EP2766751A1 - Multilayer systems for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight and method for producing same - Google Patents

Multilayer systems for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight and method for producing same

Info

Publication number
EP2766751A1
EP2766751A1 EP12769389.3A EP12769389A EP2766751A1 EP 2766751 A1 EP2766751 A1 EP 2766751A1 EP 12769389 A EP12769389 A EP 12769389A EP 2766751 A1 EP2766751 A1 EP 2766751A1
Authority
EP
European Patent Office
Prior art keywords
layer
silver
seed
multilayer system
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12769389.3A
Other languages
German (de)
French (fr)
Inventor
Roland Thielsch
Ronny Kleinhempel
Andre Wahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwall Europe GmbH
Original Assignee
Southwall Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwall Europe GmbH filed Critical Southwall Europe GmbH
Publication of EP2766751A1 publication Critical patent/EP2766751A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
    • G02B5/0866Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers incorporating one or more organic, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • the invention relates to multilayer systems for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight and a method for producing this on suitable preferably polymeric carrier materials.
  • Another use is a combination of said composite material with other coated or uncoated films and adhesives for use as a "window film” for subsequent application to glazing.
  • Such multilayer systems are used for selective selective influencing of the transmission as well as reflection of electromagnetic radiation emitted by the sun and thereby on substrates which are transparent to the electromagnetic radiation, in particular glass or glass
  • the goal is connected to reflect the highest possible proportion of radiation in the non-visible range (eg solar energy range, or near-infrared spectral range), so that the proportion of transmitted solar energy is minimized.
  • a particular aim is to maximize the value of the total solar transmission T T s (calculated according to DIN ISO 13837, case 1) by a composite glazing equipped with such a multilayer system on said support to a maximum of 40%, that of the electromagnetic radiation emitted by the Sun and incident on the Earth's surface.
  • T T s calculated according to DIN ISO 13837, case 1
  • the heating is minimized inside rooms or vehicles and the energy cost to create a person in the interior pleasant ambient climate can be reduced.
  • multilayer systems have been used for a long time, which are formed on substrates (glass or plastic). These may be alternating layer systems in which high and low refractive layers of dielectric materials are formed on each other. Frequently, even thin metal layers are used alternating with thin dielectric layers (oxides and nitrides). These oxides or nitrides should have optical refractive indices at a wavelength of 550 nm in the range 1.8 to 2.5.
  • reflective metals such as gold or copper, silver or silver alloys (Ag-Au, Ag-Cu, Ag-Pd and others) which have very good optical properties for these applications are preferably used for the metal layers.
  • Ti or NiCr alloys with a typical layer thickness ⁇ 5 nm have mostly been used. This is to avoid the oxidation of the silver on the layer surface, since the direct contact of the
  • the interface roughness increases with increasing number of layers. In the case of thin silver layers, this can lead to the second and third silver layers in a multilayer system having inferior electrical and optical properties of comparable thickness. This is indirect, e.g. detectable by measuring the electrical resistance. Additional absorption effects at the rough interface between silver and dielectric layers additionally reduce the transparency for electromagnetic radiation in the wavelength range of visible light.
  • a manufacturing method for these multilayer systems is defined by claim 8.
  • Advantageous embodiments and further developments can be realized with features described in the subordinate claims.
  • a multilayer system according to the invention for a selective reflection of electromagnetic radiation from the wavelength spectrum of the sunlight is coated with at least one layer of silver or a silver alloy, which is coated on both surfaces with one seed layer and one cap layer on both surfaces the seed and cover layer are formed of a dielectric material formed.
  • the seed layer and also the cover layer of ZnO and / or ZnO: X are formed.
  • At least one such multilayer system is formed on a flexible polymeric substrate, preferably an optically transparent film in the visible spectral range.
  • a seed layer and a cover layer can be formed from the pure ZnO, the doped zinc oxide or in each case one of the two layers of the ZnO and the other layer of the doped ZnO.
  • a silver alloy in which Au, Pd or Cu with small proportions are present.
  • the layers are generally referred to as a silver layer.
  • the proportion of additional metal contained should be kept very small, possibly less than 2%.
  • Such a multi-layer system or several of these multi-layer systems may have been formed one above the other on the substrate. In this case, recourse can be had to conventional vacuum coating methods, in particular PVD methods and, with particular advantage, to magnetron sputtering.
  • both the seed layer and the cover layer can be sputtered from the same target material. That is, the same material basically fulfills the corresponding function.
  • the respective gas mixture fed into the coating area firstly for the seed layer and secondly for the covering layer in each coating step, in order to thus optimize the respective function.
  • This allows a particularly economical forward + backward coating by winding back and forth (with each wrapping is a system with germination).
  • the multi-layer system can be produced without time-consuming ventilation operations for hanging the role with multiple silver layers and seed and cover layers.
  • the targets for the formation of the seed layer, the silver layer and the cover layer are arranged successively in the feed axis direction of the substrate.
  • the targets for the formation of the seed layer and the cover layer may be formed of the same material.
  • a seed layer can be formed alternately alternately with one target at a time, and a cover layer can be formed with the opposite feed direction.
  • X with X for example Al 2 0 3 , Ga 2 0 3 , Sn0 2 , ln 2 0 3 or MgO can be used.
  • corresponding targets with the respective composition ie pure ZnO or at least one other of the said oxides can be used for the coating.
  • the proportion of these oxides, which is in addition to ZnO contained in the seed and cover layer, should be a maximum of 20% by mass, a proportion of 10 mass% is then preferable to ensure especially the expression of the crystalline structure for the seed layer ,
  • the seed layer and / or the cover layer should have a layer thickness in the range 5 nm to 15 nm and the silver layer a layer thickness between 5 nm and 25 nm, preferably 10 nm. It is advantageous to be able to form additional dielectric layers which enclose such a multilayer system from both sides.
  • Monilayer systems preferably three monoside layer systems according to Figure 2 to deposit on a substrate.
  • a monoseal layer system is a construction of a dielectric layer, a thin seed layer, a silver layer, a cover layer and a final dielectric layer (see FIG. 1).
  • the thicknesses of the silver layers and the thicknesses of the dielectric layers must be adapted.
  • the dielectric layers have a refractive index of n> 1.8 at a wavelength of 550 nm and lower absorption, and may preferably be formed of ln 2 0 3 .
  • a dielectric layer structure formed between two silver layers which is composed of cover layer, dielectric layer and seed layer, has the effect of a dielectric spacer layer in an optical filter system for defining the position of the spectral transmission range and the color appearance of a laminated glass, as known from the prior art is known. It is of particular advantage according to the invention that the thicknesses of the seed and cover layers contribute to the layer thickness of dielectric spacer layers, since they produce a corresponding optical effect, like other dielectric materials, and contribute to the overall optical effect. The contribution of the seed and cover layer to the dielectric thickness in the layer system can be taken into account with its optical refractive index and geometric thickness in the construction of the multilayer system.
  • the optical refractive index of ZnO at a wavelength of 550 nm is about 1.95 to 2.05, depending on the deposition conditions. It may differ slightly from the proportion of further oxide contained in a germination and / or cover layer. This makes it possible to adapt to the desired optical effect in cooperation with other dielectric layers made of other materials.
  • three targets can be used in the vacuum coating for the formation of the silver layer and the seed and cover layer, which are arranged successively in the feed axis direction during the coating and / or can be used.
  • a seed layer with a ceramic target ZnO and / or ZnO: X then the silver layer with a silver target and the cover layer with a second ZnO and / or ZnO: X target can be formed.
  • the process conditions, and in particular the gas composition, which is introduced into the coating layer for seed layer / covering layer can be kept constant or equal in each coating step.
  • the gas mixture used should consist of argon, oxygen and hydrogen and have a composition adapted to the seed and cover layer.
  • the proportion of oxygen and hydrogen in the sputtering gas in a certain range are on the one hand, the desired layer structure for optimal, the layer growth of subsequently applied silver layer to achieve positively influencing germination effect and on the other to deposit optically transparent (absorption-free) layers.
  • the coating can be at a typical pressure within the coating range of 0.4-1.0 Pa.
  • a suitable gas composition should be chosen to ensure a sufficient protective effect.
  • the oxygen concentration is to be kept low (orientation value is ⁇ 10% based on the total amount of gas).
  • the quality of the silver layers can be improved. This can be explained on the one hand by an improved silver growth, and on the other hand by the corresponding protective effect of the covering layer. Another positive influence is the formation of very smooth boundary layers between the seed layer and the subsequent silver layer and between the deposited silver layer and the top layer applied to it.
  • seed layer in the English language is intended to achieve better properties which are more similar to solid Ag by means of a layered growth (layer formation) which begins even at low layer thickness particularly good, since the seed layers of the ZnO and / or ZnO.X have a crystalline structure whose structure has an epitaxial relationship to the structure of the silver.
  • the coating conditions allow the seed layer a) predominantly grows up in a crystalline manner and b) at the same time has a certain crystalline preferred direction for the desired orderly growth of the silver layer.
  • the layer thicknesses of the seed layer and the cover layer (s) can also be chosen so that they are targeted to the interference of certain electromagnetic
  • the seed and / or cover layers can also have different layer thicknesses, so that they can cause interference at different wavelengths.
  • Fig. 1 shows in schematic form an example in which a silver layer is enclosed by a seed and cover layer
  • Figure 2 is an example in schematic form, in which three silver layers each having a seed and cover layer are present in a multi-layer system construction
  • FIG. 3 shows a diagram with calculated and measured electrical areas. chenwidercenteredn with different numbers of silver layers within a multilayer system and
  • Figure 4 is a schematic representation of the installation of a multi-layer system according to the invention embedded in a laminated glass plastic film.
  • the example of a multilayer system with a silver layer 4 shown in FIG. 1 was applied to the PET substrate 1 in a coating step.
  • an ln 2 O 3 layer 2 having a layer thickness of 25 nm was applied by magnetron sputtering in a reactive process using metallic indium targets.
  • the seed layer 3 was deposited with a layer thickness of 8 nm of a ceramic with 2% Al 2 0 3 doped ZnO: X target. In each case about 5% oxygen and hydrogen were added to the sputtering gas argon.
  • the deposition of the metallic silver layer 4 of 10 nm was carried out by magnetron sputtering in an argon plasma.
  • a ZnO: X target doped with 2% Al 2 O 3 was likewise used.
  • the argon in this case 5% oxygen and 8% hydrogen were added.
  • the final dielectric layer 6 of ln 2 O 3 with a layer thickness of 30 nm was again realized by a reactive process using metal indium targets.
  • this sheet silver layer system achieved a surface resistance of 6.2 ohms.
  • the thicknesses of the In 2 O 3 layers 2 and 6 as well as the silver layers 4 had to be adapted.
  • the seed layers 3 and cover layers 5 were in each coating step under the same conditions.
  • FIG. 2 shows a construction in which three multi-layer systems according to the invention, which are each formed with a seed layer 3, a silver layer 4 and a cover layer 5, have been formed on a PET substrate 1.
  • the layer thicknesses and the composition of the seed layers 3 and the cover layers 5 correspond to the example according to FIG. 1.
  • the dielectric layer 2 of ln 2 O 3 formed on the substrate 1 should have a layer thickness of 20 nm to 50 nm
  • the dielectric layers of In 2 O 3 formed between a seed layer 3 and a cap layer 5 should have a thickness of .mu.m Range 40 nm to 150 nm
  • the dielectric layer of In 2 O 3 formed on the outer surface facing away from the substrate 1 should have a thickness in the range of 20 nm to 70 nm.
  • All silver layers should have a layer thickness in the range of 7 nm to 25 nm.
  • the multilayer system consisting of three multi-layer systems corresponding to one another and designed according to the invention can be optimized by adapting individual layer thicknesses in order to realize the properties T T s ⁇ 40%, T vis > 70% and R vis ⁇ 10% in a glass laminate.
  • the construction of the "glass laminate" is shown in FIG 1 is a PET substrate, 7 a multilayer system according to the invention with three silver layers 4, 8 PVB (polyvinyl butyral) layers and 9 glass.
  • the layer thicknesses for the seed layers 3 at 8 nm and the cover layers 5 were left at 7 nm.

Abstract

The invention relates to multilayer systems for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight, and to a method for producing said systems on suitable, preferably polymeric, carrier materials. Such a multilayer system of the invention is formed with at least one layer composed of silver or a silver alloy, which is coated over the whole area on both surfaces with in each case a seed layer and a cap layer. In this case, the seed layer and cap layer are formed from dielectric material. These are ZnO and/or ZnO:X. In this case, at least one such multilayer system is formed on a flexible polymeric substrate, preferably a film which is optically transparent in the visible spectral range.

Description

Mehrschichtsysteme für eine selektive Reflexion elektromagnetischer Strahlung aus dem Wellenlängenspektrum des Sonnenlichts und Verfahren zu seiner Herstellung  Multi-layer systems for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight and method for its production
Die Erfindung betrifft Mehrschichtsysteme für eine selektive Reflexion elektromagnetischer Strahlung aus dem Wellenlängenspektrum des Sonnenlichts und ein Verfahren zu Herstellung dieser auf geeigneten vorzugsweise polyme- ren Trägermaterialen. The invention relates to multilayer systems for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight and a method for producing this on suitable preferably polymeric carrier materials.
Die bevorzugte, aber nicht ausschließliche Verwendung eines solchen Verbundmaterials, bestehend aus besagten Mehrschichtsystemen mit besagtem Träger ist die Herstellung von laminierten Verbundverglasungen in Verbindung mit weiteren polymeren Klebefolien und Glas. The preferred, but not exclusive, use of such a composite material consisting of said multi-layer systems with said support is the production of laminated laminated glass in conjunction with other polymeric adhesive films and glass.
Eine weitere Verwendung ist eine Kombination des besagten Verbundmaterials mit weiteren beschichteten oder unbeschichteten Folien sowie Klebern zur Verwendung als„Window-Film" zum nachträglichen Aufbringen auf Verglasungen. Solche Mehrschichtsysteme werden für eine gezielte selektive Beeinflussung der Transmission sowie Reflexion von elektromagnetischer Strahlung, die von der Sonne emittiert wird, eingesetzt und dabei auf für die elektromagnetische Strahlung transparenten Substraten, wie insbesondere Glas oder Another use is a combination of said composite material with other coated or uncoated films and adhesives for use as a "window film" for subsequent application to glazing. Such multilayer systems are used for selective selective influencing of the transmission as well as reflection of electromagnetic radiation emitted by the sun and thereby on substrates which are transparent to the electromagnetic radiation, in particular glass or glass
Polymerfolien als Dünnschichten durch an sich bekannte Vakuumbeschich- tungsverfahren, insbesondere PVD-Verfahren ausgebildet. Damit ist das Ziel verbunden, einen möglichst hohen Anteil der Strahlung im nicht-sichtbaren Bereich (z.B. solarer Energiebereich, bzw. nah-infraroter Spektralbereich) zu reflektieren, so dass der Anteil an transmittierter solarer Energie minimiert wird. Ein besonderes Ziel besteht darin, den Wert der durch eine Verbundverglasung, die mit einem derartigem Mehrschichtsystem auf besagtem Träger ausgestattet ist, der hindurch gelassen totalen solaren Transmission TTs (Berechnet nach DIN ISO 13837, Fall 1) auf maximal 40 %, der von der Sonne emittierten und auf der Erdoberfläche auftreffenden elektromagnetischen Strahlung, zu begrenzen. Dadurch soll die Erwärmung im Inneren von Räumen oder Fahrzeugen minimiert und der energetische Aufwand zur Schaffung eines dem im Innern befindlichen Personen angenehmen Umgebungsklimas reduziert werden. Im Gegensatz dazu, soll aber ein möglichst hoher Anteil der Strahlung im Bereich des sichtbaren Lichts nicht reflektiert, möglichst auch nicht absorbiert werden, so dass der für das menschliche Auge sichtbare Anteil der Sonnenstrahlung (Tvis, berechnet nach ASTM E 308 für Beleuchtungsquelle A und Beobachter 2°) oberhalb 70 % gehalten werden kann. Diese Anforderung für Tvis ist für die Anwendung bei Fahrzeugverglasungen gesetzlich vorgeschrieben. Polymer films as thin films by per se known vacuum deposition process, in particular PVD method formed. Thus, the goal is connected to reflect the highest possible proportion of radiation in the non-visible range (eg solar energy range, or near-infrared spectral range), so that the proportion of transmitted solar energy is minimized. A particular aim is to maximize the value of the total solar transmission T T s (calculated according to DIN ISO 13837, case 1) by a composite glazing equipped with such a multilayer system on said support to a maximum of 40%, that of the electromagnetic radiation emitted by the Sun and incident on the Earth's surface. As a result, the heating is minimized inside rooms or vehicles and the energy cost to create a person in the interior pleasant ambient climate can be reduced. In contrast to this, however, the highest possible proportion of the radiation in the region of visible light should not be reflected, as far as possible not absorbed, so that the proportion of solar radiation visible to the human eye (T vis , calculated in accordance with ASTM E 308 for illumination source A and Observer 2 °) above 70% can be maintained. This requirement for T v is required by law for vehicle glazing applications.
Hierfür werden seit langem Mehrschichtsysteme eingesetzt, die auf Substraten (Glas oder Kunststoff) ausgebildet sind. Dabei kann es sich um Wechselschichtsysteme handeln, bei denen hoch und niedriger brechende Schichten dielektrischer Materialien aufeinander ausgebildet werden. Häufig werden auch dünne Metallschichten im Wechsel mit dünnen dielektrischen Schichten (Oxide und Nitride) eingesetzt. Diese Oxide oder Nitride sollen optische Brechzahlen bei einer Wellenlänge von 550 nm im Bereich 1,8 bis 2,5 aufweisen. For this purpose, multilayer systems have been used for a long time, which are formed on substrates (glass or plastic). These may be alternating layer systems in which high and low refractive layers of dielectric materials are formed on each other. Frequently, even thin metal layers are used alternating with thin dielectric layers (oxides and nitrides). These oxides or nitrides should have optical refractive indices at a wavelength of 550 nm in the range 1.8 to 2.5.
Neben anderen reflektierenden Metallen, wie Gold oder Kupfer werden für die Metallschichten vorzugsweise Silber oder Silberlegierungen (Ag-Au, Ag-Cu, Ag-Pd und andere) eingesetzt, die sehr gute optische Eigenschaften für diese Anwendungen aufweisen. Among other reflective metals, such as gold or copper, silver or silver alloys (Ag-Au, Ag-Cu, Ag-Pd and others) which have very good optical properties for these applications are preferably used for the metal layers.
Dabei ist es von Vorteil, eine solche Silber- bzw. Silberlegierungsschicht auf einer Keimschicht abzuscheiden. It is advantageous to deposit such a silver or silver alloy layer on a seed layer.
Um ein komplexes Mehrschichtsystem aus einer Folge von Oxidschichten und Ag-Schichten aufzubringen, ist es üblich, dass eine bereits aufgetragene/abgeschiedene Ag-Schicht mit Oxiden in einem reaktiven Sputterprozess überbeschichtet wird. In order to apply a complex multilayer system of a series of oxide layers and Ag layers, it is common for an already deposited / deposited Ag layer to be overcoated with oxides in a reactive sputtering process.
Bekanntlich oxidiert Ag leicht in Anwesenheit oxidierender Medien wie 02 oder H20, besonders aber in einem reaktiven Plasma, dass diese Gase enthält. Mit der Oxidation geht eine deutliche Verschlechterung der Eigenschaften des Ag einher, sodass im Regelfall ohne besondere Gegenmaßnahmen die erwünschten visuellen und energetischen Eigenschaften eines solchen Mehrschichtsystems nicht erreicht werden. Eine, dem Stand der Technik entsprechende, Schutzmaßnahme ist das Aufbringen einer sehr dünnen Metallschicht auf die Silberschicht. It is known that Ag oxidizes easily in the presence of oxidizing media such as O 2 or H 2 O, but especially in a reactive plasma containing these gases. The oxidation is accompanied by a significant deterioration of the properties of the Ag, so that the desired visual and energetic properties of such a multilayer system are generally not achieved without special countermeasures. One prior art protective measure is the application of a very thin layer of metal to the silver layer.
Als Deckschichten werden bisher meist Ti oder NiCr-Legierungen mit einer typischen Schichtdicke < 5 nm eingesetzt. Dadurch soll die Oxidation des Sil- bers an der Schichtoberfläche vermieden werden, da der direkte Kontakt derAs cover layers, Ti or NiCr alloys with a typical layer thickness <5 nm have mostly been used. This is to avoid the oxidation of the silver on the layer surface, since the direct contact of the
Oberfläche mit dem Sauerstoff sowie anderen reaktiven Bestandteilen der Atmosphäre (Plasma) bei der nachfolgenden Ausbildung einer dielektrischen Schicht vermieden werden kann. Das Silber wird in dieser Form vor Degradation geschützt, wobei die metallische Deckschicht oxidieren kann. Surface with the oxygen and other reactive constituents of the atmosphere (plasma) can be avoided in the subsequent formation of a dielectric layer. The silver is protected in this form from degradation, whereby the metallic cover layer can oxidize.
Da für die Abscheidung der dünnen Deckschicht eine separate Beschichtungs- Station in der Beschichtungsmaschine nötig ist, kann diese nicht für die Ab- scheidung von dielektischem Material (was für die optische Wirkung des Schichtsystems nötig ist) verwendet werden. Dies führt im Allgemeinen zu höherer Beschichtungsdauer und damit erhöhten Beschichtungskosten. Since for the deposition of the thin cover layer a separate coating Station is required in the coating machine, this can not be used for the deposition of dielectic material (which is necessary for the optical effect of the layer system). This generally leads to higher coating time and thus increased coating costs.
Bei Mehrschichtsystemen steigt im Allgemeinen die Grenzflächenrauheit mit zunehmender Anzahl der Schichten. Dies kann im Falle von dünnen Silberschichten dazu führen, dass die zweite und dritte Silberschicht in einem Mehrschichtsystem schlechtere elektrische und optische Eigenschaften bei vergleichbarer Dicke aufweist. Dies ist indirekt z.B. über die Messung des elektrischen Widerstandes nachweisbar. Durch zusätzliche Absorptionseffekte an der rauen Grenzfläche zwischen Silber und dielektrischen Schichten reduziert sich zusätzlich die Transparenz für elektromagnetische Strahlung im Wellenlängenbereich des sichtbaren Lichts. In multilayer systems, in general, the interface roughness increases with increasing number of layers. In the case of thin silver layers, this can lead to the second and third silver layers in a multilayer system having inferior electrical and optical properties of comparable thickness. This is indirect, e.g. detectable by measuring the electrical resistance. Additional absorption effects at the rough interface between silver and dielectric layers additionally reduce the transparency for electromagnetic radiation in the wavelength range of visible light.
Es ist daher Aufgabe der Erfindung ein Mehrschichtsystem für die Anwendungsfälle„Glaslaminat" für Fahrzeugverglasung bzw.„Window-Film" zur Verfügung zu stellen, das verbesserte Eigenschaften aufweist. It is therefore an object of the invention to provide a multilayer system for the applications "glass laminate" for vehicle glazing or "window film", which has improved properties.
Dies sind zum einen eine hohe Transmission und geringe Reflexion im sichtbaren Spektralbereich und zum anderen eine niedrige Transmission sowie eine hohe Reflexion von Strahlungsanteilen aus dem nicht sichtbaren Spektralbereich (naher Infrarotbereich). These are on the one hand a high transmission and low reflection in the visible spectral range and on the other hand a low transmission and a high reflection of radiation components from the non-visible spectral range (near infrared range).
Gleichzeitig ist es eine weitere Aufgabe der Erfindung, ein für die industrielle Herstellung dieses besagten Mehrschichtsystems geeignetes Verfahren zur Abscheidung auf einem geeigneten Träger bereitzustellen. Im besonderen Maße ist es Aufgabe dieser Erfindung, eine Methode für eine kostengünstige, im Rolle-zu-Rolle-Verfahren anwendbare Aufbringung auf ein polymeres Trägermaterial bereitzustellen. At the same time, it is a further object of the invention to provide a method suitable for the industrial production of said multilayer system for deposition on a suitable support. In particular, it is an object of this invention to provide a method for a cost effective, roll-to-roll method applicable application to a polymeric substrate.
Erfindungsgemäß wird diese Aufgabe mit Mehrschichtsystemen, die die Merkmale des Anspruchs 1 aufweisen, gelöst. Ein Herstellungsverfahren für diese Mehrschichtsysteme ist mit dem Anspruch 8 definiert. Vorteilhafte Ausgestaltungen und Weiterbildungen können mit in untergeordneten Ansprüchen bezeichneten Merkmalen realisiert werden. Ein erfindungsgemäßes Mehrschichtsystem für eine selektive Reflexion elektromagnetischer Strahlung aus dem Wellenlängenspektrum des Sonnenlichts ist mit mindestens einer Schicht aus Silber - bzw. einer Silberlegierung, die mit jeweils einer Keimschicht (seed layer) und einer Deckschicht (cap layer) an beiden Oberflächen vollflächig beschichtet ist und die Keim- und Deckschicht aus einem dielektrischen Werkstoff gebildet sind, gebildet. Dabei sind die Keimschicht und auch die Deckschicht aus ZnO und/oder ZnO:X gebildet. Mindestens ein solches Mehrschichtsystem ist dabei auf einem flexiblen polyme- ren Substrat, bevorzugt einer im sichtbaren Spektralbereich optisch transparenten Folie ausgebildet. Eine Keimschicht und eine Deckschicht können aus dem reinen ZnO, dem dotierten Zinkoxid oder jeweils eine der beiden Schichten aus dem ZnO und die andere Schicht aus dem dotierten ZnO gebildet sein. Es kann neben reinem Silber auch eine Silberlegierung in der Au, Pd oder Cu mit geringen Anteilen enthalten sind, eingesetzt werden. Nachfolgend werden die Schichten generell als Silberschicht bezeichnet. Bei Silberlegierungen sollte der Anteil an enthaltenem weiteren Metall sehr klein, möglichst kleiner 2 % gehalten sein. Ein solches Mehrschichtsystem oder mehrere dieser Mehrschichtsysteme können übereinander auf dem Substrat ausgebildet worden sein. Dabei kann auf herkömmliche Vakuumbeschichtungsverfahren, insbesondere PVD- Verfahren und besonders vorteilhaft auf Magnetronsputtern zurückgegriffen werden. According to the invention, this object is achieved with multilayer systems having the features of claim 1. A manufacturing method for these multilayer systems is defined by claim 8. Advantageous embodiments and further developments can be realized with features described in the subordinate claims. A multilayer system according to the invention for a selective reflection of electromagnetic radiation from the wavelength spectrum of the sunlight is coated with at least one layer of silver or a silver alloy, which is coated on both surfaces with one seed layer and one cap layer on both surfaces the seed and cover layer are formed of a dielectric material formed. In this case, the seed layer and also the cover layer of ZnO and / or ZnO: X are formed. At least one such multilayer system is formed on a flexible polymeric substrate, preferably an optically transparent film in the visible spectral range. A seed layer and a cover layer can be formed from the pure ZnO, the doped zinc oxide or in each case one of the two layers of the ZnO and the other layer of the doped ZnO. In addition to pure silver, it is also possible to use a silver alloy in which Au, Pd or Cu with small proportions are present. Hereinafter, the layers are generally referred to as a silver layer. For silver alloys, the proportion of additional metal contained should be kept very small, possibly less than 2%. Such a multi-layer system or several of these multi-layer systems may have been formed one above the other on the substrate. In this case, recourse can be had to conventional vacuum coating methods, in particular PVD methods and, with particular advantage, to magnetron sputtering.
Die Beschichtung auf Kunststoffsubstrate (Polymerfolien) wird häufig imThe coating on plastic substrates (polymer films) is often used in
Batchbetrieb durchgeführt, da diese Substrate in der Regel in Rollenform mit endlicher Länge zur Verfügung gestellt werden. Batch operation performed, since these substrates are usually provided in roll form with finite length.
Dabei ist es von Vorteil, wenn sowohl die Keimschicht als auch die Deckschicht vom gleichen Targetmaterial gesputtert werden können. D.h. das gleiche Material erfüllt prinzipiell die entsprechende Funktion. Dabei ist es möglich das jeweilige in den Beschichtungsbereich zugeführte Gasgemisch zum einen für die Keimschicht und zum anderen für die Deckschicht in jedem Beschich- tungsschritt anzupassen, um somit die jeweilige Funktion zu optimieren. Dies erlaubt eine besonders ökonomische Vorwärts + Rückwärtsbeschichtung durch Hin- und Herwickeln (bei jedem Umwickeln wird ein System mit Keim- schicht - Silber - Deckschicht abgeschieden). Das Mehrschichtsystem kann ohne zeitaufwändige Belüftungsvorgänge zum Umhängen der Rolle auch mit mehreren Silberschichten sowie Keim- und Deckschichten hergestellt werden. Die Targets für die Ausbildung der Keimschicht, der Silberschicht und der Deckschicht sind dabei in Vorschubachsrichtung des Substrats nacheinander angeordnet. Die Targets für die Ausbildung der Keimschicht und der Deckschicht können aus dem gleichen Material gebildet sein. It is advantageous if both the seed layer and the cover layer can be sputtered from the same target material. That is, the same material basically fulfills the corresponding function. In this case, it is possible to adapt the respective gas mixture fed into the coating area, firstly for the seed layer and secondly for the covering layer in each coating step, in order to thus optimize the respective function. This allows a particularly economical forward + backward coating by winding back and forth (with each wrapping is a system with germination). layer - silver - covering layer deposited). The multi-layer system can be produced without time-consuming ventilation operations for hanging the role with multiple silver layers and seed and cover layers. The targets for the formation of the seed layer, the silver layer and the cover layer are arranged successively in the feed axis direction of the substrate. The targets for the formation of the seed layer and the cover layer may be formed of the same material.
Wird bei der Beschichtung das Substrat von Rolle zu Rolle gewickelt, kann je nach Vorschubrichtung des Substrats alternierend wechselnd mit jeweils einem Target einmal eine Keimschicht und bei entgegengesetzter Vorschubrichtung eine Deckschicht ausgebildet werden. Dadurch können insbesondere bei Mehrschichtsystemen mit mehreren Silberschichten, die jeweils von einer Keim- und einer Deckschicht eingeschlossen sind, die Zeit und der Aufwand für die Herstellung verringert werden. If, in the coating, the substrate is wound from roll to roll, depending on the feed direction of the substrate, a seed layer can be formed alternately alternately with one target at a time, and a cover layer can be formed with the opposite feed direction. As a result, in particular in the case of multi-layer systems with several silver layers, which are each enclosed by a seed layer and a cover layer, the time and expense for production can be reduced.
Es ist dabei nicht zwingend notwendig, dass mehrere erfindungsgemäße Mehrschichtsysteme durch Hin- und Herwickeln abgeschieden werden. Eine weitere Möglichkeit besteht darin nach jedem Beschichtungsschritt (zur Ab- scheidung eines Mehrschichtsystems) die beschichtete Rolle zu entnehmen und die Rolle auf die ursprüngliche Abwickelstation zu laden und ebenso wie im Beschichtungsschritt 1 zu beschichten. It is not absolutely necessary that several multilayer systems according to the invention are deposited by back and forth winding. Another possibility consists of removing the coated roll after each coating step (for depositing a multi-layer system) and loading the roll onto the original unwinding station and coating same as in the coating step 1.
Für die Ausbildung der Keim- und Deckschicht können Mischoxide ZnO:X mit X z.B. Al203, Ga203, Sn02, ln203 oder MgO verwendet werden. Dabei können entsprechende Targets mit der jeweiligen Zusammensetzung, also reines ZnO oder mindestens ein weiteres der genannten Oxide für die Beschichtung genutzt werden. Der Anteil dieser Oxide, die zusätzlich zum ZnO in der Keim- und Deckschicht enthalten ist, sollte maximal 20 % Massenprozent betragen, ein Anteil von 10 Masse-% ist dann zu bevorzugen, um vor allem die Ausprägung der kristallinen Struktur für die Keimschicht zu gewährleisten. For the formation of the seed and cover layer mixed oxides ZnO: X with X, for example Al 2 0 3 , Ga 2 0 3 , Sn0 2 , ln 2 0 3 or MgO can be used. In this case, corresponding targets with the respective composition, ie pure ZnO or at least one other of the said oxides can be used for the coating. The proportion of these oxides, which is in addition to ZnO contained in the seed and cover layer, should be a maximum of 20% by mass, a proportion of 10 mass% is then preferable to ensure especially the expression of the crystalline structure for the seed layer ,
Die Keimschicht und/oder die Deckschicht sollten eine Schichtdicke im Bereich 5 nm bis 15 nm und die Silberschicht eine Schichtdicke zwischen 5 nm und 25 nm, bevorzugt 10 nm aufweisen. Es besteht vorteilhaft die Möglichkeit, zusätzliche dielektrische Schichten auszubilden, die ein solches Mehrschichtsystem von beiden Seiten einfassen. The seed layer and / or the cover layer should have a layer thickness in the range 5 nm to 15 nm and the silver layer a layer thickness between 5 nm and 25 nm, preferably 10 nm. It is advantageous to be able to form additional dielectric layers which enclose such a multilayer system from both sides.
Zur Realisierung eines erfindungsgemäßen Mehrsilberschichtsystems sind in einer Abfolge von Beschichtungsschritten zwei oder mehrere To realize a multi-silver layer system according to the invention, two or more are in a sequence of coating steps
Einsilberschichtsysteme, bevorzugt drei Einsilberschichtsysteme gemäß Figur 2 auf einem Substrat abzuscheiden. Bei einem Einsilberschichtsystem handelt es sich um einen Aufbau aus einer dielektrischen Schicht, einer dünnen Keim-, einer Silberschicht, einer Deckschicht und einer abschließenden dielektrischen Schicht (siehe Figur 1).  Monilayer systems, preferably three monoside layer systems according to Figure 2 to deposit on a substrate. A monoseal layer system is a construction of a dielectric layer, a thin seed layer, a silver layer, a cover layer and a final dielectric layer (see FIG. 1).
Um die gewünschten optischen Eigenschaften erreichen zu können, sind die Dicken der Silberschichten sowie die Dicken der dielektrischen Schichten anzupassen. In order to achieve the desired optical properties, the thicknesses of the silver layers and the thicknesses of the dielectric layers must be adapted.
Die dielektrischen Schichten haben eine Brechzahl von n > 1,8 bei einer Wellenlänge von 550 nm sowie geringere Absorption, und können bevorzugt aus ln203 ausgebildet sein. The dielectric layers have a refractive index of n> 1.8 at a wavelength of 550 nm and lower absorption, and may preferably be formed of ln 2 0 3 .
Ein zwischen zwei Silberschichten ausgebildeter dielektrischer Schichtaufbau, die sich aus Deckschicht, dielektrischer Schicht und Keimschicht zusammensetzt, hat die Wirkung einer dielektrischen Abstandsschicht in einem optischen Filtersystem zur Definition der Lage des spektralen Transmissionsbereiches und der farblichen Anmutung eines Verbundglases, wie sie aus dem Stand der Technik bekannt ist. Es ist von besonderem, erfindungsgemäßen Vorteil, dass die Dicken der Keim- und Deckschichten zur Schichtdicke dielektrischer Abstandsschichten beitragen, da sie eine entsprechende optische Wirkung, wie andere dielektrische Materialien hervorrufen und zur gesamten optischen Wirkung beitragen. Der Beitrag der Keim- und Deckschicht zur dielektrischen Dicke im Schichtsystem kann mit ihrer optischen Brechzahl und geometrischen Dicke im Aufbau des Mehrschichtsystems berücksichtigt werden. Die optische Brechzahl von ZnO bei einer Wellenlänge von 550 nm beträgt je nach Abscheidebe-dingungen ca. 1,95 - 2,05. Sie kann durch den Anteil an weiterem Oxid, das in einer Keim- und/oder Deckschicht enthalten ist geringfügig davon abweichen. Dadurch ist eine Anpassung an die gewünschte optische Wirkung im Zusammenwirken mit anderen dielektrischen Schichten aus anderen Werkstoffen möglich. Bei der Ausbildung der Mehrschichtsysteme kann bei der Vakuumbeschich- tung für die Ausbildung der Silberschicht sowie der Keim- und Deckschicht auf drei Targets zurückgegriffen werden, die in Vorschubachsrichtung bei der Be- Schichtung nacheinander angeordnet sind, und/oder genutzt werden können.A dielectric layer structure formed between two silver layers, which is composed of cover layer, dielectric layer and seed layer, has the effect of a dielectric spacer layer in an optical filter system for defining the position of the spectral transmission range and the color appearance of a laminated glass, as known from the prior art is known. It is of particular advantage according to the invention that the thicknesses of the seed and cover layers contribute to the layer thickness of dielectric spacer layers, since they produce a corresponding optical effect, like other dielectric materials, and contribute to the overall optical effect. The contribution of the seed and cover layer to the dielectric thickness in the layer system can be taken into account with its optical refractive index and geometric thickness in the construction of the multilayer system. The optical refractive index of ZnO at a wavelength of 550 nm is about 1.95 to 2.05, depending on the deposition conditions. It may differ slightly from the proportion of further oxide contained in a germination and / or cover layer. This makes it possible to adapt to the desired optical effect in cooperation with other dielectric layers made of other materials. In the case of the formation of the multilayer systems, three targets can be used in the vacuum coating for the formation of the silver layer and the seed and cover layer, which are arranged successively in the feed axis direction during the coating and / or can be used.
Dies hat insbesondere bei einer Beschichtung von Rolle zu Rolle, wie es im Batchbetrieb bei der Beschichtung von Foliensubstraten durchgeführt wird, den Vorteil, dass bei einer Ausbildung eines Schichtaufbaus, bei dem mehrere erfindungsgemäße Mehrschichtensysteme übereinander ausgebildet werden sollen, der apparative Aufbau und der Zeitaufwand reduziert werden können.This has the advantage, in particular in the case of a roll-to-roll coating, as is carried out in the batch operation in the coating of film substrates, that the design and the expenditure of time are reduced when forming a layer structure in which several multilayer systems according to the invention are to be formed one above the other can be.
So kann unabhängig von der Bewegungsrichtung des Substrats zuerst eine Keimschicht mit einem keramischen Target ZnO und/oder ZnO:X, dann die Silberschicht mit einem Silbertarget und die Deckschicht mit einem zweiten ZnO und/oder ZnO:X Target ausgebildet werden. Die Verfahrensbedingungen und hier insbesondere die Gaszusammensetzung, die in den Beschichtungsbe- reich für Keimschicht / Deckschicht zugeführt wird, können in jedem Beschich- tungsschritt dabei konstant bzw. gleich gehalten werden. Thus, independently of the direction of movement of the substrate, first a seed layer with a ceramic target ZnO and / or ZnO: X, then the silver layer with a silver target and the cover layer with a second ZnO and / or ZnO: X target can be formed. The process conditions, and in particular the gas composition, which is introduced into the coating layer for seed layer / covering layer can be kept constant or equal in each coating step.
Während der Ausbildung der Keim- und Deckschichten sollte das eingesetzte Gasgemisch (Sputtergas) aus Argon, Sauerstoff und Wasserstoff bestehen und eine für die Keim- sowie Deckschicht abgestimmte Zusammensetzung aufweisen. Dabei sollte der Anteil an Sauerstoff und Wasserstoff im Sputtergas in einem bestimmten Bereich (Orientierungswert ist < 10 %, kann aber durch entsprechendes Beschichtungsequipment, wie Gaseinlass und Pumpenanord- nung abweichen) liegen, um zum einen die gewünschte Schichtstruktur für eine optimale, das Schichtwachstum der nachfolgend aufgebrachten Silberschicht positiv beeinflussende Keim-Wirkung zu erreichen und zum anderen optisch transparente (absorptionsfreie) Schichten abzuscheiden. Die Beschichtung kann bei einem typischen Druck innerhalb des Beschichtungsbereiches von 0,4 - 1,0 Pa erfolgen. During the formation of the seed and cover layers, the gas mixture used (sputtering gas) should consist of argon, oxygen and hydrogen and have a composition adapted to the seed and cover layer. In this case, the proportion of oxygen and hydrogen in the sputtering gas in a certain range (orientation value is <10%, but may vary by appropriate coating equipment, such as gas inlet and Pumpenanord- tion) are on the one hand, the desired layer structure for optimal, the layer growth of subsequently applied silver layer to achieve positively influencing germination effect and on the other to deposit optically transparent (absorption-free) layers. The coating can be at a typical pressure within the coating range of 0.4-1.0 Pa.
Für die Deckschicht auf dem Silber ist ebenso eine geeignete Gaszusammensetzung zu wählen, um eine ausreichende Schutzwirkung zu gewährleisten. Hierbei ist die Sauerstoffkonzentration gering zu halten (Orientierungswert ist < 10 % bezogen auf die Gesamtgasmenge). Hierfür ist es zusätzlich von Vorteil, den Anteil an Wasserstoff höher als den Sauerstoffanteil zu wählen (Orientierungswert ist < 15 % bezogen auf die Gesamtgasmenge). For the topcoat on the silver also a suitable gas composition should be chosen to ensure a sufficient protective effect. In this case, the oxygen concentration is to be kept low (orientation value is <10% based on the total amount of gas). For this purpose, it is additionally advantageous to choose the proportion of hydrogen higher than the oxygen content (Orientation value is <15% based on the total gas quantity).
Durch den erfindungsgemäßen Einsatz von Keim- und Deckschichten aus ZnO und/oder ZnO:X kann die Qualität der Silberschichten verbessert werden. Dies ist einerseits durch ein verbessertes Silberwachstum, und andererseits durch die entsprechende Schutzwirkung der Deckschicht erklärbar. Als weiterer positiver Einfluss ist die Ausbildung sehr glatter Grenzschichten zwischen der Keimschicht und der nachfolgenden Silberschicht und zwischen der abgeschiedenen Silberschicht und der auf sie aufgebrachten Deckschicht anzuse- hen. The inventive use of seed and outer layers of ZnO and / or ZnO: X, the quality of the silver layers can be improved. This can be explained on the one hand by an improved silver growth, and on the other hand by the corresponding protective effect of the covering layer. Another positive influence is the formation of very smooth boundary layers between the seed layer and the subsequent silver layer and between the deposited silver layer and the top layer applied to it.
Es ist bekannt, dass dünne Silberschichten auf Grund wachstumsbedingter, struktureller Eigenschaften über Eigenschaften verfügen, die sich von denen des massiven Materials noch erheblich unterscheiden und die erzielbaren Ei- genschaften der Schichtsysteme limitieren. It is known that due to growth-related structural properties, thin silver layers have properties which still differ considerably from those of the massive material and limit the achievable properties of the layer systems.
Durch das Aufbringen einer wachstumsbeeinflussenden dünnen Keimschicht oder im englischen Sprachraum„Seedlayer" genannten Schicht soll erreicht werden, dass durch ein bereits bei niedriger Schichtdicke einsetzendes geord- netes Wachstum (Schichtbildung) bessere, dem massiven Ag ähnlichere Eigenschaften erzielt werden. Bei der Erfindung gelingt dies besonders gut, da die Keimschichten aus dem ZnO und/oder ZnO.X eine kristalline Struktur aufweisen, deren Struktur eine epitaktische Beziehung zur Struktur des Silbers aufweist. The application of a growth-influencing thin seed layer or layer called "seed layer" in the English language is intended to achieve better properties which are more similar to solid Ag by means of a layered growth (layer formation) which begins even at low layer thickness particularly good, since the seed layers of the ZnO and / or ZnO.X have a crystalline structure whose structure has an epitaxial relationship to the structure of the silver.
Wichtig ist insbesondere, dass es die Beschichtungsbedingungen erlauben, dass die Keimschicht a) überwiegend kristallin aufwächst und b) gleichzeitig die für das auf ihr angestrebte geordnete Wachstum der Silberschicht eine bestimmte kristalline Vorzugsrichtung besitzt. It is particularly important that the coating conditions allow the seed layer a) predominantly grows up in a crystalline manner and b) at the same time has a certain crystalline preferred direction for the desired orderly growth of the silver layer.
Bei Mehrsilberschichtsystemen, bei denen mehrere Mehrschichtsysteme übereinander ausgebildet sind, konnte auch über Messung des Flächenwiderstandes nachgewiesen werden, dass die elektrische Leitfähigkeit der zweiten, dritten und auch vierten Silberschicht vergleichbar zur ersten ist. Mit anderen Worten, es kann damit gezeigt werden, dass die Schichtqualität der Silberschichten und damit auch die geringe Rauheit der Grenzschichten in einem Schichtstapel, der aus mehreren, solcher Schicht - Sequenzen besteht, realisiert werden (siehe Figur 3). In the case of multilayer coating systems in which several multilayer systems are formed on top of each other, it was also possible to demonstrate via measurement of the sheet resistance that the electrical conductivity of the second, third and also fourth silver layer is comparable to the first one. In other words, it can be shown that the layer quality of the silver layers and thus also the low roughness of the boundary layers in one Layer stack, which consists of several such layer sequences, can be realized (see Figure 3).
An hocheffizienten Sonnenschutzschichten für Verglasungen im Automobilbau konnte eine angestrebte total solare Transmission TTS < 40 % sowie Tvis > 70 % und Rvis < 10 % realisiert werden. Es sind aber auch Schichtsysteme möglich, die einen höheren Rvis-Wert aufweisen. Highly efficient sun protection layers for glazing in the automotive industry achieved a target total solar transmission T TS <40% and T vis > 70% and R vis <10%. But there are also layer systems possible, which have a higher R vis value.
Die Schichtdicken der Keim- und der Deckschicht(en) können auch so gewählt werden, dass sie gezielt zur Interferenz bestimmter elektromagnetischerThe layer thicknesses of the seed layer and the cover layer (s) can also be chosen so that they are targeted to the interference of certain electromagnetic
Strahlung genutzt werden können. Bei Mehrschichtsystemen mit mehreren Silberschichten können die Keim- und/oder Deckschichten auch unterschiedliche Schichtdicken aufweisen, so dass sie Interferenz bei unterschiedlichen Wellenlängen bewirken können. Radiation can be used. In multilayer systems with several silver layers, the seed and / or cover layers can also have different layer thicknesses, so that they can cause interference at different wavelengths.
So konnte bei einem erfindungsgemäßen IVlehrschichtsystemaufbau mit drei von jeweils mit einer Keim- undDeckschicht sowie dielektrischen Schichten eingefassten Silberschichten auf einer PET-Folie als Substrat und der Verwendung einer so beschichteten Folie in einem Glaslaminat (Figur 4) ein Gesamt- anteil an transmittierter Strahlung TTs < 40 %, der Anteil an transmittierterThus, in the case of an inventive IV system structure with three silver layers each enclosed by a seed and cover layer and dielectric layers on a PET film as substrate and the use of such a coated film in a glass laminate (FIG. 4), a total proportion of transmitted radiation T T s <40%, the proportion of transmitted
Strahlung im Wellenlängenspektrum des sichtbaren Lichts Tvis > 70 %, der Anteil der reflektierten Strahlung im Wellenlängenspektrum des sichtbaren Lichts Rvis < 10 % gehalten werden. Nachfolgend soll die Erfindung beispielhaft näher erläutert werden. Radiation in the wavelength spectrum of visible light T vis > 70%, the proportion of the reflected radiation in the wavelength spectrum of visible light R vis <10% are kept. The invention will be explained in more detail by way of example in the following.
Dabei zeigen: Showing:
Figur 1 in schematischer Form ein Beispiel, bei dem eine Silberschicht von einer Keim- und Deckschicht eingeschlossen ist; Fig. 1 shows in schematic form an example in which a silver layer is enclosed by a seed and cover layer;
Figur 2 ein Beispiel in schematischer Form, bei dem drei Silberschichten mit jeweils einer Keim- und Deckschicht in einem Mehrschichtsystemaufbau vorhanden sind; Figure 2 is an example in schematic form, in which three silver layers each having a seed and cover layer are present in a multi-layer system construction;
Figur 3 ein Diagramm mit berechneten und gemessenen elektrischen Flä- chenwiderständen bei unterschiedlicher Anzahl von Silberschichten innerhalb eines Mehrschichtsystems und FIG. 3 shows a diagram with calculated and measured electrical areas. chenwiderständen with different numbers of silver layers within a multilayer system and
Figur 4 eine schematische Darstellung für den Einbau eines erfindungsgemäßen Mehrschichtsystems mit in einem Verbundglas eingebetteter Kunststofffolie. Figure 4 is a schematic representation of the installation of a multi-layer system according to the invention embedded in a laminated glass plastic film.
Das in Figur 1 gezeigte Beispiel eines Mehrschichtsystems mit einer Silberschicht 4 wurde in einem Beschichtungsschritt auf dem PET-Substrat 1 aufgetragen. Dabei wurde als dielektrische Schicht eine ln203 Schicht 2 mit einer Schichtdicke von 25 nm mittels Magnetronsputtern in einem reaktiven Prozess unter Verwendung von metallischen Indiumtargets appliziert. The example of a multilayer system with a silver layer 4 shown in FIG. 1 was applied to the PET substrate 1 in a coating step. As a dielectric layer, an ln 2 O 3 layer 2 having a layer thickness of 25 nm was applied by magnetron sputtering in a reactive process using metallic indium targets.
In der darauf folgenden Beschichtungsstation wurde die Keimschicht 3 mit einer Schichtdicke von 8 nm von einem keramischen mit 2 % Al203 dotiertem ZnO:X-Target abgeschieden. Dabei wurden dem Sputtergas Argon jeweils ca. 5 % Sauerstoff und Wasserstoff beigemengt. Die Abscheidung der metallischen Silberschicht 4 von 10 nm geschah durch Magnetronzerstäubung in einem Argonplasma. Für die Abscheidung der Deckschicht 5 (Schichtdicke 7 nm) wurde ebenfalls ein mit 2 % Al203 dotiertes ZnO:X-Target verwendet. Dem Argon wurden in diesem Fall 5 % Sauerstoff und 8 % Wasserstoff beigemengt. Die abschließende dielektrische Schicht 6 aus ln203 mit einer Schichtdicke von 30 nm wurde wiederum durch einen reaktiven Prozess unter Verwendung von metallischen Indiumtargets realisiert. In the subsequent coating station, the seed layer 3 was deposited with a layer thickness of 8 nm of a ceramic with 2% Al 2 0 3 doped ZnO: X target. In each case about 5% oxygen and hydrogen were added to the sputtering gas argon. The deposition of the metallic silver layer 4 of 10 nm was carried out by magnetron sputtering in an argon plasma. For the deposition of the cover layer 5 (layer thickness 7 nm), a ZnO: X target doped with 2% Al 2 O 3 was likewise used. The argon in this case 5% oxygen and 8% hydrogen were added. The final dielectric layer 6 of ln 2 O 3 with a layer thickness of 30 nm was again realized by a reactive process using metal indium targets.
Mit diesem Einsilberschichtsystem wurde bei der einen Silberschicht 4 ein Flächenwiderstand von 6,2 Ohmn erreicht. In the case of one silver layer 4, this sheet silver layer system achieved a surface resistance of 6.2 ohms.
Der in Figur 2 gezeigte Mehrschichtsystemaufbau mit drei Silberschichten 4, die jeweils zwischen einer Keimschicht 3 und Deckschicht 5 ausgebildet worden sind, wurde durch drei Beschichtungsschritte realisiert. Zur Demonstration der Funktion der Keimschicht 3 und Deckschicht 5 wurde das zur Figur 1 beschriebene Mehrschichtsystem identisch dreimal aufeinander beschichtet. The multilayer system structure with three silver layers 4 shown in FIG. 2, each formed between a seed layer 3 and cover layer 5, was realized by three coating steps. To demonstrate the function of the seed layer 3 and cover layer 5, the multilayer system described for FIG. 1 was coated identically three times on top of one another.
Für die Realisierung der geforderten Eigenschaften hinsichtlich TTS/ Tvis und Rvis mussten jedoch die Dicken der ln203-Schichten 2 und 6 sowie der Silberschichten 4 angepasst werden. Die Keimschichten 3 und Deckschichten 5 wurden in jedem Beschichtungsschritt unter gleichen Bedingungen hergestellt. For the realization of the required properties with respect to T TS / T vis and R vis , however, the thicknesses of the In 2 O 3 layers 2 and 6 as well as the silver layers 4 had to be adapted. The seed layers 3 and cover layers 5 were in each coating step under the same conditions.
In Figur 2 ist ein Aufbau gezeigt, bei dem auf einem PET-Substrat 1 drei erfindungsgemäße Mehrschichtsysteme, die jeweils mit einer Keimschicht 3, einer Silberschicht 4 und einer Deckschicht 5 gebildet sind, ausgebildet worden sind. Die Schichtdicken und die Zusammensetzung der Keimschichten 3 und der Deckschichten 5 entsprechen dem Beispiel gemäß Figur 1. FIG. 2 shows a construction in which three multi-layer systems according to the invention, which are each formed with a seed layer 3, a silver layer 4 and a cover layer 5, have been formed on a PET substrate 1. The layer thicknesses and the composition of the seed layers 3 and the cover layers 5 correspond to the example according to FIG. 1.
So sollte die auf dem Substrat 1 ausgebildete dielektrische Schicht 2 aus ln203 eine Schichtdicke von 20 nm bis 50 nm, die dielektrischen Schichten aus ln203, die zwischen einer Keimschicht 3 und einer Deckschicht 5 ausgebildet sind, sollten eine Dicke im Bereich 40 nm bis 150 nm aufweisen. Die dielektrische Schicht aus ln203, die an der äußeren dem Substrat 1 abgewandten Oberfläche ausgebildet ist, sollte eine Dicke im Bereich 20 nm bis 70 nm haben. Sämt- liehe Silberschichten sollten eine Schichtdicke im Bereich 7 nm bis 25 nm aufweisen. Thus, the dielectric layer 2 of ln 2 O 3 formed on the substrate 1 should have a layer thickness of 20 nm to 50 nm, the dielectric layers of In 2 O 3 formed between a seed layer 3 and a cap layer 5 should have a thickness of .mu.m Range 40 nm to 150 nm. The dielectric layer of In 2 O 3 formed on the outer surface facing away from the substrate 1 should have a thickness in the range of 20 nm to 70 nm. All silver layers should have a layer thickness in the range of 7 nm to 25 nm.
Anhand des experimentell bestimmten elektrischen Flächenwiderstandes an einem Mehrschichtsystem mit einer Silberschicht und einer Schichtdicke von 10 nm wurde der zu erwartende elektrische Flächenwiderstand bei einer Parallelschaltung mit weiteren 10 nm dicken Silberschichten abgeschätzt. Die ermittelten elektrischen Widerstände in den Mehrschichtsystemaufbauten mit mehreren Silberschichten wurden mit theoretisch berechneten Werten verglichen. Die Darstellung in Figur 3 verdeutlicht, dass die berechneten Wer- te mit den Messwerten für ein Zwei-, Drei- und Viersilber-Schichtsystem kongruent sind. Dies bestätigt, dass auch die zweite, dritte und vierte Silberschicht in einem Mehrschichtsystem mit vergleichbar guten Silbereigenschaften herzustellen ist. Dieser Sachverhalt ergibt sich aus dem in Figur 3 gezeigten Diagramm und belegt, dass es keine Erhöhung der Grenzflächenrauheit an den Silberschichten mit steigender Anzahl an Silberschichten gibt. On the basis of the experimentally determined electrical surface resistance on a multilayer system with a silver layer and a layer thickness of 10 nm, the expected electrical surface resistance was estimated in a parallel connection with further 10 nm thick silver layers. The detected electrical resistances in the multiple silver multilayer system assemblies were compared to theoretically calculated values. The illustration in FIG. 3 clarifies that the calculated values are congruent with the measured values for a two-, three- and four-silver layer system. This confirms that also the second, third and fourth silver layers can be produced in a multilayer system with comparably good silver properties. This situation results from the diagram shown in FIG. 3 and proves that there is no increase in the surface roughness on the silver layers as the number of silver layers increases.
Im Weiteren kann das Mehrschichtsystem bestehend aus drei übereinander ausgebildeten der Erfindung entsprechenden Mehrschichtsystemen durch Anpassung einzelner Schichtdicken dahingehend optimiert werden, um die Eigenschaften TTs < 40 %, Tvis > 70 % und Rvis < 10 % in einem Glaslaminat zu realisieren. Der Aufbau des„Glaslaminates" ist in Figur 4 aufgezeigt. Dabei sind 1 ein PET Substrat, 7 ein erfindungsgemäßes Mehrschichtsystem mit drei Silberschichten 4, 8 PVB (Polyvinyl Butyral)- Schichten und 9 Glas. Furthermore, the multilayer system consisting of three multi-layer systems corresponding to one another and designed according to the invention can be optimized by adapting individual layer thicknesses in order to realize the properties T T s <40%, T vis > 70% and R vis <10% in a glass laminate. The construction of the "glass laminate" is shown in FIG 1 is a PET substrate, 7 a multilayer system according to the invention with three silver layers 4, 8 PVB (polyvinyl butyral) layers and 9 glass.
Im in Figur 4 dargestellten Beispiel wurden die Schichtdicken für die Keimschichten 3 bei 8 nm sowie die Deckschichten 5 bei 7 nm belassen. Die Silberschichten 4 hatten folgende Dicken (vom Substrat 1 beginnend) erste Silberschicht = 8,7 nm, zweite Silberschicht = 16,9 nm und dritte Silberschicht = 13,7 nm. Die dielektrischen Schichten 6 wurden aus ln203 hergestellt und hatten folgende Dicken ebenfalls ausgehend vom Substrat 1 - 1. Schicht aus ln203 = 24 nm, 2. Schicht aus ln203 = 76 nm, 3. Schicht aus ln203 = 90 nm und 4. In the example shown in FIG. 4, the layer thicknesses for the seed layers 3 at 8 nm and the cover layers 5 were left at 7 nm. The silver layers 4 had the following thicknesses (starting from the substrate 1) first silver layer = 8.7 nm, second silver layer = 16.9 nm and third silver layer = 13.7 nm. The dielectric layers 6 were made of ln 2 O 3 and had the following Thicknesses also starting from the substrate 1 - 1st layer of ln 2 O 3 = 24 nm, 2nd layer of ln 2 O 3 = 76 nm, 3rd layer of ln 2 0 3 = 90 nm and 4.
Schicht aus ln203 = 32 nm. Layer of ln 2 0 3 = 32 nm.
Mit diesem Schichtsystem wurden im„Glaslaminat" folgende Werte erreicht: Tvis (A, 2°) = 72,4 % With this layer system, the following values were achieved in the "glass laminate": T vis (A, 2 °) = 72.4%
Rvis (A, 2°) = 9,1 % R vis (A, 2 °) = 9.1%
TTS (ISO) = 38,1 % T TS (ISO) = 38.1%

Claims

Patentansprüche claims
1. Mehrschichtsystem für eine selektive Reflexion elektromagnetischer Strahlung aus dem Wellenlängenspektrum des Sonnenlichts, das mit mindestens einer Schicht aus Silber oder einer Silberlegierung, die mit jeweils einer Keimschicht und einer Deckschicht an beiden Oberflächen vollflächig beschichtet ist und die Keim- und Deckschicht aus einem dielektrischen Werkstoff gebildet sind, auf einem flexiblen poly- meren Substrat ausgebildet ist, 1. multilayer system for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight, which is coated with at least one layer of silver or a silver alloy, each with a seed layer and a cover layer on both surfaces over the entire surface and the seed and cover layer of a dielectric material are formed on a flexible polymeric substrate,
dadurch gekennzeichnet, dass die Keimschicht (3) und die Deckschicht (5) aus ZnO und/oder ZnO:X gebildet sind.  characterized in that the seed layer (3) and the cover layer (5) of ZnO and / or ZnO: X are formed.
2. Mehrschichtsystem nach Anspruch 1, dadurch gekennzeichnet, dass X ausgewählt ist aus Al203, Ga203, Sn02, ln203 und MgO und mit einem Anteil von maximal 20 Masse-% enthalten ist. 2. Multilayer system according to claim 1, characterized in that X is selected from Al 2 0 3 , Ga 2 0 3 , Sn0 2 , ln 2 0 3 and MgO and is contained in a proportion of at most 20% by mass.
3. Mehrschichtsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Keimschicht (3) und/oder die Deckschicht (5) eine Schichtdicke im Bereich 5 nm bis 15 nm und die Silberschicht (4) eine Schichtdicke zwischen 5 nm und 25 nm aufweist. 3. Multilayer system according to one of the preceding claims, characterized in that the seed layer (3) and / or the cover layer (5) has a layer thickness in the range 5 nm to 15 nm and the silver layer (4) has a layer thickness between 5 nm and 25 nm ,
4. Mehrschichtsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen einer Deckschicht (5), die auf einer Silberschicht (4) ausgebildet ist, und einer Keimschicht (3), die unter einer weiteren Silberschicht (4) ausgebildet ist, eine Schicht aus einem dielektrischen Werkstoff, bevorzugt ln203, ausgebildet ist. 4. Multilayer system according to one of the preceding claims, characterized in that between a cover layer (5) which is formed on a silver layer (4), and a seed layer (3), which is formed under a further silver layer (4), a layer of a dielectric material, preferably ln 2 0 3 , is formed.
5. Mehrschichtsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens zwei, bevorzugt drei Mehrschichtsysteme mit jeweils einer Silberschicht (4) auf einem Substrat (1) übereinander ausgebildet sind. 5. Multilayer system according to one of the preceding claims, characterized in that at least two, preferably three multi-layer systems, each with a silver layer (4) on a substrate (1) are formed one above the other.
Mehrschichtsystem nach einem der vorehrgehenden Ansprüche, dadurch gekennzeichnet, dass eine dielektrische Schicht (2) zwischen einem Substrat (1) und einem Mehrschichtsystem ausgebildet ist, die eine Schichtdicke im Bereich 20 nm bis 50 nm aufweist. Multilayer system according to one of the preceding claims, characterized in that a dielectric layer (2) is formed between a substrate (1) and a multilayer system having a layer thickness in the range 20 nm to 50 nm.
Mehrschichtsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen Mehrschichtsystemen mit jeweils einer Silberschicht (4) jeweils eine dielektrische Schicht (6) mit einer Schichtdicke im Bereich 40 nm bis 150 nm und/oder an der äußeren, dem Substrat (1) abgewandten Oberfläche eine weitere dielektrische Schicht (6) mit einer Schichtdicke im Bereich 20 nm bis 70 nm ausgebildet ist/sind. Multilayer system according to one of the preceding claims, characterized in that between multilayer systems each having a silver layer (4) in each case a dielectric layer (6) with a layer thickness in the range 40 nm to 150 nm and / or on the outer, the substrate (1) facing away Surface is formed a further dielectric layer (6) with a layer thickness in the range 20 nm to 70 nm / are.
Verfahren zur Herstellung eines Mehrschichtsystems nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei einem Vakuumbeschichtungsverfahren, insbesondere Magnetronsputtern, Targets für die Ausbildung der Keimschicht(en) (3), der Silber- schicht(en) (4) und der Deckschicht(en) (5) eingesetzt werden, die in Vorschubachsrichtung des Substrats (1) nacheinander angeordnet und dabei die Targets für die Ausbildung der Keimschicht(en) (3) und der Deckschicht(en) (5) aus dem gleichen Material gebildet sind. Method for producing a multilayer system according to one of the preceding claims, characterized in that in a vacuum coating method, in particular magnetron sputtering, targets for the formation of the seed layer (s) (3), the silver layer (s) (4) and the cover layer (s ) (5) are used, which are arranged in the feed axis direction of the substrate (1) successively and thereby the targets for the formation of the seed layer (s) (3) and the cover layer (s) (5) are formed from the same material.
Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Gasgemisch, das für die Ausbildung der Keimschicht(en) (3) und der Deckschichten) (5) eingesetzt wird, auf die jeweilige Schichtausbildung für die Keimschicht(en) (3) und die Deckschicht(en) (5) abgestimmt wird. A method according to claim 8, characterized in that the gas mixture which is used for the formation of the seed layer (s) (3) and the cover layers (5), to the respective layer formation for the seed layer (s) (3) and the cover layer (5).
10. Verfahren nach Anspruch 9, dadurch im Gasgemisch für die Ausbildung der Deckschicht(en) (5) ein kleinerer Sauerstoffanteil und ein höherer Wasserstoffanteil, als bei der Ausbildung der Keimschicht(en) (3) eingehalten wird. 10. The method according to claim 9, characterized in the gas mixture for the formation of the cover layer (s) (5) a smaller proportion of oxygen and a higher hydrogen content, as in the formation of the seed layer (s) (3) is maintained.
Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das Substrat bei der Beschichtung von Rolle zu Rolle gewickelt wird, so dass je nach Vorschubrichtung des Substrats alternierend wechselnd mit jeweils einem Target einmal eine Keimschicht (3) und bei entgegengesetzter Vorschubrichtung eine Deckschicht (5) ausgebildet wird. Method according to one of claims 8 to 10, characterized in that the substrate is wound in the coating from roll to roll, so that depending on the feed direction of the substrate alternately alternating with one target once a seed layer (3) and in opposite feed direction a cover layer (5) is formed.
EP12769389.3A 2011-10-13 2012-09-28 Multilayer systems for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight and method for producing same Withdrawn EP2766751A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011116191A DE102011116191A1 (en) 2011-10-13 2011-10-13 Multi-layer systems for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight and method for its production
PCT/EP2012/069204 WO2013053608A1 (en) 2011-10-13 2012-09-28 Multilayer systems for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight and method for producing same

Publications (1)

Publication Number Publication Date
EP2766751A1 true EP2766751A1 (en) 2014-08-20

Family

ID=46982572

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12769389.3A Withdrawn EP2766751A1 (en) 2011-10-13 2012-09-28 Multilayer systems for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight and method for producing same

Country Status (14)

Country Link
US (1) US20140233093A1 (en)
EP (1) EP2766751A1 (en)
JP (1) JP2015502559A (en)
KR (1) KR20140084169A (en)
CN (1) CN103874939A (en)
AU (1) AU2012323155C1 (en)
BR (1) BR112014008831A2 (en)
CA (1) CA2848581A1 (en)
DE (1) DE102011116191A1 (en)
IL (1) IL231956A0 (en)
MX (1) MX2014003751A (en)
SG (1) SG11201401353RA (en)
UA (1) UA109973C2 (en)
WO (1) WO2013053608A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10690823B2 (en) 2007-08-12 2020-06-23 Toyota Motor Corporation Omnidirectional structural color made from metal and dielectric layers
US10788608B2 (en) 2007-08-12 2020-09-29 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures
US10870740B2 (en) 2007-08-12 2020-12-22 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures and protective coatings thereon
MX358123B (en) 2011-10-24 2018-08-06 Aditya Birla Nuvo Ltd An improved process for the production of carbon black.
TWI577543B (en) 2013-12-30 2017-04-11 聖高拜塑膠製品公司 Optical film exhibiting improved light to solar gain heat ratio
DE112015001639B4 (en) 2014-04-01 2023-12-14 Toyota Jidosha Kabushiki Kaisha NON-COLOR-SHIFTING MULTI-LAYER STRUCTURES
DE102015102496A1 (en) 2014-10-27 2016-04-28 Almeco Gmbh Temperature and corrosion resistant surface reflector
DE102016110314A1 (en) * 2015-07-07 2017-01-12 Toyota Motor Engineering & Manufacturing North America, Inc. OMNIDIRECTIONAL RED STRUCTURAL COLOR HIGH CHROMA WITH COMBINATION OF SEMICONDUCTOR ABSORBER AND DIELECTRIC ABSORBENT LAYERS
WO2017007750A1 (en) * 2015-07-08 2017-01-12 3M Innovative Properties Company Article and method of making the same
EP3136141A1 (en) 2015-08-26 2017-03-01 Saint-Gobain Performance Plastics Corporation Infrared reflecting film
DE102016114186A1 (en) 2016-08-01 2018-02-01 Von Ardenne Gmbh Low-emission optical multilayer system, low-emission laminate, and optical bandpass filter multilayer system, and methods of making same
CN107092046A (en) * 2017-04-26 2017-08-25 上海默奥光学薄膜器件有限公司 A kind of high reflective mirror of wide spectrum
CN109239820A (en) * 2018-10-19 2019-01-18 布勒莱宝光学设备(北京)有限公司 Light-permeable is used for the Photospot solar reflecting mirror of plant growth
CN113518937A (en) * 2018-11-15 2021-10-19 宁波融光纳米科技有限公司 Optical filter and manufacturing method thereof, display device and toner
DE102019203856A1 (en) * 2019-03-21 2020-09-24 Robert Bosch Gmbh Mirror device for a micromechanical interferometer device, microspectrometer device, and method for producing a microspectrometer device
US11531148B2 (en) 2019-10-02 2022-12-20 Gentex Corporation Optical coatings for glass and glass laminates
CN113403583B (en) * 2021-06-18 2023-02-07 陕西科技大学 Flexible photo-thermal absorption material and preparation method and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061568A (en) * 1989-12-20 1991-10-29 Monsanto Company Solar screening assembly
WO2000037380A1 (en) * 1998-12-18 2000-06-29 Glaverbel Glazing panel
US6586101B2 (en) * 2001-04-18 2003-07-01 Applied Vacuum Coating Technologies Co., Ltd. Anti-reflection coating with transparent surface conductive layer
JP3788613B2 (en) * 2002-12-06 2006-06-21 北海道電力株式会社 Method for forming ZnO transparent conductive film
JP2006156927A (en) * 2004-11-04 2006-06-15 Asahi Glass Co Ltd Electromagnetic wave cutoff film for plasma display, and protective plate for plasma display
US7537677B2 (en) * 2005-01-19 2009-05-26 Guardian Industries Corp. Method of making low-E coating using ceramic zinc inclusive target, and target used in same
JP2008015312A (en) * 2006-07-07 2008-01-24 Mitsui Chemicals Inc Reflector and method for manufacturing the same
EP2125361B1 (en) * 2006-12-28 2019-01-23 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
CN101909873B (en) * 2007-12-28 2016-10-19 3M创新有限公司 For sunlight control and the infrared reflection film of other purposes
US7824777B2 (en) * 2008-03-26 2010-11-02 Southwall Technologies, Inc. Robust optical filter utilizing pairs of dielectric and metallic layers
US20100003511A1 (en) * 2008-07-03 2010-01-07 University Of Florida Research Foundation, Inc. Transparent conducting electrode
EP2338178A1 (en) * 2008-10-21 2011-06-29 Applied Materials, Inc. Transparent conductive zinc oxide display film and production method therefor
KR20110083622A (en) * 2008-11-11 2011-07-20 아사히 가라스 가부시키가이샤 Electrically conductive laminate, and protective plate for plasma display
KR20100089962A (en) * 2009-02-05 2010-08-13 충남대학교산학협력단 PREPARTION METHOD FOR TRANSPARENT CONDUCTING FILM COATED BY AZO/Ag/AZO MULTILAYER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013053608A1 *

Also Published As

Publication number Publication date
BR112014008831A2 (en) 2017-04-25
JP2015502559A (en) 2015-01-22
MX2014003751A (en) 2014-08-27
UA109973C2 (en) 2015-10-26
US20140233093A1 (en) 2014-08-21
WO2013053608A1 (en) 2013-04-18
DE102011116191A1 (en) 2013-04-18
CN103874939A (en) 2014-06-18
SG11201401353RA (en) 2014-09-26
AU2012323155B2 (en) 2015-07-09
CA2848581A1 (en) 2013-04-18
AU2012323155A1 (en) 2014-04-17
IL231956A0 (en) 2014-05-28
AU2012323155C1 (en) 2015-12-24
KR20140084169A (en) 2014-07-04

Similar Documents

Publication Publication Date Title
EP2766751A1 (en) Multilayer systems for selective reflection of electromagnetic radiation from the wavelength spectrum of sunlight and method for producing same
EP3134756B1 (en) Temperature- and corrosion-stable surface reflector
EP2790916B1 (en) Laminated glass for use in vehicles or in architecture
DE4407502A1 (en) Multi-layer coating
EP0564709A1 (en) Coated transparent substrate, use thereof, method and apparatus of manufacturing such coatings, and hafnium-oxynitride HfOxNy with 1.5 x/y 3 and 2.6 n 2.8
DE102014002965A1 (en) Layer system of a transparent substrate and method for producing a layer system
DE202019102388U1 (en) Composite disc with an electrically conductive coating and a dielectric superlattice
DE19616841B4 (en) Coated glassy material panel with high translucency, low solar factor and neutral appearance when reflected and used in a multiple glazing unit
DE102010008518B4 (en) Heat-treatable infrared radiation reflective layer system and method for its production
DE112018006975B4 (en) Optical thin film, optical element and optical system
WO2008017722A1 (en) Temperable, infrared reflecting layer system and method for the production thereof
EP1371745A1 (en) Method and multichamber apparatus to coat a glass substrate with a multilayer SnO/ZnO/Ag/CrNOx
EP0464701A2 (en) Multilayered system with high reflective capability in the infrared spectrum and high transmissivity in the visible light range
DE102011114669B3 (en) Coating system for solar control glass, solar control glass and process for the production of solar control glass
DE3807600C2 (en) Low-reflecting, highly transparent sun protection and / or heat-insulating covering for a substrate made of transparent material, process for producing the covering and uses of the covering, which has a neutral effect in both the external and external view
DE102016114281A1 (en) Layer system and laminated glass
DE102009013960B4 (en) Electromagnetic radiation selectively reflective film for solar control glass
DE102011080961A1 (en) Method for producing a reflection layer system for rear-view mirrors
DE102013112990B4 (en) Solar control layer system with intensive color impression, process for its production and glass unit
DE102011105718B4 (en) Semitransparent layer system with high IR reflection, process for its production and architectural glass element
DE102013104212A1 (en) Bird protection glass used for exterior glazing, has bird-resistant coating comprising nitride(s) of titanium, zinc, tin, strontium-titanium, tungsten-bismuth, iron, silver, iron-silver, niobium, zirconium, tantalum or their alloy
DE102012215059B4 (en) Protective layer for an IR-reflecting layer system, IR-reflecting layer system and method for the production thereof
DE10042194B4 (en) Heat-reflecting layer system for transparent substrates and method for the production
DE112018004832T5 (en) LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM
DE10039412A1 (en) Production of a substrate having a transparent, conductive coating of metal layers and oxide layers comprises depositing a metal layer with the addition of oxygen in the coating chamber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170401