EP2762781B1 - Système et procédé de stockage d'énergie à l'aide de chambres de combustion à lit fluidisé circulant - Google Patents

Système et procédé de stockage d'énergie à l'aide de chambres de combustion à lit fluidisé circulant Download PDF

Info

Publication number
EP2762781B1
EP2762781B1 EP13382033.2A EP13382033A EP2762781B1 EP 2762781 B1 EP2762781 B1 EP 2762781B1 EP 13382033 A EP13382033 A EP 13382033A EP 2762781 B1 EP2762781 B1 EP 2762781B1
Authority
EP
European Patent Office
Prior art keywords
fluidized bed
solids
circulating fluidized
pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13382033.2A
Other languages
German (de)
English (en)
Other versions
EP2762781A1 (fr
Inventor
Juan Carlos Abanades Garcia
Borja ARIAS ROZADA
Yolanda Alvarez Criado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to EP13382033.2A priority Critical patent/EP2762781B1/fr
Priority to ES13382033.2T priority patent/ES2555034T3/es
Priority to PCT/EP2014/051640 priority patent/WO2014118184A1/fr
Publication of EP2762781A1 publication Critical patent/EP2762781A1/fr
Application granted granted Critical
Publication of EP2762781B1 publication Critical patent/EP2762781B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/24Devices for removal of material from the bed
    • F23C10/26Devices for removal of material from the bed combined with devices for partial reintroduction of material into the bed, e.g. after separation of agglomerated parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • F23C10/30Control devices specially adapted for fluidised bed, combustion apparatus for controlling the level of the bed or the amount of material in the bed
    • F23C10/32Control devices specially adapted for fluidised bed, combustion apparatus for controlling the level of the bed or the amount of material in the bed by controlling the rate of recirculation of particles separated from the flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2206/00Fluidised bed combustion
    • F23C2206/10Circulating fluidised bed
    • F23C2206/102Control of recirculation rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2206/00Fluidised bed combustion
    • F23C2206/10Circulating fluidised bed
    • F23C2206/103Cooling recirculating particles

Definitions

  • This invention relates to a system and a method for large scale energy storage in power generation systems using circulating fluidized bed combustors fired with air, or fired with oxygen.
  • This system can be further interconnected with another reactor that captures CO 2 with CaO, thereby enhancing the energy storage density in the system by using the enthalpy of the reversible reaction of CO 2 with CaO.
  • the system and the method of this invention are characterized by a large flexibility between periods of maximum power output and complementary periods of low power output. At maximum power output, a circulation of solids from a high temperature silo to a low temperature silo is established through the system of the invention.
  • part of the thermal energy released in the circulating fluidized bed combustor is used to heat up solids from the low temperature silo and store them in the high temperature silo.
  • part of the thermal energy released during periods of maximum power output comes from the carbonation of CaO and in periods of low power output part of the thermal energy released during combustion is used to calcine CaCO 3 and store CaO.
  • climate change is a physical reality and the signs of its negative consequences are increasingly obvious in many parts of the world. Aggressive climate change mitigation policies are needed to be able to decarbonising the global energy system and stabilize global warming below 2°C. All reasonable scenarios investigating possible paths to decarbonise the energy system with minimum cost predict a substantial penetration of renewable energy and CO 2 capture and storage technologies. The role of these options could be even more important when considering renewed difficulties to deploy nuclear in many countries.
  • the hot salt is withdrawn from the high temperature tank and used as a heat source for a steam generator returning the cold molten salt to a low temperature tank ( at 288°C).
  • This technology does not seem to have penetrated the market, probably because the cost associated to the thermal energy storage system is higher than the cost of the power plant equipment necessary to deliver the same variable thermal power.
  • Circulating fluidized bed combustors CFBC. These devices are widely deployed in the coal power sector and other large scale industries. They usually burn in their combustor chambers coal, biomass or other solid fuel with air. They are known to work at relatively large superficial velocities, which allow an effective transport of circulating solids through the combustor and a very intense mixing of solids that provides them with high heat transfer characteristics.
  • One or several cyclones are usually installed at the exit of these combustors to separate the combustion flue gas from the circulating solids. Solids coming from the cyclone are recirculated in a large extent to the combustor.
  • Heat released in the combustion can be partially recovered inside the combustion chamber (for example by transferring heat to water pipes that are part of a boiler of a steam cycle). It is also part of the state of the art to operate the combustor in adiabatic conditions and extract the excess heat from the combustor by using the circulating solids as heat carriers.
  • an external fluidized bed heat exchanger is usually arranged in the return path of the circulating solids, to transfer part of their heat to a bank of tubes that is part of the steam cycle, and return the cooled solids to the combustion chamber.
  • Circulating solids are typically fine ash and Ca-rich materials typically used for sulfur capture purposes.
  • Equipment to handle and control solid flows (loop seals and other solid valves, equipment to divert falling flows of solid , etc) is also part of the state of the art of these and other large scale industries (i.e. power generation, cement, mineral roasting etc) that are familiar with the handling of flowing streams of solids at high temperatures.
  • Circulating fluidized bed combustor power plants using O 2 as a comburent, instead of air are also known in the state of the art. However, this is a technology still in the development stage, as related for example in patent application US20090293782 (A1 ).
  • Silos allowing for storage of fine powdered solids at low temperature and at high temperature, and equipment to handle and control the solid streams coming in or out of the silo are also known.
  • fluidized bed heat exchangers that extract heat from circulating solids at high temperature to a working fluid (for example water/steam mixture of a steam cycle for power generation).
  • This kind of heat exchangers form part of CFBC power plants.
  • These fluidized bed heat exchangers can be arranged in series for more efficient, countercurrent flow heat transfer from the solids to the working fluid.
  • a recent example of such an arrangement is a series of fluidized beds of sand to efficiently exchange heat from circulating sand at high temperature to a steam cycle ( K. Schwaiger, M. Haider et al, sandTES - A novel Thermal Energy Storage System based on Sand, 21st international conference on Fluidized Bed Combustion, Naples, 2012 ).
  • WO 98/28570 discloses a system comprising: a circulating fluidized bed combustor with a first pipe for supplying a fuel and a second pipe for supplying a comburent through a gas distributor, the circulating fluidized bed combustor being connected to a first cyclone for separating the resulting hot flue gas and the hot solids stream circulating to the circulating fluidized bed combustor, wherein the system further comprises a first device for splitting solid streams falling by gravity from the first cyclone and for directing the solids from the first cyclone towards the circulating fluidized bed combustor through a third pipe and towards a first fluidized bed heat exchanger.
  • the system of this invention provides a solution for this challenge and the methods described in this invention allow for new coal based power generation systems with or without CO 2 capture that incorporate highly efficient means of large scale energy storage, making them much more economic and competitive in electricity markets where they are forced to operate with very high levels of flexibility and load changes.
  • This invention refers to a system and a method for large scale energy storage in power generation systems using circulating fluidized bed combustors fired with air, or fired with oxygen, to achieve novel power plant system configurations with a high flexibility to operate at different levels of thermal power output.
  • the system and the method of this invention exploit the inherent thermodynamic benefits for efficient energy storage associated with the very high temperatures characteristic of the solids circulating in circulating fluidized bed combustion systems, CFBC.
  • the system of this invention refers to CO 2 capture systems using a CaO/CaCO 3 chemical loop for CO 2 capture from flue gases that also uses high temperature circulating fluidized bed reactors.
  • the use of the reversible CaO reaction with CO 2 to give CaCO 3 which has a very high enthalpy of reaction (-168 kJ/mol at normal conditions), allows for additional flexibility in the power output of the system presented in this invention.
  • the system is intended for the combustion of a fuel in a circulating fluidized bed combustor, preferably at typical temperatures of around 800-950°C (to allow for in situ SO 2 capture in the combustor), while incorporating large scale thermal energy storage comprising:
  • the system of the present invention exploits the high thermal energy content of the large solid circulation flow at high temperature characteristic of circulating fluidized bed combustors.
  • the temperatures of the solids in the higher temperature silo are expected to be very close to those typical in the combustion chamber, between 800-950°C, preferably 850°C when the comburent is air.
  • the higher temperature silo and/or the lower temperature silo are located between the minimum height of the cyclone and the lower point of the circulating fluidized bed combustion chamber, just above the gas distributor of such combustion chamber , so that circulation of the downwards part of the higher temperature circulation loop of the solids is facilitated by gravity and the upward part (riser) is simply carried out by the circulating fluidized bed combustion chamber.
  • the method of energy storage using circulating fluidized bed combustors of the present invention comprises the following stages:
  • the previous method can be applied using circulating fluidized bed combustors that use air as a comburent.
  • the resulting system When integrated with a state of the art steam cycle, the resulting system would be a highly flexible CFBC power plant in which a fixed value of coal (or other fuel) could be set to enter the circulating fluidized bed combustor, and this power input could remain stable and unchanged following the method of this invention, despite large changes in the power output.
  • minimum power output could be made even lower by reducing the flows of fuel and comburent within the normal limits of operation of the combustor, which can be about 50% of the maximum power output.
  • the first operation mode of maximum power output from the power plant defines the scale of the steam cycle and associated power generation equipment.
  • the fraction of time per year operating at maximum power output or alternatively, the fraction of energy generated during a certain period of time divided by the maximum possible energy generated during that period of time (called here the capacity factor) can vary greatly in this power plant without having to switch off the circulating fluidized bed combustor and associated components.
  • the system and the method above described are able to supply with a relatively small circulating fluidized bed combustor the same maximum power output than a much higher combustor designed to supply the same maximum power output.
  • This is achieved thanks to the boosting effect of the higher temperature solid storage system of the system of the present invention. Therefore, the application of the methods described so far in this invention will translate into economic savings respect to the standard CFBC systems when the capital cost of the additional elements required in the storage system (mainly the silos, the second heat exchanger, and associated auxiliary equipment) is lower than the difference in capital cost between the standard CFBC to produce the same maximum power output and the system of the present invention.
  • One of such systems can be an oxyfired Circulating Fluidized Bed Combustor power plant, designed to capture and store CO 2 .
  • These systems incorporate, among other elements, a costly Air Separation Unit to obtain a pure stream of O 2 , auxiliary equipment for flue gas recycle and a Compression and Purification Unit to bring the CO 2 to supercritical conditions and allow transport and permanent geological storage,
  • a costly Air Separation Unit to obtain a pure stream of O 2
  • auxiliary equipment for flue gas recycle and a Compression and Purification Unit to bring the CO 2 to supercritical conditions and allow transport and permanent geological storage
  • Such system is similar to that represented in Figure 1 , by making the comburent fed to circulating fluidized bed combustor a mixture of concentrated O 2 and CO 2 .
  • this new system will yield substantial capital savings and operational benefits from using a smaller and stable oxyfuel CFB combustor while being able to supply periods of maximum power output identical to those of a much large oxyfired CFBC system.
  • the circulating solids can be a mixture of ash from the coal fed to the circulating fluidized bed combustor and calcium derived solids routinely used in CFBCs as a sorbents of SO 2 (the purge system of these ashes has been omitted for simplicity in Figure 1 ).
  • the purge system of these ashes has been omitted for simplicity in Figure 1 .
  • these solids stable at high temperatures and with suitable properties for fluidization, such as oxides of Al, Fe, Mn or Ti or mixed natural oxides like ilmenite or olivine. Ashes accumulated from the fuel combustion should be purged (not shown in the figure for simplicity) from these batch of dense solid circulating in the energy storage system of Figure 1 .
  • This invention refers to a system and a method for large scale energy storage in power generation systems using circulating fluidized bed combustors fired with air, or fired with oxygen, to achieve novel power plant system configurations with a high flexibility to operate at different levels of thermal power output.
  • the system and the method of this invention exploit the inherent thermodynamic benefits for efficient energy storage associated with the very high temperatures characteristic of the solids circulating in circulating fluidized bed combustion systems, CFBC.
  • the system of this invention refers to CO 2 capture systems using a CaO/CaCO 3 chemical loop for CO 2 capture from flue gases that also uses high temperature circulating fluidized bed reactors.
  • the use of the reversible CaO reaction with CO 2 to give CaCO 3 which has a very high enthalpy of reaction (-168 kJ/mol at normal conditions) allows for additional flexibility in the power output of the system presented in this invention.
  • a first system disclosed in this invention is presented in Figure 1 and is intended for the combustion of a fuel in a circulating fluidized bed combustor at typical temperatures of around 800-950°C (usually 850°C to allow for in situ SO 2 capture in the combustor by CaO) while incorporating large scale thermal energy storage comprising:
  • the solids from the first cyclone (41) may be directed to the first fluidized bed heat exchanger (42) connected to the circulating fluidized bed combustion chamber (40) by means of a second device (46) for splitting solid streams through a seventh pipe (7).
  • the system further comprises a bypass or eighth pipe (8) of the first fluidized bed heat exchanger (42) to be used during periods of low thermal load in the circulating fluidized bed combustion chamber (40), using the second device (46) for splitting solid streams (a divertor, a double loop seal or any other mechanical mean to divert solid flows).
  • a bypass or eighth pipe (8) of the first fluidized bed heat exchanger (42) to be used during periods of low thermal load in the circulating fluidized bed combustion chamber (40), using the second device (46) for splitting solid streams (a divertor, a double loop seal or any other mechanical mean to divert solid flows).
  • the system further comprises:
  • the system of the present invention exploits the high thermal energy content of the large solid circulation flow at higher temperature characteristic of circulating fluidized bed combustors.
  • the arrangement of elements in the system of the present invention facilitates the handling and transport of large flows of very high temperature solid materials between silos. This is particularly relevant in the system of Figure 1 , where temperatures of the solids in the higher temperature silo are expected to be very close to those typical in the combustion chamber (40), between 800-950°C, preferably 850°C to maximize the in situ SO 2 capture with CaO in the CFBC (40).
  • the higher temperature silo (43) and/or the lower temperature silo (47) are located between the minimum height of the first cyclone (41) and the lower point of the circulating fluidized bed combustion chamber, just above the gas distributor of such combustion chamber (40), so that circulation of the downwards part of the higher temperature circulation loop of the solids is facilitated by gravity and the upward part (riser) is simply carried out by the circulating fluidized bed combustion chamber (40).
  • the method of energy storage using circulating fluidized bed combustors of the first system of present invention comprises the following stages:
  • a second system disclosed in this invention contains several common elements as those described above, but include several particular features that can make it even more economically attractive than those described above for large scale and flexible power generation from fossil fuels with CO 2 capture.
  • the system concerned is represented in Figure 2 and is a system for CO 2 capture from a flue gas by calcium looping. As discussed in the state of the art, this is a CO 2 capture technology inherently more economic than the oxyfired CFB system that comprises:
  • the method of energy storage using circulating fluidized bed combustors more preferably a method for CO 2 capture from a flue gas by calcium looping, using the second system described above as a calciner of CaCO 3 is diclosed in this invention, comprising the following stages:
  • the full CO 2 capture system is a complex and highly integrated system, and drastic changes in the power output are associated to technical and economic inefficiencies. It is particularly difficult to follow load changes with the oxy-fired circulating fluidized bed calciner (52), as this is connected to an air separation unit supplying pure O 2 and a full CO 2 purification and compression train of the CO 2 rich gas stream, part of which is recycled to the mixture stream of O 2 and CO 2 as part of the state of the art of oxyfired systems.
  • the method of this invention provides a solution to uncouple the power output in the system from the operation conditions of the oxyfired circulating fluidized bed calciner of Figure 2 and be able to operate with different power outputs. The method is therefore characterized in that variable thermal power output is allowed while maintaining stable conditions in the circulating fluidized bed calciner (52), by working between the two extreme operation modes described for the first system and wherein:
  • a new device is disclosed ( Figure 3 ) that is similar to the described for Figure 2 but wherein the second device (63) for splitting recirculated solids from the oxyfired circulating fluidized bed calciner (52) through third pipe (21) also connects the first cyclone (53) to a fourth heat exchanger (64) through a seventh pipe (32). This fourth heat exchanger (64) is further connected to the oxyfired circulating fluidized bed calciner (52).
  • the system further comprises a fourth device (65) for splitting solid streams that directs the solids abandoning the first fluidized bed heat exchanger (61) to the circulating fluidized bed combustor (52) or to the circulating fluidized bed carbonator (51).
  • a fourth device (65) for splitting solid streams that directs the solids abandoning the first fluidized bed heat exchanger (61) to the circulating fluidized bed combustor (52) or to the circulating fluidized bed carbonator (51).
  • a further advantage of this method is that due to the larger oxyfired circulating fluidized bed calciner size, the time period required to operate at the second operation mode of minimum power output can be minimized.
  • Example 3 illustrates other technical benefits of this method, related to the much higher flexibility in power outputs and wider choice of operation modes when the oxyfired circulating fluidized bed calciner (52) can be operated as an independent power plant not linked to the a circulating fluidized bed carbonator (50), or even as an independent power plant capable of operating as discussed above for the device of Figure 1 .
  • the previous methods best operate with the highest temperature difference between higher temperature silo and the lower temperature, leading to lower volume silos for the same quantity of energy stored.
  • Temperatures close to the temperature in the combustion chambers 850-950° are suitable for the higher temperature silo, preferably around 850°C for the air-fired combustors and 900°C for the oxyfired combustors.
  • the temperature of the cold solids depends on the number and efficiency of fluidized bed heat exchangers arranged in series, and will tipically be between 150-400° C, preferably around 200°C.
  • the previous methods can further reduce their second operation mode of minimum power output and/or the time required to operate at this second operation mode of minimum power output by further transferring heat to the solids coming from the lower temperature silo, by using heat from the high temperature flue gas streams leaving the circulating fluidized bed reactors.
  • This can be achieved with cyclones arranged in series such as those used in commercial precalciners of limestone in cement plants.
  • a conceptual design of the device of Figure 1 is carried out below to illustrate its practical application and the flexibility to obtain a variety of power outputs.
  • These fluidized bed combustion chambers usually have water heat exchangers in their interior, but it is better to adopt for the device of this invention an adiabatic design, that is also part of the state of the art.
  • this quantity of heat could be extracted from these solids at a very high rate in their pass from the higher temperature silo (43) to the lower temperature silo (47), for example by arranging an additional heat exchanger (not shown in Figure 1 for simplicity) between the higher temperature silo (43) and the lower temperature silo (47)
  • This could yield a very large thermal power output by reducing the solid transfer time with a large circulation flow of solids between silos.
  • this would require unrealistically large heat exchanger devices and associated power generation equipment operating only during very short periods of time. Therefore, more modest and realistic thermal power outputs are likely to be the target of design. These targets could be achieved allowing a direct circulation of solids from the higher temperature silo (43) to the lower temperature silo (47).
  • the device of this invention makes use of the existing circulating fluidized bed combustor to facilitate the solid circulation between the higher temperature silo (43) and the lower temperature silo (47) in modes of maximum thermal output with reasonable circulation rates established between the higher temperature silo (43) and the lower temperature silo (47).
  • the solid circulation rate through the combustor at 10 kg/m 2 s allowing for a certain fraction of this solid circulation to come from the flow of solids established between the higher temperature silo (43) and the lower temperature silo (47).
  • the power input from the fuel combustion remains at 100 MWt in the fluidized bed combustion chamber (40) and all the temperatures are to remain also constant, the total heat extraction in the first fluidized bed heat exchanger (42) must be also constant.
  • the maximum power output mode correspond to a flow of solids from the higher temperature silo (43) to the fluidized bed combustion chamber (40) and to the lower temperature silo (47) of 2.8 kg/m 2 s (55.6 kg/s in the example) and an additional power output 47 MWt is accomplished in the second fluidized bed heat exchanger (45) by cooling the solid stream from 850 to 200 °C.
  • this maximum power output mode can be maintained during 6 hours until all the hot solids stored in the higher temperature silo (43) are transferred to the lower temperature silo (47).
  • a change in solid circulation rate of solids through the fluidized bed combustion chamber (40) may also require a change of thermal output in the first fluidized bed heat exchanger (42), and this can be done by using commercial heat exchanger equipment available to operate with variable thermal loads or by using the split of solids that bypasses the first fluidized bed heat exchanger (42) to arrange for a certain direct recirculation of solids from the first cyclone (41) to the fluidized bed combustion chamber (40).
  • a split in the first device (44) for splitting solid streams of the solids falling by gravity from the first cyclone (41) of 144 kg/s towards the third pipe (3) and the first fluidized bed heat exchanger (42) allows for the required solid circulating from the higher temperature silo (43) to the lower temperature silo (47) while maintaining solid circulation rates and combustion conditions identical with and without energy storage. Therefore, designing the above system to deliver its maximum power output for 6 continuous hours, results into a maximum power output of 147 MWt (100 MWt from combustion and 47 MWt from the second fluidized bed heat exchanger (45) in the novel energy storage system).
  • the time at maximum power must be balance by a certain time at minimum power output, where the target is to fill up the silo of high temperature solids.
  • conditions of minimum power output are likely to be associated with situations where the combustion chamber is working at minimum load (for example at night time). For circulating fluidized bed combustors this can be as low as 50%. Therefore, during the period of minimum power output of this particular example we assume 50 MWt as energy input from combustion in the fluidized bed combustion chamber (40). For simplicity we assume again that 25% of this power abandons the combustor in the flue gas leaving the first cyclone (41).
  • this additional circulation flow could be obtained by allowing a split of solids in the first device (44) for splitting solid streams falling by gravity from the first cyclone (41) and recirculating solids from the first cyclone (41) to the fluidized bed combustion chamber (40) through the third pipe (3) without passing through the first fluidized bed heat exchanger (42).
  • the minimum operation mode has to be maintained during 7.5 hours, until all the lower temperature solids stored in the lower temperature silo (47) are transferred to the higher temperature silo (43).
  • This time could be shortened by arranging an additional method to preheat with the flue gas (12) leaving the first cyclone (41) the solids coming from the lower temperature silo (47) before they enter the fluidized bed combustion chamber (40).
  • the maximum time (6.0 h) at the maximum power output defined in this particular example and the minimum time at minimum power output (7.5 h) are values chosen for this particular example. Many intermediate values are possible and will be evident for the skilled in the art.
  • the remaining hours (10.5 h) to complete a full day operation time could be used in this particular example at the reference conditions of 100 MWt. This would yield a capacity factor of the plant of 0.57. This capacity factor could be further reduced by operating a much longer time at low power output. For example, operating 6 h at maximum power output of 147 MWt and the remaining 18 h at a power output of 34 MWt, the capacity factor would be 0.43.
  • this power plant will be forced to be switched off (power output equal zero) during at least 9.6 hours per day, in order to fulfil the maximum power requirements during a certain time and the low demand of power during other periods of time.
  • the need to switch on and off the large combustion equipment of the fluidized bed combustion chamber (40), together with all the associated auxiliaries (coal and sorbent feeding systems, flue gas cleaning equipment etc are also switched off) is a clear disadvantage of the state of the art systems respect to the device and methods of this invention.
  • the device of this invention delivers the same maximum power and has the same capacity factor than the standard power plant, but it has a combustion chamber and associated auxiliaries to the combustion chamber that are about 50% smaller than in the standard plant. Furthermore, the device of this invention is operating the combustion chamber (40) with continuous flows of coal and air (the same at full load or at intermediate loads) as it does not require changes in such a combustion chamber (40) to accommodate low average capacity factors.
  • this oxyfired circulating fluidized bed calciner (52) is designed adiabatically to maximize the use for calcination of the thermal input associated to the fuel combustion (and minimize the O 2 requirements and its associated energy and economic penalties).
  • this can be considered an additional energy stored in the higher temperature silo (58).
  • the value of X is set by a mass balance on the circulating fluidized bed carbonator (50).
  • a maximum flue gas rate containing 0.40 kmol/s of CO 2 , which is equivalent to the flue gas emitted by a 180 MWt power plant. If we assume a target of 90% CO 2 capture efficiency a maximum flow of CaCO 3 leaving the circulating fluidized bed carbonator (50) is established at 0.36 kmol/s.
  • a very large thermal power output could be achieved from this system by reducing the solid transfer time (with a large circulation flow of solids between silos) between the higher temperature silo (58) to the circulating fluidized bed carbonator (50) and through the cyclone (51) and through the second fluidized bed heat exchanger (56) and through the lower temperature silo (57).
  • This large solid circulation could be established simultaneously to the capture of 90% of the CO 2 in the flue gas in the eleventh pipe (13) set as a target, as the typical solid circulation rate set in the circulating fluidized bed carbonator (50) and oxyfired circulating fluidized bed calciner (52) is sufficient to capture all the necessary CO 2 in the circulating fluidized bed carbonator (50) with modest carbonate conversion values, X.
  • the device of this invention makes use of the existing circulating fluidized bed calciner (52) and circulating fluidized bed carbonator (50) to facilitate the solid circulation between the higher temperature silo (58) and the lower temperature silo (57) in modes of maximum thermal output with reasonable circulation rates established between the higher temperature silo (58) and the lower temperature silo (57) through the circulating fluidized bed carbonator (50).
  • the time of 6 hours set at the maximum power in the previous paragraph must be balanced by a certain time at lower power output, where the target is to fill up the higher temperature silo (58) of high temperature solids, while maintaining the CO 2 capture efficiency at 90% in the circulating fluidized bed carbonator (50).
  • a surplus of thermal power in the calciner (52) is required for this purpose.
  • the higher the surplus of thermal power the minimum time will be required to operate at minimum thermal output in the Ca-looping system.
  • the maximum time (6.0 h) at the maximum power output defined in this particular example and the minimum time at minimum power output (7.2 h) are values chosen for this particular example. Many intermediate values are possible and will be evident for the skilled in the art.
  • the remaining hours (10.8) to complete a full day operation time could be used in this particular example at the reference conditions of 100 MWt. This would yield a capacity factor of the plant of 0.64. Different average capacity factors can be calculated for this system following a similar methodology as the one explained in Example 1.
  • the device of this invention does not require changes in the combustion conditions in the oxy-fuel fluidized bed calciner, even when the flow of flue gas entering the carbonator changes within certain limits.
  • the standard calcium looping configuration requires complex load changes in the oxyfired calciner to follow the required global changes in power output.
  • a conceptual design of the device of Figure 3 is carried out below to illustrate its practical application and the flexibility to obtain a variety of power outputs from the Calcium Looping system represented in the figure. Since there is a clear similarity of this device respect to the one described in example 2, we focus in this example only on the key difference between devices, associated to the possibility to operate the device of Figure 3 in a maximum power output mode where the oxyfired calciner is operating as an oxyfired CFB power plant independently of the circulating fluidized bed carbonator (50), extracting combustion heat from the fourth heat exchanger (64) using the second device (63) for splitting recirculated solids from the oxyfired circulating fluidized bed calciner (52) while feeding the circulating fluidized bed carbonator (50) with stored CaO in the higher temperature silo (58).
  • the carbonator reactor and the associated power plant feeding the flue gas to the circulating fluidized bed carbonator (50) could be switched off, while the oxyfired circulating fluidized bed calciner (52) could still be operating in minimum oxycombustion mode and by-passing the and feeding solids from the lower temperature silo (57) to the oxyfired circulating fluidized bed calciner (52) and storing the resulting calcined higher temperature solid stream in the higher temperature silo (58).
  • the design methodology described in previous examples could be used to estimate these minimum modes of power output, that greatly increase the flexibility of the CO 2 capture system of Figure 3 in terms of power output while allowing stable combustion conditions in the oxyfired circulating fluidized bed calciner (52)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Claims (18)

  1. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité comprenant :
    i) une chambre de combustion à lit fluidisé circulant (40, 52) avec un premier tuyau (1, 18) pour l'alimentation en un combustible et un deuxième tuyau (2, 19) pour l'alimentation en un comburant via un distributeur de gaz, la chambre de combustion à lit fluidisé circulant (40, 52) étant reliée à
    ii) un premier cyclone (41, 53) pour séparer les gaz de combustion chauds obtenus (12, 22) et le flux de solides chauds (11, 23) circulant vers la chambre de combustion à lit fluidisé circulant (40, 52)
    iii) un premier dispositif (44, 55) pour fractionner des flux de solides tombant par gravité du premier cyclone (41, 53) dirigeant les solides depuis le premier cyclone (41, 53)
    a) en direction de la chambre de combustion à lit fluidisé circulant (40, 52) à travers un troisième tuyau (3, 21),
    b) en direction d'un silo d'une température plus élevée (43, 58) qui reçoit des solides d'une température plus élevée à travers un quatrième tuyau (4, 24), dirigeant les solides depuis le silo d'une température plus élevée (43, 58) vers un premier échangeur de chaleur à lit fluidisé (42, 61), et
    c) en direction d'un silo d'une température plus basse (47, 57) pour stocker des solides d'une température plus basse provenant d'un deuxième échangeur de chaleur à lit fluidisé (45, 56), le silo d'une température plus basse (47, 57) relié au deuxième échangeur de chaleur à lit fluidisé (45, 56) au moyen d'un cinquième tuyau (5, 30) et relié à la chambre de combustion à lit fluidisé circulant (40, 52) au moyen d'un sixième tuyau (6, 31), et
    iv) un premier dispositif de commande des solides (48, 60) pour commander l'alimentation en solides d'une température plus élevée du silo d'une température plus élevée (43, 58), et
    v) un deuxième dispositif de commande (49, 62) pour commander l'alimentation en solides d'une température plus basse du silo d'une température plus basse (47, 57) à la chambre de combustion à lit fluidisé circulant (40, 52).
  2. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon la revendication 1, qui comprend en outre un deuxième dispositif (46) pour fractionner le flux de solides chauds du premier cyclone (41) vers le premier échangeur de chaleur à lit fluidisé (42) via un septième tuyau (7) ou vers un by-pass ou huitième tuyau (8) vers la chambre de combustion à lit fluidisé circulant (40) durant des périodes de basse charge thermique dans la chambre de combustion à lit fluidisé circulant (40).
  3. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon n'importe laquelle des revendications précédentes, dans lequel le premier dispositif (44) pour fractionner des flux de solides tombant par gravité du premier cyclone (41) dirige les solides en direction du deuxième échangeur à lit fluidisé (45) à travers un neuvième tuyau (9).
  4. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon n'importe laquelle des revendications précédentes, dans lequel le premier dispositif de commande des solides (48) commande l'alimentation en solides chauds du silo d'une température plus élevée (43) à la chambre de combustion à lit fluidisé circulant (40) à travers le premier échangeur de chaleur à lit fluidisé (42) au moyen d'un dixième tuyau (10) qui relie le premier échangeur de chaleur à lit fluidisé (42) à la chambre de combustion à lit fluidisé circulant (40).
  5. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon la revendication 1 dans lequel le système est un système pour le captage du CO2 d'un gaz de combustion par bouclage de calcium, dans lequel le système pour le stockage d'énergie à grande échelle comprend en outre
    i) un carbonateur à lit fluidisé circulant (50) avec un onzième tuyau (13) fournissant un gaz de combustion contenant du CO2 dilué et un douzième tuyau (14) fournissant des solides riches en CaO de la chambre de combustion à lit fluidisé circulant (52) qui est une chambre de combustion à lit fluidisé circulant à combustion dans l'oxygène opérant comme un calcinateur étant relié à
    ii) un second cyclone (51) pour séparer les gaz de combustion appauvris dans du CO2 (16) et le flux de solides partiellement carbonatés contenant du CaCO3 (17) dans lequel une partie du flux de solides partiellement carbonatés contenant du CaCO3 (17) est remise en circulation vers le carbonateur à lit fluidisé circulant (50) à travers un treizième tuyau (15) et le flux restant des solides de température élevée contenant du CaCO3 est envoyé au calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52).
  6. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon la revendication 5, dans lequel le premier tuyau (18) du calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) fournit un combustible, le deuxième tuyau (19) fournit un mélange de comburent O2 et CO2 à travers le distributeur de gaz et un quatorzième tuyau (20) fournit le flux de solides partiellement carbonatés contenant du CaCO3 (17) provenant du second cyclone (51).
  7. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon la revendication 6, qui comprend en outre un troisième dispositif (54) pour fractionner le flux de solides partiellement carbonatés contenant du CaCO3 (17) tombant par gravité du second cyclone (51) dirigeant les solides du second cyclone (51).
    a) en direction du carbonateur à lit fluidisé circulant (50) à travers le treizième tuyau (15),
    b) en direction du calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) à travers le quatorzième tuyau (20), et
    c) en direction du silo de température plus basse (57) pour stocker des solides de température plus basse à travers le cinquième tuyau (30) qui relie le deuxième échangeur de chaleur à lit fluidisé (56) au silo de température plus basse (57).
  8. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon n'importe laquelle des revendications 5-7, dans lequel le premier dispositif (55) pour fractionner le flux de solides chauds (23), qui est calciné et contient du CaO, en direction du silo de température plus basse (57), le fait à travers le carbonateur à lit fluidisé circulant (50) au moyen d'un quinzième tuyau (25).
  9. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon la revendication 8, qui comprend en outre au moins un troisième échangeur de chaleur à lit fluidisé (59) pour extraire la chaleur du flux de solides calcinés contenant du CaO du quinzième tuyau (25) avant qu'ils n'alimentent le carbonateur à lit fluidisé circulant (50) à travers le douzième tuyau (14).
  10. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon n'importe laquelle des revendications 5-9, qui comprend en outre un seizième tuyau (26) dans le carbonateur à lit fluidisé circulant (50) ou dans le calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) pour fournir un débit d'appoint de CaCO3 de calcaire frais.
  11. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon n'importe laquelle des revendications 5-10, qui comprend en outre un dix-septième tuyau (27) installé dans le carbonateur à lit fluidisé circulant (50) ou dans le calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) pour purger un flux de solides équivalent et éviter l'accumulation de cendres et de calcium dérivés des solides.
  12. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon n'importe laquelle des revendications 5-11, dans lequel le premier échangeur de chaleur à lit fluidisé (61) décharge des solides de température plus basse riches en CaO dans le carbonateur à lit fluidisé circulant (50) à travers un dix-huitième tuyau (28).
  13. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon n'importe laquelle des revendications 5-12, qui comprend en outre un deuxième dispositif (63) pour fractionner les solides remis en circulation du calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) à travers le troisième tuyau (21) reliant le premier cyclone (53) à un quatrième échangeur de chaleur (64) à travers un septième tuyau (32), quatrième échangeur de chaleur (64) relié en outre au calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52).
  14. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon n'importe laquelle des revendications 5-13, qui comprend en outre un quatrième dispositif (65) pour fractionner des flux de solides qui dirigent les solides quittant le premier échangeur de chaleur à lit fluidisé (61) vers la chambre de combustion à lit fluidisé circulant (52) ou vers le carbonateur à lit fluidisé circulant (50).
  15. Système pour le stockage d'énergie à grande échelle dans un système de production d'électricité selon n'importe laquelle des revendications 5-14, dans lequel le comburant (19) est un mélange de O2 et de CO2 recyclé.
  16. Procédé de stockage d'énergie utilisant des chambres de combustion à lit fluidisé circulant comprenant les étapes suivantes :
    i) alimenter avec un flux de combustible et de comburant une chambre de combustion à lit fluidisé circulant (40, 52), en séparant les gaz de combustion chauds obtenus (12, 22) et les flux de solides (11, 23) de la chambre de combustion à lit fluidisé circulant (40, 52), dans lequel les arrivées de combustible, comburant et la circulation des solides à travers la chambre de combustion à lit fluidisé circulant (40, 52) permettent une sortie de puissance thermique variable en travaillant entre deux modes opératoires :
    a) un premier mode opératoire de sortie de puissance maximale avec un flux maximal de combustible et de comburant vers la chambre de combustion à lit fluidisé circulant (40, 52), où une puissance thermique supplémentaire au cycle de vapeur est obtenue en extrayant la chaleur du flux de solides chauds dans un deuxième échangeur de chaleur à lit fluidisé (45, 56) dirigeant le flux des solides vers un silo de température plus basse (47, 57) où des solides de température plus basse sont stockés, en disposant des solides de température plus élevée pour qu'ils s'écoulent d'un silo de température plus élevée (43, 58) à travers un premier échangeur de chaleur à lit fluidisé (42, 61) refroidissant les solides de température plus élevée de façon contrôlée au moyen d'un dispositif de commande (48, 60) installé entre le silo de température plus élevée (43, 58) et le premier échangeur de chaleur à lit fluidisé (42, 61), et
    b) un second mode opératoire de sortie de puissance minimale avec un flux minimal de combustible et de comburant vers la chambre de combustion à lit fluidisé circulant (40, 52), où la puissance thermique du premier échangeur de chaleur à lit fluidisé (42, 61) est nulle et les solides de température plus basse s'écoulent du silo de température plus basse (47, 57) en direction de la chambre de combustion à lit fluidisé circulant (40, 52) de façon contrôlée au moyen d'un deuxième dispositif de commande des solides (49, 62) installé entre le silo de température plus basse (47, 57) et la chambre de combustion à lit fluidisé circulant (40, 52) pour que l'excédent de puissance thermique libérée dans la chambre de combustion à lit fluidisé circulant (40, 52) soit transférée aux solides de température plus basse afin que les solides de température plus élevée obtenus s'écoulent vers le silo de température plus élevée (43, 58), où les solides de température plus élevée sont stockés.
  17. Procédé de stockage d'énergie utilisant des chambres de combustion à lit fluidisé circulant selon la revendication 16, dans lequel le procédé est un procédé pour le captage du CO2 d'un gaz de combustion par bouclage de calcium, qui comprend en outre les étapes suivantes :
    i) alimenter avec un flux de gaz de combustion contenant du CO2 et un flux de solides contenant du CaO un carbonateur à lit fluidisé circulant (50) dans des conditions qui permettent un captage efficace du CO2 par le CaO pour former un flux de solides partiellement carbonatés contenant du CaCO3 (17) et un gaz de combustion ayant une basse concentration en CO2 (16).
    ii) recycler les solides remis en circulation du carbonateur à lit fluidisé circulant (50) à travers le treizième tuyau (15), en fournissant une partie du flux de solides partiellement carbonatés contenant du CaCO3 (17) du carbonateur à lit fluidisé circulant (50), pour augmenter le temps de présence des solides dans le carbonateur à lit fluidisé circulant (50) et en envoyant le flux de solides restants vers le calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) pour décomposer le CaCO3 en un flux riche en CO2 (22) et en un flux de solides calcinés contenant du CaO (23),
    iii) recycler les solides remis en circulation du calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) à travers un troisième tuyau (21), en fournissant une partie du flux de solides calcinés contenant du CaO (23), pour augmenter le temps de présence des solides dans le calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) et en envoyant le flux restant de solides de température élevée contenant du CaO au moyen d'un quinzième tuyau (25) vers un troisième échangeur de chaleur à lit fluidisé (59) pour refroidir les solides de température élevée calcinés contenant du CaO, et en alimentant avec ces solides le carbonateur à lit fluidisé circulant (50), en faisant ainsi redémarrer le cycle de bouclage de captage de CO2,
    dans lequel la chambre de combustion à lit fluidisé circulant (52) est un calcinateur à lit fluidisé circulant à combustion dans l'oxygène et dans lequel
    a) le premier mode opératoire de sortie de puissance maximale comprend en outre le flux maximal de gaz de combustion vers le carbonateur à lit fluidisé circulant (50), où la puissance thermique supplémentaire est obtenue d'un deuxième échangeur de chaleur à lit fluidisé (56) en raison du fait que le deuxième échangeur de chaleur à lit fluidisé (56) reçoit un flux de solides de température plus élevée d'un troisième dispositif (54) pour fractionner le flux de solides partiellement carbonatés contenant du CaCO3 (17) et délivre un flux de solides de température plus basse de solides carbonatés à travers un cinquième tuyau (30) au silo de température plus basse (57) et une puissance thermique supplémentaire est obtenue du premier échangeur de chaleur à lit fluidisé (61) qui décharge des solides de température plus basse riches en CaO dans le carbonateur à lit fluidisé circulant (50) à travers un dix-huitième tuyau (28), et
    b) le second mode opératoire de sortie de puissance minimale comprend en outre le flux minimal de gaz de combustion vers le carbonateur à lit fluidisé circulant (50), où l'excédent de sortie thermique obtenu dans le calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) est utilisé pour réchauffer et calciner un flux supplémentaire de solides froids et partiellement carbonatés du silo de température plus basse (57), réglé avec le deuxième dispositif de commande des solides (62) et un débit d'appoint de CaCO3 de calcaire frais à travers un seizième tuyau (26), pour qu'un flux de solides chauds et riches en CaO à travers un quatrième tuyau (24) soit stocké dans le silo de température plus élevée (58).
  18. Procédé de stockage d'énergie utilisant des chambres de combustion à lit fluidisé circulant selon la revendication 17, qui comprend en outre l'étape d'extraction de la chaleur du calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) à travers un quatrième échangeur de chaleur (64), et dans lequel
    a) dans le premier mode opératoire de sortie de puissance maximale le calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) opère comme une chambre de combustion à lit fluidisé à combustion dans l'oxygène remettant en circulation des solides de CaO du calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) à travers un septième tuyau (32) pour maximiser la sortie de puissance dans un quatrième échangeur de chaleur (64) tout en permettant à suffisamment de solides de température plus élevée riches en CaO du silo de température plus élevée (58) de s'écouler à travers le premier échangeur de chaleur à lit fluidisé (61) pour alimenter avec des solides de température plus basse riches en CaO le carbonateur à lit fluidisé circulant (50) à travers le dix-huitième tuyau (28) et carbonater partiellement les solides en présence du gaz de combustion entrant dans le onzième tuyau (13), et dirigeant les solides quittant le carbonateur à lit fluidisé circulant (50) à travers le deuxième échangeur de chaleur à lit fluidisé (56) pour qu'ils soient refroidis et stockés dans le silo de température plus basse (57), et
    b) le second mode opératoire de sortie de puissance minimale comprend en outre un flux réduit de gaz de combustion entrant dans le onzième tuyau (13) et un by-pass du quatrième échangeur de chaleur (64) à travers le huitième tuyau (33) vers le calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) qui permet à un excédent de sortie thermique dans le calcinateur à lit fluidisé circulant à combustion dans l'oxygène (52) qui est utilisé de réchauffer et de calciner un flux supplémentaire de solides froids et partiellement carbonatés du silo de température plus basse (57), réglé avec le deuxième dispositif de commande des solides (62), pour qu'un flux de solides chauds et riches en CaO à travers le quatrième tuyau (24) soit stocké dans le silo de température plus élevée (58).
EP13382033.2A 2013-02-01 2013-02-01 Système et procédé de stockage d'énergie à l'aide de chambres de combustion à lit fluidisé circulant Active EP2762781B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13382033.2A EP2762781B1 (fr) 2013-02-01 2013-02-01 Système et procédé de stockage d'énergie à l'aide de chambres de combustion à lit fluidisé circulant
ES13382033.2T ES2555034T3 (es) 2013-02-01 2013-02-01 Sistema y procedimiento para el almacenamiento de energía usando combustores de lecho fluidizado circulante
PCT/EP2014/051640 WO2014118184A1 (fr) 2013-02-01 2014-01-28 Système et procédé de stockage d'énergie faisant appel à des fours à lit fluidisé circulant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13382033.2A EP2762781B1 (fr) 2013-02-01 2013-02-01 Système et procédé de stockage d'énergie à l'aide de chambres de combustion à lit fluidisé circulant

Publications (2)

Publication Number Publication Date
EP2762781A1 EP2762781A1 (fr) 2014-08-06
EP2762781B1 true EP2762781B1 (fr) 2015-09-02

Family

ID=47722198

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13382033.2A Active EP2762781B1 (fr) 2013-02-01 2013-02-01 Système et procédé de stockage d'énergie à l'aide de chambres de combustion à lit fluidisé circulant

Country Status (3)

Country Link
EP (1) EP2762781B1 (fr)
ES (1) ES2555034T3 (fr)
WO (1) WO2014118184A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037724B1 (fr) * 2014-12-22 2019-07-31 Improbed AB Procédé permettant de faire fonctionner une chaudière a lit fluidisé
CN107787430B (zh) * 2015-06-15 2021-10-15 因姆普朗伯德公司 用于操作流化床锅炉的方法
EP3106747A1 (fr) 2015-06-15 2016-12-21 Improbed AB Procede de commande pour le fonctionnement d'une chaudiere a combustion
EP3106531A1 (fr) 2015-06-15 2016-12-21 Improbed AB Utilisation d'ilménite pré-oxydée dans des chaudières à lit fluidisé
ES2595443B1 (es) * 2015-06-29 2017-11-07 Universidad De Sevilla Sistema integrado de calcinación-carbonatación y ciclo de lazo cerrado de CO2 para almacenamiento de energía termoquímica y generación de energía eléctrica
EP3153776A1 (fr) * 2015-10-08 2017-04-12 Improbed AB Cycle de gestion de lit pour une chaudière à lit fluidisé et dispositif correspondant
EP3153775A1 (fr) * 2015-10-08 2017-04-12 Improbed AB Procédé permettant de faire fonctionner une chaudière à lit fluidisé
CN108106476B (zh) * 2017-12-22 2019-11-19 西北大学 一种连续化学反应法蓄热放热系统
SE2050076A1 (en) 2020-01-28 2021-07-29 Saltx Tech Ab System and method for transportable energy storage and carbon capture
CN112604611B (zh) * 2020-11-26 2022-03-29 清华大学 一种利用电石渣进行化学储/放能的装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3307848A1 (de) * 1983-03-05 1984-09-06 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur nachverbrennung und reinigung von prozessabgasen
ATE87077T1 (de) * 1985-06-12 1993-04-15 Metallgesellschaft Ag Verbrennungsvorrichtung mit zirkulierender wirbelschicht.
US5069170A (en) * 1990-03-01 1991-12-03 Foster Wheeler Energy Corporation Fluidized bed combustion system and method having an integral recycle heat exchanger with inlet and outlet chambers
US5784975A (en) * 1996-12-23 1998-07-28 Combustion Engineering, Inc. Control scheme for large circulating fluid bed steam generators (CFB)
JP4355661B2 (ja) * 2003-04-29 2009-11-04 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス 流動床燃焼器内での二酸化炭素と二酸化硫黄の現場捕獲
US9163829B2 (en) * 2007-12-12 2015-10-20 Alstom Technology Ltd Moving bed heat exchanger for circulating fluidized bed boiler
US8230796B2 (en) * 2008-02-27 2012-07-31 Andrus Jr Herbert E Air-fired CO2 capture ready circulating fluidized bed steam generators
US20090293782A1 (en) 2008-05-30 2009-12-03 Foster Wheeler Energia Oy Method of and system for generating power by oxyfuel combustion
US8689709B2 (en) * 2011-05-04 2014-04-08 Southern Company Oxycombustion in transport oxy-combustor

Also Published As

Publication number Publication date
ES2555034T3 (es) 2015-12-28
EP2762781A1 (fr) 2014-08-06
WO2014118184A1 (fr) 2014-08-07

Similar Documents

Publication Publication Date Title
EP2762781B1 (fr) Système et procédé de stockage d'énergie à l'aide de chambres de combustion à lit fluidisé circulant
Chacartegui et al. Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle
US9651252B2 (en) System for CO2 capture from a combustion flue gas using a CaO/CaCO3 chemical loop
Ortiz et al. Power cycles integration in concentrated solar power plants with energy storage based on calcium looping
Alovisio et al. Optimizing the CSP-calcium looping integration for thermochemical energy storage
Atsonios et al. Integration of calcium looping technology in existing cement plant for CO2 capture: Process modeling and technical considerations
Romano et al. The calcium looping process for low CO2 emission cement and power
CN102159888B (zh) 燃烧空气的作好co2捕集准备的循环流化床蒸汽发生器
Martínez et al. Conceptual design of a three fluidised beds combustion system capturing CO2 with CaO
AU2012251090B2 (en) Oxycombustion in transport oxy-combustor
Myöhänen et al. Near Zero CO2 emissions in coal firing with oxy‐fuel circulating fluidized bed boiler
Martínez et al. CO2 capture in existing power plants using second generation Ca-Looping systems firing biomass in the calciner
Reitz et al. Design and operation of a 300 kWth indirectly heated carbonate looping pilot plant
EP2671024B1 (fr) Procédé de fonctionnement d'une chaudière d'oxycombustion cfb
Hilz et al. Scale-up of the carbonate looping process to a 20 MWth pilot plant based on long-term pilot tests
Reh New and efficient high‐temperature processes with circulating fluid bed reactors
CN103547861A (zh) 与能量转换系统面接的具有二氧化碳捕获的高压矿物燃料氧燃烧系统
Ferrario et al. Solar-driven calcium looping system for carbon capture in cement plants: Process modelling and energy analysis
CN116867565A (zh) 包含化学链工艺的设备
Criado et al. A flexible CO 2 capture system for backup power plants using Ca (OH) 2/CaCO 3 solid storage
CN207350309U (zh) 一种循环流化床锅炉耦合塔式太阳能集热器系统
Abanades García et al. System and method for energy storage using circulating fluidized bed combustors
Moreno Mendaza et al. CO2 Capture with a Highly Flexible Calcium Looping System Using a BFB/TFB Carbonator
Domínguez C. The Calcium-Looping Process for Advancing in the Development of both CO2 Capture and Thermochemical Energy Storage Systems
Ortiz Domínguez The calcium-looping process for advancing in the development of both C02 capture and thermochemical energy storage systems.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20140716

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150430

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 746844

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013002848

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2555034

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20151228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 746844

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151203

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151202

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20150902

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160104

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013002848

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180227

Year of fee payment: 6

Ref country code: GB

Payment date: 20180227

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180227

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160229

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013002848

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240305

Year of fee payment: 12