EP2771437A1 - Method for operating a gasification reactor - Google Patents

Method for operating a gasification reactor

Info

Publication number
EP2771437A1
EP2771437A1 EP12783523.9A EP12783523A EP2771437A1 EP 2771437 A1 EP2771437 A1 EP 2771437A1 EP 12783523 A EP12783523 A EP 12783523A EP 2771437 A1 EP2771437 A1 EP 2771437A1
Authority
EP
European Patent Office
Prior art keywords
gasification
reaction chamber
reactor
controlled
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12783523.9A
Other languages
German (de)
French (fr)
Inventor
Martin ZUCKERMAIER
Thomas Tschaftary
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIGENTO GREEN POWER GMBH
Original Assignee
Ligento Green Power GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ligento Green Power GmbH filed Critical Ligento Green Power GmbH
Publication of EP2771437A1 publication Critical patent/EP2771437A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/36Fixed grates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the invention relates to a method for operating a gasification reactor (1) with a reaction chamber (4) for the autothermal and / or allothermal gasification of carbonaceous fuel to useful gases, wherein composition (28), amount (20), pressure (22), speed, Temperature (26) and / or specific outlet pulse of a control inputs (10) of the reaction chamber (4) added gasification variable based on a number of in the reaction chamber (4) determined control variables (30, 32, 34, 36, 38, 40) to be controlled.
  • Such a method is known, for example, from DE 10 2004 020 919 A1.
  • a reactor is generally understood to mean a part of a plant in which chemical reactions of one or more starting materials to one or more products are carried out. Therefore, in this invention, under a gasification reactor, a container is understood to be a part of an installation in which carbonaceous fuel material is converted into useful gases, ie gasified.
  • a useful gas is understood as meaning a substance or a substance mixture which is suitable both itself as fuel for internal combustion engines and also as raw material for further chemical production processes.
  • a carbonaceous fuel material is understood to mean such a material whose carbon contained in the form of an exothermic reaction oxidizes to carbon dioxide (CO 2 ) in air, that is to say it can be burned.
  • the carbonaceous fuel includes in particular
  • biomass in particular biomass, fossil fuels and synthetic organic substances, especially according to carbon-containing plastics.
  • biomass is generally understood to mean any carbonaceous substance which is derived directly or indirectly from physiological processes of living organisms, in particular from plant photosynthesis, is not deprived of the natural carbon cycle and can also be exothermally converted to CO2 by organisms.
  • biomass are fermentation residues, wood, leaves, hay, straw, paper, cardboard, compost, faeces and sewage sludge.
  • fossil fuels are understood to mean those forms of biomass which are located in a geological depression and are thus removed from the natural carbon cycle.
  • fossil fuels are asphalt, tar, bitumen, peat, lignite, hard coal and graphite.
  • a carbonaceous fuel material may also be understood to mean a mixture of different carbonaceous fuel materials, for example biomass, synthetic-organic materials and especially plastics.
  • Another example of a carbonaceous fuel is therefore household waste as a mixture of such fuels.
  • the shape of the carbonaceous fuel is independent of its shape, another example is wood in the form of logs, wood chips of varying size, sawdust or in the form of pellets.
  • the pyrolysis as a purely thermal decomposition of biomass, hard coal and lignite runs predominantly endothermic depending on the oxygen content and the binding of the oxygen. Within the fuel, the pyrolysis may also be exothermic.
  • the pyrolysis of hard coal or brown coal arise in addition to carbon monoxide (CO), hydrogen (H 2 ) and methane (CH 4 ), for example, still volatile hydrocarbons.
  • Plastics for example, consisting only of carbon and hydrogen, pyrolyze under exclusion of air exclusively to lower hydrocarbons.
  • carbon-containing fuel materials can be converted to useful gases with gasification agents, for example carbon with a deficiency of O 2 to CO, then carbon with water (H 2 O) to CO and H 2 , then CH 4 with O 2 to CO.
  • gasification agents for example carbon with a deficiency of O 2 to CO, then carbon with water (H 2 O) to CO and H 2 , then CH 4 with O 2 to CO.
  • the gasification reactions of carbonaceous fuel with H 2 O are endothermic.
  • a natural gasification agent is used in particular air, which may also be enriched with H 2 O, for example as an aerosol or vapor.
  • a gasification agent is understood to mean a pure substance or substance mixture whose addition to the carbonaceous fuel material increases the conversion into useful gases.
  • the gasification of carbonaceous fuel to Nutzgas is predominantly economical only if the fuel is not only readily available or cheap, but the gasification in their energy balance depends solely on the energy content of the fuel.
  • This relates in particular to the use of the useful gas as actual fuel for internal combustion engines, for example for the operation of a gas engine or a gas turbine.
  • the gasification of carbonaceous fuel to Nutzgas then requires a total exothermic running overall process, the energetic itself as long as enough fuel is available.
  • the heat released can also be used, for example, for heating residential buildings, as is the case with combined heat and power in combined heat and power plants (CHP).
  • CHP combined heat and power plants
  • an internal combustion engine is in turn coupled to a generator, which then finally converts mechanical energy into electrical energy.
  • wood is a carbonaceous fuel, like a normal grate on a grid.
  • air is sucked through the grate and the burning wood as a gasifying agent.
  • the upper layers of wood burn only partially and pyrolyze at the same time to Nutzgas, which is sucked off at the upper end of the furnace.
  • Air and natural gas move countercurrently in the opposite direction to the slowly sinking wood.
  • the resulting useful gas has a relatively low temperature of about 100 ° C and contains due to the ongoing drying and pyrolysis of the wood correspondingly much water vapor and organic constituents, which condense on further cooling to an acidic wood tar.
  • the wood tar produced in the countercurrent and DC wood gasification processes is not suitable for internal combustion engines, but damages them due to its adhesive properties.
  • similar high-viscosity residues occur, which are generally referred to as condensate in the present invention.
  • the resulting condensate not only reduces the efficiency with respect to material utilization balance of the gasification reactor, but must be removed from the useful gas by a gas scrubber. This additionally reduces the energy balance of the entire system and additionally requires washing liquid, for example water. Since the condensate is not only corrosive due to its pH, but also toxic and difficult to biodegrade, this results in a disposal problem.
  • fluidized bed gasification reactors in which the fuel is converted into useful gases in an incomplete fluidized bed furnace. In this case, no condensate is generated, since this is also converted to Nutzgasen.
  • gasification in fluidized-bed gasification reactors is restricted to solid fuel materials having a particle size of less than 40 mm with a water content of at least 25% by weight, the particles being suspended by a fluid medium that constantly swirls, for example air. have to. To maintain the fluidized bed, therefore, an external fluid supply with a high flow rate is necessary, which corresponds to an externally supplied work.
  • fluidized-bed gasification reactors can not be operated autothermally, but only allothermally, ie with the supply of external heat energy.
  • the total supply of these two types of energy shall be deducted from the total efficiency of the installation.
  • This gasification technology is only economical for power plants in the power range of 1, 5 to 3 MW, whereby the overall efficiency is only about 30%.
  • a special form of the fluidized-bed gasification reactor is the Winkler generator, in which the fluidized bed can be maintained even better in the entire reactor space by means of ring loops arranged in series around the reactor body.
  • Advantages of the Winkler generator are a homogeneous temperature distribution and better mixing of the particles compared to other fluidized bed gasification reactors.
  • the Winkler reactor is only suitable for the gasification of coal, especially lignite, limited to the smallest possible particle size.
  • a significant improvement of the fluidized bed gasification reactor is provided by the entrained flow gasification reactor in which the carbonaceous
  • Fuel is introduced as dust, slurry or paste as a burner in the gasification room.
  • the gasification processes take place in a cloud of dust.
  • This form of supply requires a corresponding pretreatment of the fuel, especially in biomass as a fuel to be introduced via a pneumatic system in the carburetor and gasified there in a very short time. Even such systems can be operated only with supply of work and heat energy.
  • the supply of heat energy by a continuous ignition with a Zündfackel.
  • the Koppers-Trotzek reactor as a special form of entrained flow gasification reactor is particularly suitable for the gasification of finely ground coal to useful gas.
  • the coal dust is fed in laterally at high speed, so that only a single ignition is needed and the gasification process otherwise autothermal can be performed.
  • operation of the Koppers-Trotzek reactor still requires the supply of work to maintain the flow of air.
  • the gasification processes can not be maintained solely by the supply of fuel.
  • the overall efficiency is limited to a maximum of 30 to 40% by the necessary supply of work to maintain the vortex or flight flow.
  • fluidized bed and entrained flow gasification reactors are limited to the specific nature of the carbonaceous fuel material, in principle, a pretreatment of the respective carbonaceous fuel material is required. Necessary pretreatments of the fuel material also considerably limit the cost-effectiveness of gasification plants, in particular CHP plants.
  • the invention has for its object to improve the efficiency of a gasification reactor for the gasification of carbonaceous fuel to Nutzgasen with respect to Nutzgas- and heat yield and its operational stability by a corresponding operating method.
  • This object is achieved by the combination of features of claim 1 in an inventive manner
  • the back-related claims include some advantageous and partially for themselves inventive developments of the invention.
  • the invention is based on a gasification reactor with a reaction chamber for the gasification of carbonaceous fuel by adding gasification agents to Nutzgasen.
  • the reaction chamber is the carbonaceous fuel.
  • a continuous supply can take place via a reservoir connected to the reaction chamber.
  • the conversion to the Nutzgasen as the sum of all individual pyrolysis and gasification reactions therefore takes place predominantly in the reaction chamber.
  • the gasification reactor according to the invention can also be designed completely as a reaction chamber.
  • composition, amount, pressure, velocity, temperature and / or specific exit pulse of a gasification agent added via control inputs of the reaction chamber are variably controlled according to claim 1 by means of a number of controlled variables determined in the reaction chamber.
  • a variable adjustment of the operation of the respective present states in the reactor is possible and it can be done an optimized gasification of the fuel.
  • Another important feature is the composition, in particular the calorific value of the useful gas used as a controlled variable. This is essentially influenced by the proportion of the water fed to the reaction chamber. By reduction of hydrogen and carbon monoxide are generated from water and carbon, which have a high calorific value. For example, if the calorific value of the useful gas is too low, the supply of water vapor in the gasification agent can be increased.
  • the volume flow of the Nutzgases is used as a control variable. This is also influenced by the proportion of the water fed to the reaction chamber, but in addition also by the total amount of the supplied gasification agent. A higher amount of gasification agent increases namely the gas volume in the reaction chamber and thus also the volume flow at the outlet.
  • the respective pressure in a reservoir for the fuel, in the reaction chamber and / or in a gas outlet is used as a controlled variable.
  • the pressure in the reaction chamber is influenced essentially by the total amount of the gasification agent supplied, but also by the respective distribution of the gasification agent via the various control inputs.
  • the reaction chamber in this case has a plurality of control inputs and composition, amount, pressure, speed, temperature and / or specific exit pulse of the added via the respective control input gasification agent will be controlled at least partially independently of the other control inputs. Consequently, during operation of the gasification reactor, several, ideally every position within the reaction chamber are accessible through these control inputs.
  • Each individual control input thus defines a reaction zone, all reaction zones thereby forming the reaction space which completely fills the reaction chamber. Since the control inputs are at least partially controlled independently of one another, in each reaction zone of the reaction space, the addition of gasification agent with respect to its composition, speed, temperature, pressure and amount as well as with respect to the specific exit pulse is variable over time.
  • this can be realized in that the side walls of the reaction chamber are interspersed with a multiplicity of such control inputs or that a holder with a plurality of recessed control inputs projects into the reaction chamber.
  • the side walls of the reaction chamber are interspersed with a multiplicity of such control inputs or that a holder with a plurality of recessed control inputs projects into the reaction chamber.
  • the combination of both constructive possibilities for the arrangement of the control inputs proves to be advantageous, whereby the accessibility of the entire reaction space is.
  • the nature of the fuel material changes.
  • a coking gradient which decreases vertically from the lower to the upper part of the reaction chamber is formed during the progress of the gasification process. Therefore, in the progressing gasification process in the lower reaction zones for gasification of the resulting pure carbon increased water vapor is supplied together with the hot reactor internal gas.
  • C0 2 can be regarded as a gasification agent itself from 600 ° C itself, since then its equilibrium reaction with carbon according to Boudouard to 23% on the side of CO.
  • the gasification means comprise at least one of the components O 2 or H 2 O, the gasification agent CO 2 being generated during the gasification process itself.
  • the amount of the carbonaceous fuel material supplied to the reaction chamber is also variably controlled on the basis of a number of controlled variables determined in the gasification reactor. This allows a further influencing of the parameters within the reaction chamber by externally controllable variables.
  • a temperature in the reaction chamber is used as a controlled variable.
  • a plurality of temperatures in different areas eg the reaction zones described can be used.
  • composition, amount, pressure, speed, temperature and / or specific exit pulse of the gasification agent added via the respective control input are advantageously controlled by means of the temperature in the reaction chamber at the respective control input as a control variable.
  • the respective temperature substantially influences the type of reactions which occur in the respective zone. Higher temperatures, for example, allow the combustion of carbon residues, while comparatively lower temperatures improve the formation of useful gases.
  • the temperature in the respective reaction zone can be influenced by the admission pressure, temperature and the proportion of the water vapor of the gasification agent supplied at the respective control input. If the pressure and temperature of the gasification agent supplied increase, the temperature in this area also increases, while the increase in the means a reduction in the temperature by heat energy consuming reduction operations.
  • the pressure difference should be used as a control variable via a gas-permeable retention device between the reaction chamber and an ash box of the gasification reactor in an advantageous embodiment.
  • An increase in the pressure difference here indicates a blockage of the retention device with carbon residues. These carbon residues arise in particular at comparatively low temperatures, which in turn are generated by a high water vapor content in the gasification agent. An increase in the pressure difference should therefore be counteracted here by reducing the water vapor content.
  • the composition, moisture, lumpiness and / or dust content of the fuel are used as controlled variables.
  • the respective parameters within the reaction chamber can be optimally adapted to the fuel used.
  • such operated gasification reactor is suitable for a variety of different fuel materials.
  • the inventive method allows an optimal and accelerated reaction of the gasification process with respect to Nutzgasausbeute in its entire time through the regulated, locally varied and the history adapted supply of gasification agent.
  • the formation of condensate is avoided, since the residence time of the hydrocarbons can be made as long as possible by regulating the process, so that the cracking of hydrocarbons (tars) in as small as possible Pieces can be done.
  • the regulation of the process ensures that the temperatures in the flowed through spatial areas are uniformly high so that the cracking reaction of the condensate takes place as quickly as possible.
  • gasification reactor replaces the Winkler generator necessary, extremely energy-consuming preservation of the fluidized bed for optimal and condensate-free gasification of the fuels. Furthermore, a gasification reactor operated according to the invention does not require continuous ignition of the fuel material operated with it, for example by means of an ignition flare.
  • the process according to the invention combines the advantages of fluidized-bed and air-current gasification reactors with those of fixed-bed gasification reactors, whereby only a fraction of external work for supplying the gasification agent and recycling the internal reactor gas must be supplied in comparison to maintaining a fluidized bed or a flow stream. For this external work, a fraction of the generated useful gas is sufficient.
  • the useful gas generated by the method according to the invention can be supplied to an internal combustion engine, which in turn is coupled to a generator. The work necessary to control the reactor is then provided by a fraction of the electrical energy converted by the generator.
  • the performance of the inventively operated reactor depends solely on the chemical energy content of the carbonaceous fuel. Overall, the method provides a stable and completely autothermal operation of the gasification reactor according to the invention with a high overall efficiency, in particular as a subsystem of a CHP.
  • each type and form of carbonaceous fuel material can be used in any state of aggregation for gasification.
  • a DC fixed bed reactor designed according to the invention may additionally have a gas feed device in the reaction chamber.
  • plastic waste and household waste as an example of extremely inhomogeneous mixtures of carbonaceous fuel materials can be gasified with a high overall efficiency in a DC fixed bed reactor according to the invention.
  • the variation of process characteristics is possible. First, it is possible to vary the number of reaction zones.
  • the initially independent control inputs may be controlled to form either a single total reaction zone or a plurality of arbitrarily partitionable partial reaction zones. If, for example, the control inputs are combined into independent independent reaction zones by means of horizontal loops circulating over the reaction chamber, the reaction zones which are independent of one another can be operated in parallel and thus combined to form a larger reaction zone.
  • This variation of the geometry of reaction zones can also be realized by the change, amount and composition of the gasification agent in the radial direction. In this way, inactive, "cold" interior areas are avoided, the entire reaction space is thus activated in terms of process technology, and finally it is possible to vary the respective chemical reaction in the individual reaction zones During operation of the reactor, it is possible to change, change, spatially expand or accelerate the reactions at any point in the reaction space during operation of the reactor.
  • the melting of the solid fuel into readily volatile pyrogas, charcoal, water, higher-chain hydrocarbons, ie a so-called pyrolysis reaction may be mentioned.
  • the aim is to achieve a high heat input with as little air supply as possible. This is done by preheating the gasification agent, by supplying superheated steam and by external preheating of the solid fuel.
  • Switching the zone reaction of pyrolysis in the solid fuel to oxidation in the coal bed occurs when, after filling and during start-up of the reactor, the lower zones are initially filled with solid fuel and pyrogenic be operated table. After the outgassing of the volatile pyrogase, the zone is then switched to oxidative or reductive operation.
  • the gas phase reaction can take place both oxidatively in the solid fuel-free and carbon-free regions produced by intermediate bottoms.
  • the gas phase reaction can be proportionally reduced by greatly increasing the velocity of the gasifying agents by supplying them by means of controllable nozzles without increasing the mass flow, as long as the stream, so-called “sharp jet", strikes the coal bed located behind the cavity.
  • the reaction rate in the reaction zones can be varied.
  • the gasification agent supply in the coal bed is increased.
  • the reduction in the supply of gasification equals a reduction in its geometry and / or a reduction in the reaction rate in this zone.
  • the increase in the supply of gasification is associated with an increase in their geometry and / or with an increase in the reaction rates of the reactions occurring therein, so that the carbon is degraded oxidatively or reductively.
  • the pyrozone is geometrically reduced or reduced in intensity, while the reaction zones for coal mining increased, or increased in intensity.
  • the amount, composition, temperature or pressure of the gasifying agent in the reaction zones can be varied.
  • a variation of the amount of the gasifying agent essentially affects the Reaction speed and partly on the nature of the reaction.
  • the composition of the gasifying agent also affects the nature of the reaction.
  • the temperature variation causes a change in the reaction rate.
  • a variation of the pressure in turn affects the speed and amount of the gasifying agent.
  • a - as far as possible - decoupling of all influencing variables is achieved via adjustable nozzles.
  • Fig. 2 is a gasification reactor with central hedgehog-like supply line
  • Fig. 3 is a schematic representation of the control and control variables with their mutual influence.
  • the embodiment in Fig. 1 relates to a gasification reactor 1, which is designed in particular for the gasification of solid carbonaceous fuel.
  • the gasification reactor 1 is designed as a fixed bed reactor according to the DC principle.
  • the gasification reactor according to FIG. 1 is suitable for carrying out the process according to the invention.
  • the gasification reactor 1 has a permeable intermediate bottom 2, which divides the gasification reactor 1 into an upper reservoir 3 and into a lower reaction chamber 4. Another permeable intermediate bottom 5 separates the reaction chamber 4 from the ash box 6 as the lowest subspace of the entire gasification reactor 1 from.
  • a gas-permeable retention device 7 in the form of a grate between the reaction chamber 4 and the ash box 6 ensures that the fuel remains in the reaction chamber 4.
  • a gas outlet 8 is attached. Via the reservoir 3, the carbonaceous, solid fuel is fed to the reaction chamber 4, the useful gas is discharged via the gas outlet 8. After filling reservoir 3 and reacting Onshunt 4 with the carbonaceous solid fuel, the gasification reactor is ignited once in the lower reaction zones and then started by air.
  • the side wall 9 of the reaction chamber 4 of the gasification reactor 1 is interspersed with a plurality of control inputs 10 in such a way that in the operation of the gasification reactor each position within the reaction chamber 4 is accessible through the control inputs 10.
  • the control inputs 10 are horizontally over the reaction chamber circulating ring lines 11 to flat, but summarized independent reaction zones. By the respective independent ring lines 11 the addition of gasification agent or the return of the reactor internal gas with respect to composition, temperature and pressure and thus quantity is then controlled via the combined via web connections 12 control inputs 10.
  • the control is individual for each area reaction zone.
  • the reservoir 3 of the gasification reactor 1 has a larger diameter and a larger volume than the reaction chamber 4, wherein the permeability of the intermediate bottom 2 is given by an opening with a diameter which is smaller than that of the reservoir 3 and the reaction chamber 4, but greater than the opening of the intermediate bottom 5 is.
  • the reactor with its reservoir 3, the reaction chamber 4 and its ash box 6 are cylindrical, the openings of the shelves 2 and 5 are circular.
  • This embodiment of the gasification reactor 1 allows its embedding in a vollum passerde insulation, whereby the reactor efficiency is further increased.
  • the gasification reactor 1 is designed to withstand deflagration of the gasification products as well as the fuel.
  • the gasification reactor 1 according to FIG. 2 likewise has an upper reservoir 3 and a permeable intermediate bottom 2.
  • the reaction chamber 4 is charged by nozzle-shaped nozzle entrances 13 arranged in the form of a nozzle.
  • the nozzle entrances 13 form the control inputs 10 of the embodiment in FIG.
  • the gasification reactor 1 according to Hg. 2 corresponds in its construction to that in FIG. 1.
  • Control parameters which can be directly influenced by the control are here the total amount of gasification agent 20, the admission pressure 22 of the gasification agent at the nozzle or control inputs 10, 13, the respective distribution 24 of the gasification agent to the individual nozzle or control inputs 0, 3, that of a spatial distribution corresponds to the temperature 26 of the gasifying agent and the water vapor content 28 in the gasification agent.
  • controlled variables are detected: the flow 30 of the generated Nutzgases, the differential pressure 32 on the lower shelf 5, the chemical Nutzgaszusammen substance 34, the pressure 36 in the reaction chamber 4, the temperature 38 in the reaction chamber 4 at the respective control input 10 and the type of reactions occurring 40.
  • the latter can typically not be measured directly but can only be determined as a derived controlled variable.
  • the volume flow 30 of the useful gas is influenced by the total amount of gasification agent 20, since an increased supply of gaseous gasification agent via a gain factor Nutzgases increased. Furthermore, this is influenced by the water vapor content 28 in the gasification agent, since introduced water vapor is split reductively and thus causes an increase in the volume and thus the volume flow 30 of the exiting useful gas.
  • the differential pressure 32 across the intermediate bottom 5, which is permeable to gas, is essentially an indicator of an increased deposition of carbon residues blocking the gas throughput of the intermediate bottom 5. Carbon remains at lower temperatures when the carbon is not burned. This is particularly the case with a high water vapor content 28. Thus, the water vapor fraction 28 influences the differential pressure 32. If the distribution 24 of the supplied gasification agent is changed such that more gasification agent is introduced at control inputs 10 in the region of the intermediate bottom 5 and the temperature here increases, the accumulated carbon is burned and the differential pressure 32 decreases.
  • the gas composition of the useful gas 34 depends essentially on the proportion of the water vapor 28. A higher amount of water vapor leads to a higher proportion of hydrogen in the useful gas.
  • the pressure 36 in the reactor chamber 4 should not deviate too far from the ambient pressure. It is essentially influenced by the total quantity 20 of the gasification agent supplied, and also by the spatial distribution 24 of the gasification agent.
  • the temperatures 38 in the various regions of the reactor chamber 4 are influenced above all by the spatial distribution 24 of the gasification agent, but also by admission pressure 22 and temperature 24 of the gasification agent, as well as the water vapor fraction 28 in the gasification agent, as explained above.
  • the type of chemical reactions occurring 40 is also, as already explained, essentially determined by the water vapor content 28 in the gasification agent, and also by the temperature of the introduced gasification agent.
  • the control according to the inventive method now takes into account the control variables recorded in the reactor 1 and accordingly sets the control variables for optimized gasification.
  • the gasification reactor 1, operated with a method under control of the variables described in this embodiment is designed for a CHP, so for the heat and power.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The aim of a method for operating a gasification reactor (1) that comprises a reaction chamber (4) for the autothermic and/or allothermic gasification of carbonaceous combustible material into useful gases is to improve the efficiency of a gasification reactor for gasifying carbonaceous combustible material into useful gases with respect to useful gas yield and thermal yield as well as to the operational stability of the gasification reactor. To this end, the composition, quantity, pressure, speed, temperature and/or specific discharge pulse of a gasification agent that is fed via control inlets (10) of the reaction chamber (4) are controlled in a variable manner by means of a number of controlled variables that are detected in the reaction chamber (4), the composition (34) of the useful gas and/or the volume flow (30) of the useful gas and/or the respective pressure (36) in a reservoir (3) for the combustible material, in the reaction chamber (4) and/or in a gas outlet (8) being used as a controlled variable (30, 32, 34, 36, 38, 40).

Description

Beschreibung  description
Verfahren zum Betreiben eines Vergasungsreaktors Method for operating a gasification reactor
Die Erfindung betrifft ein Verfahren zum Betreiben eines Vergasungsreaktors (1) mit einer Reaktionskammer (4) für die autotherme und/oder allotherme Vergasung von kohlenstoffhaltigem Brennmaterial zu Nutzgasen, wobei Zusammensetzung (28), Menge (20), Druck (22), Geschwindigkeit, Temperatur (26) und/oder spezifischer Austrittspuls eines über Regelungs-eingänge (10) der Reaktionskammer (4) zugegebenen Vergasungsmittels variabel anhand einer Anzahl von in der Reaktionskammer (4) ermittelten Regelgrößen (30, 32, 34, 36, 38, 40) gesteuert werden. Ein derartiges Verfahren ist beispielsweise aus der DE 10 2004 020 919 A1 bekannt. The invention relates to a method for operating a gasification reactor (1) with a reaction chamber (4) for the autothermal and / or allothermal gasification of carbonaceous fuel to useful gases, wherein composition (28), amount (20), pressure (22), speed, Temperature (26) and / or specific outlet pulse of a control inputs (10) of the reaction chamber (4) added gasification variable based on a number of in the reaction chamber (4) determined control variables (30, 32, 34, 36, 38, 40) to be controlled. Such a method is known, for example, from DE 10 2004 020 919 A1.
Definitionen definitions
In der vorliegenden Erfindung wird allgemein unter einem Reaktor ein Teil einer Anlage verstanden, in dem chemische Reaktionen von einem oder mehreren Ausgangsmaterialien zu einem oder mehreren Produkten durchgeführt werden. Daher wird in dieser Erfindung unter einem Vergasungsreaktor ein Behälter als ein Teil einer Anlage verstanden, in dem kohlenstoffhaltiges Brennmaterial zu Nutzgasen umgesetzt, also dazu vergast wird. In the present invention, a reactor is generally understood to mean a part of a plant in which chemical reactions of one or more starting materials to one or more products are carried out. Therefore, in this invention, under a gasification reactor, a container is understood to be a part of an installation in which carbonaceous fuel material is converted into useful gases, ie gasified.
In der vorliegenden Erfindung wird unter einem Nutzgas eine Substanz oder ein Substanzgemisch verstanden, die oder das sich sowohl selbst als Brennstoff für Brennkraftmaschinen und auch als Rohstoff für weitere chemische Herstellungsverfahren eignet. In the present invention, a useful gas is understood as meaning a substance or a substance mixture which is suitable both itself as fuel for internal combustion engines and also as raw material for further chemical production processes.
In der vorliegenden Erfindung wird unter einem kohlenstoffhaltigen Brennmaterial ein solches Material verstanden, dessen enthaltender Kohlenstoff in Form einer exothermen Reaktion zu Kohlendioxid (C02) an Luft oxidiert, also verbrannt werden kann. In diesem Sinne umfasst das kohlenstoffhaltige Brennmaterial insbe- In the present invention, a carbonaceous fuel material is understood to mean such a material whose carbon contained in the form of an exothermic reaction oxidizes to carbon dioxide (CO 2 ) in air, that is to say it can be burned. In this sense, the carbonaceous fuel includes in particular
BESTÄTIGUNGSKOPIE sondere Biomasse, fossile Brennstoffe und synthetisch-organische Stoffe, speziell entsprechend kohlenstoffhaltige Kunststoffe. In der vorliegenden Erfindung wird unter Biomasse allgemein jedwede kohlenstoffhaltige Substanz verstanden, die direkt oder indirekt aus physiologischen Prozessen von lebenden Organismen, insbesondere aus pflanzlicher Photosynthese stammt, nicht dem natürlichen Kohlenstoffkreislauf entzogen ist und sich auch durch Organismen exotherm zu CO2 umsetzen lässt. Beispiele für Biomasse sind Gärreste, Holz, Laub, Heu, Stroh, Papier, Pappe, Kompost, Fäkalien und Klärschlamm. CONFIRMATION COPY in particular biomass, fossil fuels and synthetic organic substances, especially according to carbon-containing plastics. In the present invention, biomass is generally understood to mean any carbonaceous substance which is derived directly or indirectly from physiological processes of living organisms, in particular from plant photosynthesis, is not deprived of the natural carbon cycle and can also be exothermally converted to CO2 by organisms. Examples of biomass are fermentation residues, wood, leaves, hay, straw, paper, cardboard, compost, faeces and sewage sludge.
In der vorliegenden Erfindung werden unter fossilen Brennstoffen solche Formen von Biomasse verstanden, die sich in einer geologischen Senke befinden und somit dem natürlichen Kohlenstoffkreislauf entzogen sind. Beispiele für fossile Brennstoffe sind Asphalt, Teer, Bitumen, Torf, Braunkohle, Steinkohle und Graphit. In the present invention, fossil fuels are understood to mean those forms of biomass which are located in a geological depression and are thus removed from the natural carbon cycle. Examples of fossil fuels are asphalt, tar, bitumen, peat, lignite, hard coal and graphite.
Unter einem kohlenstoffhaltigem Brennmaterial kann auch eine Mischung verschiedener kohlenstoffhaltiger Brennmaterialien, beispielsweise aus Biomasse, aus synthetisch-organischen Stoffen und speziell aus Kunststoffen verstanden werden. Ein weiteres Beispiel für ein kohlenstoffhaltiges Brennmaterial ist daher Hausmüll als Gemisch von solchen Brennstoffen. Damit ist die Form des kohlenstoffhaltigen Brennmaterials unabhängig von seiner Form anzusehen, ein weiteres Beispiel ist Holz in Form von Stämmen, Hackschnitzeln variierender Größe, Sägemehl oder in Form von Pellets. A carbonaceous fuel material may also be understood to mean a mixture of different carbonaceous fuel materials, for example biomass, synthetic-organic materials and especially plastics. Another example of a carbonaceous fuel is therefore household waste as a mixture of such fuels. Thus, the shape of the carbonaceous fuel is independent of its shape, another example is wood in the form of logs, wood chips of varying size, sawdust or in the form of pellets.
Technischer Hintergrund Technical background
Die Pyrolyse als rein thermische Zersetzung von Biomasse, Stein- und Braunkohle verläuft vorwiegend endotherm in Abhängigkeit des Sauerstoffgehaltes und der Bindungsart des Sauerstoffes. Innerhalb des Brennstoffs kann die Pyrolyse auch exotherm verlaufen. Insbesondere bei der Pyrolyse von Stein- oder Braunkohle entstehen neben Kohlenmonoxid (CO), Wasserstoff (H2) und Methan (CH4) beispielsweise noch flüchtige Kohlenwasserstoffe. Kunststoffe, die beispielsweise nur aus Kohlenstoff und Wasserstoff bestehen, pyrolysieren unter Luftausschluss ausschließlich zu niederen Kohlenwasserstoffen. Kohlenmonoxid (CO), Wasserstoff (H2) und Methan (CH4) und flüchtige Kohlenwasserstoffe sind brennbar, eignen sich bestens als Treibstoffe für Brennkraftmaschinen, sind wichtige Ausgangsubstanzen für viele chemische Herstellungsprozesse und sind damit wertvolle Nutzgase. Methan (CH4) und reiner Kohlenstoff, beispielsweise in Form von mineralischem Graphit oder synthetischem Koks, sind nicht bzw. nicht mehr weiter pyrolysierbar. The pyrolysis as a purely thermal decomposition of biomass, hard coal and lignite runs predominantly endothermic depending on the oxygen content and the binding of the oxygen. Within the fuel, the pyrolysis may also be exothermic. In particular, in the pyrolysis of hard coal or brown coal arise in addition to carbon monoxide (CO), hydrogen (H 2 ) and methane (CH 4 ), for example, still volatile hydrocarbons. Plastics, for example, consisting only of carbon and hydrogen, pyrolyze under exclusion of air exclusively to lower hydrocarbons. Carbon monoxide (CO), hydrogen (H 2 ) and methane (CH 4 ) and volatile hydrocarbons are flammable, are ideal as fuels for internal combustion engines, are important starting materials for many chemical manufacturing processes and are therefore valuable Nutzgase. Methane (CH 4 ) and pure carbon, for example in the form of mineral graphite or synthetic coke, are not or no longer pyrolysable.
Kohlenstoffhaltige Brennmaterialien lassen sich aber mit Vergasungsmitteln zu Nutzgasen umsetzen, beispielsweise Kohlenstoff mit einem Unterschuss an O2 zu CO, dann Kohlenstoff mit Wasser (H2O) zu CO und H2, dann CH4 mit O2 zu CO. Allerdings verlaufen die Vergasungsreaktionen von kohlenstoffhaltigem Brennmaterial mit H2O endotherm. Als natürliches Vergasungsmittel dient insbesondere Luft, die auch mit H2O, beispielsweise als Aerosol oder Dampf, angereichert sein kann. In der vorliegenden Erfindung wird daher unter einem Vergasungsmittel ein Reinstoff oder Stoffgemisch verstanden, dessen Zugabe zum kohlenstoffhaltigen Brennmaterial den Umsatz zu Nutzgasen erhöht. However, carbon-containing fuel materials can be converted to useful gases with gasification agents, for example carbon with a deficiency of O 2 to CO, then carbon with water (H 2 O) to CO and H 2 , then CH 4 with O 2 to CO. However, the gasification reactions of carbonaceous fuel with H 2 O are endothermic. As a natural gasification agent is used in particular air, which may also be enriched with H 2 O, for example as an aerosol or vapor. In the present invention, therefore, a gasification agent is understood to mean a pure substance or substance mixture whose addition to the carbonaceous fuel material increases the conversion into useful gases.
Die Vergasung von kohlenstoffhaltigem Brennmaterial zu Nutzgas ist überwiegend erst dann wirtschaftlich, wenn das Brennmaterial nicht nur leicht verfügbar bzw. billig ist, sondern die Vergasung in ihrer Energiebilanz ausschließlich vom Energiegehalt des Brennmaterials abhängt. Dies betrifft insbesondere die Verwendung des Nutzgases als eigentlichen Brennstoff für Brennkraftmaschinen, beispielsweise für den Betrieb eines Gasmotors oder einer Gasturbine. Die Vergasung von kohlenstoffhaltigem Brennmaterial zu Nutzgas erfordert dann einen insgesamt exotherm ablaufenden Gesamtprozess, der sich solange energetisch selbst erhält, wie genügend Brennmaterial vorhanden ist. Zusätzlich lässt sich auch die abgegebene Wärme beispielsweise zum Heizen von Wohngebäuden nutzen, wie dies durch Kraft-Wärmekopplung in Blockheizkraftwerken (BHKW) erfolgt. In einem BHKW ist eine Brennkraftmaschine wiederum an einen Generator gekoppelt, der dann schließlich mechanische in elektrische Energie wandelt. Die Verbrennung von kohlenstoffhaltigem Brennmaterial mit O2 zu CO ist jedoch so schwach exotherm, dass die frei werdende Energie nicht ausreicht, gleichzeitig ablaufende Pyrolysen und / oder Vergasungsreaktionen mit H2O dauerhaft aufrecht zu erhalten. Die für den gesamten Vergasungsprozess notwendige Energie muss daher durch die stark exotherme Verbrennungsreaktion von kohlenstoffhaltigem Brennmaterial mit O2 zu CO2 aufgebracht werden. Der höchst mögliche Wirkungsgrad bezüglich Nutzgas- und Wärmeausbeute einer solchen autothermen Vergasung wird bei einem Optimum erreicht, bei dem das Ausmaß der Verbrennung zu CO2 gerade ausreicht, um für Pyrolysen und Vergasungsreaktionen den notwendigen Energiebeitrag zu liefern. Dieses Optimum im Sinne einer unvollständigen Verbrennung hängt von der Zusammensetzung und Beschaffenheit des Brennmaterials, der Zufuhr bzw. optimalen Dosierung des Vergasungsmittels, der Beschaffenheit sowie Isolierung des Vergasungsreaktors und damit zusammenge- fasst von der gesamten Reaktionsführung ab. Dabei ist die Veränderung des Brennmaterials während des gesamten Vergasungsprozesses ebenfalls zu berücksichtigen bzw. nicht zu vernachlässigen. The gasification of carbonaceous fuel to Nutzgas is predominantly economical only if the fuel is not only readily available or cheap, but the gasification in their energy balance depends solely on the energy content of the fuel. This relates in particular to the use of the useful gas as actual fuel for internal combustion engines, for example for the operation of a gas engine or a gas turbine. The gasification of carbonaceous fuel to Nutzgas then requires a total exothermic running overall process, the energetic itself as long as enough fuel is available. In addition, the heat released can also be used, for example, for heating residential buildings, as is the case with combined heat and power in combined heat and power plants (CHP). In a CHP, an internal combustion engine is in turn coupled to a generator, which then finally converts mechanical energy into electrical energy. The combustion of carbonaceous fuel with O 2 to CO, however, is so weakly exothermic that the energy released is not sufficient to sustain simultaneously ongoing pyrolysis and / or gasification reactions with H 2 O permanently. The energy required for the entire gasification process must therefore be applied by the highly exothermic combustion reaction of carbonaceous fuel with O 2 to CO 2 . The highest possible efficiency in terms of Nutzgas- and heat yield of such an autothermal gasification is achieved at an optimum, in which the extent of combustion to CO 2 just sufficient to provide the necessary energy contribution for pyrolysis and gasification reactions. This optimum in terms of incomplete combustion depends on the composition and nature of the fuel, the supply or optimal metering of the gasification agent, the nature and isolation of the gasification reactor and thus summarized by the entire reaction. Here, the change in the fuel during the entire gasification process is also taken into account or not negligible.
Im klassischen Festbettvergasungsreaktor liegt Holz als kohlenstoffhaltiges Brennmaterial wie in einem normalen Feuerofen auf einem Gitterrost. Im Gegen- stromverfahren wird Luft als Vergasungsmittel durch den Gitterrost und das verbrennende Holz gesaugt. Die oberen Holzschichten verbrennen nur teilweise und pyrolysieren gleichzeitig zu Nutzgas, das am oberen Ende des Ofens abgesaugt wird. Luft und Nutzgas bewegen sich als Gegenstrom in entgegengesetzter Richtung zum langsam absinkenden Holz. Das entstehende Nutzgas hat eine relativ niedrige Temperatur von etwa 100 °C und enthält wegen der stattfindenden Trocknung und Pyrolyse des Holzes entsprechend viel Wasserdampf und organische Bestandteile, die bei weiterer Abkühlung zu einem sauren Holzteer kondensieren. In the classic fixed bed gasification reactor, wood is a carbonaceous fuel, like a normal grate on a grid. As a countercurrent process, air is sucked through the grate and the burning wood as a gasifying agent. The upper layers of wood burn only partially and pyrolyze at the same time to Nutzgas, which is sucked off at the upper end of the furnace. Air and natural gas move countercurrently in the opposite direction to the slowly sinking wood. The resulting useful gas has a relatively low temperature of about 100 ° C and contains due to the ongoing drying and pyrolysis of the wood correspondingly much water vapor and organic constituents, which condense on further cooling to an acidic wood tar.
Im Gleichstromverfahren zur Holzvergasung wird Luft als Vergasungsmittel unmittelbar über dem Gitterrost direkt in die heiße Vergasungsreaktionszone des im Festbettvergasungsreaktors zugeführt und unter dem Gitterrost abgesaugt. Das Reaktorinnengas bzw. Nutzgas und Luft bewegen sich im Bereich des Gitterrostes in gleicher Richtung, also im Gleichstrom. Die Temperatur des Reaktorinnengases bzw. Nutzgases liegt hier wesentlich höher als beim Gegenstromverfahren. Das Nutzgas als Endprodukt aus dem Reaktorinnengas enthält deutlich weniger Holzteer, wobei der im Gleichstromverfahren anfallende Holzteer einen basischen pH- Wert aufweist. In the DC process for wood gasification, air as a gasifying agent directly above the grid directly into the hot gasification reaction zone of the Fed fixed bed gasification reactor and vacuumed under the grate. The internal reactor gas and the useful gas and air move in the same direction in the area of the grid, ie in direct current. The temperature of the reactor internal gas or useful gas is much higher here than in the countercurrent process. The useful gas as the end product from the reactor internal gas contains significantly less wood tar, the wood tar resulting from the DC process having a basic pH.
Der im Gegenstrom- und im Gleichstromholzvergasungsverfahren anfallende Holzteer eignet sich nicht für Brennkraftmaschinen, sondern schädigt diese aufgrund seiner verklebenden Eigenschaften. Auch bei der Vergasung anderer kohlenstoffhaltiger Brennstoffe fallen ähnliche hochviskose Rückstände an, die in der vorliegenden Erfindung allgemein als Kondensat bezeichnet werden. Das anfallende Kondensat mindert nicht nur den Wirkungsgrad bezüglich Stoffverwertungsbilanz des Vergasungsreaktors, sondern muss aus dem Nutzgas durch eine Gaswäsche entfernt werden. Dies mindert zusätzlich die Energiebilanz der Gesamtanlage und benötigt zusätzlich Waschflüssigkeit, beispielweise Wasser. Da das Kondensat aufgrund seines pH-Wertes nicht nur korrosiv, sondern auch toxisch und schwer biologisch abbaubar ist, ergibt sich hier ein Entsorgungsproblem. In US 2010/0107494 A1 wird ein Festbettvergaser für Biomasse mit einer sukzessiven Brennstoffzuführung vorgeschlagen, der zwar bezüglich Brennstoffumsatzbilanz eine höhere Effizienz verspricht, jedoch nicht die Bildung von Kondensat eliminiert bzw. das anfallende Kondensat nicht im Vergasungsprozess weiter verwerten kann. The wood tar produced in the countercurrent and DC wood gasification processes is not suitable for internal combustion engines, but damages them due to its adhesive properties. Also in the gasification of other carbonaceous fuels, similar high-viscosity residues occur, which are generally referred to as condensate in the present invention. The resulting condensate not only reduces the efficiency with respect to material utilization balance of the gasification reactor, but must be removed from the useful gas by a gas scrubber. This additionally reduces the energy balance of the entire system and additionally requires washing liquid, for example water. Since the condensate is not only corrosive due to its pH, but also toxic and difficult to biodegrade, this results in a disposal problem. In US 2010/0107494 A1 a fixed-bed gasifier for biomass is proposed with a successive fuel supply, which promises a higher efficiency in terms of fuel turnover, but does not eliminate the formation of condensate or the resulting condensate can not continue to use in the gasification process.
Ein Lösungsansatz für die Vergasung von kohlenstoffhaltigen, festen Brennmaterialien bieten Wirbelschichtvergasungsreaktoren, in denen die Brennmaterialien in einer unvollständigen Wirbelschichtfeuerung zu Nutzgasen umgesetzt werden. Hierbei fällt kein Kondensat an, da dieses ebenfalls zu Nutzgasen umgesetzt wird. Allerdings ist die Vergasung in Wirbelschichtvergasungsreaktoren auf feste Brennmaterialien mit einer Partikelgröße von weniger als 40 mm mit einem Wassergehalt von mindestens 25 Gew.% beschränkt, wobei die Partikel durch ein konstant wirbelndes Fluidmedium, beispielweise Luft, in Schwebe gehalten wer- den müssen. Zur Aufrechterhaltung der Wirbelschicht ist also eine externe Fluid- zufuhr mit einer hohen Flussrate notwendig, was einer extern zugeführten Arbeit entspricht. Weiter können Wirbelschichtvergasungsreaktoren nicht autotherm, sondern nur allotherm, d.h. unter Zufuhr von äußerer Wärmeenergie betrieben werden. Die Gesamtzufuhr dieser beiden Energiearten ist vom Gesamtwirkungsgrad der Anlage abzuziehen. Diese Vergasungstechnik gestaltet sich nur bei Energieanlagen im Leistungsbereich von 1 ,5 bis 3 MW als wirtschaftlich, wobei der Gesamtwirkungsgrad bei nur ca. 30% liegt. One approach to the gasification of carbonaceous solid fuels is to use fluidized bed gasification reactors in which the fuel is converted into useful gases in an incomplete fluidized bed furnace. In this case, no condensate is generated, since this is also converted to Nutzgasen. However, gasification in fluidized-bed gasification reactors is restricted to solid fuel materials having a particle size of less than 40 mm with a water content of at least 25% by weight, the particles being suspended by a fluid medium that constantly swirls, for example air. have to. To maintain the fluidized bed, therefore, an external fluid supply with a high flow rate is necessary, which corresponds to an externally supplied work. Furthermore, fluidized-bed gasification reactors can not be operated autothermally, but only allothermally, ie with the supply of external heat energy. The total supply of these two types of energy shall be deducted from the total efficiency of the installation. This gasification technology is only economical for power plants in the power range of 1, 5 to 3 MW, whereby the overall efficiency is only about 30%.
Eine besondere Form des Wirbelschichtvergasungsreaktors stellt der Winkler- Generator dar, bei dem die Wirbelschicht durch hintereinander gereihte Ringleitungen um den Reaktorkörper herum noch besser im gesamten Reaktorraum aufrechterhalten werden kann. Vorteile des Winkler-Generators sind eine homogene Temperaturverteilung und bessere Durchmischung der Partikel im Vergleich zu anderen Wirbelschichtvergasungsreaktoren. Der Winkler-Reaktor eignet sich jedoch nur für die Vergasung von Kohle, insbesondere Braunkohle, beschränkt auf eine möglichst kleine Partikelgröße. A special form of the fluidized-bed gasification reactor is the Winkler generator, in which the fluidized bed can be maintained even better in the entire reactor space by means of ring loops arranged in series around the reactor body. Advantages of the Winkler generator are a homogeneous temperature distribution and better mixing of the particles compared to other fluidized bed gasification reactors. However, the Winkler reactor is only suitable for the gasification of coal, especially lignite, limited to the smallest possible particle size.
Eine wesentliche Verbesserung des Wirbelschichtvergasungsreaktors ist durch den Flugstromvergasungsreaktor gegeben, bei dem das kohlenstoffhaltige A significant improvement of the fluidized bed gasification reactor is provided by the entrained flow gasification reactor in which the carbonaceous
Brennmaterial als Staub, Slurry oder als Paste über einen Brenner in den Vergasungsraum eingebracht wird. Hierbei finden die Vergasungsprozesse in einer Staubwolke statt. Diese Form der Zuführung bedarf einer entsprechenden Vorbehandlung des Brennmaterials, insbesondere bei Biomasse als Brennmaterial, um über ein pneumatisches System in den Vergaser eingebracht und dort in sehr kurzer Zeit vergast zu werden. Auch solche Systeme können nur unter Zufuhr von Arbeit sowie Wärmeenergie betrieben werden. Hierbei erfolgt die Zufuhr der Wärmeenergie durch eine kontinuierliche Zündung mit einer Zündfackel. Fuel is introduced as dust, slurry or paste as a burner in the gasification room. Here, the gasification processes take place in a cloud of dust. This form of supply requires a corresponding pretreatment of the fuel, especially in biomass as a fuel to be introduced via a pneumatic system in the carburetor and gasified there in a very short time. Even such systems can be operated only with supply of work and heat energy. Here, the supply of heat energy by a continuous ignition with a Zündfackel.
Der Koppers-Trotzek-Reaktor als besondere Form des Flugstromvergasungsreak- tors eignet sich insbesondere für die Vergasung von fein gemahlener Kohle zu Nutzgas. Die Einspeisung des Kohlestaubes erfolgt seitlich mit hoher Geschwindigkeit, so dass nur eine einmalige Zündung benötigt wird und der Vergasungs- prozess ansonsten autotherm geführt werden kann. Allerdings benötigt der Betrieb des Koppers-Trotzek-Reaktors immer noch die Zufuhr von Arbeit zur Aufrechterhaltung des Flugstromes. The Koppers-Trotzek reactor as a special form of entrained flow gasification reactor is particularly suitable for the gasification of finely ground coal to useful gas. The coal dust is fed in laterally at high speed, so that only a single ignition is needed and the gasification process otherwise autothermal can be performed. However, operation of the Koppers-Trotzek reactor still requires the supply of work to maintain the flow of air.
Sowohl bei den verschiedenen Ausführungen des Wirbelschichtvergasungsreaktors als auch bei denen des Flugstromvergasungsreaktors können die Vergasungsprozesse nicht allein durch die Zufuhr von Brennmaterial aufrechterhalten werden. In allen Ausführungen dieser Reaktortypen ist der Gesamtwirkungsgrad durch die notwendige Zufuhr von Arbeit zur Aufrechterhaltung des Wirbel- bzw. Flugstromes auf maximal 30 bis 40% beschränkt. Nach dem Stand der Technik sind Festbettvergasungsreaktoren mit Gleich- oder Gegenstromprinzip, Wirbelschicht- und Flugstromvergasungsreaktoren auf spezifische Beschaffenheit des kohlenstoffhaltigen Brennmaterials beschränkt, wobei grundsätzlich eine Vorbehandlung des jeweiligen kohlenstoffhaltigen Brennmaterials erforderlich ist. Auch notwendige Vorbehandlungen des Brennmaterials schränken die Wirtschaftlichkeit von Vergasungsanlagen, insbesondere von BHKW, erheblich ein. Zwar beschränkt sich in Festbettvergasungsreaktoren im Vergleich zu den Wirbelschicht- und Flugstromvergasungsreaktoren die Zufuhr von äußerer Arbeit lediglich auf die des kohlenstoffhaltigen Brennmaterials und des Vergasungsmittels, jedoch ist die Einhaltung optimaler Bedingungen für die Pyrolyse- als auch Vergasungsreaktionen generell schwieriger. Bei Festbettvergasungsreaktoren mit Gleich- oder Gegenstromprinzip ist die Festlegung auf eine vorgegebene Brennstoffqualität und Stückgröße, beispielsweise auf sogenannte G50-Holzhackschnitzel, besonders nachteilig. Abweichungen davon, insbesondere in der Stückigkeit, im Wassergehalt und im Staubanteil, verursachen variierende Druck- und Temperaturbedingungen. Solche Abweichungen erfordern dann beispielsweise eine überhöhte Zufuhr von Luft als Vergasungsmittel. Dies führt zu einer starken Verdünnung des Nutzgases durch Luftstickstoff und Wasserdampf sowie einer vermehrten Bildung von mitgeschlepptem Kondensat. Qualität und Ausbeute des Nutzgases sind dann so weit herabgesetzt, dass vor dessen Verwertung eine aufwändige Gaswäsche erfolgen muss. Eine erhöhte Bildung von Kondensat erniedrigt nicht nur signifikant den Gesamtwirkungsgrad der Anlage, sondern führt auch zu Verstopfungen im Reaktor, was zu einem kompletten Ausfall der gesamten Anlage führen kann. Zu- sätzlich ist die Reinigung von Festbettvergasungsreaktoren von Kondensat sehr aufwändig. Both in the various embodiments of the fluidized bed gasification reactor and those of the entrained flow gasification reactor, the gasification processes can not be maintained solely by the supply of fuel. In all versions of these reactor types, the overall efficiency is limited to a maximum of 30 to 40% by the necessary supply of work to maintain the vortex or flight flow. According to the prior art fixed-bed gasification reactors with cocurrent or countercurrent principle, fluidized bed and entrained flow gasification reactors are limited to the specific nature of the carbonaceous fuel material, in principle, a pretreatment of the respective carbonaceous fuel material is required. Necessary pretreatments of the fuel material also considerably limit the cost-effectiveness of gasification plants, in particular CHP plants. Although in fixed-bed gasification reactors compared to the fluidized bed and entrained-flow gasification reactors the supply of external work is limited only to that of the carbonaceous fuel and the gasifier, maintaining optimal conditions for the pyrolysis as well as gasification reactions is generally more difficult. In fixed bed gasification reactors with a DC or countercurrent principle, the definition of a given fuel quality and piece size, for example, to so-called G50 wood chips, particularly disadvantageous. Deviations from this, especially in terms of piece quality, water content and dust content, cause varying pressure and temperature conditions. Such deviations then require, for example, an excessive supply of air as a gasification agent. This leads to a strong dilution of the Nutzgas by atmospheric nitrogen and water vapor and an increased formation of entrained condensate. Quality and yield of the useful gas are then reduced so much that a costly gas scrubbing must be carried out prior to its utilization. Increased formation of condensate not only significantly lowers the overall efficiency of the plant, but also leads to blockages in the reactor, which can lead to complete failure of the entire plant. To- In addition, the purification of fixed-bed gasification reactors from condensate is very expensive.
Aufgabe und Lösung Task and solution
Der Erfindung liegt die Aufgabe zugrunde, den Wirkungsgrad eines Vergasungsreaktors für die Vergasung von kohlenstoffhaltigem Brennmaterial zu Nutzgasen bezüglich Nutzgas- und Wärmeausbeute sowie dessen Betriebsstabilität durch ein entsprechendes Betriebsverfahren zu verbessern. Diese Aufgabe ist durch die Merkmalskombination des Anspruchs 1 in erfinderischer Weise gelöst Die rückbezogenen Ansprüche beinhalten teilweise vorteilhafte und teilweise für sich selbst erfinderische Weiterbildungen der Erfindung. The invention has for its object to improve the efficiency of a gasification reactor for the gasification of carbonaceous fuel to Nutzgasen with respect to Nutzgas- and heat yield and its operational stability by a corresponding operating method. This object is achieved by the combination of features of claim 1 in an inventive manner The back-related claims include some advantageous and partially for themselves inventive developments of the invention.
Der Erfindung liegt ein Vergasungsreaktor mit einer Reaktionskammer für die Vergasung von kohlenstoffhaltigem Brennmaterial durch Zugabe von Vergasungsmitteln zu Nutzgasen zugrunde. In der Reaktionskammer liegt das kohlenstoffhaltige Brennmaterial ein. Bei festen Brennmaterialien kann eine kontinuierliche Zuführung über ein mit der Reaktionskammer verbundenes Reservoir erfolgen. Der Umsatz zu den Nutzgasen als Summe aller einzelnen Pyrolyse- als auch Vergasungsreaktionen findet daher überwiegend in der Reaktionskammer statt. Der erfindungsgemäße Vergasungsreaktor kann auch vollständig als Reaktionskammer ausgeführt sein. The invention is based on a gasification reactor with a reaction chamber for the gasification of carbonaceous fuel by adding gasification agents to Nutzgasen. In the reaction chamber is the carbonaceous fuel. In the case of solid fuel materials, a continuous supply can take place via a reservoir connected to the reaction chamber. The conversion to the Nutzgasen as the sum of all individual pyrolysis and gasification reactions therefore takes place predominantly in the reaction chamber. The gasification reactor according to the invention can also be designed completely as a reaction chamber.
Als wesentliches Merkmal der Erfindung werden nach Anspruch 1 Zusammensetzung, Menge, Druck, Geschwindigkeit, Temperatur und/oder spezifischer Austrittspuls eines über Regelungseingänge der Reaktionskammer zugegebenen Vergasungsmittels variabel anhand einer Anzahl von in der Reaktionskammer ermittelten Regelgrößen gesteuert. Dadurch ist eine variable Anpassung des Betriebs an die jeweils vorliegenden Zustände im Reaktor möglich und es kann eine optimierte Vergasung des Brennmaterials erfolgen. Als weiteres wesentliches Merkmal wird die Zusammensetzung, und zwar insbesondere der Heizwert des Nutzgases als Regelgröße verwendet. Dieser wird im Wesentlichen vom Anteil des der Reaktionskammer zugeführten Wasserdampfs beeinflusst. Durch Reduktion werden aus Wasser und Kohlenstoff Wasserstoff und Kohlenmonoxid erzeugt, welche einen hohen Heizwert haben. So kann z.B. bei einem zu geringen Heizwert des Nutzgases die Zufuhr von Wasserdampf im Vergasungsmittel erhöht werden. As an essential feature of the invention, composition, amount, pressure, velocity, temperature and / or specific exit pulse of a gasification agent added via control inputs of the reaction chamber are variably controlled according to claim 1 by means of a number of controlled variables determined in the reaction chamber. As a result, a variable adjustment of the operation of the respective present states in the reactor is possible and it can be done an optimized gasification of the fuel. Another important feature is the composition, in particular the calorific value of the useful gas used as a controlled variable. This is essentially influenced by the proportion of the water fed to the reaction chamber. By reduction of hydrogen and carbon monoxide are generated from water and carbon, which have a high calorific value. For example, if the calorific value of the useful gas is too low, the supply of water vapor in the gasification agent can be increased.
In alternativer oder zusätzlicher Ausgestaltung wird der Volumenstrom des Nutzgases als Regelgröße verwendet. Dieser wird ebenfalls vom Anteil des der Reaktionskammer zugeführten Wasserdampfs beeinflusst, zusätzlich aber auch von der Gesamtmenge des zugeführten Vergasungsmittels. Eine höhere Menge von Vergasungsmittel erhöht nämlich das Gasvolumen in der Reaktionskammer und damit auch den Volumenstrom an deren Austritt. In an alternative or additional embodiment, the volume flow of the Nutzgases is used as a control variable. This is also influenced by the proportion of the water fed to the reaction chamber, but in addition also by the total amount of the supplied gasification agent. A higher amount of gasification agent increases namely the gas volume in the reaction chamber and thus also the volume flow at the outlet.
In weiterer alternativer oder zusätzlicher Ausgestaltung wird der jeweilige Druck in einem Reservoir für das Brennmaterial, in der Reaktionskammer und/oder in einem Gasaustritt als Regelgröße verwendet. So wird z.B. der Druck in der Reaktionskammer im Wesentlichen von der Gesamtmenge des zugeführten Vergasungsmittels, aber auch von der jeweiligen Verteilung des Vergasungsmittels über die verschiedenen Regelungseingänge beeinflusst. In a further alternative or additional embodiment, the respective pressure in a reservoir for the fuel, in the reaction chamber and / or in a gas outlet is used as a controlled variable. For example, the pressure in the reaction chamber is influenced essentially by the total amount of the gasification agent supplied, but also by the respective distribution of the gasification agent via the various control inputs.
Vorteilhafterweise weist die Reaktionskammer dabei mehrere Regelungseingänge auf und Zusammensetzung, Menge, Druck, Geschwindigkeit, Temperatur und/oder spezifischer Austrittspuls des über den jeweiligen Regelungseingang zugegebenen Vergasungsmittels werden mindestens teilweise unabhängig von den jeweils anderen Regelungseingängen gesteuert werden. Im Betrieb des Vergasungsreaktors sind folglich mehrere, im Idealfall jede Position innerhalb der Reaktionskammer durch diese Regelungseingänge zugänglich. Jeder einzelne Regelungseingang definiert damit eine Reaktionszone, alle Reaktionszonen bilden dabei den Reaktionsraum, der die Reaktionskammer vollständig ausfüllt. Da die Regelungseingänge mindestens teilweise voneinander unabhängig gesteuert sind, ist in jeder Reaktionszone des Reaktionsraumes die Zugabe von Vergasungsmittel bezüglich dessen Zusammensetzung, Geschwindigkeit, Temperatur, Druck und Menge sowie hinsichtlich des spezifischen Austrittsimpulses zeitlich variabel. Advantageously, the reaction chamber in this case has a plurality of control inputs and composition, amount, pressure, speed, temperature and / or specific exit pulse of the added via the respective control input gasification agent will be controlled at least partially independently of the other control inputs. Consequently, during operation of the gasification reactor, several, ideally every position within the reaction chamber are accessible through these control inputs. Each individual control input thus defines a reaction zone, all reaction zones thereby forming the reaction space which completely fills the reaction chamber. Since the control inputs are at least partially controlled independently of one another, in each reaction zone of the reaction space, the addition of gasification agent with respect to its composition, speed, temperature, pressure and amount as well as with respect to the specific exit pulse is variable over time.
Konstruktiv kann dies dadurch realisiert sein, dass die Seitenwände der Reaktionskammer mit einer Vielzahl von solchen Regelungseingängen durchsetzt sind oder dass in die Reaktionskammer eine Halterung mit einer Vielzahl von eingelassenen Regelungseingängen hineinragt. Je nach überwiegender Beschaffenheit des kohlenstoffhaltigen Brennmaterials im Zusammenspiel mit der Geometrie der Reaktionskammer, insbesondere wenn der Durchmesser der Reaktionskammer größer als deren Höhe ist, erweist sich die Kombination beider konstruktiver Möglichkeiten zur Anordnung der Regelungseingänge als vorteilhaft, wodurch die Zu- gänglichkeit des gesamten Reaktionsraumes gewährleistet ist. In terms of design, this can be realized in that the side walls of the reaction chamber are interspersed with a multiplicity of such control inputs or that a holder with a plurality of recessed control inputs projects into the reaction chamber. Depending on the predominant nature of the carbonaceous fuel material in interaction with the geometry of the reaction chamber, in particular if the diameter of the reaction chamber is greater than its height, the combination of both constructive possibilities for the arrangement of the control inputs proves to be advantageous, whereby the accessibility of the entire reaction space is.
Während des gesamten Vergasungsprozesses verändert sich die Beschaffenheit des Brennmaterials. Insbesondere bei der Vergasung von festen, kohlenstoffhaltigen Brennmaterialien in einem erfindungsgemäß ausgeführten Gleichstrom- Festbettvergasungsreaktor bildet sich im Fortgang des Vergasungsprozesses ein vom unteren zum oberen Teil der Reaktionskammer vertikal abnehmender Ver- kohlungsgradient aus. Daher wird im fortschreitenden Vergasungsprozess in die unteren Reaktionszonen zur Vergasung der entstandenen Reinkohle vermehrt Wasserdampf zusammen mit dem heißen Reaktorinnengas zugeführt. Hierbei kann C02 ab 600° C selbst als Vergasungsmittel aufgefasst werden, da dann dessen Gleichgewichtsreaktion mit Kohlenstoff nach Boudouard zu 23% auf der Seite von CO liegt. Zusammengefasst umfassen daher die Vergasungsrnittel mindestens eine der Komponenten O2 oder H2O, wobei das Vergasungsmittel CO2 während des Vergasungsprozesses selbst erzeugt wird. Throughout the gasification process, the nature of the fuel material changes. In particular, in the gasification of solid, carbonaceous fuel materials in a DC fixed-bed gasification reactor constructed according to the invention, a coking gradient which decreases vertically from the lower to the upper part of the reaction chamber is formed during the progress of the gasification process. Therefore, in the progressing gasification process in the lower reaction zones for gasification of the resulting pure carbon increased water vapor is supplied together with the hot reactor internal gas. In this case, C0 2 can be regarded as a gasification agent itself from 600 ° C itself, since then its equilibrium reaction with carbon according to Boudouard to 23% on the side of CO. In summary, therefore, the gasification means comprise at least one of the components O 2 or H 2 O, the gasification agent CO 2 being generated during the gasification process itself.
Da der Vergasungsprozess von festen, kohlenstoffhaltigen Brennmaterialien in erfindungsgemäß ausgeführten Gleichstrom-Festbettvergasungsreaktoren durch einen überwiegend vertikal verlaufenden Reaktionsverlaufsgradienten bestimmt ist, ist eine konstruktive Vereinfachung möglich. Diese konstruktive Vereinfachung besteht darin, dass die Regelungseingänge dadurch horizontal zu flächigen, aber voneinander unabhängigen, Reaktionszonen zusammengefasst sind, indem diese horizontal durch Ringleitungen verbunden vorliegen, die wiederum den Vergasungsreaktor bzw. die Reaktionskammer umlaufen. Hierbei ist wiederum in jeder flächigen Reaktionszone des Reaktionsraumes die Zugabe von Vergasungsmittel bzw. die Rückführung des Reaktorinnengases bezüglich Zusammensetzung, Temperatur sowie Druck und damit Menge zeitlich variabel. Since the gasification process of solid, carbonaceous fuel materials in accordance with the invention carried out DC fixed bed gasification reactors a predominantly vertical reaction gradient is determined, a structural simplification is possible. This constructive simplification is that the control inputs are thus combined horizontally into two-dimensional, but independent, reaction zones by being connected horizontally by ring lines, which in turn circulate the gasification reactor or the reaction chamber. Here, in turn, in each planar reaction zone of the reaction chamber, the addition of gasification agent or the return of the reactor internal gas with respect to composition, temperature and pressure and thus quantity variable over time.
In weiterer vorteilhafter Ausgestaltung des Verfahrens wird zusätzlich auch die die der Reaktionskammer zugeführte Menge des kohlenstoffhaltigen Brennmaterials variabel anhand einer Anzahl von im Vergasungsreaktor ermittelten Regelgrößen gesteuert. Dies ermöglicht eine weitere Beeinflussung der Parameter innerhalb der Reaktionskammer durch extern steuerbare Größen. In a further advantageous embodiment of the method, in addition, the amount of the carbonaceous fuel material supplied to the reaction chamber is also variably controlled on the basis of a number of controlled variables determined in the gasification reactor. This allows a further influencing of the parameters within the reaction chamber by externally controllable variables.
Vorteilhafterweise wird eine Temperatur in der Reaktionskammer als Regelgröße verwendet. Hier kann, wie oben dargestellt, vorteilhafterweise auch eine Mehrzahl von Temperaturen in verschiedenen Bereichen, z.B. den beschriebenen Reaktionszonen verwendet werden. Dabei werden vorteilhafterweise Zusammensetzung, Menge, Druck, Geschwindigkeit, Temperatur und/oder spezifischer Austrittspuls des über den jeweiligen Regelungseingang zugegebenen Vergasungsmittels anhand der Temperatur in der Reaktionskammer an dem jeweiligen Regelungseingang als Regelgröße gesteuert In jeder Reaktionszone beeinflusst die jeweilige Temperatur nämlich wesentlich die Art der Reaktionen, die in der jeweiligen Zone ablaufen. Höhere Temperaturen ermöglichen z.B. die Verbrennung von Kohlenstoffrückständen, während vergleichsweise niedrigere Temperaturen die Bildung von Nutzgasen verbessern. Beeinflussbar ist die Temperatur in der jeweiligen Reaktionszone durch den Vordruck, Temperatur und den Anteil des Wasserdampfs des am jeweiligen Regelungseingang zugeführten Vergasungsmittels. Werden Druck und Temperatur des zugeführten Vergasungsmittels erhöht, erhöht sich auch die Temperatur in diesem Bereich, während die Erhöhung des Wasser- dampfanteils eine Erniedrigung der Temperatur durch Wärmeenergie verbrauchende Reduktionsvorgänge bedeutet. Advantageously, a temperature in the reaction chamber is used as a controlled variable. Here, as shown above, advantageously also a plurality of temperatures in different areas, eg the reaction zones described can be used. In this case, composition, amount, pressure, speed, temperature and / or specific exit pulse of the gasification agent added via the respective control input are advantageously controlled by means of the temperature in the reaction chamber at the respective control input as a control variable. In each reaction zone, the respective temperature substantially influences the type of reactions which occur in the respective zone. Higher temperatures, for example, allow the combustion of carbon residues, while comparatively lower temperatures improve the formation of useful gases. The temperature in the respective reaction zone can be influenced by the admission pressure, temperature and the proportion of the water vapor of the gasification agent supplied at the respective control input. If the pressure and temperature of the gasification agent supplied increase, the temperature in this area also increases, while the increase in the means a reduction in the temperature by heat energy consuming reduction operations.
Insbesondere sollte hierbei in vorteilhafter Ausgestaltung die Druckdifferenz über eine gasdurchlässige Rückhaltevorrichtung zwischen der Reaktionskammer und einem Aschekasten des Vergasungsreaktors als Regelgröße verwendet werden. Eine Erhöhung der Druckdifferenz deutet hier nämlich auf eine Verstopfung der Rückhaltevorrichtung mit Kohlenstoffresten hin. Diese Kohlenstoffreste entstehen insbesondere bei vergleichsweise niedrigen Temperaturen, die wiederum durch einen hohen Wasserdampfanteil im Vergasungsmittel erzeugt werden. Einer Erhöhung der Druckdifferenz sollte hier also durch eine Reduzierung des Wasserdampfanteils entgegengewirkt werden. In particular, the pressure difference should be used as a control variable via a gas-permeable retention device between the reaction chamber and an ash box of the gasification reactor in an advantageous embodiment. An increase in the pressure difference here indicates a blockage of the retention device with carbon residues. These carbon residues arise in particular at comparatively low temperatures, which in turn are generated by a high water vapor content in the gasification agent. An increase in the pressure difference should therefore be counteracted here by reducing the water vapor content.
In weiterer vorteilhafter Ausgestaltung werden dem Zusammensetzung, Feuchtigkeit, Stückigkeit und/oder Staubgehalt des Brennmaterials als Regelgrößen verwendet. Durch eine Erfassung dieser Größen können die jeweiligen Parameter innerhalb der Reaktionskammer optimal auf das verwendete Brennmaterial ange- passt werden. Somit ist ein derartig betriebener Vergasungsreaktor für eine Vielzahl unterschiedlicher Brennmaterialien geeignet. In a further advantageous embodiment, the composition, moisture, lumpiness and / or dust content of the fuel are used as controlled variables. By recording these parameters, the respective parameters within the reaction chamber can be optimally adapted to the fuel used. Thus, such operated gasification reactor is suitable for a variety of different fuel materials.
Zusammengefasst erlaubt das erfindungsgemäße Verfahren eine optimale und beschleunigte Reaktionsführung des Vergasungsprozesses bezüglich Nutzgasausbeute in seinem gesamten Zeitablauf durch die geregelte, örtlich variierte und dem Verlauf angepasste Zufuhr von Vergasungsmittel. Selbst bei der Verwendung von festen, kohlenstoffhaltigen Brennmaterialien, wie beispielsweise Biomasse, wird die Bildung von Kondensat vermieden, da die Aufenthaltszeit der Kohlenwasserstoffe durch die Regelung des Prozesses so lang wie möglich gemacht werden kann, damit die Crackung der Kohlenwasserstoffe (Teere) in möglichst kleine Stücke erfolgen kann. Weiterhin sorgt die Regelung des Prozesses dafür, dass die Temperaturen in den durchströmten räumlichen Bereichen gleichmäßig hoch sind damit die Crackreaktion des Kondensats möglichst schnell abläuft. Die zeitlich und örtlich individuell dosierte Zugabe von Vergasungsmitteln in dem der Erfindung zugrundeliegenden Vergasungsreaktor ersetzt die beim Winkler- Generator notwendige, äußerst energieaufwändige Erhaltung der Wirbelschicht für eine optimale und kondensatfreie Vergasung der Brennstoffe. Weiter benötigt ein nach der Erfindung betriebener Vergasungsreaktor keine kontinuierliche Zündung des mit ihm betriebenen Brennmaterials, beispielsweise durch eine Zündfackel. In summary, the inventive method allows an optimal and accelerated reaction of the gasification process with respect to Nutzgasausbeute in its entire time through the regulated, locally varied and the history adapted supply of gasification agent. Even with the use of solid, carbonaceous fuel materials, such as biomass, the formation of condensate is avoided, since the residence time of the hydrocarbons can be made as long as possible by regulating the process, so that the cracking of hydrocarbons (tars) in as small as possible Pieces can be done. Furthermore, the regulation of the process ensures that the temperatures in the flowed through spatial areas are uniformly high so that the cracking reaction of the condensate takes place as quickly as possible. The temporally and locally individually metered addition of gasification in the invention underlying gasification reactor replaces the Winkler generator necessary, extremely energy-consuming preservation of the fluidized bed for optimal and condensate-free gasification of the fuels. Furthermore, a gasification reactor operated according to the invention does not require continuous ignition of the fuel material operated with it, for example by means of an ignition flare.
Das erfindungsgemäße Verfahren verbindet die Vorteile von Wirbel- und Flug- stromvergasungsreaktoren mit denen von Festbettvergasungsreaktoren, wobei nur ein Bruchteil an externer Arbeit zur Zuführung des Vergasungsmittels und Rückführung des Reaktorinnengases im Vergleich zur Erhaltung einer Wirbelschicht oder eines Flugstromes zugeführt werden muss. Für diese externe Arbeit reicht ein Bruchteil des erzeugten Nutzgases aus. Das mit dem erfindungsgemäßen Verfahren erzeugte Nutzgas kann einer Brennkraftmaschine zugeführt werden, die wiederum an einen Generator gekoppelt ist. Die zur Regelung des Reaktors notwendige Arbeit wird dann durch einen Bruchteil der durch den Generator gewandelten elektrischen Energie geleistet. Damit hängt die Leistung des erfindungsgemäß betriebenen Reaktors ausschließlich vom chemischen Energiegehalt des kohlenstoffhaltigen Brennmaterials ab. Das Verfahren gewährt insgesamt einen stabilen und vollständig autothermen Betrieb des erfindungsgemäßen Vergasungsreaktors mit einem hohen Gesamtwirkungsgrad, insbesondere als Teilsystem eines BHKW. The process according to the invention combines the advantages of fluidized-bed and air-current gasification reactors with those of fixed-bed gasification reactors, whereby only a fraction of external work for supplying the gasification agent and recycling the internal reactor gas must be supplied in comparison to maintaining a fluidized bed or a flow stream. For this external work, a fraction of the generated useful gas is sufficient. The useful gas generated by the method according to the invention can be supplied to an internal combustion engine, which in turn is coupled to a generator. The work necessary to control the reactor is then provided by a fraction of the electrical energy converted by the generator. Thus, the performance of the inventively operated reactor depends solely on the chemical energy content of the carbonaceous fuel. Overall, the method provides a stable and completely autothermal operation of the gasification reactor according to the invention with a high overall efficiency, in particular as a subsystem of a CHP.
Schließlich ist das erfindungsgemäße Verfahren gegenüber allen Ausführungen von Wirbel- und Flugstromvergasungsreaktoren dadurch besonders vorteilhaft herausgestellt, dass jede Art und Form von kohlenstoffhaltigem Brennmaterial im beliebigen Aggregatzustand zur Vergasung verwandt werden kann. Beispielsweise kann ein erfindungsgemäß gestalteter Gleichstrom-Festbettreaktor zusätzlich eine Gaseinspeisungsvorrichtung in der Reaktionskammer besitzen. Auch Kunst- stoffabfälle und Hausmüll als Beispiel für äußerst inhomogene Mischungen von kohlenstoffhaltigen Brennmaterialien lassen sich mit einem hohen Gesamtwirkungsgrad in einem erfindungsgemäßen Gleichstrom-Festbettreaktor vergasen. Während des Betriebs des erfindungsmäßig betriebenen Vergasungsreaktors ist die Variation von verfahrenstechnischen Merkmalen möglich. Zunächst ist es möglich, die Anzahl der Reaktionszonen zu variieren. Die zunächst voneinander unabhängigen Regelungseingänge können so gesteuert sein, dass sie entweder eine einzige Gesamtreaktionszone bilden oder mehrere beliebig einteilbare Teilreaktionszonen. Sind beispielsweise die Regelungseingänge mittels horizontal über die Reaktionskammer umlaufender Ringleitungen zu flächigen unabhängigen Reaktionszonen zusammengefasst, können die voneinander unabhängigen Reaktionszonen gleichsam parallel betrieben werden und so zu einer größeren Reaktionszone zusammengefasst werden. Finally, the method according to the invention is particularly advantageous over all embodiments of vortex and entrained flow gasification reactors in that each type and form of carbonaceous fuel material can be used in any state of aggregation for gasification. For example, a DC fixed bed reactor designed according to the invention may additionally have a gas feed device in the reaction chamber. Also plastic waste and household waste as an example of extremely inhomogeneous mixtures of carbonaceous fuel materials can be gasified with a high overall efficiency in a DC fixed bed reactor according to the invention. During the operation of the gasification reactor operated according to the invention, the variation of process characteristics is possible. First, it is possible to vary the number of reaction zones. The initially independent control inputs may be controlled to form either a single total reaction zone or a plurality of arbitrarily partitionable partial reaction zones. If, for example, the control inputs are combined into independent independent reaction zones by means of horizontal loops circulating over the reaction chamber, the reaction zones which are independent of one another can be operated in parallel and thus combined to form a larger reaction zone.
Diese Variation der Geometrie von Reaktionszonen kann auch durch die Änderung, Menge und Zusammensetzung des Vergasungsmittels in radialer Richtung realisiert sein. Auf diese Weise werden inaktive,„kalte" Innenbereiche vermieden. Der gesamte Reaktionsraum wird auf diese Weise prozesstechnisch aktiviert. Schließlich ist es möglich, die jeweilige chemische Reaktion in den einzelnen Reaktionszonen zu variieren. Durch die Änderung der in der jeweiligen Reaktionszone stattfindenden Reaktion kann die Schichtung bzw. die Abfolge der Reaktionszonen im Betrieb geändert werden. Es besteht also die Möglichkeit, die Reaktionen im Betrieb des Reaktors an beliebigen Stellen im Reaktionsraum zu wechseln, zu ändern, räumlich auszudehnen oder zu beschleunigen. This variation of the geometry of reaction zones can also be realized by the change, amount and composition of the gasification agent in the radial direction. In this way, inactive, "cold" interior areas are avoided, the entire reaction space is thus activated in terms of process technology, and finally it is possible to vary the respective chemical reaction in the individual reaction zones During operation of the reactor, it is possible to change, change, spatially expand or accelerate the reactions at any point in the reaction space during operation of the reactor.
Beispielhaft sei das Aufschmelzen des Festbrennstoffs in leicht flüchtiges Pyro- gas, Holzkohle, Wasser, höherkettige Kohlenwasserstoffe, also eine so genannte Pyrolysereaktion, erwähnt. Ziel ist es, mit möglichst wenig Luftzufuhr einen hohen Wärmeeintrag zu erreichen. Dies geschieht durch Vorwärmung des Vergasungsmittels, durch Zufuhr von überhitztem Wasserdampf und durch externe Vorwärmung des Festbrennstoffs. By way of example, the melting of the solid fuel into readily volatile pyrogas, charcoal, water, higher-chain hydrocarbons, ie a so-called pyrolysis reaction, may be mentioned. The aim is to achieve a high heat input with as little air supply as possible. This is done by preheating the gasification agent, by supplying superheated steam and by external preheating of the solid fuel.
Ein Umschalten der Zonenreaktion von Pyrolyse im Festbrennstoff auf Oxidation im Kohlebett stellt sich ein, wenn nach dem Befüllen und während des Anfahrens des Reaktors die unteren Zonen zunächst mit Festbrennstoff gefüllt sind und pyro- l tisch betrieben werden. Nach der Ausgasung der flüchtigen Pyrogase wird die Zone sodann in den oxidativen oder reduktiven Betrieb umgeschaltet. Switching the zone reaction of pyrolysis in the solid fuel to oxidation in the coal bed occurs when, after filling and during start-up of the reactor, the lower zones are initially filled with solid fuel and pyrogenic be operated table. After the outgassing of the volatile pyrogase, the zone is then switched to oxidative or reductive operation.
Die Gasphasenreaktion kann sowohl oxidativ in den durch Zwischenböden erzeugten festbrennstofffreien und kohlefreien Bereichen stattfinden. Die Gasphasenreaktion kann durch starke Erhöhung der Geschwindigkeit der Vergasungsmittel durch Zufuhr mittels regelbarer Düsen ohne Erhöhung des Massenstroms anteilig vermindert werden, sofern der Strom, so genannter„scharfer Strahl", auf das hinter dem Hohlraum liegende Kohlebett trifft. The gas phase reaction can take place both oxidatively in the solid fuel-free and carbon-free regions produced by intermediate bottoms. The gas phase reaction can be proportionally reduced by greatly increasing the velocity of the gasifying agents by supplying them by means of controllable nozzles without increasing the mass flow, as long as the stream, so-called "sharp jet", strikes the coal bed located behind the cavity.
Des Weiteren ist es möglich, überwiegend mit Oxidation bzw. überwiegend mit Reduktion im Kohlebett zu variieren. Auch ist es möglich, Oxidation und Reduktion gleichzeitig im selben Raumvolumen im Kohlebett zu realisieren. Auch ist es möglich, Oxidation und Reduktion alternierend im selben Raumvolumen im Kohlebett zu betreiben. Dies erfolgt durch Beschickung einer Zone mit Luft unter Freisetzung von Wärme. Anschließend wird dieselbe Zone mit Wasserdampf beschickt und erzeugt so eine Wassergasreaktion unter Verbrauch von Wärme. Der Wechsel beider Reaktionen erfolgt im Betrieb intermittierend. Furthermore, it is possible to vary predominantly with oxidation or predominantly with reduction in the coal bed. It is also possible to realize oxidation and reduction simultaneously in the same volume of space in the coal bed. It is also possible to operate oxidation and reduction alternately in the same volume of space in the coal bed. This is done by feeding a zone of air with release of heat. Subsequently, the same zone is charged with water vapor and thus generates a water gas reaction while consuming heat. The change of both reactions occurs intermittently during operation.
Schließlich kann die Reaktionsgeschwindigkeit in den Reaktionszonen variiert werden. Zum Beispiel wird bei der Pyrolyse durch Reduzierung der Vergasungsmittelzufuhr die Pyrolysereaktion gestoppt und stark verringert. Gleichzeitig wird die Vergasungsmittelzufuhr im Kohlebett gesteigert. Die Reduzierung der Vergasungsmittelzufuhr kommt einer Verkleinerung ihrer Geometrie gleich und/oder einer Verringerung der Reaktionsgeschwindigkeit in dieser Zone. Die Steigerung der Vergasungsmittelzufuhr ist mit einer Vergrößerung ihrer Geomtrie verbunden und/oder mit einer Erhöhung der Reaktionsgeschwindigkeiten der darin ablaufenden Reaktionen, so dass der Kohlenstoff oxidativ oder reduktiv abgebaut wird. Die Pyrozone wird geometrisch verkleinert bzw. in Ihrer Intensität reduziert, während die Reaktionszonen zum Kohleabbau vergrößert, bzw. in ihrer Intensität gesteigert werden. Schließlich kann die Menge, die Zusammensetzung, die Temperatur oder der Druck des Vergasungsmittels in den Reaktionszonen variiert werden. Eine Variation der Menge des Vergasungsmittels wirkt sich im Wesentlichen auf die Reaktionsgeschwindigkeit und zum Teil auch auf die Art der Reaktion aus. Die Zusammensetzung des Vergasungsmittels wirkt sich ebenso auf die Art der Reaktion aus. Die Temperaturvariation bewirkt eine Änderung der Reaktionsgeschwindigkeit. Eine Variation des Drucks wirkt sich wiederum auf Geschwindigkeit und Menge des Vergasungsmittels aus. Eine - möglichst weitgehende - Entkoppelung sämtlicher Einflussgrößen wird über regelbare Düsen erreicht. Finally, the reaction rate in the reaction zones can be varied. For example, in pyrolysis, by reducing the gasification agent supply, the pyrolysis reaction is stopped and greatly reduced. At the same time, the gasification agent supply in the coal bed is increased. The reduction in the supply of gasification equals a reduction in its geometry and / or a reduction in the reaction rate in this zone. The increase in the supply of gasification is associated with an increase in their geometry and / or with an increase in the reaction rates of the reactions occurring therein, so that the carbon is degraded oxidatively or reductively. The pyrozone is geometrically reduced or reduced in intensity, while the reaction zones for coal mining increased, or increased in intensity. Finally, the amount, composition, temperature or pressure of the gasifying agent in the reaction zones can be varied. A variation of the amount of the gasifying agent essentially affects the Reaction speed and partly on the nature of the reaction. The composition of the gasifying agent also affects the nature of the reaction. The temperature variation causes a change in the reaction rate. A variation of the pressure in turn affects the speed and amount of the gasifying agent. A - as far as possible - decoupling of all influencing variables is achieved via adjustable nozzles.
Die Erfindung wird anhand zweier Ausführungsbeispiele unter Bezugnahme auf die Zeichnungsfiguren näher erläutert. Es zeigen: The invention will be explained in more detail with reference to two embodiments with reference to the drawing figures. Show it:
Fig. 1 einen Vergasungsreaktor mit Ringleitungen, 1 is a gasification reactor with loops,
Fig. 2 einen Vergasungsreaktor mit zentraler igelartiger Zuleitung und Fig. 2 is a gasification reactor with central hedgehog-like supply line and
Fig. 3 eine schematische Darstellung der Regel- und Steuergrößen mit ihrer gegenseitigen Beeinflussung. Fig. 3 is a schematic representation of the control and control variables with their mutual influence.
Gleiche Teile sind stets mit gleichen Bezugszeichen versehen. Identical parts are always provided with the same reference numerals.
Das Ausführungsbeispiel in Fig. 1 bezieht sich auf einen Vergasungsreaktor 1 , der insbesondere zur Vergasung von festem kohlenstoffhaltigem Brennmaterial ausgelegt ist. Dazu ist der Vergasungsreaktor 1 als Festbettreaktor nach dem Gleichstromprinzip ausgeführt. Der Vergasungsreaktor nach Fig. 1 eignet sich zur Durchführung des erfindungsgemäßen Verfahrens. The embodiment in Fig. 1 relates to a gasification reactor 1, which is designed in particular for the gasification of solid carbonaceous fuel. For this purpose, the gasification reactor 1 is designed as a fixed bed reactor according to the DC principle. The gasification reactor according to FIG. 1 is suitable for carrying out the process according to the invention.
Der Vergasungsreaktor 1 weist einen durchlässigen Zwischenboden 2 auf, der den Vergasungsreaktor 1 in ein oberes Reservoir 3 und in eine untere Reaktionskammer 4 unterteilt. Ein weiterer durchlässiger Zwischenboden 5 trennt die Reaktionskammer 4 vom Aschekasten 6 als untersten Teilraum des gesamten Vergasungsreaktors 1 ab. Eine gasdurchlässige Rückhaltevorrichtung 7 in Form eines Rostes zwischen der Reaktionskammer 4 und dem Aschekasten 6 stellt einen Verbleib des Brennmaterials in der Reaktionskammer 4 sicher. An dem Aschekasten 6 ist ein Gasaustritt 8 angebracht. Über das Reservoir 3 wird das kohlenstoffhaltige, feste Brennmaterial der Reaktionskammer 4 zugeführt, das Nutzgas wird über den Gasaustritt 8 abgeführt. Nach dem Befüllen von Reservoir 3 und Reakti- onskammer 4 mit dem kohlenstoffhaltigen, festen Brennmaterial wird der Vergasungsreaktor in den unteren Reaktionszonen einmalig gezündet und dann durch Luftzufuhr angefahren. The gasification reactor 1 has a permeable intermediate bottom 2, which divides the gasification reactor 1 into an upper reservoir 3 and into a lower reaction chamber 4. Another permeable intermediate bottom 5 separates the reaction chamber 4 from the ash box 6 as the lowest subspace of the entire gasification reactor 1 from. A gas-permeable retention device 7 in the form of a grate between the reaction chamber 4 and the ash box 6 ensures that the fuel remains in the reaction chamber 4. At the ash box 6, a gas outlet 8 is attached. Via the reservoir 3, the carbonaceous, solid fuel is fed to the reaction chamber 4, the useful gas is discharged via the gas outlet 8. After filling reservoir 3 and reacting Onskammer 4 with the carbonaceous solid fuel, the gasification reactor is ignited once in the lower reaction zones and then started by air.
Die Seitenwand 9 der Reaktionskammer 4 des Vergasungsreaktors 1 ist mit einer Vielzahl von Regelungseingängen 10 in der Weise durchsetzt, dass im Betrieb des Vergasungsreaktors jede Position innerhalb der Reaktionskammer 4 durch die Regelungseingänge 10 zugänglich ist. Die Regelungseingänge 10 sind horizontal über die Reaktionskammer umlaufende Ringleitungen 11 zu flächigen, aber voneinander unabhängigen Reaktionszonen zusammengefasst. Durch die jeweiligen voneinander unabhängigen Ringleitungen 11 ist dann über die via Stegverbindungen 12 zusammengefassten Regelungseingänge 10 die Zugabe von Vergasungsmittel bzw. die Rückführung des Reaktorinnengases bezüglich Zusammensetzung, Temperatur sowie Druck und damit Menge gesteuert. Die Steuerung ist für jede flächige Reaktionszone individuell. The side wall 9 of the reaction chamber 4 of the gasification reactor 1 is interspersed with a plurality of control inputs 10 in such a way that in the operation of the gasification reactor each position within the reaction chamber 4 is accessible through the control inputs 10. The control inputs 10 are horizontally over the reaction chamber circulating ring lines 11 to flat, but summarized independent reaction zones. By the respective independent ring lines 11 the addition of gasification agent or the return of the reactor internal gas with respect to composition, temperature and pressure and thus quantity is then controlled via the combined via web connections 12 control inputs 10. The control is individual for each area reaction zone.
Das Reservoir 3 des Vergasungsreaktors 1 besitzt einen größeren Durchmesser und ein größeres Volumen als die Reaktionskammer 4, wobei die Durchlässigkeit des Zwischenbodens 2 durch eine Öffnung mit einem Durchmesser gegeben ist, der kleiner als der des Reservoirs 3 und der der Reaktionskammer 4, aber größer als der Öffnung des Zwischenbodens 5 ist. Der Reaktor mit seinem Reservoir 3, der Reaktionskammer 4 und mit seinem Aschekasten 6 sind zylinderförmig ausgestaltet, die Öffnungen der Zwischenböden 2 und 5 kreisförmig. Diese Ausgestaltung des Vergasungsreaktors 1 erlaubt dessen Einbettung in eine vollumschließende Isolierung, wodurch der Reaktorwirkungsgrad zusätzlich erhöht wird. Bezüglich der Stabilität in seiner Konstruktion ist der Vergasungsreaktor 1 so ausgelegt, dass er einer Verpuffung der Vergasungsprodukte als auch des Brennmaterials standhält. The reservoir 3 of the gasification reactor 1 has a larger diameter and a larger volume than the reaction chamber 4, wherein the permeability of the intermediate bottom 2 is given by an opening with a diameter which is smaller than that of the reservoir 3 and the reaction chamber 4, but greater than the opening of the intermediate bottom 5 is. The reactor with its reservoir 3, the reaction chamber 4 and its ash box 6 are cylindrical, the openings of the shelves 2 and 5 are circular. This embodiment of the gasification reactor 1 allows its embedding in a vollumschließende insulation, whereby the reactor efficiency is further increased. Regarding the stability in its construction, the gasification reactor 1 is designed to withstand deflagration of the gasification products as well as the fuel.
Der Vergasungsreaktor 1 gemäß Fig. 2 weist ebenfalls ein oberes Reservoir 3 und einen durchlässigen Zwischenboden 2 auf. Die Reaktionskammer 4 wird beschickt von igelförmig angeordneten Düseneingängen 13. Die Düseneingänge 13 bilden beim Ausführungsbeispiel gemäß Fig. 2 die Regelungseingänge 10 des Verga- sungsreaktors 1. Im Übrigen entspricht der Vergasungsreaktor 1 gemäß Hg. 2 in seinem Aufbau demjenigen in Fig. 1. The gasification reactor 1 according to FIG. 2 likewise has an upper reservoir 3 and a permeable intermediate bottom 2. The reaction chamber 4 is charged by nozzle-shaped nozzle entrances 13 arranged in the form of a nozzle. The nozzle entrances 13 form the control inputs 10 of the embodiment in FIG. Incidentally, the gasification reactor 1 according to Hg. 2 corresponds in its construction to that in FIG. 1.
Die über die Regelungseingänge 10 des Vergasungsreaktors ermittelten Regelgrößen zusammen mit den sie beeinflussenden Steuergrößen bezüglich des Vergasungsmittels sind in Fig. 3 dargestellt. Durch die Regelung direkt beeinflussbare Steuergrößen sind hier die Vergasungsmittelgesamtmenge 20, der Vordruck 22 des Vergasungsmittels an den Düsen- bzw. Regelungseingänge 10, 13, die jeweilige Verteilung 24 des Vergasungsmittels auf die einzelnen Düsen- bzw. Regelungseingänge 0, 3, die einer räumlichen Verteilung entspricht, die Temperatur 26 des Vergasungsmittels und der Wasserdampfanteil 28 im Vergasungsmittel. The control variables determined via the control inputs 10 of the gasification reactor together with the control variables influencing the gasification agent are shown in FIG. Control parameters which can be directly influenced by the control are here the total amount of gasification agent 20, the admission pressure 22 of the gasification agent at the nozzle or control inputs 10, 13, the respective distribution 24 of the gasification agent to the individual nozzle or control inputs 0, 3, that of a spatial distribution corresponds to the temperature 26 of the gasifying agent and the water vapor content 28 in the gasification agent.
Als im Reaktor 1 gemessene Regelgrößen werden erfasst: der Volumenstrom 30 des erzeugten Nutzgases, der Differenzdruck 32 über den unteren Zwischenboden 5, die chemische Nutzgaszusammensetzung 34, der Druck 36 in der Reaktionskammer 4, die Temperatur 38 in der Reaktionskammer 4 am jeweiligen Regelungseingang 10 sowie die Art der ablaufenden Reaktionen 40. Letztere kann typischerweise nicht direkt gemessen werden sondern ist lediglich als abgeleitete Regelgröße ermittelbar. As measured in the reactor 1 controlled variables are detected: the flow 30 of the generated Nutzgases, the differential pressure 32 on the lower shelf 5, the chemical Nutzgaszusammensetzung 34, the pressure 36 in the reaction chamber 4, the temperature 38 in the reaction chamber 4 at the respective control input 10 and the type of reactions occurring 40. The latter can typically not be measured directly but can only be determined as a derived controlled variable.
Fig. 3 stellt nun die jeweiligen Zusammenhänge zwischen Regel- und Steuergrößen dar, wie sie in dem Verfahren gemäß der Erfindung bedarfsweise verwendet werden: Der Volumenstrom 30 des Nutzgases wird von der Vergasungsmittelgesamtmenge 20 beeinflusst, da vermehrt zugeführtes gasförmiges Vergasungsmittel über einen Verstärkungsfaktor den Volumenstrom des Nutzgases erhöht. Weiterhin wird dieser vom Wasserdampfanteil 28 im Vergasungsmittel beeinflusst, da eingeführter Wasserdampf reduktiv gespalten wird und so eine Erhöhung des Volumens und somit des Volumenstroms 30 des austretenden Nutzgases bewirkt. 3 shows the respective relationships between control and control variables, as they are used in the method according to the invention, if necessary. The volume flow 30 of the useful gas is influenced by the total amount of gasification agent 20, since an increased supply of gaseous gasification agent via a gain factor Nutzgases increased. Furthermore, this is influenced by the water vapor content 28 in the gasification agent, since introduced water vapor is split reductively and thus causes an increase in the volume and thus the volume flow 30 of the exiting useful gas.
Der Differenzdruck 32 über den Zwischenboden 5, der gasdurchlässig ist, ist im im Wesentlichen ein Indikator für eine verstärkte Ablagerung von Kohlenstoffresten, die den Gasdurchsatz des Zwischenbodens 5 blockieren. Kohlenstoffreste fallen bei niedrigeren Temperaturen an, wenn der Kohlenstoff nicht verbrannt wird. Dies ist insbesondere der Fall bei einem hohen Wasserdampfanteil 28. Somit be- einflusst der Wasserdampfanteil 28 den Differenzdruck 32. Wird die Verteilung 24 des zugeführten Vergasungsmittels derart geändert, dass an Regelungseingängen 10 im Bereich des Zwischenbodens 5 mehr Vergasungsmittel eingebracht wird und sich die Temperatur hier erhöht, so wird der angefallene Kohlenstoff verbrannt und der Differenzdruck 32 sinkt. The differential pressure 32 across the intermediate bottom 5, which is permeable to gas, is essentially an indicator of an increased deposition of carbon residues blocking the gas throughput of the intermediate bottom 5. Carbon remains at lower temperatures when the carbon is not burned. This is particularly the case with a high water vapor content 28. Thus, the water vapor fraction 28 influences the differential pressure 32. If the distribution 24 of the supplied gasification agent is changed such that more gasification agent is introduced at control inputs 10 in the region of the intermediate bottom 5 and the temperature here increases, the accumulated carbon is burned and the differential pressure 32 decreases.
Die Gaszusammensetzung des Nutzgases 34 hängt im Wesentlichen vom Anteil des Wasserdampfes 28. Eine höhere Menge Wasserdampf führt zu einem höheren Anteil von Wasserstoff im Nutzgas. The gas composition of the useful gas 34 depends essentially on the proportion of the water vapor 28. A higher amount of water vapor leads to a higher proportion of hydrogen in the useful gas.
Der Druck 36 in der Reaktorkammer 4 sollte nicht zu weit vom Umgebungsdruck abweichen. Er wird im Wesentlichen beeinflusst von der Gesamtmenge 20 des zugeführten Vergasungsmittels, weiterhin von der räumlichen Verteilung 24 des Vergasungsmittels. The pressure 36 in the reactor chamber 4 should not deviate too far from the ambient pressure. It is essentially influenced by the total quantity 20 of the gasification agent supplied, and also by the spatial distribution 24 of the gasification agent.
Die Temperaturen 38 in den verschiedenen Bereichen der Reaktorkammer 4 wird vor allem von der räumlichen Verteilung 24 des Vergasungsmittels beeinflusst, aber auch von Vordruck 22 und Temperatur 24 des Vergasungsmittels, sowie dem Wasserdampfanteil 28 im Vergasungsmittel, wie oben erläutert. The temperatures 38 in the various regions of the reactor chamber 4 are influenced above all by the spatial distribution 24 of the gasification agent, but also by admission pressure 22 and temperature 24 of the gasification agent, as well as the water vapor fraction 28 in the gasification agent, as explained above.
Die Art der ablaufenden chemischen Reaktionen 40 wird ebenfalls, wie bereits erläutert, im Wesentlichen durch den Wasserdampfanteil 28 im Vergasungsmittel bestimmt, weiterhin auch durch die Temperatur des eingeführten Vergasungsmittels. The type of chemical reactions occurring 40 is also, as already explained, essentially determined by the water vapor content 28 in the gasification agent, and also by the temperature of the introduced gasification agent.
Die Regelung nach dem erfindungsgemäßen Verfahren berücksichtigt nun die im Reaktor 1 aufgenommenen Regelgrößen und stellt die Steuergrößen demnach für eine optimierte Vergasung ein. Der Vergasungsreaktor 1 , betrieben mit einem Verfahren unter Regelung der beschriebenen Größen in diesem Ausführungsbeispiel ist für ein BHKW, also für die Wärme- und Stromversorgung ausgelegt. The control according to the inventive method now takes into account the control variables recorded in the reactor 1 and accordingly sets the control variables for optimized gasification. The gasification reactor 1, operated with a method under control of the variables described in this embodiment is designed for a CHP, so for the heat and power.
Durch thermische Integration aller Teilsystemeinheiten der Gesamtanlage wird durch Kraft-Wärme-Kopplung ein Gesamtwirkungsgrad von >90% erreicht. Bezugszeichenliste Through thermal integration of all subsystem units of the entire system, combined heat and power generation achieves an overall efficiency of> 90%. LIST OF REFERENCE NUMBERS
1 Vergasungsreaktor 1 gasification reactor
2 Zwischenboden  2 intermediate floor
3 Reservoir  3 reservoir
4 Reaktionskammer  4 reaction chamber
5 Zwischenboden  5 intermediate bottom
6 Aschekasten  6 ash box
7 Rückhaltevorrichtung  7 restraint device
8 Gasaustritt  8 gas outlet
9 Seitenwand  9 side wall
10 Regelungseingang  10 control input
11 Ringleitung  11 ring line
12 Stegverbindung  12 bridge connection
13 Düseneingang  13 nozzle entrance
20 Vergasungsmittelgesamtmenge 20 total gasification amount
22 Vordruck 22 form
24 Verteilung  24 distribution
26 Temperatur  26 temperature
28 Wasserdampfanteil  28 water vapor content
30 Volumenstrom  30 volume flow
32 Differenzdruck  32 differential pressure
34 Nutzgaszusammensetzung 34 useful gas composition
36 Druck 36 pressure
38 Temperatur  38 temperature
40 Reaktionsart  40 reaction type

Claims

Ansprüche claims
1. Verfahren zum Betreiben eines Vergasungsreaktors (1) mit einer Reaktionskammer (4) für die autotherme und/oder allotherme Vergasung von kohlenstoffhaltigem Brennmaterial zu Nutzgasen, wobei 1. A method for operating a gasification reactor (1) with a reaction chamber (4) for the autothermal and / or allothermal gasification of carbonaceous fuel to Nutzgasen, wherein
Zusammensetzung (28), Menge (20), Druck (22), Geschwindigkeit, Temperatur (26) und/oder spezifischer Austrittspuls eines über Regelungseingänge (10) der Reaktionskammer (4) zugegebenen Vergasungsmittels variabel anhand einer Anzahl von in der Reaktionskammer (4) ermittelten Regelgrößen (30, 32, 34, 36, 38, 40) gesteuert werden,  Composition (28), amount (20), pressure (22), speed, temperature (26) and / or specific exit pulse of a gasification agent added via control inputs (10) of the reaction chamber (4) variable based on a number of in the reaction chamber (4) controlled variables (30, 32, 34, 36, 38, 40) are controlled,
dadurch gekennzeichnet, dass  characterized in that
die Zusammensetzung (34) des Nutzgases und/oder  the composition (34) of the Nutzgases and / or
der Volumenstrom (30) des Nutzgases und/oder  the volume flow (30) of the Nutzgases and / or
der jeweilige Druck (36) in einem Reservoir (3) für das Brennmaterial, in der Reaktionskammer (4) und/oder in einem Gasaustritt (8)  the respective pressure (36) in a reservoir (3) for the fuel, in the reaction chamber (4) and / or in a gas outlet (8)
als Regelgröße (30, 32, 34, 36, 38, 40) verwendet werden.  can be used as a controlled variable (30, 32, 34, 36, 38, 40).
2. Verfahren nach Anspruch 1 , 2. The method according to claim 1,
gekennzeichnet dadurch,  characterized by
dass die Reaktionskammer (4) mehrere Regelungseingänge (10) aufweist und Zusammensetzung (28), Menge (20), Druck (22), Geschwindigkeit, Temperatur (26) und/oder spezifischer Austrittspuls des über den jeweiligen Regelungseingang (10) zugegebenen Vergasungsmittels mindestens teilweise unabhängig von den jeweils anderen Regelungseingängen (10) gesteuert werden.  the reaction chamber (4) has a plurality of control inputs (10) and composition (28), quantity (20), pressure (22), speed, temperature (26) and / or specific exit pulse of the gasification agent added via the respective control input (10) partly independently of the other control inputs (10) are controlled.
3. Verfahren nach Anspruch 1 oder 2, 3. The method according to claim 1 or 2,
gekennzeichnet dadurch, dass die der Reaktionskammer (4) zugeführte Menge des kohlenstoffhaltigen Brennmaterials variabel anhand einer Anzahl von im Vergasungsreaktor (1) ermittelten Regelgrößen (30, 32, 34, 36, 38, 40) gesteuert wird. characterized by in that the quantity of the carbonaceous fuel material supplied to the reaction chamber (4) is variably controlled on the basis of a number of controlled variables (30, 32, 34, 36, 38, 40) determined in the gasification reactor (1).
4. Verfahren nach einem der Ansprüche 1 bis 3, 4. The method according to any one of claims 1 to 3,
gekennzeichnet dadurch,  characterized by
dass eine Temperatur (38) in der Reaktionskammer (4) als Regelgröße (30, 32, 34, 36, 38, 40) verwendet wird.  in that a temperature (38) in the reaction chamber (4) is used as controlled variable (30, 32, 34, 36, 38, 40).
5. Verfahren nach Anspruch 4, 5. The method according to claim 4,
gekennzeichnet dadurch,  characterized by
dass Zusammensetzung (28), Menge (20), Druck (32), Geschwindigkeit, Temperatur (26) und/oder spezifischer Austrittspuls des über den jeweiligen Regelungseingang (10) zugegebenen Vergasungsmittels anhand der Temperatur (38) in der Reaktionskammer (4) an dem jeweiligen Regelungseingang (10) als Regelgröße (30, 32, 34, 36, 38, 40) gesteuert werden.  the composition (28), quantity (20), pressure (32), speed, temperature (26) and / or specific exit pulse of the gasification agent added via the respective control input (10) based on the temperature (38) in the reaction chamber (4) the respective control input (10) as a controlled variable (30, 32, 34, 36, 38, 40) are controlled.
6. Verfahren nach einem der Ansprüche 1 bis 5, 6. The method according to any one of claims 1 to 5,
gekennzeichnet dadurch,  characterized by
dass die Druckdifferenz (32) über eine gasdurchlässige Rückhaltevorrichtung (7) zwischen der Reaktionskammer (4) und einem Aschekasten (6) des Vergasungsreaktors (1) als Regelgröße (30, 32, 34, 36, 38, 40) verwendet wird.  in that the pressure difference (32) is used as a control variable (30, 32, 34, 36, 38, 40) via a gas-permeable retention device (7) between the reaction chamber (4) and an ash box (6) of the gasification reactor (1).
7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem Zusammensetzung, Feuchtigkeit, Stückigkeit und/oder Staubgehalt des Brennmaterials als Regelgrößen (30, 32, 34, 36, 38, 40) verwendet werden. 7. The method according to any one of claims 1 to 6, are used in the composition, moisture, particulate matter and / or dust content of the fuel as controlled variables (30, 32, 34, 36, 38, 40).
8. Vergasungsreaktor (1) mit Mitteln zum Ausführen des Verfahrens nach einem der Ansprüche 1 bis 7. 8. Gasification reactor (1) with means for carrying out the method according to one of claims 1 to 7.
EP12783523.9A 2011-10-28 2012-10-26 Method for operating a gasification reactor Withdrawn EP2771437A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011117140A DE102011117140A1 (en) 2011-10-28 2011-10-28 Method for operating a gasification reactor
PCT/EP2012/004503 WO2013060474A1 (en) 2011-10-28 2012-10-26 Method for operating a gasification reactor

Publications (1)

Publication Number Publication Date
EP2771437A1 true EP2771437A1 (en) 2014-09-03

Family

ID=47146329

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12783523.9A Withdrawn EP2771437A1 (en) 2011-10-28 2012-10-26 Method for operating a gasification reactor

Country Status (3)

Country Link
EP (1) EP2771437A1 (en)
DE (1) DE102011117140A1 (en)
WO (1) WO2013060474A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012008777U1 (en) * 2012-09-13 2015-10-06 Big Dutchman International Gmbh Apparatus for producing fuel gas from a solid fuel
CN106753578A (en) * 2016-12-16 2017-05-31 四川雷鸣环保装备有限公司 Pulsed circle fluidized-bed gasification furnace and the gasification system and method using the gasification furnace

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607487A (en) * 1993-03-17 1997-03-04 Taylor; Leland T. Bottom feed - updraft gasification system
DE102004020919B4 (en) * 2004-04-28 2009-12-31 Kbi International Ltd. Reactor for thermal waste treatment with injection agents
WO2007002847A2 (en) * 2005-06-28 2007-01-04 Community Power Corporation Method and apparatus for a self-cleaning filter
AP2008004698A0 (en) * 2006-06-05 2008-12-31 Plascoenergy Ip Holdings S L A gasifier comprising vertically successive processing regions
FR2914314B1 (en) 2007-03-26 2011-04-08 Litelis METHOD AND INSTALLATION FOR VARIABLE POWER GASIFICATION OF COMBUSTIBLE MATERIALS.
US8105401B2 (en) * 2007-07-10 2012-01-31 Refill Energy, Inc. Parallel path, downdraft gasifier apparatus and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013060474A1 *

Also Published As

Publication number Publication date
WO2013060474A1 (en) 2013-05-02
DE102011117140A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
DE102007062414B4 (en) Autothermic process for the continuous gasification of carbon-rich substances
WO2010003968A2 (en) Method and device for producing low-tar synthesis gas from biomass
WO2005113732A1 (en) Device and method for generating a tar-free lean gas by gasifying biomass
DE102010012487A1 (en) Apparatus and process for the recovery of useful energy from bioenergy sources and other organic substances
WO2010015316A2 (en) Method and device for producing synthesis gas from biomass
DE102009032524B3 (en) Reactor for producing a product gas by allothermic gasification of carbonaceous feedstocks
DE19925316A1 (en) Process and plant for the autothermal gasification of solid fuels
WO2011134961A2 (en) Method and device for gasifying biomass
EP3358253A1 (en) Carbonization installation
DE102005006305A1 (en) Production of burning and synthesis gases from biomass by gasification process with high pressure steam generation in an airflow carburettor
DE102008043131B4 (en) Process and apparatus for thermochemical gasification of solid fuels
DE102008027858A1 (en) Thermal carburetor for producing tar-less gaseous fuel for thermal engine i.e. internal combustion engine, has packing bed in flow connection with part of pyrolysis reactor or with inlet opening of gasification reactor
EP3548587B1 (en) Method and apparatus for carbon reduction in the bottom product of a fluidised bed gasifier
DE102016008289B4 (en) Apparatus and method for allothermic fixed bed gasification of carbonaceous material
EP2771437A1 (en) Method for operating a gasification reactor
DE10030778C2 (en) Method and device for generating a fuel gas from biomass
EP2325288A1 (en) Method and device for thermal-chemical processing and exploitation of substances containing carbon
DE4226015C1 (en) Process for the disposal of solid and liquid waste in the gasification process in fixed bed pressure gasification
DE102011011521A1 (en) Production of carbon and combustible gases from lignite
EP3067407B1 (en) System and method for gasification of carbonaceous material
EP2771436A1 (en) Gasification reactor for carbon-containing fuel
EP2771438A1 (en) Method for the automatic removal of an excess of carbon in a gasification reactor
DE102015215143B4 (en) Method and apparatus for low gas production by thermochemical partial oxidation of solid biomass
WO2012110236A1 (en) Generating carbon and combustible gases from brown coal
DE102006058673A1 (en) Weak gas producing device for energy production, has helical conveyor i.e. agitation device, and inner wall of reactors arranged for maximum temperature adapted materials obtained in thermal processes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LIGENTO GREEN POWER GMBH

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170503