EP2762295B1 - Verfahren und Halbzeug zur Herstellung eines Faserverbundformteils und Faserverbundformteil - Google Patents

Verfahren und Halbzeug zur Herstellung eines Faserverbundformteils und Faserverbundformteil Download PDF

Info

Publication number
EP2762295B1
EP2762295B1 EP13153853.0A EP13153853A EP2762295B1 EP 2762295 B1 EP2762295 B1 EP 2762295B1 EP 13153853 A EP13153853 A EP 13153853A EP 2762295 B1 EP2762295 B1 EP 2762295B1
Authority
EP
European Patent Office
Prior art keywords
thermoplastic material
melting component
fibres
component
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13153853.0A
Other languages
English (en)
French (fr)
Other versions
EP2762295A1 (de
Inventor
Claudio Cinquemani
Nicolas Quick
Michael Nitschke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Original Assignee
Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reifenhaeuser GmbH and Co KG Maschinenenfabrik filed Critical Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Priority to EP13153853.0A priority Critical patent/EP2762295B1/de
Priority to ES13153853.0T priority patent/ES2583153T3/es
Publication of EP2762295A1 publication Critical patent/EP2762295A1/de
Application granted granted Critical
Publication of EP2762295B1 publication Critical patent/EP2762295B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres

Definitions

  • the invention relates to a method for producing a fiber composite molding. Furthermore, the invention relates to a semi-finished product for producing such a fiber composite molding and a fiber composite molding. Above all, the invention relates to fiber composite moldings in lightweight construction.
  • the term fiber composite molding means that fibers or unfused fibers or fiber components are present in the composite molding.
  • the fiber composite moldings produced according to the invention may on the one hand have a two-dimensional shape, in particular the shape of a plate or the like. Preferably, the fiber composite moldings produced according to the invention have a three-dimensional shape.
  • thermoplastic material in particular glass fibers - are first combined with films, powder or melt of thermoplastic material.
  • thermoplastic material By application of heat and pressure, the thermoplastic material is melted and in this way the reinforcing fibers are impregnated with the melt so that ultimately the semi-finished product results from the thermoplastic matrix with the embedded reinforcing fibers.
  • These semi-finished products are also called organic sheets and they are usually produced in the form of plates. These panels must be reheated to produce a fiber composite molding having a three-dimensional shape in a later additional processing step before they can be formed into the desired fiber composite molding.
  • the known methods have a plurality of disadvantages. Often result air pockets and thereby weak points in the fiber composite molding produced. Furthermore, in particular, the semi-finished products produced in the context of the known methods are characterized by an unsatisfactory drapability. For this reason, the production of three-dimensional or multi-dimensional fiber composite moldings is subject to restrictions. Of particular note is that the recycling of known fiber composites is difficult, especially when a thermoplastic matrix is reinforced with inorganic or hard or non-fusible reinforcing fibers.
  • the invention is the technical problem of providing a method of the type mentioned, in which the above-mentioned disadvantages can be reliably and effectively avoided. Furthermore, the invention is the technical problem of specifying a semifinished product for carrying out this method and a corresponding fiber composite molding.
  • the invention teaches a method for producing a fiber composite molding according to claims 1 and 2 embedded in the reinforcing fibers in a matrix of thermoplastic material, wherein multi-component fibers having at least a first lower melting component - of thermoplastic material and at least one second higher melting Component - are subjected to heat and / or pressure, so that the first or lower melting component melts and forms a matrix of thermoplastic material, in which the second or higher melting component is embedded in the form of reinforcing fibers.
  • the second or higher melting component consists of thermoplastic material. It is also within the scope of the invention that when the application of heat and / or pressure, the heating temperature is selected or adjusted so that only the first or lower melting component melts.
  • a fiber composite molding is preferably produced in lightweight construction.
  • the higher melting component has a higher melting point than the lower melting component, wherein the two melting points are measured under the same external conditions.
  • the at least one first component and the at least one second component need not necessarily have different melting points in the context of the invention. They can also have the same or approximately the same melting points.
  • the first component may be amorphous and the second component may be crystalline or highly crystalline. Then, the first amorphous component can be selectively melted, while the second crystalline component in the form of the reinforcing fibers is embedded in the thermoplastic polymer matrix of the first component. It is within the scope of the invention that the at least one first component and the at least one second component are subjected to different reflow energies, so that on the one hand the thermoplastic polymer matrix and on the other hand the reinforcing fibers result.
  • the multicomponent fibers are advantageously introduced as endless filaments in the form of a nonwoven fabric into a pressing tool where they are preferably deformed under the effect of heat and / or pressure.
  • the embedding of the reinforcing fibers in the matrix of thermoplastic material should preferably be carried out as completely as possible and with the minimization of air inclusions within the scope of the invention.
  • a very particularly preferred embodiment of the invention is characterized in that the multicomponent fibers are used as bicomponent fibers, with a core-sheath configuration, and wherein the sheath component or components is preferably the first or lower-melting component.
  • the at least one core component or the core component then preferably forms the reinforcing fibers of the composite molding ,
  • multicomponent fibers or bicomponent fibers with a side-by-side configuration are used.
  • a side component or at least one side component is expediently the first or lower-melting component which melts when acted upon by heat and / or pressure and forms the matrix of thermoplastic material and then preferably one or at least one side component is the second or higher-melting component which forms the reinforcing fibers of the fiber composite molding.
  • other configurations of multi-component fibers or bicomponent fibers can be used in the context of the method according to the invention, for example so-called segmented-pie fibers or Iceland-in-the-sea fibers.
  • a highly recommended embodiment of the invention is characterized in that bicomponent fibers are used as multicomponent fibers. It has proved to be particularly advantageous that the multicomponent fibers or bicomponent fibers are used in the form of a nonwoven fabric and in particular in the form of a random mat.
  • the basis weights of the nonwovens are basically freely selectable.
  • the multicomponent fibers or bicomponent fibers are used in the form of continuous filaments.
  • the multicomponent fibers or bicomponent fibers are used in the form of a spunbonded fabric for the process according to the invention.
  • the multicomponent fibers can in principle also be produced in the context of an airlaid or wet-laid process.
  • the second or higher melting component and the first or lower melting component of the multicomponent fibers or bicomponent fibers consist of the same plastic or of the same type of plastic.
  • the core consists of a polyester or substantially of a polyester and the sheath of a plastic other than or lower melting than the polyester.
  • polyester it is recommended to use polyethylene terephthalate (PET).
  • an advantageous embodiment of the invention is characterized in that the core component is a polyester or poly-ethylene terephthalate is used and as a shell component, a copolymer of a polyester or of polyethylene terephthalate is used.
  • Another preferred embodiment of the invention is characterized in that polypropylene is used as the core component and a copolymer of polypropylene is used as the sheath component. If, according to the recommended embodiment of the invention, identical types of plastics are used for the components of the multicomponent fibers or bicomponent fibers, the fiber composite moldings produced according to the invention can be recycled in a particularly simple manner.
  • a spunbonded nonwoven made from multicomponent fibers or bicomponent fibers is used, specifically a spunbonded nonwoven made of continuous filaments.
  • a spunbonded fabric is preferably produced by means of a spun-bonding process. Endless filaments of thermoplastic material are spun from a spinnerette and then cooled in a cooling chamber. Conveniently, these cooled endless filaments are then introduced into a drawing unit and preferably finally deposited on a conveyor belt or filing screen belt.
  • the continuous filaments of the spunbonded nonwoven preferably have a fiber diameter of 10 to 35 ⁇ m and preferably the fiber diameter of the endless filaments is greater than 10 ⁇ m or significantly greater than 10 ⁇ m.
  • the melt flow index (MFI) of the plastics used to produce a spunbonded fabric is 10 to 100 g / 10 min.
  • the melt flow index (MFI) is measured in the context of the invention according to EN ISO 1133 at a test temperature of 230 ° C and a nominal mass of 2.16 kg.
  • a nonwoven fabric or a spunbonded nonwoven for producing a fiber composite molding according to the invention is used, it is expedient to solidify the nonwoven fabric or spunbonded nonwoven preferably by hydroentanglement and / or mechanical needling.
  • a preferred embodiment of the method according to the invention is characterized in that the multi-component fibers or that the nonwoven fabric is converted into a fiber composite molding by application of heat and / or pressure directly in the course of a thermoforming process and / or an injection molding process.
  • the multicomponent fibers or the nonwoven fabric is / are thus processed directly and without intermediary melting and hardening processes to the final product.
  • Thermoforming process means in particular a deep drawing process.
  • the nonwoven fabric can be thermoformed immediately. Because of the good handleability and good drapability of the nonwovens, three-dimensional or multidimensional molded parts can be produced according to the invention without difficulty.
  • the multicomponent fibers or the nonwoven fabric from the multicomponent fibers are subjected to heat and / or pressure in a first step and thereby a semifinished product with a matrix of thermoplastic material and reinforcing fibers embedded therein from the second or the second or higher melting components formed.
  • This semifinished product of thermoplastic matrix and embedded second or higher melting reinforcing fibers is then converted later or in a second step by applying heat and / or pressure in the course of a thermoforming process and / or an injection molding in a fiber composite molding.
  • a semifinished product is first produced, which is then later processed into the final product, for example by deep-drawing or thermo-pressing into a three-dimensional or multidimensional molding.
  • the semifinished product is produced from the thermoplastic matrix and the embedded second or higher-melting reinforcing fibers in the form of plates.
  • the melting point of the at least one higher melting component is at least 40 ° C, preferably at least 50 ° C, and most preferably at least 70 ° C higher than the melting point of the at least one lower melting component of the multicomponent fibers.
  • the ratio or the volume ratio core / sheath is expediently 65/35 to 45/55, preferably 60/40 to 55/45 and particularly preferably 60/40 or about 60/40.
  • the invention also provides a semi-finished product for producing a fiber composite molding with reinforcing fibers embedded in a matrix of thermoplastic material.
  • the invention furthermore also relates to a fiber composite molding which can be produced by the method according to the invention described above and / or from the semifinished product according to the invention described above, wherein reinforcing fibers or higher melting reinforcing fibers are embedded in a matrix of thermoplastic material or of lower melting thermoplastic material.
  • the invention is based on the finding that with the inventive method in a simple and inexpensive way fiber composite moldings with optimal properties can be produced. Negative air pockets in the thermoplastic matrix of a fiber composite molding produced according to the invention can be avoided or at least largely avoided.
  • the molding of shaped parts can be carried out in a simple manner in a single pressing tool.
  • the nonwovens or spunbonded nonwovens preferably used for the production of fiber composite moldings according to the invention are characterized by easy handling and drapability, and they can readily be used as flexible roll goods.
  • three-dimensional or multi-dimensional fiber composite moldings can be produced in a simple manner, in particular in lightweight construction.
  • Nonwoven layers can also be laminated to form a laminate for the production of certain fiber composite moldings, wherein the number, quantity and orientation of the nonwoven layers can be freely selected.
  • Nonwoven fabrics can also be used as cover layer for sandwich components with core layer reinforcement in the context of the method according to the invention.
  • the fiber composite molded parts produced according to the invention are also distinguished by outstanding mechanical properties. It can be produced fiber composite moldings, which are characterized by a high strength and rigidity at gleichzeltig low density and high impact resistance. Furthermore, it should be emphasized that, in particular with appropriate choice of material, the fiber composite moldings produced according to the invention can be recycled in a simple and inexpensive manner.
  • the Fig. 1 shows very schematically a pressing tool 1 with two press plates 2, 3. Between the press plates 2, 3 is preferably and in the exemplary embodiment, a spunbonded nonwoven 4 of bicomponent fibers 5 is arranged.
  • the bicomponent fibers 5 are endless filaments.
  • the bicomponent fibers have a core-sheath configuration with a higher melting component 6 in the core and a lower melting component 7 in the sheath.
  • the higher-melting component 6 may in the exemplary embodiment be polyethylene terephthalate (PET) and, in the case of a lower-melting component, a lower-melting copolymer of polyethylene terephthalate.
  • the spunbonded fabric 4 When compressing the press plates 2, 3, the spunbonded fabric 4 is subjected to heat and pressure, so that the lower-melting component 7 melts.
  • the heating temperature is expediently chosen so that only the lower-melting component 7 melts and the higher-melting component 6, on the other hand, is not melted.
  • the higher-melting component 6 remains as it were in the form of reinforcing fibers and this higher-melting component 6 or the corresponding reinforcing fibers are embedded in a thermoplastic matrix 8 of the lower melting component 7 (see the right side of Fig. 2 ).
  • a fiber composite molding can be prepared.
  • Fig. 2 shows, moreover, that the higher-melting component 6 or the corresponding reinforcing fibers are completely embedded in the thermoplastic matrix 8 of the lower-melting component. Disturbing air pockets are not observed here and they can be avoided in implementing the method according to the invention in a simple manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Faserverbundformteils. Weiterhin betrifft die Erfindung ein Halbzeug zur Herstellung eines solchen Faserverbundformteils und ein Faserverbundformteil. Die Erfindung betrifft vor allem Faserverbundformteile in Leichtbauweise. Der Begriff Faserverbundformteil meint, dass in dem Verbundformteil Fasern bzw. nicht aufgeschmolzene Fasern bzw. Faserkomponenten vorliegen. Die erfindungsgemäß hergestellten Faserverbundformteile können einerseits eine zweidimensionale Form, insbesondere die Form einer Platte oder dergleichen aufweisen. Vorzugsweise haben die erfindungsgemäß hergestellten Faserverbundformteile eine dreidimensionale Form.
  • Verfahren der eingangs genannten und in den Oberbegriffen der Ansprüche 1 und 2 definierte Merkmale Art sind aus der Praxis bereits in unterschiedlichen Ausführungsformen bekannt. Bei diesen bekannten Verfahren z.B DE-A-3341292 werden zunächst Halbzeuge hergestellt, die aus einer Matrix aus thermoplastischem Kunststoff und darin eingebetteten Verstärkungsfasern bestehen. Dazu werden die Verstärkungsfasern - insbesondere Glasfasern - zunächst mit Folien, Pulver oder Schmelze aus thermoplastischem Kunststoff kombiniert. Durch Beaufschlagung mit Wärme und Druck wird der thermoplastische Kunststoff aufgeschmolzen und auf diese Weise werden die Verstärkungsfasern mit der Schmelze imprägniert, so dass letztendlich das Halbzeug aus der thermoplastischen Matrix mit den eingebetteten Verstärkungsfasern resultiert. Diese Halbzeuge nennt man auch Organobleche und sie werden in der Regel in Form von Platten hergestellt. Diese Platten müssen zur Herstellung eines Faserverbundformteils mit dreidimensionaler Form in einem späteren zusätzlichen Verarbeitungsschritt erneut erwärmt werden, bevor sie zu dem gewünschten Faserverbundformteil geformt werden können.
  • Die bekannten Verfahren weisen eine Mehrzahl von Nachteilen auf. Oftmals resultieren Lufteinschlüsse und dadurch entstehen Schwachstellen in dem hergestellten Faserverbundformteil. Fernerhin zeichnen sich insbesondere die im Rahmen der bekannten Verfahren hergestellten Halbzeuge durch eine nicht zufriedenstellende Drapierbarkeit aus. Aus diesem Grunde ist die Herstellung von dreidimensionalen bzw. mehrdimensionalen Faserverbundformteilen Einschränkungen unterworfen. Besonders hervorzuheben ist, dass sich das Recycling von bekannten Faserverbundmaterialien schwierig gestaltet, insbesondere wenn eine thermoplastische Matrix mit anorganischen oder schwer bzw. nicht schmelzbaren Verstärkungsfasern verstärkt ist.
  • Demgegenüber liegt der Erfindung das technische Problem zugrunde, ein Verfahren der eingangs genannten Art anzugeben, bei dem die vorstehend genannten Nachteile funktionssicher und effektiv vermieden werden können. Fernerhin liegt der Erfindung das technische Problem zugrunde, ein Halbzeug für die Durchführung dieses Verfahrens anzugeben sowie ein entsprechendes Faserverbundformteil.
  • Zur Lösung dieses technischen Problems lehrt die Erfindung ein Verfahren zur Herstellung eines Faserverbundformteils gemäß den Ansprüchen 1 und 2 bei dem Verstärkungsfasern in einer Matrix aus thermoplastischem Kunststoff eingebettet sind, wobei Mehrkomponentenfasern mit zumindest einer ersten niedrigerschmelzenden Komponente - aus thermoplastischem Kunststoff und mit zumindest einer zweiten höherschmelzenden Komponente - mit Wärme und/oder Druck beaufschlagt werden, so dass die erste bzw. niedrigerschmelzende Komponente schmilzt und eine Matrix aus thermoplastischem Kunststoff bildet, in der die zweite bzw. höherschmelzende Komponente in Form von Verstärkungsfasern eingebettet wird. Auch die zweite bzw. höherschmelzende Komponente besteht aus thermoplastischem Kunststoff. Es liegt weiterhin im Rahmen der Erfindung, dass bei der Beaufschlagung mit Wärme und/oder Druck die Erwärmungstemperatur so gewählt bzw. eingestellt wird, dass lediglich die erste bzw. niedrigerschmelzende Komponente schmilzt. Es versteht sich, dass nach dem Aufbringen von Wärme und/oder Druck bzw. nach dem Formen des Faserverbundformteils ein Abkühlen der Matrix aus dem thermoplastischen Kunststoff mit den eingebetteten Verstärkungsfasern stattfindet. Mit dem erfindungsgemäßen Verfahren wird vorzugsweise ein Faserverbundformteil in Leichtbauweise erzeugt.
  • Höherschmelzend meint im Rahmen der Erfindung, dass die höherschmelzende Komponente einen höheren Schmelzpunkt hat als die niedrigerschmelzende Komponente, wobei die beiden Schmelzpunkte unter gleichen äußeren Bedingungen gemessen werden. - Die zumindest eine erste Komponente und die zumindest eine zweite Komponente müssen im Rahmen der Erfindung aber nicht zwingend verschiedene Schmelzpunkte aufweisen. Sie können auch gleiche bzw. ungefähr gleiche Schmelzpunkte haben. So kann die erste Komponente amorph ausgebildet sein und die zweite Komponente kristallin bzw. hochkristallin ausgebildet sein. Dann kann gezielt die erste amorphe Komponente aufgeschmolzen werden, während die zweite kristalline Komponente in Form der Verstärkungsfasern in der thermoplastischen Kunststoffmatrix der ersten Komponente eingebettet wird. Es liegt im Rahmen der Erfindung, dass die zumindest eine erste Komponente und die zumindest eine zweite Komponente mit unterschiedlichen Aufschmelzenergien beaufschlagt werden, so dass sich einerseits die thermoplastische Kunststoffmatrix und andererseits die Verstärkungsfasern ergeben.
  • Für die Beaufschlagung mit Wärme bzw. Hitze und/oder Druck werden die Mehrkomponentenfasern als Endlosfilamente in Form eines Vlieses zweckmäßigerweise in ein Presswerkzeug eingebracht und dort bevorzugt unter Wärmeeinwirkung und/oder Druckeinwirkung verformt. Die Einbettung der Verstärkungsfasern in die Matrix aus thermoplastischem Kunststoff soll im Rahmen der Erfindung vorzugsweise möglichst vollständig und unter Minimierung von Lufteinschlüssen erfolgen.
  • Eine ganz besonders bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Mehrkomponentenfasern als Bikomponentenfasern, mit Kern-Mantel-Konfiguration eingesetzt werden und wobei bevorzugt die bzw. eine Mantelkomponente die erste bzw. niedrigerschmelzende Komponente ist. Nach der Beaufschlagung der Mehrkomponentenfasern bzw. der Bikomponentenfasern mit Wärme und/oder Druck und nach dem Aufschmelzen der ersten bzw. niedrigerschmelzenden Komponente(n) bzw. Mantelkomponente(n) bildet dann vorzugsweise die zumindest eine Kernkomponente bzw. die Kernkomponente die Verstärkungsfasern des Verbundformteils aus. Grundsätzlich liegt es auch im Rahmen der Erfindung, dass Mehrkomponentenfasern bzw. Bikomponentenfasern mit Side-by-side-Konfiguration eingesetzt werden. Dann ist zweckmäßigerweise eine Seitenkomponente bzw. zumindest eine Seitenkomponente die erste bzw. niedrigerschmelzende Komponente, die bei Beaufschlagung mit Wärme und/oder Druck schmilzt und die Matrix aus thermoplastischem Kunststoff bildet und dann ist bevorzugt eine bzw. zumindest eine Seitenkomponente die zweite bzw. höherschmelzende Komponente, die die Verstärkungsfasern des Faserverbundformteils ausbildet. Es liegt auch im Rahmen der Erfindung, dass andere Konfigurationen von Mehrkomponentenfasern bzw. Bikomponentenfasern im Rahmen des erfindungsgemäßen Verfahrens eingesetzt werden können, beispielsweise sogenannte Segmented-pie-Fasern oder Island-in-the-sea-Fasern. Eine sehr empfohlene Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass Bikomponentenfasern als Mehrkomponentenfasern eingesetzt werden. Es hat sich als besonders vorteilhaft erwiesen, dass die Mehrkomponentenfasern bzw. Bikomponentenfasern in Form eines Vliesstoffes und insbesondere in Form eines Wirrvlieses verwendet werden. Die Flächengewichte der Vliesstoffe sind dabei grundsätzlich frei wählbar.
  • Erfindungsgemäss werden die Mehrkomponentenfasern bzw. Bikomponentenfasern in Form von Endlosfilamenten eingesetzt werden. Die Mehrkomponentenfasern bzw. Bikomponentenfasern werden in Form eines Spinnvlieses für das erfindungsgemäße Verfahren verwendet. Erfindungsgemäss können auch die Mehrkomponentenfasern in Form eines Meltblown-Vlieses und gemäß einer Ausführungsvariante in Form eines Biax-Meltblown-Vlieses eingesetzt werden. Die Mehrkomponentenfasern können grundsätzlich auch im Rahmen eines Airlaid- oder Wetlaid-Verfahrens erzeugt werden.
  • Nach einer sehr empfohlenen Ausführungsform der Erfindung bestehen die zweite bzw. höherschmelzende Komponente und die erste bzw. niedrigerschmelzende Komponente der Mehrkomponentenfasern bzw. Bikomponentenfasern aus dem gleichen Kunststoff bzw. aus der gleichen Kunststoffart. Wenn nach bevorzugter Ausführungsvariante der Erfindung Mehrkomponentenfasern bzw. Bikomponentenfasern in Kern-Mantel-Konfiguration eingesetzt werden, besteht gemäß einer Ausführungsform der Kern aus einem Polyester bzw. im Wesentlichen aus einem Polyester und der Mantel aus einem anderen bzw. niedrigerschmelzenden Kunststoff als der Polyester. Als Polyester wird empfohlenermaßen Polyethylenterephthalat (PET) eingesetzt. Eine vorteilhafte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass als Kernkomponente ein Polyester bzw. Poly-ethylenterephthalat eingesetzt wird und als Mantelkomponente ein Copolymerisat eines Polyesters bzw. von Polyethylenterephthalat eingesetzt wird. - Eine andere bevorzugte Ausführungsform der Erfindung zeichnet sich dadurch aus, dass als Kernkomponente Polypropylen eingesetzt wird und als Mantelkomponente ein Copolymerisat von Polypropylen eingesetzt wird. - Wenn nach empfohlener Ausführungsform der Erfindung gleiche Kunststoffarten für die Komponenten der Mehrkomponentenfasern bzw. Bikomponentenfasern eingesetzt werden, können die erfindungsgemäß hergestellten Faserverbundformteile besonders einfach recycelt werden.
  • Wie oben bereits dargelegt, wird nach einer Ausführungsform der Erfindung zur Herstellung eines erfindungsgemäßen Faserverbundformteils ein Spinnvlies aus Mehrkomponentenfasern bzw. Bikomponentenfasern eingesetzt und zwar ein Spinnvlies aus Endlosfilamenten. Ein solches Spinnvlies wird bevorzugt mittels eines Spun-Bond-Verfahrens hergestellt. Dabei werden Endlosfilamente aus thermoplastischem Kunststoff aus einer Spinnerette ersponnen und anschließend in einer Kühlkammer gekühlt. Zweckmäßigerweise werden diese gekühlten Endlosfilamente daraufhin in eine Verstreckeinheit eingeführt und bevorzugt schließlich auf einem Förderband bzw. Ablagesiebband abgelegt. Empfohlenermaßen weisen die Endlosfilamente des Spinnvlieses einen Faserdurchmesser von 10 bis 35 µm auf und vorzugsweise ist der Faserdurchmesser der Endlosfilamente größer als 10 µm bzw. deutlich größer als 10 µm. Zweckmäßigerweise beträgt der Schmelzflussindex (MFI) der zur Herstellung eines Spinnvlieses eingesetzten Kunststoffe 10 bis 100 g/10 min. Der Schmelzflussindex (MFI) wird im Rahmen der Erfindung nach EN ISO 1133 bei einer Prüftemperatur von 230 °C und bei einer Nennmasse von 2,16 kg gemessen. - Wenn nach empfohlener Ausführungsform der Erfindung ein Vliesstoff bzw. ein Spinnvlies zur Herstellung eines erfindungsgemäßen Faserverbundformteils eingesetzt wird, erfolgt zweckmäßigerweise eine Verfestigung des Vliesstoffes bzw. Spinnvlieses und zwar bevorzugt durch Wasserstrahlverfestigung und/oder mechanisches Vernadeln.
  • Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass die Mehrkomponentenfasern bzw. dass der Vliesstoff durch Beaufschlagung mit Wärme und/oder Druck unmittelbar im Zuge eines Thermoformprozesses und/oder eines Spritzgießprozesses in ein Faserverbundformteil umgewandelt wird/werden. Die Mehrkomponentenfasern bzw. der Vliesstoff wird/werden dabei also unmittelbar und ohne zwischengeschaltete Aufschmelz- und Erhärtungsprozesse zum Endprodukt verarbeitet. Thermoformprozess meint insbesondere einen Tiefziehprozess. Bei der vorstehend beschriebenen bevorzugten Ausführungsform kann der Vliesstoff unmittelbar tiefgezogen werden. Aufgrund der guten Handhabbarkeit und guten Drapierbarkeit des Vliesstoffen können erfindungsgemäß problemlos dreidimensionale bzw. mehrdimensionale Formteile hergestellt werden.
  • Nach einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden die Mehrkomponentenfasern bzw. wird der Vliesstoff aus den Mehrkomponentenfasern in einem ersten Schritt mit Wärme und/oder Druck beaufschlagt und dabei wird ein Halbzeug mit einer Matrix aus thermoplastischem Kunststoff und darin eingebetteten Verstärkungsfasern aus der bzw. den zweiten bzw. höherschmelzenden Komponenten gebildet. Dieses Halbzeug aus thermoplastischer Matrix und eingebetteten zweiten bzw. höherschmelzenden Verstärkungsfasern wird dann erst später bzw. in einem zweiten Schritt durch Beaufschlagung mit Wärme und/oder Druck im Zuge eines Thermoformprozesses und/oder eines Spritzgießprozesses in ein Faserverbundformteil umgewandelt. Dabei wird also zunächst ein Halbzeug hergestellt, dass dann später zu dem Endprodukt verarbeitet wird, beispielsweise durch Tiefziehen oder Thermopressen zu einem dreidimensionalen bzw. mehrdimensionalen Formteil. Gemäß einer Ausführungsvariante der Erfindung wird das Halbzeug aus der thermoplastischen Matrix und den eingebetteten zweiten bzw. höherschmelzenden Verstärkungsfasern in Form von Platten hergestellt.
  • Nach einer Ausführungsform liegt der Schmelzpunkt der zumindest einen höherschmelzenden Komponente mindestens 40 °C, bevorzugt mindestens 50 °C und sehr bevorzugt mindestens 70 °C höher als der Schmelzpunkt der zumindest einen niedrigerschmelzenden Komponente der Mehrkomponentenfasern. Wenn nach empfohlener Ausführungsform der Erfindung Mehrkomponentenfasern in Kern-Mantel-Konfiguration eingesetzt werden, beträgt das Verhältnis bzw. das Volumenverhältnis Kern/Mantel zweckmäßigerweise 65/35 bis 45/55, bevorzugt 60/40 bis 55/45 und besonders bevorzugt 60/40 bzw. etwa 60/40. Durch Auswahl des Volumenverhältnisses Kern/Mantel können die mechanischen Eigenschaften des Faserverbundformteils gezielt eingestellt werden.
  • Gegenstand der Erfindung ist auch ein Halbzeug zur Herstellung eines Faserverbundformteils mit in einer Matrix aus thermoplastischem Kunststoff eingebetteten Verstärkungsfasern. Gegenstand der Erfindung ist weiterhin auch ein Faserverbundformteil, das nach dem oben beschriebenen erfindungsgemäßen Verfahren und/oder aus dem vorstehend beschriebenen erfindungsgemäßen Halbzeug herstellbar ist, wobei Verstärkungsfasern bzw. höherschmelzende Verstärkungsfasern in einer Matrix aus thermoplastischem Kunststoff bzw. aus niedrigerschmelzendem thermoplastischem Kunststoff eingebettet ist.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass mit dem erfindungsgemäßen Verfahren auf einfache und wenig aufwendige Weise Faserverbundformteile mit optimalen Eigenschaften hergestellt werden können. Nachteilhafte Lufteinschlüsse in der thermoplastischen Matrix eines erfindungsgemäß hergestellten Faserverbundformteils können vermieden werden bzw. zumindest weitgehend vermieden werden. Grundsätzlich kann bei dem erfindungsgemäßen Verfahren die Formteilformung auf einfache Weise in einem einzigen Presswerkzeug erfolgen. Die für die Herstellung der erfindungsgemäßen Faserverbundformteile vorzugsweise eingesetzten Vliesstoffe bzw. Spinnvliese zeichnen sich durch eine einfache Handhabbarkeit und Drapierbarkeit aus und sie können ohne Weiteres als flexible Rollenware eingesetzt werden. Mit dem erfindungsgemäßen Verfahren sind auf einfache Weise dreidimensionale bzw. mehrdimensionale Faserverbundformteile herstellbar und zwar insbesondere in Leichtbauweise. Zur Herstellung bestimmter Faserverbundformteile können Vlieslagen auch zu einem Laminat geschichtet werden, wobei Anzahl, Menge und Orientierung der Vlieslagen frei wählbar ist. Vliesstoffe können im Rahmen des erfindungsgemäßen Verfahrens auch als Decklage für Sandwichbauteile mit Kernlagenverstärkung eingesetzt werden. Die erfindungsgemäß erzeugten Faserverbundformteile zeichnen sich auch durch hervorragende mechanische Eigenschaften aus. Es können Faserverbundformteile hergestellt werden, die sich durch eine hohe Festigkeit und Steifigkeit bei gleichzeltig niedriger Dichte sowie durch eine hohe Schlagzähigkeit auszeichnen. Weiterhin ist zu betonen, dass insbesondere bei entsprechender Materialwahl die erfindungsgemäß hergestellten Faserverbundformteile auf einfache und wenig aufwendige Weise recycelt werden können.
  • Nachfolgend wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Es zeigen in schematischer Darstellung:
  • Fig. 1
    eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens und
    Fig. 2
    rein schematisch die Durchführung des erfindungsgemäßen Verfahrens.
  • Die Fig. 1 zeigt sehr schematisch ein Presswerkzeug 1 mit zwei Pressplatten 2, 3. Zwischen den Pressplatten 2, 3 wird vorzugsweise und im Ausführungsbeispiel ein Spinnvlies 4 aus Bikomponentenfasern 5 angeordnet. Bei den Bikomponentenfasern 5 handelt es sich um Endlosfilamente. Die Bikomponentenfasern weisen eine Kern-Mantel-Konfiguration auf und zwar mit einer höherschmelzenden Komponente 6 im Kern und einer niedrigerschmelzenden Komponente 7 im Mantel. Bei der höherschmelzenden Komponente 6 mag es sich im Ausführungsbeispiel um Polyethylenterephthalat (PET) handeln und bei niedrigerschmelzenden Komponente um ein niedrigerschmelzendes Copolymerisat des Polyethylenterephthalats. Beim Zusammenpressen der Pressplatten 2, 3 wird das Spinnvlies 4 mit Wärme und Druck beaufschlagt, so dass die niedrigerschmelzende Komponente 7 aufschmilzt. Die Erwärmungstemperatur wird zweckmäßigerweise so gewählt, dass lediglich die niedrigerschmelzende Komponente 7 aufschmilzt und die höherschmelzende Komponente 6 dagegen nicht aufgeschmolzen wird. Auf diese Weise bleibt die höherschmelzende Komponente 6 gleichsam in Form von Verstärkungsfasern erhalten und diese höherschmelzende Komponente 6 bzw. die entsprechenden Verstärkungsfasern werden in einer thermoplastischen Matrix 8 aus der niedrigerschmelzenden Komponente 7 eingebettet (siehe rechte Seite der Fig. 2). Auf die vorstehend beschriebene Weise kann nach bevorzugter Ausführungsform der Erfindung unmittelbar ein Faserverbundformteil hergestellt werden. Grundsätzlich können im Rahmen der Erfindung mit speziellen Presswerkzeugen auf einfache Weise dreidimensionale bzw. mehrdimensionale Formteile auch mit komplizierten Strukturen hergestellt werden. Dazu trägt die flexible Handhabbarkeit und die gute Drapierbarkeit der Spinnvliese 4 bei. Fig. 2 zeigt im Übrigen, dass die höherschmelzende Komponente 6 bzw. die entsprechenden Verstärkungsfasern vollständig in die thermoplastische Matrix 8 aus der niedrigerschmelzenden Komponente eingebettet sind. Störende Lufteinschlüsse sind hier nicht zu beobachten und sie können bei Verwirklichung des erfindungsgemäßen Verfahrens auf einfache Weise vermieden werden.

Claims (11)

  1. Verfahren zur Herstellung eines Faserverbundformteils, bei dem Verstärkungsfasern (6) in einer Matrix (8) aus thermoplastischem Kunststoff eingebettet sind, wobei Mehrkomponentenfasern (5) mit zumindest einer ersten niedrigerschmelzenden Komponente (7) aus thermoplastischem Kunststoff und mit zumindest einer zweiten höherschmelzenden Komponente (6) aus thermoplastischem Kunststoff mit Wärme und/oder Druck beaufschlagt werden, so dass die erste niedrigerschmelzende Komponente schmilzt und eine Matrix (8) aus thermoplastischem Kunststoff bildet, in der die zweite höherschmelzende Komponente (6) als Verstärkungsmaterial bzw. als Verstärkungsfasern eingebettet wird dadurch gekennzeichnet, dass die Mehrkomponentenfasern als Endlosfilamente in Form eines nach einem Spun-Bond-Verfahren hergestellten Spinnvlieses bzw. Wirrvlieses eingesetzt werden.
  2. Verfahren zur Herstellung eines Faserverbundformteils, bei dem Verstärkungsfasern (6) in einer Matrix (8) aus thermoplastischem Kunststoff eingebettet sind, wobei Mehrkomponentenfasern mit zumindest einer ersten niedrigerschmelzenden Komponente (7) aus thermoplastischem Kunststoff und mit zumindest einer zweiten höherschmelzenden Komponente (6) aus thermoplastischem Kunststoff mit Wärme und/oder Druck beaufschlagt werden, so dass die erste niedrigerschmelzende Komponente schmilzt und eine Matrix (8) aus thermoplastischem Kunststoff bildet, in der die zweite höherschmelzende Komponente (6) als Verstärkungsmaterial bzw. als Verstärkungsfasern eingebettet wird, dadurch gekennzeichnet, dass die Mehrkomponentenfasern als Endlosfilamente in Form eines Meltblown-Vlieses - vorzugsweise in Form eines Biax-Meltblown-Vlieses - eingesetzt werden.
  3. Verfahren nach einem der Ansprüche 1 oder 2, wobei Mehrkomponentenfasern (5) mit Kern-Mantel-Konfiguration eingesetzt werden und wobei vorzugsweise die Mantelkomponente die erste bzw. niedrigerschmelzende Komponente ist.
  4. Verfahren nach einem der Ansprüche 1 oder 2, wobei Mehrkomponentenfasern (5) mit Side-by-side-Konfiguration eingesetzt werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei Bikomponentenfasern als Mehrkomponentenfasern (5) eingesetzt werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei die zweite bzw. höherschmelzende Komponente (6) und die erste bzw. niedrigerschmelzende Komponente (7) aus dem gleichen Kunststoff bzw. aus der gleichen Kunststoffart bestehen.
  7. Verfahren nach einem der Ansprüche 1 bis 6, wobei der Vliesstoff (4) vor der Beaufschlagung mit Wärme und/oder Druck verfestigt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei der Vliesstoff (4) durch Beaufschlagung mit Wärme und/oder Druck unmittelbar im Zuge eines Thermoformprozesses und/oder eines Spritzgießprozesses in ein Faserverbundformteil umgewandelt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei der Vliesstoff (4) in einem ersten Schritt mit Wärme und/oder Druck beaufschlagt wird und dabei ein Halbzeug mit einer Matrix aus thermoplastischem Kunststoff (8) und darin eingebetteten Verstärkungsfasern (6) glebildet wird und wobei das Halbzeug in einem zweiten Schritt durch Beaufschlagung mit Wärme und/oder Druck im Zuge eines Thermoformprozesses und/oder eines Spritzgießprozesses in ein Faserverbundformteil umgewandelt wird.
  10. Halbzeug zur Herstellung eines Faserverbundformteils, bei dem Verstärkungsfasern (6) als Endlosfilamente in einer Matrix aus thermoplastischem Kunststoff (8) eingebettet sind, hergestellt nach einem Verfahren gemäß Anspruch 9.
  11. Faserverbundformteil, hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 8 und/oder aus einem Halbzeug nach Anspruch 10, wobei höherschmelzende Verstärkungsfasern als Endlosfilamente - in einer Matrix aus niedrigerschmelzendem thermoplastischem Kunststoff eingebettet sind.
EP13153853.0A 2013-02-04 2013-02-04 Verfahren und Halbzeug zur Herstellung eines Faserverbundformteils und Faserverbundformteil Active EP2762295B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13153853.0A EP2762295B1 (de) 2013-02-04 2013-02-04 Verfahren und Halbzeug zur Herstellung eines Faserverbundformteils und Faserverbundformteil
ES13153853.0T ES2583153T3 (es) 2013-02-04 2013-02-04 Procedimiento y semiproducto para la fabricación de una pieza moldeada compuesta de fibras y pieza moldeada compuesta de fibras

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13153853.0A EP2762295B1 (de) 2013-02-04 2013-02-04 Verfahren und Halbzeug zur Herstellung eines Faserverbundformteils und Faserverbundformteil

Publications (2)

Publication Number Publication Date
EP2762295A1 EP2762295A1 (de) 2014-08-06
EP2762295B1 true EP2762295B1 (de) 2016-04-20

Family

ID=47739055

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13153853.0A Active EP2762295B1 (de) 2013-02-04 2013-02-04 Verfahren und Halbzeug zur Herstellung eines Faserverbundformteils und Faserverbundformteil

Country Status (2)

Country Link
EP (1) EP2762295B1 (de)
ES (1) ES2583153T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2987422B1 (de) * 2014-08-18 2018-06-27 Samsonite IP Holdings S.ÀR.L. Gepäckstück aus einem verdichteten vlies
DE102016205556A1 (de) * 2016-04-04 2017-10-05 Röchling Automotive SE & Co. KG Verfahren zur Herstellung eines LWRT umfassenden Bauteils mit amorphen Phasen im Ausgangsmaterial
DE102019106772A1 (de) * 2019-03-18 2020-09-24 FOND OF GmbH Verfahren zum Herstellen eines selbstverstärkten thermoplastischen Kompositwerkstoffs

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3341292A1 (de) * 1983-07-02 1985-01-03 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von faserverstaerkten formkoerpern
US5380477A (en) * 1993-05-25 1995-01-10 Basf Corporation Process of making fiber reinforced laminates
US20040118504A1 (en) * 2002-11-14 2004-06-24 Daimlerchrysler Ag Method for manufacturing a composite material, method for manufacturing a three-dimensional component made of a composite material, composite material, and device for holding the composite material
EP1787790A1 (de) * 2005-11-21 2007-05-23 Lankhorst Indutech B.V. Verfahren zur Verformung eines thermoplastischen Verbundwerkstoffes

Also Published As

Publication number Publication date
ES2583153T3 (es) 2016-09-19
EP2762295A1 (de) 2014-08-06

Similar Documents

Publication Publication Date Title
EP2716435B1 (de) Verfahren zur Herstellung eines Verbundformteils, insbesondere eines Faserverbundformteils und Verbundformteil, insbesondere Faserverbundformteil
EP2536546B1 (de) Verfahren zur herstellung eines plattenförmigen halbzeugs aus faserverbundwerkstoff, und das so erhaltene halbzeug
EP1060069B1 (de) Fasergelegeanordnung und verfahren zur herstellung eines vorformlings
DE3614533C2 (de)
EP2791409B1 (de) Flächiger verbundwerkstoff
DE3239732T1 (de) Formbare fasermatte und verfahren zum herstellen der matte und daraus geformte produkte
WO2013117743A1 (de) Flächiger verbundswerkstoff
EP1772258B1 (de) Verwendung eines Vlieslaminats für die Herstellung von faserverstärkten Kunststoffteilen und faserverstärktes Kunststoffteil
EP1372940A1 (de) Verfahren zur herstellung eines dicken, thermoplastisch verformbaren, faserverstärkten halbzeugs
EP2463092B1 (de) Innenraum-Verkleidungsbauteil für ein Kraftfahrzeug
EP3245048B1 (de) 3-dimensionales hochfestes faserverbundbauteil und verfahren zu seiner herstellung
WO2011070116A1 (de) Textiles halbzeug und verfahren zu dessen herstellung
EP2762295B1 (de) Verfahren und Halbzeug zur Herstellung eines Faserverbundformteils und Faserverbundformteil
EP1834756B1 (de) Kunststoffformteil mit einer dekorativen Textilschicht sowie Verfahren zu dessen Herstellung
EP0842038B1 (de) Verfahren zur herstellung einer armierung für thermo- oder duroplastmatrizen
EP0084135B1 (de) Verfahren zur Herstellung von Formkörpern aus faserverstärkten Schichtstoffen
WO2009033559A1 (de) Verfahren zur herstellung eines faserverbundbauteils
EP2871052B1 (de) Kfz-innenverkleidungsteil
DE102013221174B4 (de) Verfahren zur Herstellung eines zwei- oder mehrlagigen multiaxialen Geleges sowie ein entsprechendes Gelege und dessen Verwendung
DE102007028872A1 (de) Verfahren zur Herstellung eines flächigen Strukturverbundbauteils
EP3213903A1 (de) Verfahren zur herstellung eines bauteils aus einem faserverstärkten kunststoff mit einer funktionsoberfläche oder einer dekorativen oberfläche
DE202015100576U1 (de) Naturfaser-Organoblechhalbzeug
DE8611800U1 (de) Textiles Flächengebilde

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150204

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150923

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 791927

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013002621

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER AND PARTNER PATENTANWAELTE AG, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2583153

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160919

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160822

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013002621

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

26N No opposition filed

Effective date: 20170123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160820

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: REIFENHAEUSER GMBH AND CO. KG MASCHINENFABRIK, DE

Free format text: FORMER OWNER: REIFENHAEUSER GMBH AND CO. KG MASCHINENFABRIK, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230301

Year of fee payment: 11

Ref country code: AT

Payment date: 20230223

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230220

Year of fee payment: 11

Ref country code: GB

Payment date: 20230220

Year of fee payment: 11

Ref country code: BE

Payment date: 20230220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 12

Ref country code: CH

Payment date: 20240301

Year of fee payment: 12