EP2770260A2 - Prall-effusionsgekühlte Schindel einer Gasturbinenbrennkammer mit verlängerten Effusionsbohrungen - Google Patents

Prall-effusionsgekühlte Schindel einer Gasturbinenbrennkammer mit verlängerten Effusionsbohrungen Download PDF

Info

Publication number
EP2770260A2
EP2770260A2 EP14156300.7A EP14156300A EP2770260A2 EP 2770260 A2 EP2770260 A2 EP 2770260A2 EP 14156300 A EP14156300 A EP 14156300A EP 2770260 A2 EP2770260 A2 EP 2770260A2
Authority
EP
European Patent Office
Prior art keywords
shingle
gas turbine
effusion
turbine combustor
inlet opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14156300.7A
Other languages
English (en)
French (fr)
Other versions
EP2770260B1 (de
EP2770260A3 (de
Inventor
Dr.-Ing. Miklós Gerendas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP2770260A2 publication Critical patent/EP2770260A2/de
Publication of EP2770260A3 publication Critical patent/EP2770260A3/de
Application granted granted Critical
Publication of EP2770260B1 publication Critical patent/EP2770260B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03045Convection cooled combustion chamber walls provided with turbolators or means for creating turbulences to increase cooling

Definitions

  • the invention relates to a gas turbine combustor according to the preamble of claim 1.
  • the invention relates to a gas turbine combustor having a combustor wall.
  • a gas turbine combustor having a combustor wall.
  • impingement cooling holes through which cooling air is passed, which impinges on the arranged at a distance from the shingle support wall or surface of the shingle. The air is then passed through effusion holes of the shingle to effect cooling of the surface of the shingle.
  • the WO 92/16798 A1 describes the construction of a gas turbine combustor by stud bolts attached metallic shingles, which leads by the combination of impingement and effusion cooling to a quite effective cooling effect and thus allows the reduction of the cooling air consumption.
  • the pressure loss which exists over the wall, distributed to two throttle points, the shingle support and the shingle itself. To avoid edge leakage is usually the greater proportion of the pressure loss generated on the shingle support, so that the cooling air has less cause, at the Pass the effusion shingles.
  • the GB 2 087 065 A discloses an impingement cooling configuration with a clipped shingle, wherein each individual impingement cooling jet is protected from upstream flow by an upstream fin on the shingle. Furthermore, the pins or ribs increase the area available for heat transfer.
  • the GB 2 360 086 A shows a baffle cooling configuration with hexagonal ribs and partly additional prisms centrally located within the hexagonal ribs to increase the heat transfer.
  • the WO 95/25932 A1 discloses a combustion chamber wall in which ribs are provided on the cooling air side into which the effusion bores are introduced at a shallow angle.
  • the US 6,408,620 A describes a combustion chamber wall, which is equipped with donated shingles, in the additional effusion holes are introduced at a low angle to the surface.
  • the US 5,000,005 A shows a heat shield for a combustion chamber, which identifies cooling holes, which are designed at a shallow angle to the surface and expanding in the flow direction.
  • the WO 92/16798 A1 uses only a flat surface as the target of impingement cooling. An attachment of ribs would bring little except the simple increase in the area, since the ribs, such as in GB 2 360 086 A are shown to require an overflow to take effect. Due to the congruence of impingement cooling air supply and removal of the air through the effusion bores, however, there is no appreciable speed in the upper flow of the ribs. In part, the pressure difference across the shingle is reduced by the torch swirl so that no effective flow through the effusion holes takes place more or even threatens hot gas burglary in the impingement cooling chamber of the shingle.
  • GB 2 087 065 A and GB 360 086 A contain no technical teaching on the renewal of the cooling film on the hot gas side within the Extension of the shingle.
  • the shingle must be made so short in the flow direction that the cooling film generated by the upstream shingle over the entire length of the shingle carries. This forces a multitude of shingles along the combustion chamber wall and does not allow to cover this distance with a single shingle.
  • the WO 95/25932 A1 describes a single-walled combustion chamber construction in which no impingement cooling takes place on the cooling air side, but only convection cooling.
  • the US 6,408,628 A shows a combustion chamber wall, in which the pressure difference across the shingle can be fully optimized neither for convective cooling, since they prefer a large pressure difference, nor for the Effusionkühlung, as they prefer a small pressure difference to improve the film cooling.
  • the US 5,000,005 A relates to a heat shield for a combustion chamber, which is provided with expanding in the flow direction cooling holes, without going into the geometric relationship of impingement cooling holes and diffusive effusion holes.
  • the invention has for its object to provide a gas turbine combustor and a combustion chamber shingles, which allow a simple design and simple, inexpensive to manufacture a highly efficient cooling.
  • a construction in which shingles are mounted at a distance on a shingle support.
  • the shingles can be fixed, for example by means of threaded bolts or the like.
  • the shingle support has impingement cooling holes, through which the cooling air is passed, in order to impinge on the side of the shingle facing away from the combustion chamber and facing the shingle support. This will cool the shingle.
  • the shingles have effusion holes, through which the air can escape from the gap between the shingle support and the shingle (baffle cooling gap). The exiting through the effusion holes air is the film cooling of the shingle.
  • the inlet openings of the effusion holes are formed on raised portions of a surface structure of the shingle.
  • the shingle thus has a surface structure which may be rib-shaped. However, it is also possible to form the surface structure in the form of singular bumps or the like. It is important in the context of the invention that the inlet openings of the effusion holes have a distance from the surface of the shingle and are thus arranged closer to the surface of the shingle support. This leads to more favorable flow conditions and better heat transfer.
  • the inlet opening has a distance from the surface of the shingle support, which is 0.5 to 1.5 of the diameter of the inlet opening. This leads to a particularly efficient air flow and inflow into the inlet opening of the respective effusion hole.
  • the central axis of the inlet openings and thus the central axis of the at least first region of the effusion hole is preferably arranged substantially perpendicular to the surface of the shingle carrier and / or preferably parallel oriented to the central axis of the baffle hole. This leads to an improved flow guidance.
  • Another measure to ensure the inflow into the inlet openings during operation with thermally induced distortion is to provide at least one spacer adjacent to the inlet opening. This prevents thermal distortion that the effusion hole can be closed by the shingle support. This spacer can also partially enclose the inlet opening. It can also be designed so that it is designed to form a twist of the air flowing into the inlet opening.
  • the effusion hole may be straight or curved or partly straight and partly curved. It can be provided with a constant or with an expanding cross-section.
  • the surface structure in the form of cells which are triangular, quadrangular or polygonal.
  • the surface structure may also be provided in the form of a circular depression.
  • the impingement cooling jets of air jets exiting the impingement cooling holes can be directed to the center of these cells or recesses to improve the flow conditions.
  • it may also be provided to provide a prism or similar configuration within these cells in order to distribute the air evenly.
  • the gas turbine engine 10 is a generalized example of a turbomachine, in which the invention can be applied.
  • the engine 10 is formed in a conventional manner and comprises in succession an air inlet 11, a fan 12 circulating in a housing, a medium pressure compressor 13, a high pressure compressor 14, a combustion chamber 15, a high pressure turbine 16, a medium pressure turbine 17 and a low pressure turbine 18 and a Exhaust nozzle 19, which are all arranged around a central engine axis 1.
  • the intermediate pressure compressor 13 and the high pressure compressor 14 each include a plurality of stages, each of which solidifies a circumferentially extending arrangement stationary stator vanes 20, which are generally referred to as stator blades and which project radially inwardly from the engine housing 21 in an annular flow channel through the compressors 13, 14.
  • the compressors further include an array of compressor blades 22 projecting radially outwardly from a rotatable drum or disc 26 coupled to hubs 27 of high pressure turbine 16 and mid pressure turbine 17, respectively.
  • the turbine sections 16, 17, 18 have similar stages, comprising an array of fixed vanes 23 projecting radially inward from the housing 21 into the annular flow passage through the turbines 16, 17, 18, and a downstream array of turbine blades 24 projecting outwardly from a rotatable hub 27.
  • the compressor drum or compressor disk 26 and the vanes 22 disposed thereon and the turbine rotor hub 27 and the turbine blades 24 disposed thereon rotate about the engine axis 1 during operation.
  • the Fig. 2 shows a schematic representation of a cross section of a gas turbine combustor according to the prior art.
  • compressor outlet blades 101 and a combustion chamber outer housing 102 and a combustion chamber inner housing 103 are shown schematically.
  • the reference numeral 104 denotes a burner with arm and head
  • the reference numeral 105 denotes a combustion chamber head, which is followed by a combustion chamber wall 106, through which the flow to turbine inlet blades 107 is passed.
  • the Fig. 3 shows the construction of a known from the prior art construction.
  • a shingle support 109 is shown in sectional view, which may be identical to the combustion chamber wall 106 or may be formed as a separate component.
  • the shingle support 109 is provided with a plurality of impingement cooling holes 108, the axes 133 of which are arranged perpendicular to the center plane or to the surfaces of the plate-shaped shingle support 109. Cooling air flows into an impingement cooling gap 114 through the impingement cooling holes 108. This is formed by the spaced arrangement of a shingle 110.
  • the shingle 110 is by means of threaded bolts 115 and nuts 131 attached.
  • the shingle 110 further has effusion holes 111, through which the cooling air for cooling the surface flows out by means of a cooling film.
  • the reference numeral 112 denotes the cooling air flow, while the reference numeral 113 shows the hot gas flow.
  • the Fig. 4 shows a further illustration of a shingle according to the prior art.
  • this has on its the shingle support side facing a surface structure 116 and 117, which may be in the form of ribs or singular elevations.
  • prisms 119 are formed to distribute the exiting cooling air.
  • the surface structure may also be formed by depressions 118.
  • the Fig. 5 shows a schematic plan view, analog Fig. 4 , It follows that the effusion holes 111 have an inlet opening 120, through which the cooling air flows. From the Fig. 5 It can be seen that the inlet openings are arranged in the prior art on the flanks of the prism 119 or in the region of the recess 118.
  • the Fig. 6 shows an embodiment of the invention.
  • the shingle support 109 has, as in the prior art, a plurality of impingement cooling holes 108. These are arranged so that they preferably impinge on the tips 121 of the prisms 119.
  • the inlet openings 120 of the effusion holes 111 are formed on the raised areas of the surface structure 116, 117. These raised areas may, as known from the prior art, be in the form of ribs or singular elevations.
  • the Fig. 6 further shows that the effusion holes 111 may be formed straight or angled.
  • the cross section can remain constant or expand. It is also possible to form the effusion holes 111 bent.
  • the right half of the picture Fig. 6 shows an enlarged curved cross section 129, next to a constant curved cross section 128.
  • the cross section 127 is formed in sections straight and enlarged.
  • the cross section 126 is straight trained and expanded in the second section.
  • the cross section 125 is angled and each has a constant cross section.
  • the cross section 124 is straight and has a constant cross section.
  • the reference numeral 132 shows the central axis of the entrance opening 120 and the adjacent area of the effusion hole 111, respectively.
  • FIGS. 7 and 8 each show plan views of design variants. It follows that the inlet openings 120 are respectively arranged on the raised areas of the surface structures 116, 117 or adjacent depressions 118.
  • the reference numeral 122 shows a hexagonal structure or cell, the reference numeral 123 shows a prism.
  • Fig. 9 and 10 each show enlarged side views of further embodiments, in which adjacent to the inlet opening 120 spacers 130 are provided. These can, as in particular in Fig. 10 shown to be provided for the formation of a twist.
  • the effusion holes 111 may have a constant 124, 125, 128, or a flow-increasing cross-section 126, 127, 129.
  • the effusion holes may have a continuous straight axis 124, 126, a sectionally straight axis 125, 127 or an arcuate axis 28, 29.
  • the extended outlet cross section is performed at a smaller angle than 90 ° to the surface.
  • the spacers 130 are due to tolerances usually not in contact with the shingle support, otherwise they could be longer depending on the tolerance position than the shingle edge high, and thus they could provide an increase in edge leakage.
  • the spacers 130 may be configured to swirl the air flowing into the effusion hole 111 in front of the entrance port 120.
  • the surface structure 116, 117 may be in the form of hexagonal ribs, these may be filled with a prism 119, 123 so that the tip 121 of the prism 119, 123 is at or above the level of the ribs.
  • the surface structure 116, 117 may be formed of triangular, four or other polygonal cells 122.
  • the surface structure may also consist of circular depressions 118.
  • the impact cooling jets meet substantially in the middle of the polygonal cell or at the lowest point of the circular recess on the shingle 110th
  • On the hot gas side facing the shingle 110 may have a thermal barrier coating of ceramic material.
  • the impingement cooling holes 108 may vary in diameter in the axial and / or circumferential direction, as well as the effusion holes 111 and the dimensions of the surface structure 116, 117.
  • the impingement cooling holes 108 are aligned substantially perpendicular to the impingement cooling surface and the main flow directions of cooling air 112 and hot gas 113.
  • the placement of the inlet opening 120 of the effusion holes 111 on the raised areas of the surface structure 116, 117 increases the length of the effusion holes 111 and thus their total surface area and also the amount of heat transferred.
  • the wall normal velocity of the outflowing air can be reduced by the curvature of the axis 132 or by the widening of the flow channel (or both) and, despite the small entrance surface 120 of the effusion hole 111 good film cooling effect.
  • the invention is not limited to the described combination between shingle support and shingle, but also relates to a combustion chamber shingle as such.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung bezieht sich auf eine Gasturbinenbrennkammer mit einer einen Schindelträger (109) umfassenden Brennkammerwand, an welcher zur Ausbildung eines Prallkühlspalts (114) in einem Abstand Schindeln (110) gelagert sind, wobei der Schindelträger (109) Prallkühllöcher (108) aufweist und die Schindel (110) mit Effusionslöchern (111) versehen ist, wobei die Schindel (110) an ihrer dem Schindelträger (109) zugewandten Seite mit einer Oberflächenstruktur (117) versehen ist, welche sich von der Oberfläche der Schindel (110) erhaben in Richtung des Schindelträgers (109) erstreckt.

Description

  • Die Erfindung bezieht sich auf eine Gasturbinenbrennkammer gemäß dem Oberbegriff des Anspruches 1.
  • Im Einzelnen bezieht sich die Erfindung auf eine Gasturbinenbrennkammer mit einer Brennkammerwand. An der Brennkammerwand bzw. an einem an dieser vorgesehenen Schindelträger sind eine Vielzahl von Schindeln gelagert. Zur Kühlung der Schindeln und der Brennkammerwand ist der Schindelträger mit Prallkühllöchern versehen, durch welche Kühlluft durchgeleitet wird, welche auf die in einem Abstand zum Schindelträger angeordnete Wandung oder Oberfläche der Schindel auftrifft. Die Luft wird anschließend durch Effusionslöcher der Schindel durchgeleitet, um eine Kühlung der Oberfläche der Schindel zu bewirken.
  • Der Stand der Technik zeigt unterschiedliche Kühlkonzepte zur Kühlung der Schindeln der Brennkammer. Im Einzelnen zeigt der Stand der Technik beispielhaft folgende Lösungen:
  • Die WO 92/16798 A1 beschreibt den Aufbau einer Gasturbinenbrennkammer durch mit Stehbolzen befestigte, metallische Schindeln, welche durch die Kombination von Prall-und Effusionskühlung zu einer recht effektiven Kühlwirkung führt und somit die Reduktion des Kühlluftverbrauchs erlaubt. Allerdings wird der Druckverlust, welcher über die Wand hinweg existiert, auf zwei Drosselstellen verteilt, den Schindelträger und die Schindel selbst. Zur Vermeidung von Randleckagen wird meist der größere Anteil des Druckverlustes über den Schindelträger erzeugt, so dass die Kühlluft weniger Veranlassung hat, an der Effusionsschindel vorbeizufließen.
  • Die GB 2 087 065 A offenbart eine Prallkühlkonfiguration mit einer bestifteten bzw. berippten Schindel, wobei jeder einzelne Prallkühlstrahl von einem stromauf liegenden Stift bzw. Rippe auf der Schindel vor der Querströmung geschützt wird. Des Weiteren erhöhen die Stifte bzw. Rippen die zur Wärmeübertragung zur Verfügung stehende Fläche.
  • Die GB 2 360 086 A zeigt eine Prallkühlkonfiguration mit hexagonalen Rippen und zum Teil zusätzlichen zentral innerhalb der hexagonalen Rippen angelegten Prismen zur Erhöhung des Wärmeübergangs.
  • Die WO 95/25932 A1 offenbart eine Brennkammerwand, bei der auf der Kühlluftseite Rippen vorgesehen sind, in die die Effusionsbohrungen unter einem flachen Winkel eingebracht werden.
  • Die US 6,408,620 A beschreibt eine Brennkammerwand, welche mit bestifteten Schindeln ausgestattet ist, in die zusätzlich Effusionslöcher in einem geringen Winkel zur Oberfläche eingebracht sind.
  • Die US 5,000,005 A zeigt ein Hitzeschild für eine Brennkammer, welche Kühlungslöcher ausweist, die in einem flachen Winkel zur Oberfläche ausgeführt sind und sich in Strömungsrichtung erweitern.
  • Die WO 92/16798 A1 nutzt nur eine ebene Fläche als Ziel der Prallkühlung. Eine Anbringung von Rippen würde außer der einfachen Erhöhung der Fläche wenig bringen, da die Rippen, wie sie zum Beispiel in GB 2 360 086 A gezeigt sind, eine Überströmung benötigen, um wirksam zu werden. Durch die Deckungsgleichheit von Prallkühlluftzuführung und Abführung der Luft durch die Effusionsbohrungen ergibt sich allerdings keine nennenswerte Geschwindigkeit bei der Oberströmung der Rippen. Zum Teil wird die Druckdifferenz über die Schindel durch den Brennerdrall so vermindert, dass keine effektive Durchströmung der Effusionslöcher mehr stattfindet oder sogar Heißgaseinbruch in die Prallkühlkammer der Schindel droht.
  • Filmkühlung ist die effektivste Möglichkeit, die Wandtemperatur zu senken, da das Bauteil durch den isolierenden Kühlfilm vor der Übertragung von Wärme aus dem Heißgas geschützt wird, statt bereits eingekoppelte Wärme durch andere Methoden im Nachhinein wieder zu entfernen. GB 2 087 065 A und GB 360 086 A enthalten keine technische Lehre zur Erneuerung des Kühlfilms auf der Heißgasseite innerhalb der Erstreckung der Schindel. Die Schindel muss jeweils in Strömungsrichtung so kurz ausgeführt werden, dass der von der stromaufliegenden Schindel erzeugte Kühlfilm über die gesamte Länge der Schindel trägt. Dies erzwingt eine Vielzahl von Schindeln entlang der Brennkammerwand und erlaubt nicht, diese Strecke mit einer einzigen Schindel abzudecken.
  • Bei der GB 2 087 065 A strömt die Luft als geschichtete Strömung entlang eines durchgehenden geraden Kanals, was die Grenzschicht schnell wachsen lässt und somit den Wärmeübergang trotz des Aufwandes schnell vermindert.
  • Eine technische Lehre zur Abführung der verbrauchten Luft wird in der GB 2 360 086 A nicht gegeben. Somit ist auch diese Anordnung nur für kleine Schindeln geeignet. Bei größeren Schindeln würde die Querströmung zu stark und die Wirkung der Prallkühlung würde durch die Ablenkung des Prallkühlstrahls vermindert.
  • Die WO 95/25932 A1 beschreibt eine einwandige Brennkammerkonstruktion, bei der auf der Kühlluftseite keine Prallkühlung, sondern nur Konvektionskühlung stattfindet.
  • Die US 6,408,628 A zeigt eine Brennkammerwand, bei der die Druckdifferenz über die Schindel weder für eine konvektive Kühlung voll optimiert werden kann, da diese eine große Druckdifferenz bevorzugen, noch für die Effusionkühlung, da diese zur Verbesserung der Filmkühlung eine kleine Druckdifferenz bevorzugen.
  • Die US 5,000,005 A bezieht sich auf einen Hitzeschild für eine Brennkammer, welcher mit sich in Strömungsrichtung erweiternden Kühlungsöffnungen versehen ist, ohne auf die geometrische Beziehung von Prallkühllöchern und diffusiven Effusionslöchern einzugehen.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Gasturbinenbrennkammer sowie eine Brennkammerschindel zu schaffen, welche bei einfachem Aufbau und einfacher, kostengünstiger Herstellbarkeit eine hocheffiziente Kühlung ermöglichen.
  • Erfindungsgemäß wird die Aufgabe durch die Merkmalskombination des Anspruchs 1 gelöst, die Unteransprüche zeigen weitere vorteilhafte Ausgestaltungen.
  • Erfindungsgemäß ist somit eine Konstruktion vorgesehen, bei welcher Schindeln mit einem Abstand an einem Schindelträger gelagert sind. Die Schindeln können beispielsweise mittels Gewindebolzen oder ähnlichem befestigt sein. Der Schindelträger weist Prallkühllöcher auf, durch welche die Kühlluft durchgeleitet wird, um auf die der Brennkammer abgewandte und dem Schindelträger zugewandte Seite der Schindel aufzutreffen. Hierdurch wird die Schindel gekühlt. Die Schindeln weisen Effusionslöcher auf, durch welche die Luft aus dem Zwischenraum zwischen dem Schindelträger und der Schindel (Prallkühlspalt) austreten kann. Die durch die Effusionslöcher austretende Luft dient der Filmkühlung der Schindel. Um einen verbesserten Wärmeübergang im Bereich der Schindel vorzusehen, und um die Effusionslöcher mit hohem Wirkungsgrad auszubilden, ist vorgesehen, dass die Eintrittsöffnungen der Effusionslöcher auf erhabenen Bereichen einer Oberflächenstruktur der Schindel ausgebildet sind. Die Schindel weist somit eine Oberflächenstruktur auf, welche rippenförmig sein kann. Es ist jedoch auch möglich, die Oberflächenstruktur in Form singulärer Erhebungen oder in ähnlicher Weise auszubilden. Wichtig ist im Rahmen der Erfindung, dass die Eintrittsöffnungen der Effusionslöcher einen Abstand zur Oberfläche der Schindel aufweisen und somit näher an der Oberfläche des Schindelträgers angeordnet sind. Dies führt zu günstigeren Strömungsverhältnissen und zu einem besseren Wärmeübergang.
  • In besonders günstiger Ausgestaltung der Erfindung ist vorgesehen, dass die Eintrittsöffnung einen Abstand zur Oberfläche des Schindelträgers aufweist, welcher 0,5 bis 1,5 des Durchmessers der Eintrittsöffnung beträgt. Dies führt zu einer besonders effizienten Luftführung und Einströmung in die Eintrittsöffnung des jeweiligen Effusionslochs.
  • Die zentrische Achse der Eintrittsöffnungen und damit die zentrische Achse des zumindest ersten Bereichs des Effusionslochs ist bevorzugterweise im Wesentlichen senkrecht zur Oberfläche des Schindelträgers angeordnet und/oder bevorzugt parallel zur zentrischen Achse des Prallkühllochs orientiert. Dies führt zu einer verbesserten Strömungsführung.
  • Eine weitere Maßnahme, um die Einströmung in die Eintrittsöffnungen auch während des Betriebes mit thermisch bedingtem Verzug sicherzustellen, liegt darin, angrenzend zu der Eintrittsöffnung zumindest einen Abstandshalter vorzusehen. Dieser verhindert bei thermischem Verzug, dass die Effusionsbohrung durch den Schindelträger verschlossen werden kann. Dieser Abstandhalter kann die Eintrittsöffnung auch teilweise umschließen. Er kann auch so ausgebildet sein, dass er zur Ausbildung eines Dralls der in die Eintrittsöffnung einströmenden Luft ausgestaltet ist.
  • Das Effusionsloch kann gerade oder gebogen oder teils gerade und teils gebogen ausgebildet sein. Es kann mit einem konstanten oder mit einem sich erweiternden Querschnitt versehen sein.
  • Weiterhin ist es möglich, die Oberflächenstruktur in Form von Zellen auszubilden, die dreieckig, viereckig oder polygonal ausgestaltet sind. Die Oberflächenstruktur kann auch in Form einer kreisförmigen Vertiefung vorgesehen sein. Dies führt dazu, dass die Prallkühlstrahlen der aus den Prallkühllöchern austretenden Luftstrahlen in die Mitte dieser Zellen oder Vertiefungen geleitet werden können, um die Strömungsverhältnisse zu verbessern. Hierzu kann auch vorgesehen sein, innerhalb dieser Zellen ein Prisma oder eine ähnliche Ausgestaltung vorzusehen, um die Luft gleichmäßig zu verteilen.
  • Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung beschrieben. Dabei zeigt:
  • Fig. 1
    eine schematische Darstellung eines Gasturbinentriebwerks gemäß der vorliegenden Erfindung.
    Fig. 2
    eine schematische Schnittansicht einer Gasturbinenbrennkammer gemäß dem Stand der Technik,
    Fig. 3
    eine vereinfachte Seiten-Schnittansicht einer Schindelträger-Schindel-Konstruktion gemäß dem Stand der Technik,
    Fig. 4
    eine vereinfachte Seiten-Schnittansicht einer Schindel gemäß dem Stand der Technik,
    Fig. 5
    eine Draufsicht auf eine Schindel gemäß dem Stand der Technik,
    Fig. 6
    eine Seitenansicht, analog Fig. 3, einer erfindungsgemäßen Ausgestaltung,
    Fig. 7
    eine Draufsicht auf ein Ausführungsbeispiel der Erfindung,
    Fig. 8
    eine weitere Draufsicht auf ein Ausführungsbeispiel einer Schindel, analog Fig. 7,
    Fig. 9
    eine Detail-Seitenansicht eines weiteren Ausführungsbeispiels einer Schindel, und
    Fig. 10
    eine schematische Darstellung eines weiteren Ausführungsbeispiels analog Fig. 9.
  • Das Gasturbinentriebwerk 10 gemäß Fig. 1 ist ein allgemein dargestelltes Beispiel einer Turbomaschine, bei der die Erfindung Anwendung finden kann. Das Triebwerk 10 ist in herkömmlicher Weise ausgebildet und umfasst in Strömungsrichtung hintereinander einen Lufteinlass 11, einen in einem Gehäuse umlaufenden Fan 12, einen Mitteldruckkompressor 13, einen Hochdruckkompressor 14, eine Brennkammer 15, eine Hochdruckturbine 16, eine Mitteldruckturbine 17 und eine Niederdruckturbine 18 sowie eine Abgasdüse 19, die sämtlich um eine zentrale Triebwerksachse 1 angeordnet sind.
  • Der Zwischendruckkompressor 13 und der Hochdruckkompressor 14 umfassen jeweils mehrere Stufen, von denen jede eine in Umfangsrichtung verlaufende Anordnung fester stationärer Leitschaufeln 20 aufweist, die allgemein als Statorschaufeln bezeichnet werden und die radial nach innen vom Triebwerksgehäuse 21 in einem ringförmigen Strömungskanal durch die Kompressoren 13, 14 vorstehen. Die Kompressoren weisen weiter eine Anordnung von Kompressorlaufschaufeln 22 auf, die radial nach außen von einer drehbaren Trommel oder Scheibe 26 vorstehen, die mit Naben 27 der Hochdruckturbine 16 bzw. der Mitteldruckturbine 17 gekoppelt sind.
  • Die Turbinenabschnitte 16, 17, 18 weisen ähnliche Stufen auf, umfassend eine Anordnung von festen Leitschaufeln 23, die radial nach innen vom Gehäuse 21 in den ringförmigen Strömungskanal durch die Turbinen 16, 17, 18 vorstehen, und eine nachfolgende Anordnung von Turbinenschaufeln 24, die nach außen von einer drehbaren Nabe 27 vorstehen. Die Kompressortrommel oder Kompressorscheibe 26 und die darauf angeordneten Schaufeln 22 sowie die Turbinenrotornabe 27 und die darauf angeordneten Turbinenlaufschaufeln 24 drehen sich im Betrieb um die Triebwerksachse 1.
  • Die Fig. 2 zeigt in schematischer Darstellung einen Querschnitt einer Gasturbinenbrennkammer gemäß dem Stand der Technik. Dabei sind schematisch Kompressorauslaufschaufeln 101 sowie ein Brennkammeraußengehäuse 102 und ein Brennkammerinnengehäuse 103 dargestellt. Das Bezugszeichen 104 bezeichnet einen Brenner mit Arm und Kopf, das Bezugszeichen 105 bezeichnet einen Brennkammerkopf, an welchem sich eine Brennkammerwand 106 anschließt, durch welche die Strömung zu Turbineneinlassschaufeln 107 geleitet wird.
  • Die Fig. 3 zeigt den Aufbau einer aus dem Stand der Technik bekannten Konstruktion. Dabei ist in Schnittansicht ein Schindelträger 109 gezeigt, welcher identisch mit der Brennkammerwand 106 sein kann oder als separates Bauteil ausgebildet sein kann. Der Schindelträger 109 ist mit einer Vielzahl von Prallkühllöchern 108 versehen, deren Achsen 133 senkrecht zur Mittelebene bzw. zu den Oberflächen des plattenförmigen Schindelträgers 109 angeordnet sind. Durch die Prallkühllöcher 108 strömt Kühlluft in einen Prallkühlspalt 114 ein. Dieser ist durch die beabstandete Anordnung einer Schindel 110 ausgebildet. Die Schindel 110 ist mittels Gewindebolzen 115 und Muttern 131 befestigt. Die Schindel 110 weist weiterhin Effusionslöcher 111 auf, durch welche die Kühlluft zur Kühlung der Oberfläche mittels eines Kühlfilms ausströmt. Das Bezugszeichen 112 bezeichnet den Kühlluftstrom, während das Bezugszeichen 113 den Heißgasstrom zeigt.
  • Die Fig. 4 zeigt eine weitere Darstellung einer Schindel gemäß dem Stand der Technik. Dabei weist diese an ihrer dem Schindelträger zugewandten Seite eine Oberflächenstruktur 116 und 117 auf, welche in Form von Rippen oder singulären Erhebungen ausgebildet sein kann. Zusätzlich sind Prismen 119 ausgebildet, um die austretende Kühlluft zu verteilen. Die Oberflächenstruktur kann auch durch Vertiefungen 118 ausgebildet sein.
  • Die Fig. 5 zeigt eine schematische Draufsicht, analog Fig. 4. Dabei ergibt sich, dass die Effusionslöcher 111 eine Eintrittsöffnung 120 aufweisen, durch welche die Kühlluft einströmt. Aus der Fig. 5 ist ersichtlich, dass die Eintrittsöffnungen beim Stand der Technik an den Flanken des Prismas 119 oder im Bereich der Vertiefung 118 angeordnet sind.
  • Die Fig. 6 zeigt ein Ausführungsbeispiel der Erfindung. Der Schindelträger 109 weist, wie beim Stand der Technik, mehrere Prallkühllöcher 108 auf. Diese sind so angeordnet, dass sie bevorzugt auf die Spitzen 121 der Prismen 119 auftreffen. Erfindungsgemäß sind die Eintrittsöffnungen 120 der Effusionslöcher 111 auf den erhabenen Bereichen der Oberflächenstruktur 116, 117 ausgebildet. Diese erhabenen Bereiche können, wie aus dem Stand der Technik bekannt, in Form von Rippen oder singulären Erhebungen ausgebildet sein.
  • Die Fig. 6 zeigt weiterhin, dass die Effusionslöcher 111 gerade oder abgewinkelt ausgebildet sein können. Der Querschnitt kann konstant bleiben oder sich erweitern. Es ist auch möglich, die Effusionslöcher 111 gebogen auszubilden. Die rechte Bildhälfte der Fig. 6 zeigt einen vergrößerten gebogenen Querschnitt 129, daneben einen konstanten gebogenen Querschnitt 128. Der Querschnitt 127 ist abschnittsweise gerade und vergrößernd ausgebildet. Im Gegensatz hierzu ist der Querschnitt 126 gerade ausgebildet und erweitert sich in dem zweiten Teilbereich. Der Querschnitt 125 ist abgewinkelt ausgebildet und weist jeweils einen konstanten Querschnitt auf. Der Querschnitt 124 ist gerade ausgebildet und hat einen konstanten Querschnitt. Das Bezugszeichen 132 zeigt die zentrische Achse der Eintrittsöffnung 120 bzw. des angrenzenden Bereichs des Effusionslochs 111.
  • Die Fig. 7 und 8 zeigen jeweils Draufsichten auf Ausgestaltungsvarianten. Dabei ergibt sich, dass die Eintrittsöffnungen 120 jeweils auf den erhabenen Bereichen der Oberflächenstrukturen 116, 117 bzw. angrenzend an Vertiefungen 118 angeordnet sind. Das Bezugszeichen 122 zeigt eine hexagonale Struktur oder Zelle, das Bezugszeichen 123 zeigt ein Prisma.
  • Die Fig. 9 und 10 zeigen jeweils vergrößerte Seitendarstellungen weiterer Ausführungsbeispiele, bei denen angrenzend an die Eintrittsöffnung 120 Abstandshalter 130 vorgesehen sind. Diese können, wie insbesondere in Fig. 10 dargestellt, zur Ausbildung eines Dralls vorgesehen sein.
  • Nachfolgend werden nochmals die wichtigsten Aspekte der vorliegenden Erfindung zusammengefasst, wobei dies mit Bezug auf die Ausführungsbeispiele, nicht jedoch beschränkend hinsichtlich der Ausführungsbeispiele erfolgt:
  • Prall-effusionsgekühlte Schindeln 110 werden mit einer Oberflächenstruktur 116,117, zum Beispiel durch hexagonale Rippen oder andere mehreckige Formen oder Stifte, ausgestattet, wobei die verbrauchte Luft durch Effusionslöcher 111 aus dem Prallkühlspalt 114 abgeführt wird, wobei:
    1. a.) sich die Eintrittsöffnungen 120 der Effusionslöcher 111 auf dem erhabenen Teil der Oberflächenstruktur 116,117 befinden, der sich nahe am Schindelträger 109 befindet, somit die Eintrittsöffnung bis auf 0,5 bis 1,5 mal dem Durchmesser der Eintrittsöffnung 120 der Effusionsbohrung 111 an den Schindelträger 109 herangeführt sind, und
    2. b.) die Achse der Eintrittsöffnung 120 der Effusionslöcher 111 im Wesentlichen parallel zur Richtung der Prallkühllöcher 109 ausgerichtet ist und damit im wesentlichen senkrecht zum Schindelträger 109, durch welchen die Prallkühllöcher 109 gebohrt sind, und
    3. c.) zusätzlich Abstandhalter 130 so um die Eintrittsfläche 120 angeformt sind, so dass die Eintrittsöffnung auch bei betriebsbedingter Deformation nicht blockiert werden kann.
  • Die Effusionslöcher 111 können einen konstanten 124, 125, 128 oder einen sich in Strömungsrichtung vergrößernden Querschnitt 126, 127, 129 aufweisen. Die Effusionslöcher können eine durchgehend gerade Achse 124, 126, eine abschnittsweise gerade Achse 125, 127 oder eine bogenförmige Achse 28, 29 haben. Vorzugsweise wird der erweiterte Austrittsquerschnitt in einem geringeren Winkel als 90° zur Oberfläche ausgeführt.
  • Die Abstandhalter 130 befinden sich toleranzbedingt im Normalfall nicht im Kontakt mit dem Schindelträger, da sie sonst je nach Toleranzlage länger sein könnten als der Schindelrand hoch, und sie somit für eine Erhöhung der Randleckage sorgen könnten.
  • Die Abstandhalter 130 können zusätzlich so ausgeführt sein, dass sie die in das Effusionsloch 111 hineinströmende Luft vor der Eintrittsöffnung 120 mit einem Drall versehen.
  • Durch die Verdrallung der Luft vor dem Eintritt in das Effusionloch 111 wird der Wärmeübergang in dem Effusionloch 111 erhöht.
  • Die Oberflächenstruktur 116, 117 kann in Form von hexagonalen Rippen ausgebildet sein, diese können mit einem Prisma 119, 123 gefüllt sein, so dass die Spitze 121 des Prismas 119, 123 auf dem Niveau der Rippen oder darüber bzw. darunter liegt.
  • Die Oberflächenstruktur 116, 117 kann aus drei-, vier- oder anderen mehreckigen Zellen 122 gebildet werden. Die Oberflächenstruktur kann auch aus kreisförmigen Vertiefungen 118 bestehen. So treffen die Prallkühlstrahlen im Wesentlichen in der Mitte der mehreckigen Zelle bzw. am tiefsten Punkt der kreisförmigen Vertiefung auf die Schindel 110.
  • Auf der heißgaszugewandten Seite kann die Schindel 110 eine Wärmedämmschicht aus keramischem Material aufweisen.
  • Die Prallkühllöcher 108 können in axialer und/oder Umfangsrichtung im Durchmesser variieren, ebenso wie die Effusionslöcher 111 und die Dimensionen der Oberflächenstruktur 116, 117.
  • Die Prallkühllöcher 108 sind im Wesentlichen senkrecht zur Prallkühlfläche und den Hauptströmungsrichtungen von Kühlluft 112 und Heißgas 113 ausgerichtet.
  • Durch die Platzierung der Eintrittsöffnung 120 der Effusionlöcher 111 auf den erhabenen Stellen der Oberflächenstruktur 116,117 erhöht sich die Länge der Effusionslöcher 111 und damit ihre Gesamtoberfläche und auch die übertragene Wärmemenge.
  • Wird die Summe der Effusionslochflächen groß gegenüber der Summe der Prallkühleintrittsflächen gewählt, genügt eine einfache senkrechte Bohrung.
  • Soll die Summe der Flächen der Eintrittsöffnungen 120 der Effusionslöcher 111 geringer ausfallen, kann man durch die Krümmung der Achse 132 oder durch die Erweiterung des Strömungskanals (oder beides) die wandnormale Geschwindigkeit der ausströmenden Luft vermindern und erhält trotz der kleinen Eintrittsfläche 120 des Effusionsloches 111 eine gute Filmkühlwirkung.
  • Die Erfindung ist nicht auf die beschriebene Kombination zwischen Schindelträger und Schindel beschränkt, sondern bezieht sich auch auf eine Brennkammerschindel als solche.
  • Bezugszeichenliste
  • 1
    Triebwerksachse
    10
    Gasturbinentriebwerk / Kerntriebwerk
    11
    Lufteinlass
    12
    Fan
    13
    Mitteldruckkompressor (Verdichter)
    14
    Hochdruckkompressor
    15
    Brennkammer
    16
    Hochdruckturbine
    17
    Mitteldruckturbine
    18
    Niederdruckturbine
    19
    Abgasdüse
    20
    Leitschaufeln
    21
    Triebwerksgehäuse
    22
    Kompressorlaufschaufeln
    23
    Leitschaufeln
    24
    Turbinenschaufeln
    26
    Kompressortrommel oder -Scheibe
    27
    Turbinenrotornabe
    28
    Auslasskonus
    101
    Kompressorauslassschaufel
    102
    Brennkammeraußengehäuse
    103
    Brennkammerinnengehäuse
    104
    Brenner mit Arm und Kopf
    105
    Brennkammerkopf
    106
    Brennkammerwand
    107
    Turbineneinlassschaufel
    108
    Prallkühlloch
    109
    Schindelträger
    110
    Schindel
    111
    Effusionsloch
    112
    Kühlluftstrom
    113
    Heißgasstrom
    114
    Prallkühlspalt
    115
    Gewindebolzen
    116
    Oberflächenstruktur
    117
    Oberflächenstruktur
    118
    Vertiefung
    119
    Prisma
    120
    Eintrittsöffnung
    121
    Spitze des Prismas
    122
    hexagonale Struktur/Zelle
    123
    Prisma
    124
    gerade Achse, konstanter Querschnitt
    125
    abschnittsweise gerade Achse, konstanter Querschnitt
    126
    vergrößernder Querschnitt, gerade Achse
    127
    abschnittsweise gerade Achse, vergrößernder Querschnitt
    128
    konstanter Querschnitt
    129
    vergrößernder Querschnitt
    130
    Abstandshalter
    131
    Mutter
    132
    Achse der Eintrittsöffnung 120
    133
    Achse des Prallkühllochs 108

Claims (10)

  1. Gasturbinenbrennkammer mit einer einen Schindelträger (109) umfassenden Brennkammerwand (106), an welcher zur Ausbildung eines Prallkühlspalts (114) in einem Abstand Schindeln (110) gelagert sind, wobei der Schindelträger (109) Prallkühllöcher (108) aufweist und die Schindel (108) mit Effusionslöchern (111) versehen ist, wobei die Schindel (110) an ihrer dem Schindelträger (109) zugewandten Seite mit einer Oberflächenstruktur (116, 117) versehen ist, welche sich von der Oberfläche der Schindel (110) erhaben in Richtung des Schindelträgers (109) erstreckt.
  2. Gasturbinenbrennkammer nach Anspruch 1, dadurch gekennzeichnet, dass die Eintrittsöffnung (120) auf einem erhabenen Teil der Oberflächenstruktur liegt und/oder einen Abstand zur Oberfläche des Schindelträgers (109) aufweist, welcher das 0,5- bis 1,5-fache des Durchmessers der Eintrittsöffnung (120) beträgt.
  3. Gasturbinenbrennkammer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine zentrische Achse (132) der Eintrittsöffnung (120) im Wesentlichen senkrecht zur Oberfläche des Schindelträgers (109) angeordnet ist.
  4. Gasturbinenbrennkammer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine zentrische Achse (132) der Eintrittsöffnung (120) im Wesentlichen parallel zur zentrischen Achse (133) des Prallkühllochs (108) angeordnet ist.
  5. Gasturbinenbrennkammer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass um die Eintrittsöffnung (120) ein diese teilweise umschließender Abstandshalter (130) angeordnet ist.
  6. Gasturbinenbrennkammer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass benachbart zur Eintrittsöffnung (120) ein Abstandshalter (130) angeordnet ist.
  7. Gasturbinenbrennkammer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Effusionsloch (111) gerade oder gebogen oder teils gerade oder teils gebogen ausgebildet ist.
  8. Gasturbinenbrennkammer nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Effusionsloch (111) einen konstanten oder einen sich erweiternden Durchmesser aufweist.
  9. Gasturbinenbrennkammer nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der Abstandshalter (130) zur Ausbildung eines Dralls der in die Eintrittsöffnung (120) einströmenden Luft ausgebildet ist.
  10. Gasturbinenbrennkammer nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Oberflächenstruktur (116, 117) rippenartig ausgebildet ist, insbesondere unter Bildung von polygonalen Zellen (122), insbesondere unter Anordnung eines Prismas (119, 123) innerhalb der Zelle (122).
EP14156300.7A 2013-02-26 2014-02-24 Gasturbinenbrennkammer mit Prall-effusionsgekühlter Schindel Not-in-force EP2770260B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013003444.2A DE102013003444A1 (de) 2013-02-26 2013-02-26 Prall-effusionsgekühlte Schindel einer Gasturbinenbrennkammer mit verlängerten Effusionsbohrungen

Publications (3)

Publication Number Publication Date
EP2770260A2 true EP2770260A2 (de) 2014-08-27
EP2770260A3 EP2770260A3 (de) 2015-09-30
EP2770260B1 EP2770260B1 (de) 2016-05-18

Family

ID=50190206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14156300.7A Not-in-force EP2770260B1 (de) 2013-02-26 2014-02-24 Gasturbinenbrennkammer mit Prall-effusionsgekühlter Schindel

Country Status (3)

Country Link
US (1) US9518738B2 (de)
EP (1) EP2770260B1 (de)
DE (1) DE102013003444A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3066388A4 (de) * 2013-11-04 2016-11-02 United Technologies Corp Gasturbinenbrennkammer-hitzeschild mit mehrwinkligen kühlungsöffnungen

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050592A2 (en) * 2013-06-14 2015-04-09 United Technologies Corporation Gas turbine engine combustor liner panel
WO2015057272A1 (en) * 2013-10-18 2015-04-23 United Technologies Corporation Combustor wall having cooling element(s) within a cooling cavity
CA2933884A1 (en) * 2015-06-30 2016-12-30 Rolls-Royce Corporation Combustor tile
GB201518345D0 (en) * 2015-10-16 2015-12-02 Rolls Royce Combustor for a gas turbine engine
US10605170B2 (en) * 2015-11-24 2020-03-31 General Electric Company Engine component with film cooling
DE102015225505A1 (de) * 2015-12-16 2017-06-22 Rolls-Royce Deutschland Ltd & Co Kg Wand eines mittels Kühlluft zu kühlenden Bauteils, insbesondere einer Gasturbinenbrennkammerwand
EP3205937B1 (de) * 2016-02-09 2021-03-31 Ansaldo Energia IP UK Limited Prallgekühlte wandanordnung
US11162370B2 (en) 2016-05-19 2021-11-02 Rolls-Royce Corporation Actively cooled component
US10697635B2 (en) 2017-03-20 2020-06-30 Raytheon Technologies Corporation Impingement cooled components having integral thermal transfer features
ES2901604T3 (es) 2017-05-16 2022-03-23 Siemens Energy Global Gmbh & Co Kg Esquema de organización en fases de combustible binaria para mejorar la regulación de emisiones en la combustión de turbina de gas premezclada pobre
US10731562B2 (en) * 2017-07-17 2020-08-04 Raytheon Technologies Corporation Combustor panel standoffs with cooling holes
US11248791B2 (en) 2018-02-06 2022-02-15 Raytheon Technologies Corporation Pull-plane effusion combustor panel
US11009230B2 (en) 2018-02-06 2021-05-18 Raytheon Technologies Corporation Undercut combustor panel rail
US10830435B2 (en) 2018-02-06 2020-11-10 Raytheon Technologies Corporation Diffusing hole for rail effusion
US11022307B2 (en) 2018-02-22 2021-06-01 Raytheon Technology Corporation Gas turbine combustor heat shield panel having multi-direction hole for rail effusion cooling
US10823414B2 (en) 2018-03-19 2020-11-03 Raytheon Technologies Corporation Hooded entrance to effusion holes
US11306659B2 (en) * 2019-05-28 2022-04-19 Honeywell International Inc. Plug resistant effusion holes for gas turbine engine
US11112114B2 (en) * 2019-07-23 2021-09-07 Raytheon Technologies Corporation Combustor panels for gas turbine engines
US11131199B2 (en) * 2019-11-04 2021-09-28 Raytheon Technologies Corporation Impingement cooling with impingement cells on impinged surface
GB202000870D0 (en) 2020-01-21 2020-03-04 Rolls Royce Plc A combustion chamber, a combustion chamber tile and a combustion chamber segment
US11486578B2 (en) 2020-05-26 2022-11-01 Raytheon Technologies Corporation Multi-walled structure for a gas turbine engine
CN116221774A (zh) 2021-12-06 2023-06-06 通用电气公司 用于燃烧器衬里的变化的稀释孔设计

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB360086A (en) 1930-08-13 1931-11-05 Asa Lees & Company Ltd Improvements in and relating to bunching mechanism for use on ring or other spinningframes
GB2087065A (en) 1980-11-08 1982-05-19 Rolls Royce Wall structure for a combustion chamber
US5000005A (en) 1988-08-17 1991-03-19 Rolls-Royce, Plc Combustion chamber for a gas turbine engine
WO1992016798A1 (en) 1991-03-22 1992-10-01 Rolls-Royce Plc Gas turbine engine combustor
WO1995025932A1 (en) 1989-08-31 1995-09-28 Alliedsignal Inc. Turbine combustor cooling system
GB2360086A (en) 2000-01-18 2001-09-12 Rolls Royce Plc Air impingement cooling system
US6408628B1 (en) 1999-11-06 2002-06-25 Rolls-Royce Plc Wall elements for gas turbine engine combustors
US6408620B2 (en) 1999-12-15 2002-06-25 Daimlerchrylser Ag Exhaust-gas cleaning system with nitrogen oxide accumulator catalyst and sulphur oxide trap and operating method therefor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872822A (ja) 1981-10-26 1983-04-30 Hitachi Ltd ガスタ−ビン燃焼器の冷却構造
DE8618859U1 (de) * 1986-07-14 1988-01-28 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
JPH1162504A (ja) 1997-08-13 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd タービン翼の二重壁冷却構造
GB2373319B (en) * 2001-03-12 2005-03-30 Rolls Royce Plc Combustion apparatus
US7464554B2 (en) 2004-09-09 2008-12-16 United Technologies Corporation Gas turbine combustor heat shield panel or exhaust panel including a cooling device
GB0425794D0 (en) * 2004-11-24 2004-12-22 Rolls Royce Plc Acoustic damper
DE102007018061A1 (de) * 2007-04-17 2008-10-23 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammerwand
DE102009007164A1 (de) 2009-02-03 2010-08-12 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zum Ausbilden einer Kühlluftöffnung in einer Wand einer Gasturbinenbrennkammer sowie nach dem Verfahren hergestellte Brennkammerwand
US20100263384A1 (en) 2009-04-17 2010-10-21 Ronald James Chila Combustor cap with shaped effusion cooling holes
US8516822B2 (en) * 2010-03-02 2013-08-27 General Electric Company Angled vanes in combustor flow sleeve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB360086A (en) 1930-08-13 1931-11-05 Asa Lees & Company Ltd Improvements in and relating to bunching mechanism for use on ring or other spinningframes
GB2087065A (en) 1980-11-08 1982-05-19 Rolls Royce Wall structure for a combustion chamber
US5000005A (en) 1988-08-17 1991-03-19 Rolls-Royce, Plc Combustion chamber for a gas turbine engine
WO1995025932A1 (en) 1989-08-31 1995-09-28 Alliedsignal Inc. Turbine combustor cooling system
WO1992016798A1 (en) 1991-03-22 1992-10-01 Rolls-Royce Plc Gas turbine engine combustor
US6408628B1 (en) 1999-11-06 2002-06-25 Rolls-Royce Plc Wall elements for gas turbine engine combustors
US6408620B2 (en) 1999-12-15 2002-06-25 Daimlerchrylser Ag Exhaust-gas cleaning system with nitrogen oxide accumulator catalyst and sulphur oxide trap and operating method therefor
GB2360086A (en) 2000-01-18 2001-09-12 Rolls Royce Plc Air impingement cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3066388A4 (de) * 2013-11-04 2016-11-02 United Technologies Corp Gasturbinenbrennkammer-hitzeschild mit mehrwinkligen kühlungsöffnungen

Also Published As

Publication number Publication date
DE102013003444A1 (de) 2014-09-11
US9518738B2 (en) 2016-12-13
EP2770260B1 (de) 2016-05-18
US20140238030A1 (en) 2014-08-28
EP2770260A3 (de) 2015-09-30

Similar Documents

Publication Publication Date Title
EP2770260B1 (de) Gasturbinenbrennkammer mit Prall-effusionsgekühlter Schindel
EP2918915B1 (de) Brennkammerschindel einer Gasturbine
EP3182011B1 (de) Wand eines mittels kühlluft zu kühlenden bauteils, insbesondere einer gasturbinenbrennkammerwand
EP2829804B1 (de) Brennkammerschindel einer Gasturbine sowie Verfahren zu deren Herstellung
EP2886961B1 (de) Unterlegscheibe einer Brennkammerschindel einer Gasturbine
EP3101231B1 (de) Vorrichtung zur kühlung einer wandung eines bauteils einer gasturbine
DE102007018061A1 (de) Gasturbinenbrennkammerwand
EP1766192B1 (de) Schaufelrad einer turbine mit einer schaufel und mindestens einem kühlkanal
EP2132414B1 (de) Shiplap-anordnung
DE102012016493A1 (de) Gasturbinenbrennkammer mit prallgekühlten Bolzen der Brennkammerschindeln
DE19612840A1 (de) Vorrichtung und Verfahren zur Kühlung einer einseitig von Heissgas umgebenen Wand
DE102013224998A1 (de) Turbinenrotorschaufel einer Gasturbine und Verfahren zur Kühlung einer Schaufelspitze einer Turbinenrotorschaufel einer Gasturbine
EP2730843A1 (de) Brennkammerschindel einer Gasturbine
DE102015203871A1 (de) Rotor einer Turbine einer Gasturbine mit verbesserter Kühlluftführung
EP3155227B1 (de) Turbinenschaufel
EP3207217B1 (de) Filmgekühltes gasturbinenbauteil
EP2788583B1 (de) Turbinenleitschaufel mit einem drosselelement
DE102017202177A1 (de) Wandbauteil einer Gasturbine mit verbesserter Kühlung
EP2584148A1 (de) Filmgekühlte Turbinenschaufel für eine Strömungsmaschine
EP3034782A1 (de) Filmgekühlte Turbinenschaufel
EP3473808B1 (de) Schaufelblatt für eine innengekühlte turbinenlaufschaufel sowie verfahren zur herstellung einer solchen
EP2725203B1 (de) Kühlluftführung in einer Gehäusestruktur einer Strömungsmaschine
EP3159487B1 (de) Stator einer turbine einer gasturbine mit verbesserter kühlluftführung
WO2018010918A1 (de) Turbinenschaufel mit strebenförmigen kühlrippen
EP1413714B1 (de) Leitschaufel für eine Turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140224

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/06 20060101ALI20150825BHEP

Ipc: F23R 3/00 20060101AFI20150825BHEP

R17P Request for examination filed (corrected)

Effective date: 20151116

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 800826

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014000769

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014000769

Country of ref document: DE

Representative=s name: HOEFER & PARTNER PATENTANWAELTE MBB, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160518

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160818

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160819

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160919

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014000769

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170224

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 800826

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200227

Year of fee payment: 7

Ref country code: DE

Payment date: 20200227

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200225

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014000769

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210224

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228