EP3548587B1 - Method and apparatus for carbon reduction in the bottom product of a fluidised bed gasifier - Google Patents

Method and apparatus for carbon reduction in the bottom product of a fluidised bed gasifier Download PDF

Info

Publication number
EP3548587B1
EP3548587B1 EP17811206.6A EP17811206A EP3548587B1 EP 3548587 B1 EP3548587 B1 EP 3548587B1 EP 17811206 A EP17811206 A EP 17811206A EP 3548587 B1 EP3548587 B1 EP 3548587B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
fluidized
gasification reactor
bed combustion
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17811206.6A
Other languages
German (de)
French (fr)
Other versions
EP3548587A1 (en
Inventor
Ralf Abraham
Domenico Pavone
Dobrin Toporov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gidara Energy BV
Original Assignee
Gidara Energy BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gidara Energy BV filed Critical Gidara Energy BV
Priority to PL17811206T priority Critical patent/PL3548587T3/en
Publication of EP3548587A1 publication Critical patent/EP3548587A1/en
Application granted granted Critical
Publication of EP3548587B1 publication Critical patent/EP3548587B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/523Ash-removing devices for gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1693Integration of gasification processes with another plant or parts within the plant with storage facilities for intermediate, feed and/or product
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices

Definitions

  • the present disclosure relates to a plant for converting carbonaceous fuels into synthesis gas comprising a gasification reactor with at least one fluidized bed zone in which the fuels are gasified by suitable gasification means, a carbonaceous ash stream being produced as the bottom product in a bottom area below the fluidized bed zone and with below the gasification reactor a device is arranged in which the bottom product is oxidized by supplying an oxidizing agent.
  • Winkler process is considered a tried and tested technology with which both lumpy and liquid or pasty fuels are converted into synthesis gas.
  • Difficult fuels with a very high ash content and biologically based fuels are also used as fuel. These are introduced into a fluidized bed, which is operated as a bubble-forming fluidized bed, and gasified with oxygen.
  • the HTW process works at comparatively moderate temperatures, at which the resulting ash does not leave the gasification reactor in a molten state. This has operational advantages, particularly with corrosive ash.
  • the gasification usually takes place via separate nozzles with the gasification agents, for example water vapor, carbon dioxide, oxygen or air.
  • the gasification agents for example water vapor, carbon dioxide, oxygen or air.
  • These nozzles are arranged, for example, in different levels, for example both in the fluidized bed zone and in the so-called freeboard zone (FB).
  • FB freeboard zone
  • FB freeboard zone
  • a high material and energy transfer rate is achieved and by returning the unconverted solids via the cyclone and return line to the fluidized bed, a uniform temperature distribution across the fluidized bed can be ensured.
  • the temperature of the fluidized bed should be kept below the temperature of the ash softening point.
  • gasification agents usually oxygen
  • oxygen are introduced into the FB zone, which is located above the fluidized bed.
  • various effects are achieved, namely, on the one hand, the conversion of part of the finely divided fuel that is discharged from the fluidized bed and, on the other hand, the temperature of the gases should be increased so that further oxidation and / or the volatile substances (tars and hydrocarbons) expelled from the feedstock can crack.
  • the finely distributed fuel particles react with steam and CO 2 in accordance with the Boudouard reaction.
  • the proportion of total oxygen above the fluidized bed is, for example, between about 60% and about 10% in an HTW process.
  • the temperatures should preferably not exceed certain limit values, and the operating temperature should preferably be at least about 100 ° C. below the ash softening point. This can be done by mixing steam with oxygen and introducing it into the reactor.
  • the addition of oxygen to the post-gasification zone also leads in side reactions to a partial combustion of the synthesis gas reservoir (CO + H 2 ) and consequently to a reduction in the synthesis gas yield. Therefore, one has to increase the gas and particle temperature in order to accelerate the gasification reaction.
  • WO 2015/003778 A1 describes a method and a device for the aftertreatment of the carbon-containing soil product resulting from the gasification of carbon-containing fossil fuels in a high-temperature Winkler process (HTW process) in the direction of gravity below the fluidized bed. It is proposed to use the energy of the soil product and to achieve the landfill suitability not to feed the soil product to an external furnace, but to apply an oxidizing agent to open-pore ceramic elements such as gas purging stones, foam ceramics or the like in a soil product oxidizer below the fluidized bed. In this way, a more extensive oxidation is to be achieved and the carbon conversion in the HTW gasifier is to be increased.
  • HTW process high-temperature Winkler process
  • U.S. 4,721,514 A describes a method for gasifying coal using coal powder.
  • the object of the present invention is to provide an improved device and a method for the economical gasification of different starting materials in a pressurized fluidized bed gasification, which is suitable for comparatively high operating pressures of preferably above 10 bar and is economical with a high level of safety and availability.
  • an additional fluidized bed combustion chamber is arranged as a device for oxidizing the bottom product below the fluidized bed zone of the gasification reactor.
  • an effective combustion of the bottom product from the gasification reactor can be achieved by supplying a suitable oxidizing agent.
  • the reactor forming the additional fluidized bed combustion chamber is preferably somewhat smaller than the gasification reactor.
  • This additional fluidized bed combustion chamber is positioned below the gasification reactor and is connected to the fluidized bed zone of the gasification reactor, for example via a cross-sectional constriction.
  • the oxidizing agent which is fed into the additional fluidized bed combustion chamber via the at least one feed device, preferably sprayed or injected, preferably comprises oxygen and / or air and can additionally contain, for example, steam and / or CO 2 . If several feed devices are used, oxidizing fluid streams with different compositions can be fed from one or several of the aforementioned gases / fluids are fed to the additional fluidized bed combustion chamber.
  • the oxygen content of the oxidizing agent when this is fed in as a mixture with steam, is preferably less than about 21% by volume.
  • the oxygen content and the amount of oxygen should be selected depending on the amount of carbon in the bottom product to be burned in the additional fluidized bed combustion chamber and the combustion temperature below the ash softening.
  • a preferred development of the invention provides that the system has at least one temperature measuring device for measuring the temperature in the additional fluidized bed combustion chamber.
  • This temperature measuring device can be used to measure the temperature in the additional fluidized bed combustion chamber and, depending on the temperature measured, the carbon content of the fuel can be deduced and the oxygen content of the oxidizing agent supplied can be adjusted accordingly, preferably so that hyperstoichiometric ratios result.
  • a regulating device is preferably also provided to regulate the amount and / or the oxygen content of an oxygen and / or air and / or steam and / or CO 2 -containing fluid flow injected into the additional fluidized bed combustion chamber via the at least one feed device .
  • the control device is preferably in operative connection with the temperature measuring device in order to measure the amount and / or the oxygen content of the oxygen and / or air and / or steam and / or CO 2 injected into the additional fluidized bed combustion chamber via the at least one feed device To regulate fluid flow as a function of the measured temperature in the additional combustion chamber.
  • the feed device is designed such that the bottom product to be burned in the additional combustion chamber is fluidized by the oxygen and / or air and / or steam and / or CO 2 -containing fluid flow injected into the additional fluidized bed combustion chamber.
  • the feed device preferably comprises at least one nozzle, preferably a multi-component nozzle, for injecting a fluid mixture of at least two different oxidizing fluids into the additional combustion chamber.
  • a multi-fluid nozzle can be used here, as shown in the WO 2014/026748 A1 is described. Reference is expressly made here to the content of this publication.
  • At least one valve for shutting off and / or regulating the oxidizing fluid flow fed in is preferably assigned to the feed device, so that the feed of the oxidizing agent can be regulated and / or shut off if necessary.
  • the system according to the invention comprises at least two supply devices for supplying differently composed oxidizing fluid flows, each supply device being assigned at least one valve for shutting off and / or regulating the respectively supplied oxidizing fluid flow.
  • each supply device being assigned at least one valve for shutting off and / or regulating the respectively supplied oxidizing fluid flow.
  • the system according to the invention preferably comprises at least one pressure difference measuring device and display device in order to display a pressure difference between the pressure in the fluidized bed of the gasification reactor and the pressure in the additional fluidized bed combustion chamber.
  • the measured pressure difference can be used, for example, to optimize the conditions for the fluidization of the fluidized bed in the gasification reactor due to the flue gases emerging from the additional fluidized bed combustion chamber on the one hand and the oxidizing agent supplied on the other.
  • a preferred further development of the system according to the invention provides that it has at least one connecting line for the return of raw gas from the gasification reactor, the one from the gasification reactor and into the additional one Introduces fluidized bed combustion chamber.
  • at least a partial flow of the raw gases generated in the gasification reactor can be returned to the additional fluidized bed combustion chamber and used there, for example, for fluidization (generation of the fluidized bed) and / or possibly also for oxidation and promotion of combustion, provided the raw gas is still Contains oxidizing gas components.
  • a preferred further development of the system according to the invention comprises at least one compressor for compressing the raw gas that is returned from the gasification reactor into the additional fluidized bed combustion chamber, so that the raw gas can be compressed for the return.
  • the subject of the present disclosure is also a method for converting carbonaceous fuels into synthesis gas in which the fuels are gasified by suitable gasifying agents in a gasification reactor with at least one fluidized bed zone, with a floor area located below the fluidized bed zone a carbonaceous ash stream is obtained as the bottom product and a device is arranged below the gasification reactor in which an oxidation of the bottom product takes place by supplying an oxidizing agent, the oxidation of the bottom product taking place in an additional fluidized bed combustion chamber arranged below the fluidized bed zone of the gasification reactor.
  • the flue gas resulting from the oxidation of the bottom product in the additional fluidized bed combustion chamber is fed from the underside into the gasification reactor and serves to generate fluidization of the particles to be gasified or at least to support this fluidization.
  • part of the raw gas generated during gasification in the gasification reactor is returned from the gasification reactor via at least one connecting line to the additional fluidized bed combustion chamber.
  • the recirculated part of the raw gas generated during the gasification in the gasification reactor is preferably compressed by means of at least one compressor before it is introduced into the additional fluidized bed combustion chamber.
  • a preferred development of the method provides that the exit velocity of the bottom product from the gasification reactor into the additional fluidized bed combustion chamber located below is preferably adjusted with the aid of the flow of the recirculated gas in such a way that only particles of coarser particle size due to gravity from the gasification reactor into the one below get additional fluidized bed combustion chamber. The finer class of particles therefore remains in the gasification reactor, which also reduces the carbon content.
  • the method according to the invention provides that the fuel is preferably gasified in the gasification reactor at an operating pressure of at least approximately 10 bar.
  • an oxidizing fluid flow containing oxygen and / or air and / or steam is injected into the additional fluidized bed combustion chamber via at least one first supply device, and a fluid flow containing CO 2 and / or contains recycled gas from the gasification reactor.
  • the oxygen content of the oxidizing agent fed to the fluidized bed combustion chamber can be set in accordance with the carbon content of the fuel, with conditions preferably being set above stoichiometric.
  • the gasification reactor used for gasification in the fluidized bed zone according to the present invention is particularly preferably a high-temperature Winkler gasifier and the gasification process is carried out under appropriate conditions with regard to pressure, temperature and other parameters, reference being made here to the publication mentioned above and the relevant literature becomes.
  • FIG Figure 1 shows a schematically simplified illustration of an exemplary system according to the invention, the a conveyor system 20 by means of which the starting material, for example coal, biomass, waste or the like, is fed to the gasification reactor 10.
  • This conveying and supply system 20 comprises, for example, a number of conically ending containers 21 and optionally locks and is suitable for bringing the starting material to a pressure level that also prevails in the gasification reactor 10.
  • the material can then be brought into the gasification reactor via a screw conveyor 22.
  • the gasification reactor 10 comprises a fluidized bed zone 11 and above a so-called "free board zone", ie a mixing area 16 (also called freeboard zone), in these two zones 11, 16 the gasification of the starting material at elevated temperatures of, for example, about 800 ° C to about 1200 ° C takes place with the supply of a mixture of oxygen and steam or air. Furthermore, a cyclone separator 18 connected to the gasification reactor 10 is provided, in which the entrained partially gasified particles (ash particles) are separated from the synthesis gas generated in the gasification reactor so that the dust-free synthesis gas can be discharged via an outlet line 19. A return line 23 is provided, which starts from the lower region of the cyclone separator 18 and serves to return ash particles entrained with the synthesis gas, which were separated in the cyclone separator 18, into the fluidized bed zone 11.
  • a cyclone separator 18 connected to the gasification reactor 10 is provided, in which the entrained partially gasified particles (ash particles) are separated from the synthesis gas generated in the gas
  • solid by-products (ash particles) from the bottom product of the gasification reactor 10 reach an additional fluidized bed combustion chamber 12, which is arranged below the fluidized bed zone 11 of the gasification reactor 10 and is connected to it via a cross-sectional constriction, so that particles of the bottom product, in particular due to gravity can fall from the gasification reactor 10 downwards into the additional fluidized bed combustion chamber 12, while lighter, smaller particles remain in the gasification reactor 10 due to the fluidization.
  • the additional fluidized bed combustion chamber 12 is much smaller than the gasification reactor 10 and is only a fraction of the size of the gasification reactor.
  • the addition of the oxidizing agent which consists in particular of oxygen / steam, air or CO 2
  • the oxidizing agent can take place in different areas of the system at different height positions.
  • a first upper nozzle 24 for adding the oxidizing agent to the gasification reactor is provided in the lower region of the "free board zone".
  • a mixture of oxygen and steam for example, is added below it into the fluidized bed zone 11 of the gasification reactor via a second central nozzle 25 and a third central nozzle 26.
  • this or another oxidizing agent of one of the compositions described above is added via a fourth lower nozzle 27 is provided, which takes place directly into the additional fluidized bed combustion chamber 12.
  • These various nozzles for the supply of the oxidizing agent can in the simplest case be connected to one another via lines when using oxidizing agents of the same composition and fed via common supply lines, but a supply from different sources via separate line systems is equally possible.
  • a first upper feed device 24 can be seen in the form of a nozzle or the like for, for example, a mixture of oxygen and steam, which is injected into the fluidized bed zone 11 of the gasification reactor.
  • a further central feed device 26 is arranged, via which, in this case, a mixture of recycled raw gas and CO 2 from the Gasification reactor is fed, which is used here to support the fluidization of the material to be gasified in the fluidized bed zone 11.
  • a further lower nozzle 27 is provided, which is arranged on the outside of the additional fluidized bed combustion chamber 12 and via which oxidizing agent such as a mixture of oxygen and steam can be fed into the additional fluidized bed combustion chamber 12.
  • Another lower nozzle 28 is arranged in the lower region of the additional fluidized bed combustion chamber 12, via which, for example, a mixture of recycled raw gas from the gasification reactor and CO 2 can be injected into the additional fluidized bed combustion chamber.
  • a mixture of recycled raw gas from the gasification reactor and CO 2 can be injected into the additional fluidized bed combustion chamber.
  • the combustion residues / ash particles can be fluidized in the additional fluidized bed combustion chamber 12 and thus a fluidized bed can be formed.
  • a line 29, in which a valve 30 is arranged, leads to this nozzle 28, so that the supply to the nozzle 28 can be regulated and, for example, shut off or throttled.
  • This line 29 is connected to a line from which a branch line 31 branches off, which leads to the nozzle 26, so that a gas mixture from the gasification reactor can be used for fluidization in both parts of the plant, which is fed from the latter via a common line, which then branches off and leads to the nozzles 26 and 28, respectively.
  • a valve 32 is also arranged in the branch line 31, so that this branch line 27 can be shut off separately if, for example, only a supply to the nozzle 28 is desired. It is also possible via a further valve 35 to shut off the line before the branch line 31 branches off or to regulate the supply of raw gas and CO 2 for both lines 29, 31 already there.
  • a temperature measuring device 33 is provided, by means of which the temperature in the additional fluidized bed combustion chamber 12 can be measured.
  • the measured temperature can be used to draw conclusions about the carbon content of the fuel in the combustion chamber 12, from which it is then in turn calculated how much oxidizing agent must be supplied to the combustion chamber 12 via the nozzle 27 in order to achieve an optimal oxygen / carbon ratio (preferably if this is set above stoichiometric)
  • a pressure difference measuring device 34 which measures the respective pressure on the one hand in the fluidized bed zone 11 and on the other hand in the additional fluidized bed combustion chamber 12, the pressure difference between the two values being determined and displayed. From this pressure difference, conclusions can be drawn about the flow conditions in the cross-sectional constriction 13 between the two parts of the system. Depending on this, the supply of the fluid via the line 27 and the nozzle 26 into the area of the cross-sectional constriction 13 can then be regulated, which is done, for example, via the valve 32. In this way, one can influence the degree of fluidization of the fluidized bed zone 11 by the recycled raw gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Description

Die vorliegende Offenbarung betrifft eine Anlage zur Umwandlung kohlenstoffhaltiger Brennstoffe in Synthesegas umfassend einen Vergasungsreaktor mit mindestens einer Wirbelschichtzone, in der eine Vergasung der Brennstoffe durch geeignete Vergasungsmittel erfolgt, wobei in einem unterhalb der Wirbelschichtzone angeordneten Bodenbereich als Bodenprodukt ein kohlenstoffhaltiger Aschestrom anfällt und wobei unterhalb des Vergasungsreaktors eine Einrichtung angeordnet ist, in der durch Zuführung eines Oxidationsmittels eine Oxidation des Bodenprodukts erfolgt. Der Gegenstand der Erfindung ist in den Ansprüchen definiert.The present disclosure relates to a plant for converting carbonaceous fuels into synthesis gas comprising a gasification reactor with at least one fluidized bed zone in which the fuels are gasified by suitable gasification means, a carbonaceous ash stream being produced as the bottom product in a bottom area below the fluidized bed zone and with below the gasification reactor a device is arranged in which the bottom product is oxidized by supplying an oxidizing agent. The subject matter of the invention is defined in the claims.

Verfahren zur Umwandlung kohlenstoffhaltiger Brennstoffe in der Wirbelschicht sind seit langem bekannt. Insbesondere ist hier das Hochtemperatur-Winkler-Verfahren (HTW-Verfahren) zu nennen, welches als erprobte Technologie gilt, mit der sowohl stückige als auch flüssige oder pastöse Brennstoffe in Synthesegas umgewandelt werden. Als Brennstoff kommen auch schwierige Brennstoffe mit sehr hohem Ascheanteil sowie biologisch basierte Brennstoffe zur Anwendung. Diese werden in eine Wirbelschicht, die als blasenbildende Wirbelschicht betrieben wird, eingeführt und mit Sauerstoff vergast. Das HTW-Verfahren arbeitet gegenüber anderen Vergasungsverfahren bei vergleichsweise moderaten Temperaturen, bei denen die entstehende Asche nicht schmelzflüssig den Vergasungsreaktor verlässt. Dies hat insbesondere bei korrosiven Aschen betriebliche Vorteile.Processes for converting carbonaceous fuels in the fluidized bed have been known for a long time. In particular, the high-temperature Winkler process (HTW process) should be mentioned here, which is considered a tried and tested technology with which both lumpy and liquid or pasty fuels are converted into synthesis gas. Difficult fuels with a very high ash content and biologically based fuels are also used as fuel. These are introduced into a fluidized bed, which is operated as a bubble-forming fluidized bed, and gasified with oxygen. Compared to other gasification processes, the HTW process works at comparatively moderate temperatures, at which the resulting ash does not leave the gasification reactor in a molten state. This has operational advantages, particularly with corrosive ash.

Bei den bekannten HTW-Verfahren erfolgt die Vergasung in der Regel über getrennte Düsen mit den Vergasungsmitteln, beispielsweise Wasserdampf, Kohlendioxid, Sauerstoff oder Luft. Diese Düsen sind beispielsweise in verschiedenen Ebenen angeordnet, zum Beispiel sowohl in der Wirbelbettzone als auch in der so genannten Freibordzone (FB). In dieser Freibordzone (FB) wird eine hohe Material- und Energieübertragungsrate erreicht und über die Rückführung der nicht umgesetzten Feststoffanteile über den Zyklon und Rückführleitung in die Wirbelschicht kann eine gleichmäßige Temperaturverteilung über die Wirbelschicht gesichert werden. Um die Bildung von Partikelagglomerationen zu vermeiden, sollte die Temperatur des Wirbelbettes unter der Temperatur des Ascheerweichungspunktes gefahren werden.In the known HTW processes, the gasification usually takes place via separate nozzles with the gasification agents, for example water vapor, carbon dioxide, oxygen or air. These nozzles are arranged, for example, in different levels, for example both in the fluidized bed zone and in the so-called freeboard zone (FB). In this freeboard zone (FB), a high material and energy transfer rate is achieved and by returning the unconverted solids via the cyclone and return line to the fluidized bed, a uniform temperature distribution across the fluidized bed can be ensured. To avoid the formation of particle agglomerations, the temperature of the fluidized bed should be kept below the temperature of the ash softening point.

Zusätzlich werden beim herkömmlichen HTW-Verfahren Vergasungsmittel, in der Regel Sauerstoff, in die FB-Zone, die sich über dem Wirbelbett befindet, eingetragen. Durch die Injektion dieses "sekundären" Sauerstoffs werden verschiedene Effekte erreicht, nämlich zum einen die Umsetzung eines Teils des fein verteilten Brennstoffes, welcher aus dem Wirbelbett ausgetragen wird und zum anderen soll die Temperatur der Gase erhöht werden, so dass eine weitere Oxidation und/oder ein Cracken der aus dem Einsatzstoff ausgetriebenen flüchtigen Substanzen (Teere und Kohlenwasserstoffe) erfolgen kann. Gleichzeitig erfolgt eine Reaktion der feinen verteilten Brennstoffpartikel mit Dampf und CO2 entsprechend der Boudouard-Reaktion.In addition, with the conventional HTW process, gasification agents, usually oxygen, are introduced into the FB zone, which is located above the fluidized bed. By injecting this "secondary" oxygen, various effects are achieved, namely, on the one hand, the conversion of part of the finely divided fuel that is discharged from the fluidized bed and, on the other hand, the temperature of the gases should be increased so that further oxidation and / or the volatile substances (tars and hydrocarbons) expelled from the feedstock can crack. At the same time, the finely distributed fuel particles react with steam and CO 2 in accordance with the Boudouard reaction.

Der Anteil des Gesamtsauerstoffs oberhalb der Wirbelschicht liegt bei einem HTW-Verfahren beispielsweise zwischen etwa 60 % und etwa 10 %. Um die Verschlackung in der Nachvergasungszone zu vermeiden, sollten die Temperaturen vorzugsweise bestimmte Grenzwerte nicht überschreiten, dabei sollte die Betriebstemperatur vorzugsweise mindestens etwa 100° C unter dem Ascheerweichungspunkt liegen. Hierzu kann man Dampf mit Sauerstoff mischen und in den Reaktor einbringen. Die Zugabe von Sauerstoff in die Nachvergasungszone führt jedoch in Nebenreaktionen auch dazu, dass es zu einer teilweisen Verbrennung des Synthesegasreservoirs (CO + H2) kommt und folglich zu einer Reduzierung der Synthesegas-Ausbeute. Daher muss man die Gas- und Partikeltemperatur erhöhen, um die Vergasungsreaktion zu beschleunigen.The proportion of total oxygen above the fluidized bed is, for example, between about 60% and about 10% in an HTW process. In order to avoid slagging in the post-gasification zone, the temperatures should preferably not exceed certain limit values, and the operating temperature should preferably be at least about 100 ° C. below the ash softening point. This can be done by mixing steam with oxygen and introducing it into the reactor. However, the addition of oxygen to the post-gasification zone also leads in side reactions to a partial combustion of the synthesis gas reservoir (CO + H 2 ) and consequently to a reduction in the synthesis gas yield. Therefore, one has to increase the gas and particle temperature in order to accelerate the gasification reaction.

Bei der Vergasung von aschehaltigen fossilen Brennstoffen im Hochtemperatur-Winkler-Vergaser (HTW-Vergaser) unter stationären Wirbelschichtbedingungen wird am Boden des Vergasers ein kohlenstoffhaltiger Aschestrom (so genanntes Bodenprodukt BP) abgezogen. Zur Ausnutzung der Energie und zur Erreichung der Deponiefähigkeit wird das Bodenprodukt bisher einer externen Feuerung zugeführt. Aus wirtschaftlichen Erwägungen sollte auf diese aufwändige Nachbehandlung verzichtet werden.When gasifying fossil fuels containing ash in the high-temperature Winkler gasifier (HTW gasifier) under stationary fluidized bed conditions, a carbonaceous ash stream (so-called bottom product BP) is drawn off at the bottom of the gasifier. In order to utilize the energy and to achieve the landfill suitability, the soil product has been fed to an external furnace. For economic reasons, this complex post-treatment should be avoided.

Der Bedarf an geeigneten Verfahren zur Vergasung von kohlenstoffhaltigen Brennstoffen wie beispielsweise Stroh, Restholz, Kohle oder dergleichen nimmt grundsätzlich zu. Daraus ergibt sich eine zunehmende Notwendigkeit zur Entwicklung von kostengünstigen Vergasungsverfahren, bei denen keine zusätzlichen Anlagen zur Entsorgung des Kohlenstoff-haltigen Bodenproduktes erforderlich sind.The need for suitable methods for gasifying carbonaceous fuels such as straw, waste wood, coal or the like is fundamentally increasing. From it there is an increasing need for the development of cost-effective gasification processes in which no additional plants for the disposal of the carbon-containing soil product are required.

In der WO 2015/003778 A1 werden ein Verfahren und eine Vorrichtung zur Nachbehandlung des bei der Vergasung von kohlenstoffhaltigen fossilen Brennstoffen in einem Hochtemperatur-Winkler-Verfahren (HTW-Verfahren) anfallenden Kohlenstoffhaltigen Bodenproduktes in Schwerkraftrichtung unterhalb der Wirbelschicht beschrieben. Es wird vorgeschlagen, zur Ausnutzung der Energie des Bodenprodukts und zur Erreichung der Deponiefähigkeit das Bodenprodukt nicht einer externen Feuerungseinrichtung zuzuführen, sondern offenporige keramische Elemente wie Gasspülsteine, Schaumkeramiken oder dergleichen in einem Bodenprodukt-Oxidator unterhalb der Wirbelschicht mit einem zugeführten Oxidationsmittel zu beaufschlagen. Auf diese Weise soll eine weitergehende Oxidation erreicht und der Kohlenstoffumsatz in dem HTW-Vergaser erhöht werden.In the WO 2015/003778 A1 describes a method and a device for the aftertreatment of the carbon-containing soil product resulting from the gasification of carbon-containing fossil fuels in a high-temperature Winkler process (HTW process) in the direction of gravity below the fluidized bed. It is proposed to use the energy of the soil product and to achieve the landfill suitability not to feed the soil product to an external furnace, but to apply an oxidizing agent to open-pore ceramic elements such as gas purging stones, foam ceramics or the like in a soil product oxidizer below the fluidized bed. In this way, a more extensive oxidation is to be achieved and the carbon conversion in the HTW gasifier is to be increased.

US 4,721,514 A beschreibt ein Verfahren zur Vergasung von Kohle, wobei Kohlepulver verwendet wird. U.S. 4,721,514 A describes a method for gasifying coal using coal powder.

Die Aufgabe der vorliegenden Erfindung besteht darin, eine verbesserte Vorrichtung und ein Verfahren zur wirtschaftlichen Vergasung unterschiedlicher Einsatzstoffe in einer druckaufgeladenen Wirbelschichtvergasung zur Verfügung zu stellen, die für vergleichsweise hohe Betriebsdrücke von vorzugsweise oberhalb von 10 bar geeignet und bei hoher Sicherheit und Verfügbarkeit wirtschaftlich ist.The object of the present invention is to provide an improved device and a method for the economical gasification of different starting materials in a pressurized fluidized bed gasification, which is suitable for comparatively high operating pressures of preferably above 10 bar and is economical with a high level of safety and availability.

Die Lösung dieser Aufgabe liefert eine Anlage zur Umwandlung kohlenstoffhaltiger Brennstoffe in Synthesegas umfassend einen Vergasungsreaktor mit mindestens einer Wirbelschichtzone der eingangs genannten Art mit den Merkmalen des Anspruchs 1. Somit bezieht sich die Erfindung auf Anlage zur Umwandlung kohlenstoffhaltiger Brennstoffe in Synthesegas umfassend einen Vergasungsreaktor (10) mit mindestens einer Wirbelschichtzone (11), in der eine Vergasung der Brennstoffe durch geeignete Vergasungsmittel erfolgt, wobei in einem unterhalb der Wirbelschichtzone (11) angeordneten Bodenbereich als Bodenprodukt ein kohlenstoffhaltiger Aschestrom anfällt und wobei unterhalb des Vergasungsreaktors (10) eine Einrichtung angeordnet ist, in der durch Zuführung eines Oxidationsmittels eine Oxidation des Bodenprodukts erfolgt, dadurch gekennzeichnet, dass

  • als Einrichtung zur Oxidation des Bodenprodukts unterhalb der Wirbelschichtzone (11) des Vergasungsreaktors (10) eine zusätzliche Wirbelschicht-Brennkammer (12) angeordnet ist,
  • wenigstens eine Zuführeinrichtung (27, 28) für die Zufuhr von Sauerstoff und/oder Luft und/oder Dampf und/oder CO2 in die zusätzliche Wirbelschicht-Brennkammer (12) vorgesehen ist, und
  • die Zuführeinrichtung (27, 28) derart ausgebildet ist, dass durch den in die zusätzliche Wirbelschicht-Brennkammer (12) injizierten Sauerstoff- und/oder Luft- und/oder Dampf- und/oder CO2-haltigen Fluidstrom das in der zusätzlichen Wirbelschicht-Brennkammer (12) zu verbrennende Bodenprodukt fluidisiert wird.
The solution to this problem is provided by a plant for converting carbonaceous fuels into synthesis gas comprising a gasification reactor with at least one fluidized bed zone of the type mentioned at the beginning with the features of claim 1. Thus, the invention relates to a plant for converting carbonaceous fuels into synthesis gas comprising a gasification reactor (10) with at least one fluidized bed zone (11) in which the fuels are gasified by suitable gasification means, a carbonaceous ash stream being obtained as the bottom product in a floor area below the fluidized bed zone (11) and wherein a device is arranged below the gasification reactor (10) in which the bottom product is oxidized by supplying an oxidizing agent, characterized in that
  • an additional fluidized bed combustion chamber (12) is arranged as a device for the oxidation of the bottom product below the fluidized bed zone (11) of the gasification reactor (10),
  • at least one feed device (27, 28) is provided for feeding oxygen and / or air and / or steam and / or CO 2 into the additional fluidized bed combustion chamber (12), and
  • the feed device (27, 28) is designed in such a way that the oxygen and / or air and / or steam and / or CO 2 -containing fluid flow injected into the additional fluidized bed combustion chamber (12) causes the fluid flow in the additional fluidized bed combustion chamber (12) to Combustion chamber (12) to be burned bottom product is fluidized.

Die Erfindung insgesamt ist durch die Ansprüche definiert.The invention as a whole is defined by the claims.

Erfindungsgemäß ist als Einrichtung zur Oxidation des Bodenprodukts unterhalb der Wirbelschichtzone des Vergasungsreaktors eine zusätzliche Wirbelschicht-Brennkammer angeordnet. In dieser zusätzlichen Wirbelschicht-Brennkammer kann man durch Zufuhr eines geeigneten Oxidationsmittels eine effektive Verbrennung des Bodenprodukts aus dem Vergasungsreaktor erreichen. Vorzugsweise ist der die zusätzliche Wirbelschicht-Brennkammer bildende Reaktor um einiges kleiner als der Vergasungsreaktor.According to the invention, an additional fluidized bed combustion chamber is arranged as a device for oxidizing the bottom product below the fluidized bed zone of the gasification reactor. In this additional fluidized bed combustion chamber, an effective combustion of the bottom product from the gasification reactor can be achieved by supplying a suitable oxidizing agent. The reactor forming the additional fluidized bed combustion chamber is preferably somewhat smaller than the gasification reactor.

Diese zusätzliche Wirbelschicht-Brennkammer ist unterhalb des Vergasungsreaktors positioniert und beispielsweise über eine Querschnittsverengung mit der Wirbelschichtzone des Vergasungsreaktors verbunden.This additional fluidized bed combustion chamber is positioned below the gasification reactor and is connected to the fluidized bed zone of the gasification reactor, for example via a cross-sectional constriction.

Das Oxidationsmittel, welches über die wenigstens eine Zuführeinrichtung in die zusätzliche Wirbelschicht-Brennkammer eingespeist, vorzugsweise eingedüst bzw. injiziert wird, umfasst vorzugsweise Sauerstoff und/oder Luft und kann zusätzlich beispielsweise Dampf und/oder CO2 enthalten. Werden mehrere Zuführeinrichtungen verwendet, können über diese oxidierende Fluidströme mit unterschiedlicher Zusammensetzung aus einem oder mehreren der vorgenannten Gase/Fluide der zusätzlichen Wirbelschicht-Brennkammer zugeführt werden.The oxidizing agent, which is fed into the additional fluidized bed combustion chamber via the at least one feed device, preferably sprayed or injected, preferably comprises oxygen and / or air and can additionally contain, for example, steam and / or CO 2 . If several feed devices are used, oxidizing fluid streams with different compositions can be fed from one or several of the aforementioned gases / fluids are fed to the additional fluidized bed combustion chamber.

Vorzugsweise liegt der Sauerstoffgehalt des Oxidationsmittels, wenn dieses im Gemisch mit Dampf zugeführt wird, bei weniger als etwa 21 Vol.-%. Der Sauerstoffgehalt und die Sauerstoffmenge sollten in Abhängigkeit von der Menge an Kohlenstoff in dem in der zusätzlichen Wirbelschicht-Brennkammer zu verbrennenden Bodenprodukt und der Verbrennungstemperatur unterhalb der Ascheerweichung gewählt werden.The oxygen content of the oxidizing agent, when this is fed in as a mixture with steam, is preferably less than about 21% by volume. The oxygen content and the amount of oxygen should be selected depending on the amount of carbon in the bottom product to be burned in the additional fluidized bed combustion chamber and the combustion temperature below the ash softening.

Eine bevorzugte Weiterbildung der Erfindung sieht vor, dass die Anlage wenigstens eine Temperaturmesseinrichtung zur Messung der Temperatur in der zusätzlichen Wirbelschicht-Brennkammer aufweist. Mittels dieser Temperaturmesseinrichtung kann man die Temperatur in der zusätzlichen Wirbelschicht-Brennkammer messen und in Abhängigkeit von der gemessenen Temperatur kann man auf den Kohlenstoffgehalt des Brennstoffs schließen und den Sauerstoffgehalt des zugeführten Oxidationsmittels entsprechend einstellen, vorzugsweise so, dass sich überstöchiometrische Verhältnisse ergeben.A preferred development of the invention provides that the system has at least one temperature measuring device for measuring the temperature in the additional fluidized bed combustion chamber. This temperature measuring device can be used to measure the temperature in the additional fluidized bed combustion chamber and, depending on the temperature measured, the carbon content of the fuel can be deduced and the oxygen content of the oxidizing agent supplied can be adjusted accordingly, preferably so that hyperstoichiometric ratios result.

Vorzugsweise ist weiterhin eine Regeleinrichtung vorgesehen, um die Menge und/oder den Sauerstoffgehalt eines über die wenigstens eine Zuführeinrichtung in die zusätzliche Wirbelschicht-Brennkammer injizierten Sauerstoff- und/oder Luft- und/oder Dampf- und/oder CO2-haltigen Fluidstroms zu regeln.A regulating device is preferably also provided to regulate the amount and / or the oxygen content of an oxygen and / or air and / or steam and / or CO 2 -containing fluid flow injected into the additional fluidized bed combustion chamber via the at least one feed device .

Bevorzugt steht die Regeleinrichtung mit der Temperaturmesseinrichtung in Wirkverbindung, um die Menge und/oder den Sauerstoffgehalt des über die wenigstens eine Zuführeinrichtung in die zusätzliche Wirbelschicht-Brennkammer injizierten Sauerstoff- und/oder Luft- und/oder Dampf- und/oder CO2-haltigen Fluidstroms in Abhängigkeit von der gemessenen Temperatur in der zusätzlichen Brennkammer zu regeln.The control device is preferably in operative connection with the temperature measuring device in order to measure the amount and / or the oxygen content of the oxygen and / or air and / or steam and / or CO 2 injected into the additional fluidized bed combustion chamber via the at least one feed device To regulate fluid flow as a function of the measured temperature in the additional combustion chamber.

Erfingungsgemäß ist die Zuführeinrichtung derart ausgebildet, dass durch den in die zusätzliche Wirbelschicht-Brennkammer injizierten Sauerstoff- und/oder Luft- und/oder Dampf- und/oder CO2-haltigen Fluidstrom das in der zusätzlichen Brennkammer zu verbrennende Bodenprodukt fluidisiert wird. Man hat dadurch den verfahrenstechnischen Vorteil, dass man für die Fluidisierung, d.h. für die Erzeugung der Wirbelschicht in der zusätzlichen Brennkammer kein zusätzliches Fluid benötigt, sondern hierfür das ohnehin zugeführte Oxidationsmittel verwenden kann.According to the invention, the feed device is designed such that the bottom product to be burned in the additional combustion chamber is fluidized by the oxygen and / or air and / or steam and / or CO 2 -containing fluid flow injected into the additional fluidized bed combustion chamber. This gives you the procedural one The advantage is that no additional fluid is required for the fluidization, ie for the generation of the fluidized bed in the additional combustion chamber, but rather the oxidizing agent which is supplied in any case can be used for this purpose.

Vorzugsweise umfasst die Zuführeinrichtung wenigstens eine Düse, vorzugsweise eine Mehrstoffdüse, zur Einspritzung eines Fluidgemischs aus wenigstens zwei unterschiedlichen oxidierenden Fluiden in die zusätzliche Brennkammer. Hier kann zum Beispiel eine Mehrstoffdüse verwendet werden, wie sie in der WO 2014/026748 A1 beschrieben wird. Auf den Inhalt dieser Druckschrift wird hier ausdrücklich Bezug genommen.The feed device preferably comprises at least one nozzle, preferably a multi-component nozzle, for injecting a fluid mixture of at least two different oxidizing fluids into the additional combustion chamber. For example, a multi-fluid nozzle can be used here, as shown in the WO 2014/026748 A1 is described. Reference is expressly made here to the content of this publication.

Weiterhin ist vorzugsweise der Zuführeinrichtung wenigstens ein Ventil zur Absperrung und/oder Regelung des zugeführten oxidierenden Fluidstroms zugeordnet, so dass man die Zufuhr des Oxidationsmittels regeln und/oder gegebenenfalls absperren kann.Furthermore, at least one valve for shutting off and / or regulating the oxidizing fluid flow fed in is preferably assigned to the feed device, so that the feed of the oxidizing agent can be regulated and / or shut off if necessary.

Gemäß einer bevorzugten Weiterbildung umfasst die erfindungsgemäße Anlage wenigstens zwei Zuführeinrichtungen für die Zufuhr unterschiedlich zusammengesetzter oxidierender Fluidströme, wobei jeder Zuführeinrichtung jeweils wenigstens ein Ventil zur Absperrung und/oder Regelung des jeweils zugeführten oxidierenden Fluidstroms zugeordnet ist. Auf diese Weise kann man der zusätzlichen Wirbelschicht-Brennkammer unterschiedlich zusammengesetzte Fluidströme gegebenenfalls an verschiedenen Stellen differenziert in der jeweils gewünschten Menge zuführen.According to a preferred development, the system according to the invention comprises at least two supply devices for supplying differently composed oxidizing fluid flows, each supply device being assigned at least one valve for shutting off and / or regulating the respectively supplied oxidizing fluid flow. In this way, fluid streams with different compositions can be fed to the additional fluidized-bed combustion chamber, possibly differentiated at different points, in the respectively desired amount.

Vorzugsweise umfasst die erfindungsgemäße Anlage wenigstens eine Druckdifferenzmessvorrichtung und Anzeigevorrichtung, um eine Druckdifferenz zwischen dem Druck in der Wirbelschicht des Vergasungsreaktors und dem Druck in der zusätzlichen Wirbelschicht-Brennkammer anzuzeigen. Die gemessene Druckdifferenz kann man beispielsweise nutzen, um die Bedingungen für die Fluidisierung der Wirbelschicht im Vergasungsreaktor durch die aus der zusätzlichen Wirbelschicht-Brennkammer nach oben hin austretenden Rauchgase einerseits und durch das zugeführte Oxidationsmittel andererseits zu optimieren.The system according to the invention preferably comprises at least one pressure difference measuring device and display device in order to display a pressure difference between the pressure in the fluidized bed of the gasification reactor and the pressure in the additional fluidized bed combustion chamber. The measured pressure difference can be used, for example, to optimize the conditions for the fluidization of the fluidized bed in the gasification reactor due to the flue gases emerging from the additional fluidized bed combustion chamber on the one hand and the oxidizing agent supplied on the other.

Eine bevorzugte Weiterbildung der erfindungsgemäßen Anlage sieht vor, dass diese wenigstens eine Verbindungsleitung für die Rückführung von Rohgas aus dem Vergasungsreaktor aufweist, die aus dem Vergasungsreaktor heraus und in die zusätzliche Wirbelschicht-Brennkammer hineinführt. Auf diese Weise kann man wenigstens einen Teilstrom der in dem Vergasungsreaktor erzeugten Rohgase in die zusätzliche Wirbelschicht-Brennkammer rückführen und dort beispielsweise für die Fluidisierung (Erzeugung der Wirbelschicht) und/oder gegebenenfalls auch für die Oxidation und Förderung der Verbrennung nutzen, soweit das Rohgas noch oxidierende Gasanteile enthält.A preferred further development of the system according to the invention provides that it has at least one connecting line for the return of raw gas from the gasification reactor, the one from the gasification reactor and into the additional one Introduces fluidized bed combustion chamber. In this way, at least a partial flow of the raw gases generated in the gasification reactor can be returned to the additional fluidized bed combustion chamber and used there, for example, for fluidization (generation of the fluidized bed) and / or possibly also for oxidation and promotion of combustion, provided the raw gas is still Contains oxidizing gas components.

Eine bevorzugte Weiterbildung der erfindungsgemäßen Anlage umfasst wenigstens einen Verdichter für die Verdichtung von rückgeführtem Rohgas aus dem Vergasungsreaktor in die zusätzliche Wirbelschicht-Brennkammer, so dass man das Rohgas für die Rückführung verdichten kann.A preferred further development of the system according to the invention comprises at least one compressor for compressing the raw gas that is returned from the gasification reactor into the additional fluidized bed combustion chamber, so that the raw gas can be compressed for the return.

Gegenstand der vorliegenden Offenbarung, jedoch in der beschriebenen Breite nicht der Erfindung, ist weiterhin ein Verfahren zur Umwandlung kohlenstoffhaltiger Brennstoffe in Synthesegas bei dem in einem Vergasungsreaktor mit mindestens einer Wirbelschichtzone eine Vergasung der Brennstoffe durch geeignete Vergasungsmittel erfolgt, wobei in einem unterhalb der Wirbelschichtzone angeordneten Bodenbereich als Bodenprodukt ein kohlenstoffhaltiger Aschestrom anfällt und wobei unterhalb des Vergasungsreaktors eine Einrichtung angeordnet ist, in der durch Zuführung eines Oxidationsmittels eine Oxidation des Bodenprodukts erfolgt, wobei die Oxidation des Bodenprodukts in einer unterhalb der Wirbelschichtzone des Vergasungsreaktors angeordneten zusätzlichen Wirbelschicht-Brennkammer erfolgt.The subject of the present disclosure, but not of the invention to the extent described, is also a method for converting carbonaceous fuels into synthesis gas in which the fuels are gasified by suitable gasifying agents in a gasification reactor with at least one fluidized bed zone, with a floor area located below the fluidized bed zone a carbonaceous ash stream is obtained as the bottom product and a device is arranged below the gasification reactor in which an oxidation of the bottom product takes place by supplying an oxidizing agent, the oxidation of the bottom product taking place in an additional fluidized bed combustion chamber arranged below the fluidized bed zone of the gasification reactor.

Die Erfindung bezieht sich weiterhin auf ein Verfahren zur Umwandlung kohlenstoffhaltiger Brennstoffe in Synthesegas bei dem in einem Vergasungsreaktor (10) mit mindestens einer Wirbelschichtzone (11) eine Vergasung der Brennstoffe durch geeignete Vergasungsmittel erfolgt, wobei in einem unterhalb der Wirbelschichtzone (11) angeordneten Bodenbereich als Bodenprodukt ein kohlenstoffhaltiger Aschestrom anfällt und wobei unterhalb des Vergasungsreaktors (10) eine Einrichtung angeordnet ist, in der durch Zuführung eines Oxidationsmittels eine Oxidation des Bodenprodukts erfolgt, dadurch gekennzeichnet, dass

  • die Oxidation des Bodenprodukts in einer unterhalb der Wirbelschichtzone (11) des Vergasungsreaktors (10) angeordneten zusätzlichen Wirbelschicht-Brennkammer (12) erfolgt, und
  • über mindestens eine erste Zuführeinrichtung (27) in die zusätzliche Wirbelschicht-Brennkammer (12) ein oxidierender Fluidstrom injiziert wird, welcher Sauerstoff und/oder Luft und/oder Dampf enthält und über mindestens eine zweite Zuführeinrichtung (28) in die zusätzliche Wirbelschicht-Brennkammer (12) ein Fluidstrom injiziert wird, welcher CO2 und/oder recyceltes Gas aus dem Vergasungsreaktor (10) enthält.
The invention also relates to a method for converting carbonaceous fuels into synthesis gas, in which the fuels are gasified by suitable gasifying agents in a gasification reactor (10) with at least one fluidized bed zone (11), with a floor area below the fluidized bed zone (11) as Bottom product, a carbonaceous ash stream is obtained and a device is arranged below the gasification reactor (10) in which the bottom product is oxidized by supplying an oxidizing agent, characterized in that
  • the oxidation of the bottom product takes place in an additional fluidized bed combustion chamber (12) arranged below the fluidized bed zone (11) of the gasification reactor (10), and
  • An oxidizing fluid stream containing oxygen and / or air and / or steam is injected into the additional fluidized bed combustion chamber (12) via at least one first supply device (27) and into the additional fluidized bed combustion chamber (28) via at least one second supply device (28). 12) a fluid stream is injected which contains CO 2 and / or recycled gas from the gasification reactor (10).

Vorzugsweise wird erfindungsgemäß das bei der Oxidation des Bodenprodukts in der zusätzlichen Wirbelschicht-Brennkammer entstehende Rauchgas von der Unterseite her in den Vergasungsreaktor geleitet und dient dazu, dort eine Fluidisation der zu vergasenden Partikel zu erzeugen oder diese Fluidisation zumindest zu unterstützen.Preferably, according to the invention, the flue gas resulting from the oxidation of the bottom product in the additional fluidized bed combustion chamber is fed from the underside into the gasification reactor and serves to generate fluidization of the particles to be gasified or at least to support this fluidization.

Gemäß einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens wird ein Teil des bei der Vergasung im Vergasungsreaktor erzeugten Rohgases aus dem Vergasungsreaktor über wenigstens eine Verbindungsleitung in die zusätzliche Wirbelschicht-Brennkammer rückgeführt.According to a preferred development of the method according to the invention, part of the raw gas generated during gasification in the gasification reactor is returned from the gasification reactor via at least one connecting line to the additional fluidized bed combustion chamber.

Vorzugsweise wird der rückgeführte Teil des bei der Vergasung im Vergasungsreaktor erzeugten Rohgases vor der Einleitung in die zusätzliche Wirbelschicht-Brennkammer mittels wenigstens eines Verdichters verdichtet.The recirculated part of the raw gas generated during the gasification in the gasification reactor is preferably compressed by means of at least one compressor before it is introduced into the additional fluidized bed combustion chamber.

Eine bevorzugte Weiterbildung des Verfahrens sieht vor, dass die Austrittsgeschwindigkeit des Bodenprodukts aus dem Vergasungsreaktor in die darunter befindliche zusätzliche Wirbelschicht-Brennkammer vorzugsweise mit Hilfe des Stroms des rückgeführten Gases derart eingestellt wird, dass nur Partikel gröberer Partikelgröße aufgrund der Schwerkraft aus dem Vergasungsreaktor in die darunterliegende zusätzliche Wirbelschicht-Brennkammer gelangen. Die feinere Partikelklasse verbleibt somit weiterhin im Vergasungsreaktor, wodurch ebenfalls der Kohlenstoffgehalt reduziert wird.A preferred development of the method provides that the exit velocity of the bottom product from the gasification reactor into the additional fluidized bed combustion chamber located below is preferably adjusted with the aid of the flow of the recirculated gas in such a way that only particles of coarser particle size due to gravity from the gasification reactor into the one below get additional fluidized bed combustion chamber. The finer class of particles therefore remains in the gasification reactor, which also reduces the carbon content.

Das erfindungsgemäße Verfahren sieht vor, dass bevorzugt die Vergasung der Brennstoffe im Vergasungsreaktor bei einem Betriebsdruck von wenigstens etwa 10 bar erfolgt. Erfindungsgemäß wird über mindestens eine erste Zuführeinrichtung in die zusätzliche Wirbelschicht-Brennkammer ein oxidierender Fluidstrom injiziert, welcher Sauerstoff und/oder Luft und/oder Dampf enthält und über mindestens eine zweite Zuführeinrichtung wird in die zusätzliche Wirbelschicht-Brennkammer ein Fluidstrom injiziert, welcher CO2 und/oder recyceltes Gas aus dem Vergasungsreaktor enthält.The method according to the invention provides that the fuel is preferably gasified in the gasification reactor at an operating pressure of at least approximately 10 bar. According to the invention, an oxidizing fluid flow containing oxygen and / or air and / or steam is injected into the additional fluidized bed combustion chamber via at least one first supply device, and a fluid flow containing CO 2 and / or contains recycled gas from the gasification reactor.

Vorteilhaft ist es, wenn man die Temperatur in der zusätzlichen Wirbelschicht-Brennkammer misst, da die Temperatur Rückschlüsse auf den Verlauf des Verbrennungsvorgangs und den Kohlenstoffgehalt des dortigen Bodenprodukts nach dem Vergasungsvorgang zulässt. Somit kann man in Abhängigkeit von der gemessenen Temperatur den Sauerstoffgehalt des der Wirbelschicht-Brennkammer zugeführten Oxidationsmittels entsprechend dem Kohlenstoffgehalt des Brennstoffs einstellen, wobei man vorzugsweise überstöchiometrische Bedingungen einstellt.It is advantageous to measure the temperature in the additional fluidized bed combustion chamber, since the temperature allows conclusions to be drawn about the course of the combustion process and the carbon content of the bottom product there after the gasification process. In this way, depending on the measured temperature, the oxygen content of the oxidizing agent fed to the fluidized bed combustion chamber can be set in accordance with the carbon content of the fuel, with conditions preferably being set above stoichiometric.

Der für die Vergasung in der Wirbelschichtzone gemäß der vorliegenden Erfindung eingesetzte Vergasungsreaktor ist besonders bevorzugt ein Hochtemperatur-Winkler-Vergaser und das Vergasungsverfahren wird unter entsprechenden Bedingungen bezüglich Druck, Temperatur und weiterer Parameter durchgeführt, wobei hier auf die eingangs genannte Druckschrift und die einschlägige Literatur verwiesen wird.The gasification reactor used for gasification in the fluidized bed zone according to the present invention is particularly preferably a high-temperature Winkler gasifier and the gasification process is carried out under appropriate conditions with regard to pressure, temperature and other parameters, reference being made here to the publication mentioned above and the relevant literature becomes.

Nachfolgend wird die vorliegende Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Zeichnungen näher erläutert. Dabei zeigen:

  • Figur 1 eine schematisch vereinfachte Darstellung einer beispielhaften erfindungsgemäßen Anlage;
  • Figur 2 eine vergrößerte Detaildarstellung eines Ausschnitts aus der in Figur 1 dargestellten Anlage, wobei der untere Bereich des Vergasungsreaktors und die zusätzliche Wirbelschicht-Brennkammer dargestellt sind.
The present invention is explained in more detail below on the basis of exemplary embodiments with reference to the accompanying drawings. Show:
  • Figure 1 a schematically simplified representation of an exemplary system according to the invention;
  • Figure 2 an enlarged detailed representation of a section from the in Figure 1 shown plant, the lower area of the gasification reactor and the additional fluidized bed combustion chamber are shown.

Nachfolgend wird zunächst unter Bezugnahme auf Figur 1 ein mögliches Ausführungsbeispiel der vorliegenden Erfindung näher erläutert. Die Darstellung zeigt eine schematisch vereinfachte Darstellung einer beispielhaften erfindungsgemäßen Anlage, die ein Fördersystem 20 aufweist mittels dessen das Ausgangsmaterial, beispielsweise Kohle, Biomasse, Abfälle oder dergleichen dem Vergasungsreaktor 10 zugeführt wird. Dieses Förder-und Zuführsystem 20 umfasst beispielsweise eine Anzahl von konisch endenden Behältern 21 und gegebenenfalls Schleusen und ist geeignet, das Ausgangsmaterial auf einen Drucklevel zu bringen, welcher auch in dem Vergasungsreaktor 10 herrscht. Beispielsweise über eine Förderschnecke 22 kann dann das Material in den Vergasungsreaktor verbracht werden.In the following, reference is first made to FIG Figure 1 a possible embodiment of the present invention explained in more detail. The illustration shows a schematically simplified illustration of an exemplary system according to the invention, the a conveyor system 20 by means of which the starting material, for example coal, biomass, waste or the like, is fed to the gasification reactor 10. This conveying and supply system 20 comprises, for example, a number of conically ending containers 21 and optionally locks and is suitable for bringing the starting material to a pressure level that also prevails in the gasification reactor 10. For example, the material can then be brought into the gasification reactor via a screw conveyor 22.

Der Vergasungsreaktor 10 umfasst eine Wirbelschichtzone 11 und darüber eine so genannte "free board zone", d.h. einen Mischbereich 16 (auch Freibordzone genannt), wobei in diesen beiden Zonen 11, 16 die Vergasung des Ausgangsmaterials bei erhöhten Temperaturen von beispielsweise etwa 800 °C bis etwa 1200 °C unter Zufuhr eines Gemischs aus Sauerstoff und Dampf oder Luft erfolgt. Weiterhin ist ein mit dem Vergasungsreaktor 10 verbundener Zyklonabscheider 18 vorgesehen, in dem die mitgerissenen teilvergasten Partikel (Aschepartikel) von dem im Vergasungsreaktor erzeugten Synthesegas abgetrennt werden, so dass das staubfreie Synthesegas über eine Ausgangsleitung 19 abgeführt werden kann. Es ist eine Rückführleitung 23 vorgesehen, die vom unteren Bereich des Zyklonabscheiders 18 ausgeht und dazu dient, mit dem Synthesegas mitgerissene Aschepartikel, die im Zyklonabscheider 18 abgetrennt wurden, in die Wirbelschichtzone 11 rückzuführen.The gasification reactor 10 comprises a fluidized bed zone 11 and above a so-called "free board zone", ie a mixing area 16 (also called freeboard zone), in these two zones 11, 16 the gasification of the starting material at elevated temperatures of, for example, about 800 ° C to about 1200 ° C takes place with the supply of a mixture of oxygen and steam or air. Furthermore, a cyclone separator 18 connected to the gasification reactor 10 is provided, in which the entrained partially gasified particles (ash particles) are separated from the synthesis gas generated in the gasification reactor so that the dust-free synthesis gas can be discharged via an outlet line 19. A return line 23 is provided, which starts from the lower region of the cyclone separator 18 and serves to return ash particles entrained with the synthesis gas, which were separated in the cyclone separator 18, into the fluidized bed zone 11.

Feste Nebenprodukte (Aschepartikel) aus dem Bodenprodukt des Vergasungsreaktors 10 gelangen bei dem erfindungsgemäßen Verfahren in eine zusätzliche Wirbelschicht-Brennkammer 12, die unterhalb der Wirbelschichtzone 11 des Vergasungsreaktors 10 angeordnet und mit diesem über eine Querschnittsverengung verbunden ist, so dass insbesondere durch Gravitation Partikel des Bodenprodukts aus dem Vergasungsreaktor 10 nach unten hin in die zusätzliche Wirbelschicht-Brennkammer 12 fallen können, während leichtere kleinere Partikel aufgrund der Fluidisation im Vergasungsreaktor 10 verbleiben. Wie man in Figur 1 erkennt, ist die zusätzliche Wirbelschicht-Brennkammer 12 wesentlich kleiner als der Vergasungsreaktor 10 und hat nur einen Bruchteil der Größe des Vergasungsreaktors.In the process according to the invention, solid by-products (ash particles) from the bottom product of the gasification reactor 10 reach an additional fluidized bed combustion chamber 12, which is arranged below the fluidized bed zone 11 of the gasification reactor 10 and is connected to it via a cross-sectional constriction, so that particles of the bottom product, in particular due to gravity can fall from the gasification reactor 10 downwards into the additional fluidized bed combustion chamber 12, while lighter, smaller particles remain in the gasification reactor 10 due to the fluidization. How to get in Figure 1 recognizes, the additional fluidized bed combustion chamber 12 is much smaller than the gasification reactor 10 and is only a fraction of the size of the gasification reactor.

Wie man weiterhin aus Figur 1 erkennt, kann die Zugabe des Oxidationsmittels, welches insbesondere aus Sauerstoff/Dampf, Luft oder CO2 besteht in verschiedenen Bereichen der Anlage in unterschiedlichen Höhenpositionen erfolgen. In dem Ausführungsbeispiel gemäß Figur 1 ist beispielsweise eine erste obere Düse 24 für die Zugabe des Oxidationsmittels in den Vergasungsreaktor im unteren Bereich der "free board zone" vorgesehen. Weiterhin erfolgt eine Zugabe von beispielsweise einem Gemisch aus Sauerstoff und Dampf unterhalb davon in die Wirbelschichtzone 11 des Vergasungsreaktors über eine zweite mittlere Düse 25 sowie über eine dritte mittlere Düse 26. Schließlich ist eine Zugabe dieses oder eines anderen Oxidationsmittel einer der oben beschriebenen Zusammensetzungen über eine vierte untere Düse 27 vorgesehen, die unmittelbar in die zusätzliche Wirbelschicht-Brennkammer 12 hinein erfolgt. Diese diversen Düsen für die Zufuhr des Oxidationsmittel können im einfachsten Fall bei Verwendung von Oxidationsmitteln gleicher Zusammensetzung über Leitungen miteinander verbunden sein und über gemeinsame Zuführleitungen gespeist werden, aber ebenso gut ist eine Speisung aus unterschiedlichen Quellen über jeweils separate Leitungssysteme möglich.How to continue dating Figure 1 recognizes, the addition of the oxidizing agent, which consists in particular of oxygen / steam, air or CO 2 , can take place in different areas of the system at different height positions. In the embodiment according to Figure 1 For example, a first upper nozzle 24 for adding the oxidizing agent to the gasification reactor is provided in the lower region of the "free board zone". Furthermore, a mixture of oxygen and steam, for example, is added below it into the fluidized bed zone 11 of the gasification reactor via a second central nozzle 25 and a third central nozzle 26. Finally, this or another oxidizing agent of one of the compositions described above is added via a fourth lower nozzle 27 is provided, which takes place directly into the additional fluidized bed combustion chamber 12. These various nozzles for the supply of the oxidizing agent can in the simplest case be connected to one another via lines when using oxidizing agents of the same composition and fed via common supply lines, but a supply from different sources via separate line systems is equally possible.

Der aus der unter dem Vergasungsreaktor 10 angeordneten zusätzlichen Wirbelschicht-Brennkammer 12 bevorzugt nach unten hin austretende Verbrennungsrückstand wird beispielsweise über ein wassergekühltes System von Förderschnecken 38 und Druckbehältern 39, in denen er gekühlt und auf Umgebungsdruck gebracht wird, aus der Anlage abgeführt.The combustion residue that exits from the additional fluidized bed combustion chamber 12 located below the gasification reactor 10, preferably downwards, is removed from the system, for example, via a water-cooled system of screw conveyors 38 and pressure vessels 39, in which it is cooled and brought to ambient pressure.

Nachfolgend wird beispielhaft der Bereich der Anlage, in dem sich die zusätzliche Wirbelschicht-Brennkammer 12 befindet, anhand der vergrößerten Detaildarstellung gemäß Figur 2 näher erläutert. Hier sind im Prinzip nur die zusätzliche Wirbelschicht-Brennkammer 12 und teilweise die darüber liegende Wirbelschichtzone 11 des Vergasungsreaktors erkennbar. Man erkennt eine erste obere Zuführeinrichtung 24 in Form einer Düse oder dergleichen für beispielsweise ein Gemisch aus Sauerstoff und Dampf, welches in die Wirbelschichtzone 11 des Vergasungsreaktors eingedüst wird.The area of the plant in which the additional fluidized bed combustion chamber 12 is located is shown below by way of example on the basis of the enlarged detailed illustration according to FIG Figure 2 explained in more detail. In principle, only the additional fluidized bed combustion chamber 12 and partially the fluidized bed zone 11 of the gasification reactor lying above it can be seen here. A first upper feed device 24 can be seen in the form of a nozzle or the like for, for example, a mixture of oxygen and steam, which is injected into the fluidized bed zone 11 of the gasification reactor.

Im Bereich der zwischen beiden Anlagenteilen 11 und 12 vorgesehenen Querschnittsverengung 13 ist eine weitere mittlere Zuführeinrichtung 26 angeordnet, über die in diesem Fall bevorzugt ein Gemisch aus rückgeführtem Rohgas und CO2 aus dem Vergasungsreaktor zugeführt wird, welches hier zur Unterstützung der Fluidisierung des zu vergasenden Materials in der Wirbelschichtzone 11 genutzt wird. Es ist eine weitere untere Düse 27 vorgesehen, welche im Bereich der zusätzlichen Wirbelschicht-Brennkammer 12 außen an dieser angeordnet ist und über die eine Zufuhr von Oxidationsmittel wie beispielsweise einem Gemisch aus Sauerstoff und Dampf in die zusätzliche Wirbelschicht-Brennkammer 12 erfolgen kann.In the area of the cross-sectional constriction 13 provided between the two system parts 11 and 12, a further central feed device 26 is arranged, via which, in this case, a mixture of recycled raw gas and CO 2 from the Gasification reactor is fed, which is used here to support the fluidization of the material to be gasified in the fluidized bed zone 11. A further lower nozzle 27 is provided, which is arranged on the outside of the additional fluidized bed combustion chamber 12 and via which oxidizing agent such as a mixture of oxygen and steam can be fed into the additional fluidized bed combustion chamber 12.

In dem Ausführungsbeispiel gemäß Figur 2 ist noch eine weitere untere Düse 28 im unteren Bereich der zusätzlichen Wirbelschicht-Brennkammer 12 angeordnet, über welche wiederum beispielsweise ein Gemisch aus rückgeführtem Rohgas aus dem Vergasungsreaktor und CO2 in die zusätzliche Wirbelschicht-Brennkammer eingedüst werden kann. Auf diese Weise kann man die Verbrennungsrückstände/Aschepartikel in der zusätzlichen Wirbelschicht-Brennkammer 12 fluidisieren und so eine Wirbelschicht ausbilden. Zu dieser Düse 28 führt eine Leitung 29, in der ein Ventil 30 angeordnet ist, so dass man die Zufuhr zu der Düse 28 regeln und beispielsweise absperren oder drosseln kann. Diese Leitung 29 ist mit einer Leitung verbunden, von der eine Zweigleitung 31 abgeht, die zu der Düse 26 führt, so dass man für die Fluidisierung in beiden Anlagenteilen ein Gasgemisch aus dem Vergasungsreaktor nutzen kann, welches von letzterem über eine gemeinsame Leitung zugeführt wird, die sich dann verzweigt und zu den Düsen 26 bzw. 28 führt. Auch in der Zweigleitung 31 ist ein Ventil 32 angeordnet, so dass man diese Zweigleitung 27 separat absperren kann, wenn beispielsweise nur eine Zufuhr zu der Düse 28 gewünscht ist. Ebenso ist es über ein weiteres Ventil 35 möglich, die Leitung vor der Abzweigung der Zweigleitung 31 abzusperren oder die Zufuhr von Rohgas und CO2 bereits dort für beide Leitungen 29, 31 zu regeln.In the embodiment according to Figure 2 Another lower nozzle 28 is arranged in the lower region of the additional fluidized bed combustion chamber 12, via which, for example, a mixture of recycled raw gas from the gasification reactor and CO 2 can be injected into the additional fluidized bed combustion chamber. In this way, the combustion residues / ash particles can be fluidized in the additional fluidized bed combustion chamber 12 and thus a fluidized bed can be formed. A line 29, in which a valve 30 is arranged, leads to this nozzle 28, so that the supply to the nozzle 28 can be regulated and, for example, shut off or throttled. This line 29 is connected to a line from which a branch line 31 branches off, which leads to the nozzle 26, so that a gas mixture from the gasification reactor can be used for fluidization in both parts of the plant, which is fed from the latter via a common line, which then branches off and leads to the nozzles 26 and 28, respectively. A valve 32 is also arranged in the branch line 31, so that this branch line 27 can be shut off separately if, for example, only a supply to the nozzle 28 is desired. It is also possible via a further valve 35 to shut off the line before the branch line 31 branches off or to regulate the supply of raw gas and CO 2 for both lines 29, 31 already there.

Weiterhin ist eine Temperaturmesseinrichtung 33 vorgesehen, mittels derer man die Temperatur in der zusätzlichen Wirbelschicht-Brennkammer 12 messen kann. Die gemessene Temperatur kann man nutzen, um Rückschlüsse über den Kohlenstoffgehalt des Brennstoffs in der Brennkammer 12 zu ziehen, woraus man dann wiederum berechnet, wie viel Oxidationsmittel man der Brennkammer 12 über die Düse 27 zuführen muss, um ein optimales Verhältnis Sauerstoff/Kohlenstoff (vorzugsweise ist dieses überstöchiometrisch) einzustellen.Furthermore, a temperature measuring device 33 is provided, by means of which the temperature in the additional fluidized bed combustion chamber 12 can be measured. The measured temperature can be used to draw conclusions about the carbon content of the fuel in the combustion chamber 12, from which it is then in turn calculated how much oxidizing agent must be supplied to the combustion chamber 12 via the nozzle 27 in order to achieve an optimal oxygen / carbon ratio (preferably if this is set above stoichiometric)

Weiterhin ist in Figur 2 eine Druckdifferenzmesseinrichtung 34 vorgesehen, die den jeweiligen Druck zum einen in der Wirbelschichtzone 11 misst und zum anderen in der zusätzlichen Wirbelschicht-Brennkammer 12, wobei die Druckdifferenz zwischen beiden Werten ermittelt und angezeigt wird. Aus dieser Druckdifferenz kann man Rückschlüsse über die Strömungsverhältnisse in der Querschnittsverengung 13 zwischen den beiden Anlagenteilen schließen. Davon abhängig kann man dann wiederum die Zufuhr des Fluids über die Leitung 27 und die Düse 26 in den Bereich der Querschnittsverengung 13 regeln, was beispielsweise über das Ventil 32 geschieht. Auf diese Weise kann man auf den Grad der Fluidisierung der Wirbelschichtzone 11 durch das recycelte Rohgas Einfluss nehmen.Furthermore, in Figure 2 a pressure difference measuring device 34 is provided which measures the respective pressure on the one hand in the fluidized bed zone 11 and on the other hand in the additional fluidized bed combustion chamber 12, the pressure difference between the two values being determined and displayed. From this pressure difference, conclusions can be drawn about the flow conditions in the cross-sectional constriction 13 between the two parts of the system. Depending on this, the supply of the fluid via the line 27 and the nozzle 26 into the area of the cross-sectional constriction 13 can then be regulated, which is done, for example, via the valve 32. In this way, one can influence the degree of fluidization of the fluidized bed zone 11 by the recycled raw gas.

BezugszeichenlisteList of reference symbols

1010
VergasungsreaktorGasification reactor
1111
WirbelschichtzoneFluidized bed zone
1212th
Wirbelschicht-BrennkammerFluidized bed combustion chamber
1313th
QuerschnittsverengungCross-sectional constriction
1414th
ZuführeinrichtungFeeding device
1515th
VentilValve
1616
free board zonefree board zone
1717th
VerbindungsleitungConnecting line
1818th
ZyklonabscheiderCyclone separator
1919th
Ausgangsleitung für SynthesegasOutput line for synthesis gas
2020th
Fördersystem/ZuführsystemConveyor system / feed system
2121
konisch endende Behälterconical ending containers
2222nd
FörderschneckeAuger
2323
RückführleitungReturn line
2424
erste obere Düse für Oxidationsmittel-Zufuhrfirst upper nozzle for oxidizing agent supply
2525th
zweite mittlere Düsesecond middle nozzle
2626th
dritte mittlere Düsethird middle nozzle
2727
vierte untere Düsefourth lower nozzle
2828
Düsejet
2929
Leitungmanagement
3030th
VentilValve
3131
ZweigleitungBranch line
3232
VentilValve
3333
TemperaturmesseinrichtungTemperature measuring device
3434
DruckdifferenzmesseinrichtungDifferential pressure measuring device
3535
VentilValve
3838
FörderschneckenScrew conveyors
3939
Druckbehälterpressure vessel

Claims (15)

  1. System for converting carbonaceous fuels into synthesis gas, comprising a gasification reactor (10) which comprises at least one fluidized-bed zone (11) in which the fuels are gasified by means of suitable gasification agents, with a carbonaceous ash flow being produced as a bottom product in a bottom region arranged below the fluidized-bed zone (11), and, below the gasification reactor (10), a means being arranged in which the bottom product is oxidized by supplying an oxidation agent, characterized in that
    - as a means for oxidizing the bottom product, an additional fluidized-bed combustion chamber (12) is arranged below the fluidized-bed zone (11) of the gasification reactor (10),
    - at least one supply means (27, 28) is provided for supplying oxygen and/or air and/or steam and/or CO2 into the additional fluidized-bed combustion chamber (12), and
    - the supply means (27, 28) is designed such that the fluid flow which contains oxygen and/or air and/or steam and/or CO2 and is injected into the additional fluidized-bed combustion chamber (12) fluidizes the bottom product to be combusted in the additional fluidized-bed combustion chamber (12).
  2. System for converting carbonaceous fuels into synthesis gas according to claim 1, characterized in that the additional fluidized-bed combustion chamber (12) is connected to the fluidized-bed zone (11) of the gasification reactor (10) via a cross-sectional constriction (13).
  3. System for converting carbonaceous fuels into synthesis gas according to either claim 1 or claim 2, characterized in that a temperature measuring means (33) is provided for measuring the temperature in the additional fluidized-bed combustion chamber (12).
  4. System for converting carbonaceous fuels into synthesis gas according to any of claims 1 to 3, characterized in that at least one regulating means (30, 35) is provided in order to regulate the amount and/or the oxygen content of a fluid flow which contains oxygen and/or air and/or steam and/or CO2 and is injected into the additional fluidized-bed combustion chamber (12) by means of the at least one supply means (27, 28).
  5. System for converting carbonaceous fuels into synthesis gas according to any of claims 1 to 4, characterized in that the regulating means is in operative connection with the temperature measuring means (33) in order to measure the amount and/or the oxygen content of the fluid flow which contains oxygen and/or air and/or steam and/or CO2 and is injected into the additional fluidized-bed combustion chamber (12) by means of the at least one supply means (27, 28), depending on the measured temperature in the additional combustion chamber (12).
  6. System for converting carbonaceous fuels into synthesis gas according to any of claims 1 to 5, characterized in that the supply means (27, 28) comprises at least one nozzle, preferably a multi-substance nozzle, for injecting a fluid mixture consisting of at least two different oxidizing fluids into the additional combustion chamber (12).
  7. System for converting carbonaceous fuels into synthesis gas according to any of claims 1 to 6, characterized in that at least one valve (30, 35) for shutting off and/or regulating the supplied oxidizing and/or fluidizing fluid flow is assigned to the supply means (27, 28).
  8. System for converting carbonaceous fuels into synthesis gas according to any of claims 1 to 7, characterized in that said system comprises at least two supply means (27, 28) for supplying differently composed oxidizing fluid flows, with in each case at least one valve (30, 35) for shutting off and/or regulating the oxidizing fluid flow supplied in each case being assigned to each supply means.
  9. System for converting carbonaceous fuels into synthesis gas according to any of claims 1 to 8, characterized in that
    - said system comprises at least one pressure difference measuring device (34) and display device in order to measure and display a pressure difference between the pressure in the fluidized-bed zone (11) of the gasification reactor (10) and the pressure in the additional fluidized-bed combustion chamber (12); and/or
    - at least one connecting line (29) is provided for returning raw gas from the gasification reactor (10), which line leads at least parts of the generated raw gas flow back into the additional fluidized-bed combustion chamber (12); and/or
    - at least one compressor is provided for compressing returned raw gas from the gasification reactor (10) into the additional fluidized-bed combustion chamber (12).
  10. Method for converting carbonaceous fuels into synthesis gas, in which the fuels are gasified by means of suitable gasification agents in a gasification reactor (10) comprising at least one fluidized-bed zone (11), with a carbonaceous ash flow being produced as a bottom product in a bottom region arranged below the fluidized-bed zone (11), and, below the gasification reactor (10), a means being arranged in which the bottom product is oxidized by supplying an oxidation agent, characterized in that
    - the bottom product is oxidized in an additional fluidized-bed combustion chamber (12) arranged below the fluidized-bed zone (11) of the gasification reactor (10), and
    - an oxidizing fluid flow containing oxygen and/or air and/or steam is injected into the additional fluidized-bed combustion chamber (12) by means of at least one first supply means (27) and a fluid flow containing CO2 and/or recycled gas from the gasification reactor (10) is injected into the additional fluidized-bed combustion chamber (12) by means of at least one second supply means (28).
  11. Method according to claim 10, characterized in that the flue gas produced during the oxidation of the bottom product in the additional fluidized-bed combustion chamber (12) is fed from the underside into the gasification reactor (10) and is used there to produce fluidization of the particles to be gasified.
  12. Method according to either claim 10 or claim 11, characterized in that part of the raw gas generated during gasification in the gasification reactor (10) is returned from the gasification reactor via at least one connecting line (29) to the additional fluidized-bed combustion chamber (12).
  13. Method according to claim 12, characterized in that the returned part of the raw gas generated during gasification in the gasification reactor (10) is compressed by means of at least one compressor before being introduced into the additional fluidized-bed combustion chamber (12).
  14. Method according to either claim 12 or claim 13, characterized in that the discharge speed of the bottom product from the gasification reactor (10) into the additional fluidized-bed combustion chamber (12) located below is adjusted, preferably using the flow of the returned gas, such that only particles of a coarser particle size travel from the gasification reactor (10) into the additional fluidized-bed combustion chamber (12) below due to gravity.
  15. Method according to any of claims 10 to 14, characterized in that
    - the fuels are gasified in the gasification reactor (10) at an operating pressure of at least approximately 10 bar; and/or
    - the temperature in the additional fluidized-bed combustion chamber (12) is measured and the oxygen content of the oxidation agent supplied to the fluidized-bed combustion chamber (12) is adjusted accordingly depending on the measured temperature.
EP17811206.6A 2016-11-24 2017-11-15 Method and apparatus for carbon reduction in the bottom product of a fluidised bed gasifier Active EP3548587B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17811206T PL3548587T3 (en) 2016-11-24 2017-11-15 Method and apparatus for carbon reduction in the bottom product of a fluidised bed gasifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016223318.1A DE102016223318A1 (en) 2016-11-24 2016-11-24 Process and plant for carbon reduction in the bottom product of a fluidized bed gasifier
PCT/EP2017/079320 WO2018095781A1 (en) 2016-11-24 2017-11-15 Method and system for carbon reduction in the bottom product of a fluidized-bed gasifier

Publications (2)

Publication Number Publication Date
EP3548587A1 EP3548587A1 (en) 2019-10-09
EP3548587B1 true EP3548587B1 (en) 2021-05-19

Family

ID=60627583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17811206.6A Active EP3548587B1 (en) 2016-11-24 2017-11-15 Method and apparatus for carbon reduction in the bottom product of a fluidised bed gasifier

Country Status (7)

Country Link
EP (1) EP3548587B1 (en)
DE (1) DE102016223318A1 (en)
DK (1) DK3548587T3 (en)
ES (1) ES2877770T3 (en)
PL (1) PL3548587T3 (en)
PT (1) PT3548587T (en)
WO (1) WO2018095781A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718764B (en) * 2020-07-29 2022-01-25 山东百川同创能源有限公司 Gasification furnace ash and carbon residue combustion and cooling system and method
EP4026886B1 (en) * 2021-01-06 2023-10-11 GIDARA Energy B.V. Process for producing synthesis gas through thermochemical conversion of biomass and waste materials
EP4293093A1 (en) * 2022-06-15 2023-12-20 GIDARA Energy B.V. Process and process plant for converting feedstock comprising a carbon-containing solid fuel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776088A (en) * 1980-10-31 1982-05-12 Nippon Kokan Kk <Nkk> Coal gasification using powdered coal and its device
JPS58225191A (en) * 1982-06-24 1983-12-27 Nippon Kokan Kk <Nkk> Coal gasification by fluidized bed and its apparatus
DE4339973C1 (en) * 1993-11-24 1995-07-13 Rheinische Braunkohlenw Ag Granulated wastes mixed with coal grains and gasified with oxygen and steam
EP1201731A1 (en) * 2000-10-26 2002-05-02 RWE Rheinbraun Aktiengesellschaft Process for fluidized bed gasifying carbon containing solids and gasifier therefor
DE102007006982B4 (en) * 2007-02-07 2009-03-19 Technische Universität Bergakademie Freiberg Process and apparatus for gasification of solid fuels in the fluidized bed under elevated pressure
DE102012016086A1 (en) 2012-08-14 2014-02-20 Thyssenkrupp Uhde Gmbh Apparatus and method for injecting oxygen into a pressure-charged fluidized bed gasification
DE102013107311A1 (en) 2013-07-10 2015-01-15 Thyssenkrupp Industrial Solutions Ag Process and device for the aftertreatment of the C-containing bottom product obtained during the gasification

Also Published As

Publication number Publication date
WO2018095781A1 (en) 2018-05-31
ES2877770T3 (en) 2021-11-17
PL3548587T3 (en) 2021-10-18
EP3548587A1 (en) 2019-10-09
PT3548587T (en) 2021-06-24
DK3548587T3 (en) 2021-06-21
DE102016223318A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
DE102007006981B4 (en) Process, gasification reactor and plant for entrained flow gasification of solid fuels under pressure
DE69000323T2 (en) DEVICE FOR GASIFYING OR BURNING SOLID CARBONATE MATERIALS.
DE102005035921B4 (en) Process for the endothermic gasification of carbon
DE102006030079B4 (en) Method for commissioning high-flow entrainment gasification reactors with combination burner and multi-burner arrangement
DE2654662C3 (en) Method and device for feeding coal dust into an airborne storm carburetor
DE2529802A1 (en) DEVICE FOR GASIFYING COAL ETC.
EP3548587B1 (en) Method and apparatus for carbon reduction in the bottom product of a fluidised bed gasifier
DE3327743A1 (en) METHOD FOR GASIFYING COAL
EP2356200B1 (en) Method for thermochemically gasifying solid fuels
EP1201731A1 (en) Process for fluidized bed gasifying carbon containing solids and gasifier therefor
DE2732186A1 (en) METHOD AND APPARATUS FOR THE RECYCLING OF SOLIDS CONTAINING COMBUSTIBLE MATERIALS
DE2235840A1 (en) METHOD FOR GENERATING GAS FROM HYDROCARBONS
DE102006005626B4 (en) Process and gasification reactor for the gasification of various fuels with a wide grain band with liquid slag extraction
DE102016210350A1 (en) Gasification reactor for the production of synthesis gases from solid gasification substances with the aid of oxygen-containing gasification agents
DE102016214242B4 (en) Plant and process for converting carbonaceous fuels into synthesis gas
DE2741805A1 (en) Gasification of solid fuel in fluidised bed reactor - with admission of reactants at various points to control temp. profile
DE4226015C1 (en) Process for the disposal of solid and liquid waste in the gasification process in fixed bed pressure gasification
DE4226015C9 (en) Process for the disposal of solid and liquid waste materials in the gasification process in fixed-bed pressure gasification
DE102008037318B4 (en) Process, apparatus and plant for entrained flow gasification of solid fuels under pressure
DD155174A1 (en) METHOD FOR OPERATING A HORIZONTAL REACTOR FOR GASOLATING CARBONATIVE MATERIAL
DE4340459C1 (en) Process for operating fluidised bed reactor
DE3430212A1 (en) Process for generating gas from carbonaceous fuels
DE2751911B2 (en) Process and gas generator for the gasification of coal dust
DE68905681T2 (en) METHOD FOR CHANGING THE POLLUTANTS IN A RAW HIGH TEMPERATURE HIGH PRESSURE SYNTHESIS GAS FLOW.
DE102007006979B4 (en) Slag bath gasification process

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLURALITY PARTNERS B.V.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200504

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIDARA ENERGY B.V.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210305

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010425

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1393956

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210617

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3548587

Country of ref document: PT

Date of ref document: 20210624

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210618

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GIDARA ENERGY B.V.

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210519

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210401645

Country of ref document: GR

Effective date: 20210813

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2877770

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010425

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017010425

Country of ref document: DE

Owner name: GIDARA ENERGY B.V., NL

Free format text: FORMER OWNER: GIDARA ENERGY B.V., WATERINGEN, NL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231016

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1393956

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231012

Year of fee payment: 7

Ref country code: GR

Payment date: 20231012

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231212

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231010

Year of fee payment: 7

Ref country code: PT

Payment date: 20231109

Year of fee payment: 7

Ref country code: NO

Payment date: 20231108

Year of fee payment: 7

Ref country code: IT

Payment date: 20231010

Year of fee payment: 7

Ref country code: FR

Payment date: 20231009

Year of fee payment: 7

Ref country code: FI

Payment date: 20231116

Year of fee payment: 7

Ref country code: DK

Payment date: 20231116

Year of fee payment: 7

Ref country code: DE

Payment date: 20231010

Year of fee payment: 7

Ref country code: CZ

Payment date: 20231027

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231013

Year of fee payment: 7

Ref country code: BE

Payment date: 20231016

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519