusskonstruktionen ausgeschlossen werden muss. Um die Wirkungen von Erdbeben abzumildern, ist es aus der Praxis weiterhin bekannt, zwischen der Fundamentplatte und dem Gebäude schwingungsdämpfende Lagerkonstruktionen anzuordnen. Weiterhin ist es bekannt, schwingungsdämpfende Lagerkonstruktionen zwischen der Fundamentplatte und einer darunter angeordneten, zweiten Fundamentplatte vorzusehen. Die Herstellung sowie der Unterhalt dieser aus der Praxis bekannten Lagerkonstruktionen ist allerdings sehr aufwändig und kostenintensiv.Process for the production of foundation plates as well as foundation plates are from the practice, eg from the EP 1 413 681 A2 , basically known. It has proven useful to assign a foundation plate to a building, so that the establishment of a complex of different buildings has a plurality of individual foundation slabs, each building is assigned a respective foundation plate. The known from practice foundation plates tear in the event of an earthquake slightly apart (cracking in the concrete), since the concrete used to form the foundation plates can absorb any tensile forces. The foundation plates of the individual buildings are separated by joints or press joints. In the event of an earthquake, earthquake waves hit the individual foundation plates, causing them and the buildings on the individual foundation plates to vibrate. As a result, each building is stimulated differently and vibrates independently of neighboring buildings. The time course, the amplitudes and the movement of the individual foundation plates and buildings are different, with even opposing movements are possible between adjacent buildings and / or foundation plates. In this case, adjacent building interconnecting components, such as cables, damaged, which must be excluded by complicated connection constructions. In order to mitigate the effects of earthquakes, it is still known in practice, between the foundation plate and the building to arrange vibration-damping bearing structures. It is also known to provide vibration damping bearing structures between the foundation plate and a second foundation plate disposed thereunder. However, the production and maintenance of these known from practice storage structures is very complex and costly.

Der Erfindung liegt daher das technische Problem zugrunde, ein Verfahren zur Herstellung einer seismisch passiven Fundamentplatte anzugeben, das einfach und zuverlässig ausführbar ist und mit dem gegen Erdbeben beständige Fundamentplatten und Bauwerke herstellbar sind. Weiterhin liegt der Erfindung das technische Problem zugrunde, eine seismisch passive Fundamentplatte anzugeben, welche die Einwirkungen infolge von Erdbeben reduziert. Seismisch passiv meint dabei vor allem, dass die Fundamentplatte bzw. das Bauwerk von sich aus weniger zu Schwingungen angeregt wird und dazu keine weiteren, insbesondere aktiven Maßnahmen, erforderlich sind.The invention is therefore the technical problem of providing a method for producing a seismic passive foundation plate, which is simple and reliable executable and can be produced with the earthquake resistant foundation plates and structures. Furthermore, the invention is the technical problem of specifying a seismic passive foundation plate, which reduces the effects of earthquakes. Above all, seismic passive means that the foundation slab or structure is less likely to vibrate and no further, especially active, measures are required.

Zur Lösung des technischen Problems lehrt die Erfindung ein Verfahren zur Herstellung einer seismisch passiven Fundamentplatte mit zumindest einem auf der Fundamentplatte angeordneten Bauwerk, wobei die Fundamentplatte mit einer derart ausgestalteten Verstärkungsbewehrung versehen ist, welche Verstärkungsbewehrung vorzugsweise so angeordnet und dimensioniert ist, dass durch die Fundamentplatte eine Zugkraft aufnehmbar ist, welche Zugkraft zumindest so groß wie die durch ein Erdbeben auf die Fundamentplatte einwirkende Zwangsnormalkraft NA ist, und wobei das zumindest eine Bauwerk auf der Fundamentplatte erstellt und mit der Fundamentplatte verbunden wird. Besonders bevorzugt lehrt die Erfindung ein Verfahren zur Herstellung einer seismisch passiven Fundamentplatte mit zumindest einem auf der Fundamentplatte angeordneten Bauwerk, wobei die Fundamentplatte mit einer Verstärkungsbewehrung versehen ist, die so angeordnet und dimensioniert ist, dass durch ein Erdbeben in die Fundamentplatte eingeprägten Zwangsnormalkräfte NA mit einem definierten Sicherheitsabstand aufgenommen werden können und wobei das zumindest eine Bauwerk auf der Fundamentplatte erstellt und mit der Fundamentplatte verbunden wird. Die seismisch passive Fundamentplatte ist vorzugsweise frei von Lagereinrichtungen, mit welchen Lagereinrichtungen Erdbodenversetzungen und/oder Schwingungen eines auf der Fundamentplatte angeordneten Bauwerks gebremst bzw. eliminiert werden.To solve the technical problem, the invention teaches a method for producing a seismic passive foundation plate with at least one arranged on the foundation plate structure, wherein the foundation plate is provided with such a designed reinforcing reinforcement, which reinforcing reinforcement is preferably arranged and dimensioned so that through the foundation plate Traction power is absorbed, which tensile force is at least as large as acting on the foundation plate by an earthquake force normal force N A , and wherein the at least one building created on the foundation plate and connected to the foundation plate. More preferably, the invention teaches a method of making a seismic passive foundation plate having at least one structure disposed on the foundation plate, the foundation plate being provided with a reinforcement reinforcement arranged and dimensioned such that By an earthquake in the foundation plate embossed forced normal forces N A can be taken with a defined safety distance and wherein the at least one building created on the foundation plate and connected to the foundation plate. The seismic passive foundation plate is preferably free of storage facilities with which storage facilities ground dislocations and / or vibrations of a structure arranged on the foundation plate are braked or eliminated.

Der Erfindung liegt die Erkenntnis zugrunde, dass Erdbebenwellen inkohärent auf eine Fundamentplatte auftreffen. Das bedeutet, dass sich verschiedene Bodenbereiche, welche Bodenbereiche jeweils vornehmlich an einer Fundamentplattenunterseite anliegen, entsprechend dem Phasenunterschied, der durch den jeweils unterschiedlichen Zeitpunkt, mit dem die Erdbebenwelle den Bodenbereich trifft hervorgerufen wird, in verschiedenen Phasen der Erdbebenwelle befinden. Abhängig von der Entfernung einzelner Bodenbereiche zueinander und dementsprechend abhängig von dem Zeitunterschied, mit dem die Erdbebenwelle diese Bodenbereiche trifft, kann der Phasenunterschied zweier Bodenbereiche so groß sein, dass sich eine gegenläufige Schwingungsrichtung zwischen ihnen ergibt.The invention is based on the finding that earthquake waves incoherently impinge on a foundation plate. This means that different floor areas, which floor areas each abut principally on a foundation plate underside, are located in different phases of the seismic wave according to the phase difference caused by the respective different timing at which the seismic wave meets the floor area. Depending on the distance of individual floor areas from one another and accordingly on the time difference with which the seismic wave strikes these floor areas, the phase difference of two floor areas can be so great that an opposite direction of vibration results between them.

Es hat sich gezeigt, dass bei einem Erdbeben der Erdboden im Wesentlichen horizontal schwingt. Entsprechend des oben beschriebenen Phasenunterschiedes bewegen sich dabei die an der Plattenunterseite anliegenden Bodenbereiche nicht gleichmäßig sondern unterschiedlich. Die einzelnen Bereiche einer monolithischen, ungerissenen Fundamentplatte dagegen können sich nicht unterschiedlich zueinander bewegen, jedenfalls nicht in einer Größenordnung wie die Bodenbereiche, sondern nur in einer weitaus geringeren Größenordnung, die bei dieser Betrachtung vernachlässigbar ist. Daraus resultieren zwei Effekte. Die nur gemeinsame Bewegungen ausführen könnenden Fundamentplattenbereiche bewegen sich weit weniger als die Mehrzahl der Bodenbereiche, sozusagen mit einem Mittelwert aus den Verschiebungen der Bodenbereiche, der aufgrund der teilweisen Gegenläufigkeit der Bewegungen sehr viel kleiner sein kann als der Maximalwert. Daraus resultiert eine unterschiedlich große Relativverschiebung zwischen den Bodenbereichen und den Fundamentplattenbereichen. Aufgrund der Reibung zwischen Boden und Fundamentplatte wird diese Relativverschiebung jedoch behindert und es wird daraus resultierend eine Zwangskraft bzw. Zwangsnormalkraft NA in die Fundamentplatte eingeleitet. Aufgrund der schwingenden Bodenbewegung mit unterschiedlichen Bewegungsrichtungen ist diese Kraft wechselweise eine Zug- oder eine Druckkraft. Entsprechend den gängigen Materialeigenschaften von Beton muss zur Aufnahme der Zugkräfte eine entsprechende Bewehrung eingelegt werden. Andernfalls würde eine mit entsprechender Größe hergestellte Fundamentplatte auseinanderreißen und wie mehrere einzelne Fundamentplatten wirken.It has been shown that in an earthquake, the ground oscillates substantially horizontally. In accordance with the phase difference described above, the bottom areas adjacent to the underside of the panel do not move uniformly but differently. By contrast, the individual areas of a monolithic, non-cracked foundation slab can not move in different directions, at least not in the same order of magnitude as the floor areas, but only to a much smaller extent, which is negligible in this regard. This results in two effects. The only common movements can perform Foundation plate areas move much less than the majority of the floor areas, so to speak with an average of the displacements of the floor areas, which may be much smaller than the maximum value due to the partial opposition of the movements. This results in a different relative displacement between the floor areas and the foundation plate areas. Due to the friction between the base and the foundation plate, however, this relative displacement is hindered and as a result a constraining force or forced normal force N A is introduced into the foundation plate. Due to the oscillating ground movement with different directions of movement, this force is alternately a tensile or a compressive force. According to the common material properties of concrete, a corresponding reinforcement must be inserted to absorb the tensile forces. Otherwise, a base plate of appropriate size would tear apart and act like several single foundation plates.

Die von dem Erdbeben verursachte und auf die Fundamentplatte einwirkende Zwangsnormalkraft bzw. Zugkraft NA ist vorzugsweise ein Produkt aus einer Zugspannung σ und der Fläche A der Bewehrung, was in der nachfolgenden Formel wiedergegeben ist: N A = σ × A

Figure imgb0001
The forced normal force or tensile force N A caused by the earthquake and acting on the foundation plate is preferably a product of a tensile stress σ and the area A of the reinforcement, which is given in the following formula: N A = σ × A
Figure imgb0001

Die Zugspannung σ wird besonders bevorzugt nach der folgenden Formel bestimmt: σ = E d ri L i

Figure imgb0002

wobei E der E-Modul von Stahl, dri die behinderte Relativverschiebung und Li die Länge des Fundaments ist. Die behinderte Relativverschiebung dri ist nach der Gleichung d ri = d g 2 L g L i
Figure imgb0003
The tensile stress σ is particularly preferably determined according to the following formula: σ = e d ri L i
Figure imgb0002

where E is the modulus of elasticity of steel, d ri is the obstructed relative displacement and L i is the length of the foundation. The obstructed relative displacement d ri is according to the equation d ri = d G 2 L G L i
Figure imgb0003

gegeben, wobei dg die Bemessungsbodenverschiebung und die Entfernung Lg die ausgehend von der Erdbodenoberfläche bzw. Fundamentplatte gemessene Streckenlänge ist, ab der die Erdbebenschwingungen als unkorreliert anzusehen ist. Die Entfernung Lg beträgt 200 bis 700 m und vorwiegend 300 bis 600 m. Die Bemessungsbodenverschiebung kann 3 mm bis 10 cm und beispielsweise 5 mm bis 5 cm betragen. Die Verstärkungsbewehrung ist derart ausgelegt, dass sie die Relativverschiebung dri bzw. die daraus resultierende Zwangsnormalkraft aufnehmen kann.where dg is the design floor displacement and the distance Lg is the length of the route measured from the ground surface or foundation plate, from which the earthquake vibration is considered to be uncorrelated. The distance Lg is 200 to 700 m and mainly 300 to 600 m. The design floor displacement can be 3 mm to 10 cm and, for example, 5 mm to 5 cm. The reinforcement reinforcement is designed so that it can absorb the relative displacement d ri or the resulting force normal force.

Empfohlenermaßen wird die Verstärkungsbewehrung mit der Maßgabe in der Fundamentplatte angeordnet, dass die durch das Erdbeben erzeugte und parallel bzw. im Wesentlichen parallel zur Erdoberfläche orientierte Zugkraft durch die Fundamentplatte aufgenommen wird bzw. aufnehmbar ist. Besonders bevorzugt wird durch die Verstärkungsbewehrung die vorzugsweise ausschließlich horizontale, von dem Erdbeben erzeugte Zugkraft aufgenommen. Durch die Verstärkungsbewehrung wird die Beständigkeit der Fundamentplatte gegenüber Zugkräften bzw. Zugbeanspruchungen derart erhöht, so dass die Fundamentplatte erdbebenbedingten Zugbeanspruchungen beschädigungsfrei widersteht. Die auf die Fundamentplatte wirkenden Zugkräfte des Erdbebens werden vorteilhafterweise durch die Verstärkungsbewehrung aufgenommen, wodurch ein Auseinanderreißen einer die Fundamentplatte bildenden Betonmasse verhindert wird.It is recommended that the reinforcing reinforcement be arranged in the foundation plate with the proviso that the tensile force generated by the earthquake and oriented parallel or essentially parallel to the earth's surface is absorbed by the foundation plate. Particularly preferably, the tensile force, which is preferably exclusively horizontal, absorbs the tensile force generated by the earthquake. Due to the reinforcing reinforcement, the resistance of the foundation plate to tensile forces or tensile stresses is increased such that the foundation plate withstands earthquake-induced tensile stresses without damage. The tensile forces of the earthquake acting on the foundation plate are advantageously absorbed by the reinforcing reinforcement, whereby a tearing apart of a concrete mass forming the foundation plate is prevented.

Gemäß einer Ausführungsform ist die Verstärkungsbewehrung horizontal bzw. ungefähr parallel zu einer Fundamentunterseite oder Fundamentoberfläche orientiert. Vorzugsweise ist die Verstärkungsbewehrung in beide horizontale Hauptrichtungen der Fundamentplatte orientiert. Vorzugsweise sind in der Fundamentplatte zumindest zwei und bevorzugt mehrere Lagen der Verstärkungsbewehrung an der Fundamentunterseite und der Fundamentoberfläche angeordnet. Die Verstärkungsbewehrung wird vorzugsweise aus Betonstahl, insbesondere Betonstahlstäben und/oder Betonstahlmatten gebildet. Alternativ und/ oder zusätzlich kann faserbewehrter oder textilbewehrter Beton und/oder mikrobewehrter Hochleistungsbeton zur Fertigung bzw. Verstärkung der Fundamentplatte eingesetzt werden.According to one embodiment, the reinforcing reinforcement is oriented horizontally or approximately parallel to a foundation underside or foundation surface. Preferably, the reinforcement reinforcement is oriented in both horizontal main directions of the foundation plate. Preferably, at least two and preferably a plurality of layers of the reinforcing reinforcement are arranged on the foundation underside and the foundation surface in the foundation plate. The reinforcing reinforcement is preferably made of reinforcing steel, in particular reinforcing steel bars and / or welded mesh. Alternatively and / or additionally, fiber-reinforced or textile-reinforced concrete and / or high-performance reinforced high-strength concrete can be used for producing or reinforcing the foundation plate.

Damit durch die Verstärkungsbewehrung Relativverschiebungen und erdbebenbedingte Zugkräfte aufnehmbar sind, empfiehlt es sich, dass der Betonstahl und/oder die Betonstahlmatten eine möglichst hohen Bruchdehnung aufweisen. Zweckmäßigerweise verfügt der Betonstahl und/oder die Betonstahlmatte über eine Bruchdehnung von beispielsweise bis zu 50 ‰. Gegebenenfalls verfügt der Betonstahl und/oder die Betonstahlmatte über ein Bruchdehnung von bis zu 25 ‰. Es ist möglich, dass der Betonstahl und/oder die Betonstahlmatte eine Bruchdehnung von 20 bis 50 ‰ aufweist. Zweckmäßigerweise ist die Streckgrenze des Betonstahls fyk größer als 400 N/mm2, vorzugsweise zumindest 500 N/mm2. Es empfiehlt sich, dass die Betonstahlstäbe einen Durchmesser von 6 mm bis 40 mm und vorzugsweise von 12 mm bis 32 mm aufweisen. Zweckmäßigerweise ist die Verstärkungsbewehrung parallel zur Schwingungsebene des Erdbebens bzw. der horizontalen Erdbebenwellen angeordnet.So that relative displacements and earthquake-related tensile forces can be absorbed by the reinforcing reinforcement, it is recommended that the reinforcing steel and / or the reinforcing steel mats have the highest possible elongation at break. Conveniently, the reinforcing steel and / or the reinforcing steel mat has an elongation at break of, for example, up to 50 ‰. If necessary, the reinforcing steel and / or the reinforcing steel mat has an elongation at break of up to 25 ‰. It is possible that the reinforcing steel and / or the reinforcing steel mat has an elongation at break of 20 to 50 ‰. Conveniently, the yield strength of the reinforcing steel f yk is greater than 400 N / mm 2 , preferably at least 500 N / mm 2 . It is recommended that the reinforcing bars have a diameter of 6 mm to 40 mm, and preferably from 12 mm to 32 mm. Conveniently, the reinforcing reinforcement is arranged parallel to the vibration plane of the earthquake or the horizontal seismic waves.

Weiterhin ist es möglich, bei zwei oder mehreren, nebeneinander liegenden Einzelfundamentplatten, diese mit Kopplungselementen zu verbinden, die dafür sorgen, dass die Einzelfundamentplatten hinsichtlich der Erdbebenbeanspruchung wie eine erfindungsgemäße seismisch passive Fundamentplatte wirken. Dazu ist es erforderlich, dass die Kopplungselemente die vorhandenen Bewehrungen, die vorzugsweise an den Ober- und Unterseiten der Einzelfundamentplatten als orthogonale Bewehrungsnetze vorhanden sind, kraftschlüssig miteinander verbinden. Die Kopplungselemente müssen so ausgelegt sein, dass sie in der Lage sind, die entsprechend den vorab beschriebenen Formeln ermittelten Zwangsnormalkräfte aufzunehmen. Weiterhin ist es Voraussetzung dieses Verfahrens, dass die in den Einzelfundamentplatten vorhandene Bewehrung in der Lage ist, die entsprechend den vorab beschriebenen Formeln ermittelten Normalkräfte aufzunehmen.Furthermore, it is possible, in the case of two or more individual foundation plates lying next to one another, to connect them with coupling elements which ensure that the individual foundation plates are resistant to earthquakes how a seismic passive foundation plate according to the invention act. For this purpose, it is necessary that the coupling elements connect the existing reinforcements, which are preferably present on the upper and lower sides of the individual foundation plates as orthogonal reinforcing nets, with each other in a force-fit manner. The coupling elements must be designed so that they are able to absorb the force normal forces determined according to the formulas described above. Furthermore, it is a prerequisite of this method that the reinforcement present in the individual foundation plates is able to absorb the normal forces determined according to the formulas described above.

Sollten die Einzelfundamentplatten nicht durch Pressfugen voneinander getrennt sein, sondern mit einem gewissen Fugenabstand, so ist dieser beim Einbau der Kopplungselemente zu schließen. Dies erfolgt durch Ausbetonieren/ Verfüllen der Fugen mit geeignetem Material, wobei Beton, Stahlbeton, Stahlfaserbeton oder mikrobewehrter Hochleistungsbeton zum Einsatz kommen kann. Alternativ können auch die Kopplungselemente so ausgebildet sind, dass sie diese Funktion der Fugenüberbrückung übernehmen.If the individual foundation slabs are not separated from each other by press joints, but with a certain joint spacing, this must be closed when installing the coupling elements. This is done by concreting / filling the joints with suitable material, whereby concrete, reinforced concrete, steel fiber concrete or micro-reinforced high-performance concrete can be used. Alternatively, the coupling elements can be designed so that they take over this function of the joint bridging.

Weiterhin lehrt die Erfindung zur Lösung des technischen Problems ein Verfahren zur Herstellung einer seismisch passiven Fundamentplatte mit zumindest einem auf der Fundamentplatte angeordneten Bauwerk, wobei das Bauwerk auf der Fundamentplatte errichtet wird, wobei die Fundamentplatte derart mit einer Versteifungsbewehrung ausgestattet wird, dass mit der Versteifungsbewehrung eine Schubkraft VA und/oder ein Moment MA aufnehmbar ist/sind, welche Schubkraft VA und/oder welches Moment MA durch das durch ein Erdbeben angeregte, schwingende Bauwerk in die Fundamentplatte eingeleitet wird/werden.Furthermore, the invention for solving the technical problem teaches a method for producing a seismic passive foundation plate with at least one structure arranged on the foundation plate, wherein the structure is erected on the foundation plate, wherein the foundation plate is provided with a stiffening reinforcement such that with the stiffening reinforcement Thrust V A and / or a moment M A is / are receivable, which thrust V A and / or which moment M A is initiated by the excited by an earthquake, vibrating structure in the foundation plate / are.

Es liegt im Rahmen der Erfindung, dass eine erdbodenseitige bzw. erdoberflächenseitige Stirnfläche der Fundamentplatte eine Verstärkungsprofilierung aufweist, durch die vorzugsweise ergänzend zu der Versteifungsbewehrung die Schubkraft VA und/oder das Moment MA aufgenommen wird/werden, welche Schubkraft VA bzw. welches Moment MA durch das schwingende, auf der Fundamentplatte angeordnete Bauwerk in die Fundamentplatte eingeleitet wird. Die Versteifungsbewehrung stellt sicher, dass quer zur bauwerkseitigen Oberfläche der Fundamentplatte in die Fundamentplatte eingeleitete Schubkräfte und/oder Momente aufgenommen werden und auf diese Weise auf die Fundamentplatte einwirkende Zugbeanspruchungen aufgenommen werden. Die Schubkraft VA und/oder das Moment MA, welche Schubkraft VA und/oder welches Moment MA, in jedem Punkt des Fundaments wirken, ergeben sich zweckmäßigerweise aus einer dynamischen Analyse der Boden-Bauwerk-Wechselwirkung. Empfohlenermaßen wird im Rahmen der dynamischen Analyse der Boden-Bauwerk-Wechselwirkung eine Modellierung des Bauwerks auf der vorhandenen Bodenschichtung vorgenommen. Gemäß einer Ausführungsform wird das Bauwerk oder werden die Bauwerke bzw. werden die verschiedenen aufgehenden Strukturen des jeweiligen Bauwerks mit ihren Massen, Steifigkeiten und Dämpfung auf der Fundamentplatte modelliert. Jede Einzelstruktur eines Bauwerks besitzt eine Frequenz mit der sie horizontal schwingt. Typischerweise liegen diese horizontalen Frequenzen zwischen 0,5 bis 10 Hz. Auch der Boden (Erdboden) unter der Fundamtplatte wird im Rahmen der Erfindung mit seiner Masse, Steifigkeit und Dämpfung modelliert. Das Gesamtsystem aus den Bodenschichtungen, der Fundamentpatte und dem Bauwerk wird durch Erdbeben angeregt. Durch die Schwingung der Massen der Einzelstrukturen und der daraus resultierenden Trägheitskräfte werden die Momente MA und Schubkräfte VA in jedem Punkt der Fundamentplatte ermittelt.It is within the scope of the invention that an earth-side or ground-surface-side end face of the foundation plate has a reinforcing profiling by which the thrust force V A and / or the moment M A is preferably added in addition to the stiffening reinforcement, which thrust force V A or which Moment M A is introduced through the vibrating, arranged on the foundation plate structure in the foundation plate. The stiffening reinforcement ensures that shear forces and / or moments introduced transversely to the building-side surface of the foundation plate into the foundation plate are absorbed and in this way tensile stresses acting on the foundation plate are absorbed. The thrust force V A and / or the moment M A , which thrust force V A and / or which moment M A , act in each point of the foundation, advantageously result from a dynamic analysis of the soil-structure interaction. It is recommended that as part of the dynamic analysis of the soil-structure interaction a modeling of the structure on the existing soil stratification is made. According to one embodiment, the building or the structures or the various rising structures of the respective structure with their masses, stiffness and damping is modeled on the foundation plate. Every single structure of a structure has a frequency with which it vibrates horizontally. Typically, these horizontal frequencies are between 0.5 to 10 Hz. Also, the soil (ground) below the foun- dation board is modeled in the context of the invention with its mass, stiffness and damping. The entire system of soil layers, the foundation plate and the structure is stimulated by earthquakes. Due to the vibration of the masses of the individual structures and the resulting inertial forces, the moments M A and shear forces V A are determined in each point of the foundation plate.

Durch den Einbau der Verstärkungsbewehrung und/oder Versteifungsbewehrung in die Fundamentplatte zeichnet sich diese durch eine hohe Beständigkeit gegenüber den eingeleiteten Momenten und Schubkräften aus, so dass ein Auseinanderreißen der Fundamentplatte im Falle eines Erdbebens vermieden wird. Vorteilhafterweise wird mit der Fundamentplatte die Gesamterdbebenanregung beispielsweise durch eine erhöhte Abstrahlungsdämpfung der großen und massigen Fundamtplatte in den Boden weiter reduziert. Gemäß dieser vorteilhaften Ausführungsform werden die gegenseitigen Schwingungen bzw. Kippschwingungen der Bauwerke verringert.The incorporation of the reinforcing reinforcement and / or stiffening reinforcement in the foundation plate, this is characterized by a high resistance to the initiated moments and shear forces, so that a tearing apart of the foundation plate in the event of an earthquake is avoided. Advantageously, with the foundation plate, the total earthquake excitation further reduced, for example, by an increased radiation damping of the large and massive Fundamtplatte in the ground. According to this advantageous embodiment, the mutual oscillations or tilting vibrations of the structures are reduced.

Zweckmäßigerweise wird die Bewehrung so im Fundament angeordnet, dass die Fundamentplatte die Momente MA und/oder die Schubkräfte VA in dem jeweiligen Querschnitt der Fundamentplatte aufnehmen kann. Zur Aufnahme der Momente MA wird die Verstärkungsbewehrung und/oder Versteifungsbewehrung horizontal und/oder parallel zur Fundamentoberfläche bzw. Fundamentunterseite angeordnet.The reinforcement is expediently arranged in the foundation in such a way that the foundation plate can receive the moments M A and / or the thrust forces V A in the respective cross-section of the foundation plate. To record the moments M A , the reinforcing reinforcement and / or reinforcing reinforcement is arranged horizontally and / or parallel to the foundation surface or foundation underside.

Die Verstärkungsbewehrung und/oder Versteifungsbewehrung ist zudem in beide horizontale Hauptrichtungen orientiert. Dies erfolgt vorzugsweise mit zwei oder mehr übereinanderliegenden Bewehrungslagen, die vorzugsweise nahe der Fundamentoberseite bzw. Fundamentunterseite angeordnet sind.The reinforcing reinforcement and / or stiffening reinforcement is also oriented in both main horizontal directions. This is preferably carried out with two or more superimposed reinforcement layers, which are preferably arranged near the foundation top or foundation underside.

Gemäß einer Ausführungsform ist eine Dicke der Fundamentplatte an jedem Ort der Fundamentplatte so gewählt, dass das durch die Verstärkungsbewehrung und/oder Versteifungsbewehrung aufnehmbare Moment größer ist als das Moment MA. Empfohlenermaßen ist die Dicke der Fundamentplatte an jedem Ort so gewählt, dass die aufnehmbare Schubkraft und/oder Querkraft größer ist als die Schubkräfte VA. Die Dicke der Fundamentplatte meint im Rahmen der Erfindung eine Ausdehnung der Fundamentplatte quer zur Erdoberfläche. Es empfiehlt sich, dass die charakteristische Zylinderdruckfestigkeit fck des Betons möglichst hoch ist, vorzugsweise größer als 20 N/mm2. Zur Erhöhung der aufnehmbaren Schubkraft können geneigte Bewehrungsstäbe (Schrägstäbe) und/oder Matten und/oder Stahlbügel in die Fundamentplatte eingebaut werden. Bei geneigter Querkraftbewehrung ist vorzugsweise eine Neigung einzusetzen, die 45° bzw. ungefähr 45° beträgt. Hieraus ergibt sich eine Profilierung der Fundamentplatte. Eine resultierende Dicke der Fundamentplatte sollte möglichst nicht über 10 m und nicht unter 1 m sein.According to one embodiment, a thickness of the foundation plate at each location of the foundation plate is selected such that the torque which can be absorbed by the reinforcement reinforcement and / or reinforcing reinforcement is greater than the moment M A. Empfohlenermaßen the thickness of the foundation plate is chosen at each location so that the absorbable thrust and / or shear force is greater than the shear forces V A. In the context of the invention, the thickness of the foundation plate means an extension of the foundation plate transversely to the earth's surface. It is recommended that the characteristic cylinder compressive strength f ck of the concrete is as high as possible, preferably greater than 20 N / mm 2 . To increase the absorbable thrust inclined reinforcing rods (diagonal bars) and / or mats and / or steel bracket can be installed in the foundation plate. When inclined shear force reinforcement is to be used preferably a slope which is 45 ° or about 45 °. This results in a profiling of the foundation plate. A resulting thickness of the foundation plate should preferably not be more than 10 m and not less than 1 m.

Zweckmäßigerweise werden als Versteifungsbewehrung vorzugsweise Betonstähle und/oder Betonstahlmatten eingesetzt. Grundsätzlich ist es möglich, dass zur Ausbildung oder örtlichen Verstärkung der Fundamentplatte ein faserbewehrter und/oder textilbewehrter Beton und/oder ein mikrobewehrter Hochleistungsbeton eingesetzt wird.Conveniently, reinforcing steel and / or welded mesh are preferably used as stiffening reinforcement. In principle, it is possible that a fiber-reinforced and / or textile-reinforced concrete and / or a high-performance reinforced micro-reinforced concrete is used for the training or local reinforcement of the foundation plate.

Zweckmäßigerweise weist die Versteifungsbewehrung bzw. der Betonstahl und/oder die Betonstahlmatten eine möglichst hohe Bruchdehnung auf. Vorteilhafterweise beträgt die Bruchdehnung des Betonstahls und/oder der Betonstahlmatten 50 ‰ bzw. ungefähr 50 ‰. Gemäß einer Ausführungsform ist jedoch schon eine Bruchdehnung von zumindest 25 ‰ oder sogar weniger als 25 ‰ ausreichend. Die Streckgrenze des Betonstahls fyk sollte über 400N/mm2 liegen, vorzugsweise sollte sie bei 500 N/mm2 bzw. ungefähr 500 N/mm2 liegen. Der Durchmesser des Betonstahls bzw. der Betonstahlstäbe kann beispielsweise 6 mm bis 40 mm und vorzugsweise 12 bis 32 mm betragen.Conveniently, the stiffening reinforcement or the reinforcing steel and / or the welded mesh has the highest possible elongation at break. Advantageously, the elongation at break of the reinforcing steel and / or the welded mesh is 50 ‰ or approximately 50 ‰. However, according to one embodiment, an elongation at break of at least 25 ‰ or even less than 25 ‰ is sufficient. The yield strength of the reinforcing steel f yk should be greater than 400N / mm2, preferably it should be 500 N / mm2 or approximately 500 N / mm2. The diameter of the reinforcing steel or reinforcing steel bars may be, for example, 6 mm to 40 mm, and preferably 12 to 32 mm.

Es liegt im Rahmen der Erfindung, dass das Bauwerk auf der Fundamentplatte verankert wird.It is within the scope of the invention that the building is anchored to the foundation plate.

Es empfiehlt sich, dass auf der Fundamentplatte eine Mehrzahl bzw. Vielzahl von Bauwerken angeordnet wird. Das bedeutet, dass eine Mehrzahl von Bauwerken auf derselben Fundamentplatte angeordnet wird. Durch die Verstärkungsbewehrung und/oder Versteifungsbewehrung wird sichergestellt, dass im Falle eines Erdbebens ein Auseinanderbrechen der Fundamentplatte ausgeschlossen wird, wodurch unterschiedliche Setzungen der unterschiedlichen Bauwerke im Falle eines Erdbebens ausgeschlossen werden. Bei dem Bauwerk handelt es sich beispielsweise um ein Kraftwerk oder eine Industrieanlage. Grundsätzlich ist es möglich, dass das Bauwerk aus einer Mehrzahl bzw. Vielzahl von Gebäuden gebildet ist. Gemäß einer Ausführungsform ist das Bauwerk als ein Gebäude ausgebildet.It is recommended that a plurality or plurality of structures is arranged on the foundation plate. This means that a plurality of structures are arranged on the same foundation plate. The reinforcing reinforcement and / or stiffening reinforcement ensures that in the case of an earthquake a breakup of the foundation plate is excluded, whereby different settlements of different structures in the event of an earthquake are excluded. The building is, for example, a power plant or an industrial plant. In principle, it is possible that the building is formed from a plurality or plurality of buildings. According to one embodiment, the building is designed as a building.

Besonders bevorzugt wird die Fundamentplatte vorzugweise unmittelbar auf den Erdboden gelegt. Gemäß einer bevorzugten Ausführungsform sind zwischen der Fundamentplatte und dem Erdboden bzw. der Erdoberfläche keine weiteren Lagerelemente vorgesehen. Es empfiehlt sich, dass die Fundamentplatte lagerfrei auf dem Erdboden bzw. der Erdoberfläche ruht. Besonders bevorzugt ist das Bauwerk unmittelbar und/oder lagerfrei an die Fundamentplatte angeschlossen. Durch die lagerfreie Anordnung des Bauwerks auf der Fundamentplatte und die lagerfreie Auflage der Fundamentplatte auf dem Erdboden ist die Fundamentplatte als passive Fundamentplatte ausgebildet.Particularly preferably, the foundation plate is preferably placed directly on the ground. According to a preferred embodiment, no further bearing elements are provided between the foundation plate and the ground or the earth's surface. It is recommended that the foundation plate rests on the ground or surface without being stored. Particularly preferably, the structure is connected directly and / or bearing-free to the foundation plate. Due to the bearing-free arrangement of the structure on the foundation plate and the bearing-free support of the foundation plate on the ground, the foundation plate is formed as a passive foundation plate.

Die erfindungsgemäß ausgebildete Fundamentplatte kann mit anderen, aus dem Stand der Technik bekannten Gründungsmaßnahmen kombiniert werden. Insbesondere ist es möglich, die Fundamentplatte auf Pfähle bzw. sie als Pfahlkopfplatte einer Pfahlgründung auszubilden.The foundation plate designed according to the invention can be combined with other foundation measures known from the prior art. In particular, it is possible to form the foundation plate on piles or they as a pile top plate of a pile foundation.

Besonders bevorzugt ist die Fundamentplatte einstückig ausgebildet. Es liegt im Rahmen der Erfindung, dass die Fundamentplatte als fugenfreie, einstückige Fundamentplatte ausgebildet ist. Das bedeutet, dass das Bauwerk bzw. die Mehrzahl der Bauwerke auf einer bzw. derselben Fundamentplatte angeordnet sind.Particularly preferably, the foundation plate is integrally formed. It is within the scope of the invention that the foundation plate as a joint-free, one-piece Foundation plate is formed. This means that the structure or the majority of the structures are arranged on one or the same foundation plate.

Weiterhin betrifft die Erfindung zur Lösung des technischen Problems eine seismisch passive Fundamentplatte mit zumindest einem auf der Fundamentplatte angeordneten Bauwerk, wobei die Fundamentplatte insbesondere nach einem Verfahren der Ansprüche 1 bis 11 hergestellt ist,Furthermore, the invention relates to solving the technical problem, a seismic passive foundation plate with at least one arranged on the foundation plate structure, wherein the foundation plate is made in particular according to a method of claims 1 to 11,

wobei die Fundamentplatte mit einer Verstärkungsbewehrung versehen ist, wobei die Verstärkungsbewehrung mit der Maßgabe ausgebildet ist, dass durch die Fundamentplatte eine Zugkraft aufnehmbar ist, welche Zugkraft zumindest so groß wie die durch ein Erdbeben auf die Fundamentplatte einwirkende Zugkraft NA ist
und/oder
wobei die Fundamentplatte mit einer Versteifungsbewehrung versehen ist, wobei die Versteifungsbewehrung mit der Maßgabe ausgebildet ist, dass mit der Versteifungsbewehrung eine Schubkraft VA und/oder ein Moment MA des auf der Fundamentplatte stehenden, beispielsweise erdbebenbedingt schwingenden Bauwerks aufnehmbar ist/sind bzw. aufgenommen wird/werden.
wherein the foundation plate is provided with a reinforcing reinforcement, wherein the reinforcing reinforcement is formed with the proviso that a tensile force can be absorbed by the foundation plate, which tensile force is at least as large as the tensile force N A acting on the foundation plate by an earthquake
and or
wherein the foundation plate is provided with a stiffening reinforcement, wherein the reinforcing reinforcement is formed with the proviso that with the stiffening reinforcement a thrust force V A and / or a moment M A of standing on the foundation plate, for example, earthquake-induced vibration building is receivable / are or recorded will be.

Der Erfindung liegt die Erkenntnis zugrunde, dass die erfindungsgemäße Fundamentplatte durch ein Erdbeben niedrig angeregt bzw. praktisch nicht angeregt wird. Durch die Verstärkungsbewehrung und/oder Versteifungsbewehrung wird ein Auseinanderreißen der Fundamentplatte bei einem Erdbeben ausgeschlossen. Insbesondere bei großen Abmessungen der Fundamentplatte kann das Erdbeben die Fundamentplatte nicht mit der Spitzenbeschleunigung anregen. Große Abmessungen meint beispielsweise, dass die Fundamentplatte eine Länge von zumindest 100 m und/oder eine Breite von zumindest 100 m aufweist. Vorteilhafterweise gleichen sich Erdbebenbeschleunigungen gegenseitig aus bzw. überlagern sich derart, dass die Fundamentplatte im Falle eines Erdbebens keine bzw. nur eine unwesentliche Lageveränderung erfährt. Infolgedessen lassen sich mit der erfindungsgemäßen Fundamentplatte insbesondere Kippschwingungen von hohen, schlanken Bauwerken minimieren. In vorteil-hafter Weise weisen einzelne Bauwerke auf der erfindungsgemäßen Fundamentplatte bei einem Erdbeben eine gleiche globale Verschiebung auf, wobei in vorteilhafter Weise ein relativer Abstand zwischen den einzelnen Bauwerken konstant bzw. im Wesentlichen konstant bleibt. Weiterhin liegt der Erfindung die Erkenntnis zugrunde, dass wegen der geringeren Beanspruchung der Bauwerke im Falle eines Erdbebens auf aufwändige, aussteifende Konstruktionen der Bauwerke verzichtet werden kann. Folglich können auf der erfindungsgemäßen Fundamentplatte flexible Bauweisen verschiedener Bauwerke realisiert werden.The invention is based on the finding that the foundation plate according to the invention is excited by an earthquake low or practically not excited. The reinforcing reinforcement and / or stiffening reinforcement preclude a tearing apart of the foundation plate in an earthquake. Especially with large dimensions of the foundation plate, the earthquake can not make the foundation plate with the peak acceleration stimulate. Large dimensions means, for example, that the foundation plate has a length of at least 100 m and / or a width of at least 100 m. Advantageously, earthquake accelerations compensate each other or overlap such that the foundation plate in the case of an earthquake undergoes no or only an insignificant change in position. As a result, can be minimized with the foundation plate according to the invention, in particular tilting vibrations of tall, slender structures. Advantageously, individual structures on the foundation plate according to the invention in an earthquake on an equal global displacement, wherein advantageously a relative distance between the individual structures remains constant or substantially constant. Furthermore, the invention is based on the finding that because of the lower stress on the structures in the event of an earthquake expensive, stiffening constructions of the structures can be dispensed with. Consequently, flexible construction methods of various structures can be realized on the foundation plate according to the invention.

In vorteilhafter Weise werden durch die erfindungsgemäße Fundamentplatte unterschiedliche Setzungen zwischen verschiedenen, auf der Fundamentplatte angeordneten Bauwerken ausgeschlossen. Die erfindungsgemäße Fundamentplatte ist zudem unabhängig von der Beschaffenheit des Baugrunds einsetzbar. Eine Gründungstiefe der erfindungsgemäßen Fundamentplatte entspricht im Wesentlichen der Gründungstiefe der aus der Praxis bekannten Einzelfundamentplatten, denen jeweils lediglich ein Bauwerk bzw. lediglich ein Gebäude zugeordnet ist.Advantageously, different settlements between different structures arranged on the foundation plate are excluded by the foundation plate according to the invention. The foundation plate according to the invention is also used regardless of the nature of the ground. A foundational depth of the foundation plate according to the invention essentially corresponds to the foundation depth of the known from practice Einzelfundamentplatten, each of which only a building or only a building is assigned.

Eine Kombination mit anderen Gründungsarten ist dabei durchaus möglich. Z. B. kann die Fundamentplatte auf Pfähle oder Pfahlgruppen aufgelegt sein bzw. kann die Fundamentplatte die Pfahlkopfplatte einer solchen Pfahlgruppe darstellen.A combination with other types of foundations is quite possible. For example, the foundation plate can be placed on piles or stake groups or the foundation plate may represent the pile head plate of such a pile group.

Im Falle eines Erdbebens wird die Verformung eines Bauwerks, welches auf der erfindungsgemäßen Fundamentplatte angeordnet ist, vermindert. Ebenso wird die Fixierung von Versorgungsleitungen, wie beispielsweise Rohrleitungen, Kabeln und dergleichen an zueinander verbindenden, auf der Fundamentplatte angeordneten Bauwerken vereinfacht, da von den Versorgungsleitungen im Falle eines Erdbebens wegen der verringerten Schwingungen der Bauwerke lediglich geringe Verformungen aufgenommen werden müssen. Im Übrigen können in der Fundamentplatte Kabel- und Rohrleitungskanäle problemlos ausgeführt werden, da im Falle eines Erdbebens ein Bruch und eine Beschädigung der Kabel- und Rohrleitungskanäle ausgeschlossen ist.In the case of an earthquake, the deformation of a building, which is arranged on the foundation plate according to the invention, is reduced. Likewise, the fixation of supply lines, such as pipelines, cables and the like to be connected to each other, arranged on the foundation plate structures simplified because of the supply lines in the event of an earthquake due to the reduced vibrations of the structures only slight deformations must be included. Incidentally, in the foundation plate cable and pipe ducts can be performed easily, as in the case of an earthquake, a breakage and damage to the cable and pipe ducts is excluded.

Die erfindungsgemäße Fundamentplatte kann auch aus vorhandenen Einzelfundamentplatten bestehen, die durch Kopplungselemente miteinander kraftschlüssig verbunden sind.The foundation plate according to the invention may also consist of existing Einzelelfundamentplatten which are positively connected to each other by coupling elements.

Nachfolgend wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung detailliert erläutert. Es zeigen schematisch:

Fig. 1:
einen Schnitt durch eine erfindungsgemäße Fundamentplatte mit darauf angeordneten Bauwerken,
Fig. 2:
einen Schnitt durch die erfindungsgemäße Fundamentplatte gemäß Fig. 1 während eines Erdbebens,
Fig. 3:
einen Schnitt durch eine erfindungsgemäße Fundamentplatte mit darauf angeordneten Bauwerken in einer zweiten Ausführungsform und
Fig. 4:
einen Schnitt durch die Fundamentplatte gemäß Fig. 3 während eines Erdbebens.
The invention will be explained in detail with reference to a drawing showing only one embodiment. They show schematically:
Fig. 1:
a section through a foundation plate according to the invention with structures arranged thereon,
Fig. 2:
a section through the foundation plate according to the invention according to Fig. 1 during an earthquake,
3:
a section through a foundation plate according to the invention with structures arranged thereon in a second embodiment and
4:
a section through the foundation plate according to Fig. 3 during an earthquake.

Fig. 1 zeigt eine Fundamentplatte 1, auf der drei Bauwerke 2, 3, 4 angeordnet sind. Die Fundamentplatte 1 weist eine Verstärkungsbewehrung 5 auf, welche Verstärkungsbewehrung 5 parallel zur Erdoberfläche 6 orientiert ist. Im Falle eines Erdbebens, was in Fig. 2 dargestellt ist, schwingt die Erdoberfläche 6 in horizontaler Richtung, was durch den Pfeil P in Fig. 2 angedeutet ist. Dadurch, dass die Erdbebenwellen ausgehend von einem nicht dargestellten Erregerzentrum zu unterschiedlichen Zeitpunkten an Punkten A, B auf die Erdoberfläche 6 treffen, weist die Erdoberfläche 6 an dem Punkt A eine andere Auslenkung als an dem Punkt B auf. Durch die darüberliegende Fundamentplatte 1 und die Haftung des Erdbodens an der Fundamentplatte 1 wird diese unterschiedliche Auslenkungen insbesondere an den Punkten A und B nicht zulassen. Die Behinderung der Auslenkung der Erdoberfläche 6 an den Punkten A bzw. B ruft die Kräfte NA1 bzw. NA2 hervor, welche Zwangsnormalkräfte bzw. Zugkräfte NA1 und NA2 auf die Fundamentplatte 1 einwirken. Dort rufen sie wechselweise Zugkräfte und Druckkräfte hervor, wobei die Zugkräfte durch die Verstärkungsbewehrung 5 in der Fundamentplatte 1 aufgenommen werden, wodurch ein Bruch der Fundamentplatte 1 vermieden wird. Fig. 1 shows a foundation plate 1, on the three structures 2, 3, 4 are arranged. The foundation plate 1 has a reinforcing reinforcement 5, which reinforcing reinforcement 5 is oriented parallel to the earth's surface 6. In case of earthquake, what in Fig. 2 is shown, the earth's surface 6 vibrates in the horizontal direction, which is indicated by the arrow P in Fig. 2 is indicated. Due to the fact that the earthquake waves strike the earth's surface 6 at points A, B at different points in time from an exciter center (not shown), the earth's surface 6 has a different deflection at the point A than at the point B. Due to the overlying foundation plate 1 and the adhesion of the soil to the foundation plate 1, these different deflections will not allow in particular at the points A and B. The obstruction of the deflection of the earth's surface 6 at the points A and B causes the forces N A1 and N A2 , respectively, which force normal forces or tensile forces N A1 and N A2 act on the foundation plate 1. There they call alternately tensile forces and compressive forces, wherein the tensile forces are absorbed by the reinforcing reinforcement 5 in the foundation plate 1, whereby a fracture of the foundation plate 1 is avoided.

Dadurch, dass die Auslenkungen an der fundamentplattenseitigen Erdoberfläche 6 durch die Fundamentplatte 1 behindert wird, wird auch eine horizontale Verlagerung der Fundamentplatte 1 parallel zu dem Doppelpfeil P vermindert. Infolgedessen sind die Schwingungen und die Kippschwingungen der Bauwerke 2, 3, 4 bei den in Fig. 1, 2 dargestellten Fundamentplatte 1 gegenüber den im Stand der Technik zu beobachtenden Kippschwingungen vermindert. Auf diese Weise können bei den Bauwerken 2, 3, 4 bei einem Erdbeben Beschädigungen an den Bauwerken 2, 3, 4 ebenfalls vermieden werden.Because the deflections on the foundation plate-side ground surface 6 are hindered by the foundation plate 1, horizontal displacement of the foundation plate 1 parallel to the double-headed arrow P is also reduced. As a result, the vibrations and the tilting vibrations of the structures 2, 3, 4 at the in Fig. 1, 2 shown base plate 1 is reduced compared to the tilting vibrations observed in the prior art. In this way, in the structures 2, 3, 4 in an earthquake damage to the structures 2, 3, 4 are also avoided.

Die Fundamentplatte 1 mit den darauf angeordneten Bauwerken 2, 3, 4 gemäß Fig. 3 entspricht im Wesentlichen der Fundamentplatte 1 mit den darauf angeordneten Bauwerken 2, 3, 4 gemäß den Fig. 1 und 2. Allerdings weist die Fundamentplatte 1 gemäß Fig. 3 eine von der Bewehrung bzw. Verstärkungsbewehrung 5 der Fundamentplatte 1 gemäß den Fig. 1 und 2 verschiedene Bewehrungen bzw. Versteifungsbewehrungen 7 auf.The foundation plate 1 with the structures 2, 3, 4 arranged thereon Fig. 3 essentially corresponds to the foundation plate 1 with the structures 2, 3, 4 arranged thereon according to FIGS Fig. 1 and 2 , However, the foundation plate 1 according to Fig. 3 one of the reinforcement or reinforcing reinforcement 5 of the foundation plate 1 according to the Fig. 1 and 2 various reinforcements or stiffening reinforcements 7 on.

In Fig. 4 ist an dem Punkt C eine Querkraft VA1 und ein Moment MA1 dargestellt, das durch Kippschwingungen der Bauwerke 2und 3 hervorgerufen wird. Weiterhin ist an dem Punkt D eine Schubkraft VA2 und ein Moment MA2 dargestellt, welches durch die Kippschwingungen der Bauwerke 3 und 4 hervorgerufen wird. Die in den Fig. 3 und 4 dargestellte Versteifungsbewehrung 7 ist mit der Maßgabe ausgelegt, dass die Momente MA1 und MA2 sowie die Schubkräfte VA1 und VA2 von der Versteifungsbewehrung 7 aufgenommen und so Beschädigungen der Fundamentplatte 1 gemäß den Fig. 3 und 4 ausgeschlossen werden.In Fig. 4 is shown at the point C, a lateral force V A1 and a moment M A1 , which is caused by tilting vibrations of the structures 2 and 3. Furthermore, a thrust force V A2 and a moment M A2 is shown at the point D, which is caused by the tilting vibrations of the structures 3 and 4. The in the 3 and 4 shown stiffening reinforcement 7 is designed with the proviso that the moments M A1 and M A2 and the thrust forces V A1 and V A2 received by the reinforcing reinforcement 7 and so damage the foundation plate 1 according to the 3 and 4 be excluded.

Weiterhin ist in den Fig. 1 bis 4 dargestellt, dass die Fundamentplatte 1 erdbodenseitig bzw. auf ihrer den Bauwerken abgewandten Oberfläche eine Profilierung 8 aufweist, durch die die Fundamentplatte 1 in Verbindung mit der Verstärkungsbewehrung 5 bzw. der Versteifungsbewehrung 7 eine zusätzliche Verstärkung erfährt.Furthermore, in the Fig. 1 to 4 illustrated that the foundation plate 1 on the ground floor or on its surface facing away from the structures has a profiling 8, through which the foundation plate 1 in conjunction with the reinforcing reinforcement 5 and the stiffening reinforcement 7 undergoes additional reinforcement.

Claims (14)

  1. A method for producing a seismically passive foundation slab (1) having at least one structure (2, 3, 4) arranged on the foundation slab (1), wherein the foundation slab (1) is provided with a reinforcement (5) configured in such a way that a tensile force can be absorbed by the foundation slab (1), which tensile force is at least as large as the tensile force (NA, NA2) acting on the foundation slab (1) due to an earthquake, in that the reinforcement (5) is formed from concrete steel, wherein the tensile yield strength of the concrete steel fyk is larger than 400 N/mm2 and the reinforcement (5) is orientated parallel or approximately parallel to the earth's surface (6), wherein the at least one structure (2, 3, 4) is erected on the foundation slab (1) and connected to the foundation slab (1), wherein a plurality or multiplicity of structures (2, 3, 4) is arranged on the foundation plate (1).
  2. The method according to claim 1, wherein the reinforcement (5) is arranged in the foundation slab (1) with the proviso that the tensile force generated by the earthquake and orientated parallel or essentially parallel to the earth's surface (6) is or can be absorbed by the foundation slab (1).
  3. The method according to one of claims 1, or 2, wherein the preferably exclusively horizontal tensile force generated by the earthquake is absorbed by the reinforcement (5).
  4. The method according to one of claims 1 to 3, wherein the reinforcement is arranged in the two main directions of the foundation slab - particularly orthogonally to one another.
  5. The method according to one of claims 1 to 4, wherein a plurality of individual foundation slabs is connected to the seismically passive foundation slab with the aid of coupling elements.
  6. The method according to claims 1 to 5, wherein the foundation slab (1) is provided with a reinforcement (7), wherein a pushing force VA and/or a moment MA is or can be absorbed using the reinforcement (7), which pushing force VA and/or which moment MA is/are introduced into the foundation slab (1) by the vibrating structure (2, 3, 4) excited by an earthquake.
  7. The method according to one of claims 1 to 6, wherein the foundation slab or the underside thereof is constructed in a profiled manner.
  8. The method according to one of claims 1 to 7, wherein the structure (2, 3, 4) is anchored on the foundation slab (1).
  9. The method according to one of claims 1 to 8, wherein the foundation plate (1) is preferably laid directly onto the earth (6).
  10. The method according to one of claims 1 to 9, wherein the foundation plate (1) is additionally laid on piles.
  11. The method according to one of claims 1 to 10, wherein the foundation slab (1) is constructed in one piece.
  12. A seismically passive foundation slab having at least one structure (2, 3, 4) arranged on the foundation slab (1), wherein the foundation slab (1) is produced according to one of claims 1 to 11 in particular, wherein the foundation slab (1) is provided with a reinforcement (5), wherein the reinforcement (5) is constructed with the proviso that a tensile force can be absorbed by the foundation slab (1), which tensile force is at least as large as the tensile force (NA, NA2) acting on the foundation slab due to an earthquake, in that the reinforcement (5) is formed from concrete steel, wherein the tensile yield strength of the concrete steel fyk is larger than 400 N/mm2 and the reinforcement (5) is orientated parallel or approximately parallel to the earth's surface (6), and wherein a plurality or multiplicity of structures (2, 3, 4) is arranged on the foundation plate (1).
  13. The seismically passive foundation slab according to claim 12, wherein the foundation slab (1) consists of a plurality of individual foundation slabs, which are connected to one another via coupling elements.
  14. The seismically passive foundation slab according to claim 12 or 13, wherein the foundation slab (1) is provided with a reinforcement (7), wherein the reinforcement (7) is constructed with the proviso that a pushing force (VA1, VA2) and/or a moment (MA1, MA2) of the structure (2, 3, 4), which is vibrating due to the earthquake and stands on the foundation slab (1), can be absorbed or is/are absorbed using the reinforcement (7).
EP13159022.6A 2013-03-13 2013-03-13 Method for producing a foundation panel that eliminates the effect of earthquakes for at least one building Not-in-force EP2778291B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13159022.6A EP2778291B1 (en) 2013-03-13 2013-03-13 Method for producing a foundation panel that eliminates the effect of earthquakes for at least one building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13159022.6A EP2778291B1 (en) 2013-03-13 2013-03-13 Method for producing a foundation panel that eliminates the effect of earthquakes for at least one building

Publications (2)

Publication Number Publication Date
EP2778291A1 EP2778291A1 (en) 2014-09-17
EP2778291B1 true EP2778291B1 (en) 2015-12-30

Family

ID=47877905

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13159022.6A Not-in-force EP2778291B1 (en) 2013-03-13 2013-03-13 Method for producing a foundation panel that eliminates the effect of earthquakes for at least one building

Country Status (1)

Country Link
EP (1) EP2778291B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249546A1 (en) * 2002-10-23 2004-05-06 Bögl, Max Building with a buffer layer and method for producing a building
US20070151173A1 (en) * 2005-12-30 2007-07-05 Boake Paugh Method of constructing structures with seismically-isolated base

Also Published As

Publication number Publication date
EP2778291A1 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
DE112010000467T5 (en) SCISSOR REINFORCEMENT MATERIAL WITH DOUBLE ANCHORING FUNCTIONS ON TOP AND BOTTOM
EP3441527A1 (en) Shut-off device for preventing the passage of land vehicles
DE202022103863U1 (en) Supporting structure of excavation to avoid artificial fracture surfaces due to concentrated stresses
EP0758699A1 (en) Method for installing tapered piles, tapered piles, and foundation structures made with these piles
DE102010054364B4 (en) Method for building a gabion wall
EP2778291B1 (en) Method for producing a foundation panel that eliminates the effect of earthquakes for at least one building
EP3486379B1 (en) Monolithic wall structure for completing a system of plastic-reinforced soil and grid structure for same as functional location
EP2898158B1 (en) Fastening element for a safety device
DE4114193A1 (en) METHOD AND DEVICE FOR STABILIZING FRICTION FLOOR LAYERS AND ADJUSTING COHESION FLOOR LAYERS
EP1054110A1 (en) Method for forming a vegetation support layer on an sloping earth structure
EP2418653A1 (en) Multi-layer radiation protection component
DE202007002425U1 (en) Endless Gabion Wall
DE202012101350U1 (en) Terror protection device for an object
EP1964978B1 (en) Method for erecting a wharfage and wharfage
EP4098802B1 (en) Geotechnical method and geotechnical arrangement
EP1947248A1 (en) Antiseismic construction
DE102015105780B4 (en) Method of stabilizing the subsurface and removing structural and traffic loads in stable areas
DE102010040332B4 (en) foundation element
DE102016010145A1 (en) Anchoring for a foundation
DE202006019905U1 (en) Composite structural component for use as e.g. concrete column, has concrete body, and inner reinforcement that is placed in concrete body, where reinforcement is designed by prefabricated profiles of predetermined length and contour
EP1899543A1 (en) Earthquake-proof wall assembly
EP2251492B1 (en) Protection system for securing buildings endangered by geological depressions
EP3144439B1 (en) Panel, especially floor- or ceiling panel for a building structure
EP1557498A2 (en) Concrete prefabricated block for retaining walls with geogrid retention
DE202020102080U1 (en) Finished foundation for fence and / or gate systems, fence and / or gate system with finished foundation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130313

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150304

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: E02D 27/34 20060101AFI20150316BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150708

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SADEGH AZAR, HAMID, DR.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 767562

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001674

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160502

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013001674

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160313

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161003

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 767562

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180313