EP2761309A1 - Contactless current sensor - Google Patents

Contactless current sensor

Info

Publication number
EP2761309A1
EP2761309A1 EP12756766.7A EP12756766A EP2761309A1 EP 2761309 A1 EP2761309 A1 EP 2761309A1 EP 12756766 A EP12756766 A EP 12756766A EP 2761309 A1 EP2761309 A1 EP 2761309A1
Authority
EP
European Patent Office
Prior art keywords
coils
hub
current
magnetic field
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12756766.7A
Other languages
German (de)
French (fr)
Inventor
Catalin Stoichita
Lionel Fabien Cima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neelogy SA
Original Assignee
Neelogy SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neelogy SA filed Critical Neelogy SA
Publication of EP2761309A1 publication Critical patent/EP2761309A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle

Definitions

  • the invention presented here relates to a new non-contact measuring device of an electric current in a conductor through the measurement of the magnetic field generated by said current.
  • EP-0499589 discloses a transformer comprising two secondary windings.
  • a current generator supplies one of the two secondary windings.
  • An amplifier circuit is provided for imposing a bias potential at the common connection point of the two secondary windings so as to guard against ripples of the primary circuit during the measurement.
  • Another known device is the Hall effect current sensor using a magnetic circuit to focus the magnetic field of the current to be measured on a Hall cell.
  • Such a current sensor is sensitive to external magnetic fields which can even saturate said magnetic circuit and thus affect the measurement.
  • Another disadvantage is the presence of a hysteresis profile of the magnetic circuit.
  • WO2009153485 is also based on sensor technology around the driver.
  • the magnetic core is a flexible elongated element intended to be closed in a loop around the conductor in which the current to be measured flows.
  • Document EP-0010921 describes a differential current measurement sensor.
  • This sensor comprises at least one measuring element consisting of a core traversed by the conductor whose current must be measured. A winding is performed around the core.
  • This core does not include a superparamagnetic material.
  • US-2006/0113987 discloses a set of coils arranged around a conductor orthogonally in pairs. This coil set forms a sensor for AC measurement. These coils do not include a core and are preferably flat coils made on PCB (Printed Circuit Board).
  • the present invention aims to overcome the aforementioned drawbacks by providing a new sensor convenient and easy to use.
  • Another object of the invention is an inexpensive sensor.
  • the invention also aims a compact sensor.
  • a non-contact current sensor comprising:
  • a set of coils composed of at least one coil around a hub responsive to the magnetic field, this hub comprising a superparamagnetic material, and
  • a controller for sending an excitation current and a feedback current to the set of coils and for receiving as information the voltage induced by the temporal variation of the magnetic induction B at least in the hub of said at least one reel of the reels game.
  • the set of coils is located in close proximity to a bar intended to receive the current to be measured.
  • the set of coils is close enough to be sufficiently sensitive (that is to say obtain a result notable for the skilled person) to the magnetic field created by the bar.
  • the hub is advantageously rigid cylindrical.
  • the hub is a cylindrical rigid element, that is to say straight and open unlike the sensors of the prior art in the form of cable to be arranged all around the driver.
  • H is the magnetic field F in Ampere per meter
  • is the scalar product of two vectors
  • di is an infinitesimal element of the curve (a vector with the modulus equal to the length of the infinitesimal element of curve and the direction given by the tangent to the curve);
  • a coil is used around a hub in the form of a cylinder.
  • cylinder is meant a solid (rigid), such as a cylinder of revolution (circular base), a parallelepiped, a cube, ...
  • the inventors have demonstrated that such a superparamagnetic component placed on a magnetic field line near the a bar carrying the current to be measured makes it possible to effectively measure the current.
  • the advantage is a smaller footprint compared to the devices of the prior art where it was necessary to completely surround the driver.
  • a sensor of the prior art requires:
  • the device according to the present invention is of smaller size than the sensor of the prior art since it is rectilinear, so does not go around the driver. Its implementation is simple since it is placed near the bar on a field line to be sensitive to the magnetic field.
  • the invention is particularly, but not only, remarkable in that only part of the near-field line of the conductor is used to make the measurement and not a closed curve of the field line.
  • the set of coils can contain two coils, in particular independent, identical and wound respectively on their hubs, hubs sensitive to the magnetic field.
  • cylindrical shape is a form of one of the following cylinders:
  • the hub is an elongate member which is disposed where the magnetic field lines cross the hub along its length; this magnetic field being created by the bar when fed with current to be measured. It is thus possible to dimension and arrange the hub so that the magnetic field is for example parallel to the generating line of the hub. For reasons of manufacturing cost, this hub is sufficiently small and close to the bar to be disposed in a section where the field line is a straight line.
  • the bar may be flat and have two rectangular side faces, the current flowing along the length of the rectangle.
  • the hub can be arranged according to the width of the rectangle; the longitudinal distance of the hub being less than the width of the rectangle.
  • the longitudinal distance of the hub may be less than the width of the rectangle in a ratio greater than Vi.
  • the senor comprises holding means for maintaining the set of coils at fixed distances relative to the bar. In this way, the magnetic transformation ratio between the bar and the coil set is fixed and determined by calibration. Then the set of coils and bar can be connected to a conductor by series insertion of the bar with a conductor carrying the current to be measured.
  • this bar can be removably mounted in the holding means.
  • FIG. 1 is a simplified schematic view of a non-contact sensor according to the invention, this sensor not surrounding the bar whose current is to be measured;
  • Figure 2 is a simplified schematic view of a non-contact sensor according to the invention in which coils are illustrated on either side of the bar.
  • Figure 1 shows the block diagram of the current sensor according to the present invention.
  • the proximity between the set of coils and the bar is such that that there is a significant interaction between the magnetic field of the current to be measured I and the magnetic field of the excitation current 10 in the hubs of the coils forming the set of coils 8. For example, this proximity is concretized by a distance between the bar and the set of coils lower than 20mm, even 10mm, even 5mm.
  • the excitation current has a high frequency with respect to the maximum frequency of the current to be measured and its frequency spectrum does not have even harmonics.
  • the counter-current current value represents the primary current up to a fixed proportionality factor which is a function of the construction of the coil set 8 and can be delivered directly as a result of the measurement 13 or a post-processing applied as needed.
  • FIG. 2 represents an exemplary embodiment of the set of coils 8 next to a primary current bar 1 of rectangular section - thickness E and height H - traversed by an electric current I.
  • the ratio between E and H can be understood between Vi and 1/50. In the same way, the ratio between the length of the hub and H can also be between Vi and 1/50.
  • the bar is drawn in dotted lines to leave visible the other elements of the sensor.
  • On the opposite sides of the primary bar 1 are positioned two identical coils 3 and 5 having hubs 2 and 4 respectively in a material selected according to the constraints on the use of the current sensor.
  • a material with a high relative permeability and a low saturation field will be chosen for measurements of small currents without external magnetic disturbance and a material with low permeability but large saturation field will be chosen for the case where the external magnetic disturbances are important.
  • the winding is done on hubs of cylindrical or preferably parallelepiped shape, as shown in Figure 2, thus allowing their easy manufacture.
  • the hub 2 is excited by an alternating magnetic field created by means of its coil which receives an excitation current, of high frequency, for example 100 kHz for a maximum frequency of 10 kHz of the current to be measured, from a electronic block here called controller.
  • an excitation current of high frequency, for example 100 kHz for a maximum frequency of 10 kHz of the current to be measured, from a electronic block here called controller.
  • a waveform it is possible to use a sinusoidal, triangular, trapezoidal current, square, etc. or any other waveform provided that the semi-alternations of the excitation current are symmetrical, which means that the amplitudes of the even harmonics are zero.
  • the effect of the non-linearity of this same characteristic B (H) is a temporal distortion of the induction B symmetrical with respect to the two semi-alternations, ie a spectral redistribution of the excitation power while respecting the rule of zero-harmonic harmonics.
  • the primary current I is not zero, the superimposition of the two fields, that of the excitation current and that of the primary current creates an asymmetrical distortion of the magnetic induction B in the hub, therefore the second order harmonics, 4, 6, etc. appear in his spectrum.
  • the temporary variation of the induction B in the coil 3 induces an electromotive voltage at the excitation frequency and its odd harmonics in the absence of the primary current I. When the primary current is present, in the spectrum of the induced voltage, we find even harmonics.
  • the controller 11 by the interpretation of the phase of the voltage induced in the coil 3 finds the polarity of the magnetic field added by the primary, and therefore the polarity of the primary current. By interpreting the amplitude of the even harmonics (for example the harmonic 2), the controller also finds the magnitude of the primary current but this information remains approximate because it includes the distortions generated by the material of the hub. To make an accurate measurement, the controller sends a feedback current in the coil 3 of such a value that the pair harmonic generation caused by the primary current is canceled. Thus the hub works in a magnetic field condition, other than excitation, almost zero.
  • even harmonics does not mean the obligation to use several even harmonics at a time. In the case of using a sinusoidal excitation, it suffices to use harmonic 2 only, for example.
  • the construction and operation of the spool 5 on its hub 4 is identical to the spool 3 on the hub 2.
  • the particularity that differentiates the two is the fact that they are on the opposite sides of the bar 1.
  • the current sensor may contain two other coils 6 and 7 with similar geometries to the coils 3 and 5 but without hubs sensitive to the magnetic field. Given the proximity of the coils 3, 5, 6 and 7 to the primary bar, when this is traversed by an alternating current, an electromotive voltage is induced in each of said coils. The number of turns for the coils 6 and 7 is adjusted to generate the same voltage induced by a primary current as the coils 3 and 5.
  • the coils are connected together so that the voltages induced by a variable primary current in the coils without hubs sensitive to the magnetic field cancel by subtraction the voltages induced by said current in the field-sensitive hub coils. magnetic.
  • the interest for the rejection of the signals generated by the baseband primary current depends on the frequency spectrum of said primary current, the permissible dynamics at the measurement input of the controller and, in general, the effects that the presence of the band signals base could have on the accuracy of the null detection on even harmonics by the controller.
  • the magnetic sensor is intrinsically insensitive to external magnetic fields, since the material used for transduction has a very high saturation field. However, in the presence of a very intense external field, such as the presence of a return bar, or another electrical conductor of another electrical pole or a permanent magnet, it may be that it disturbs the measurement. It is then beneficial to use a magnetic material to provide a shield for channeling the outside field and diverting it slightly from the transducer. This material may be made of a soft or hard magnetic material. The shape and thickness of this shield is optimized according to the disturbing field level.
  • the form of the shield may be a simple plate interposed between the source of disturbance and the transducer. It can be a cage with or without gap.
  • the non-contact current sensor according to the invention comprises at least:
  • a set of coils consisting of at least one coil around its hub made of material sensitive to the magnetic field, a set located immediately close to a bar traversed by the current to be measured, and
  • a controller which sends an excitation current and a feedback current to the set of coils and which receives as information the voltage induced by the temporal variation of the magnetic induction B in the hub of said at least one reel of the game of coils or in the hubs of the coils of the set of coils.
  • the set of coils can contain two coils, identical and wound respectively on their hubs, hubs sensitive to the magnetic field.
  • the set of coils may also contain at least one coil without a magnetic field sensitive hub which generates the same voltage induced by the primary current as the magnetic field-sensitive hub coil.
  • the material of the hub or hubs can be super paramagnetic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

The invention relates to a contactless current sensor, including: - a set of windings (8) consisting of at least one winding (3) wound about the core (2) thereof, said core being made of a material sensitive to the magnetic field, said set being located immediately adjacent to a bar (1) through which the current (I) to be measured passes; and a controller (11), which sends an energizing current (10) and a counter-reaction current (12) towards the set of windings (8), and which receives, as information, the voltage (9) induced by the temporal variation of the magnetic induction (B) in the core of said at least one winding of the set of windings (8), or in the cores of the windings of the set of windings (8) (see figure).

Description

" Capteur de courant sans contact."  "Non-contact current sensor."
L'invention présentée ici concerne un nouveau dispositif de mesure sans contact d'un courant électrique dans un conducteur par l'intermédiaire de la mesure du champ magnétique généré par ledit courant. The invention presented here relates to a new non-contact measuring device of an electric current in a conductor through the measurement of the magnetic field generated by said current.
Parmi les dispositifs existants capables de mesurer les courants sans contact le plus connu est le transformateur. Son désavantage principal est qu'il fonctionne uniquement en courant alternatif. Le document EP-0499589 décrit un transformateur comprenant deux enroulements secondaires. Un générateur de courant alimente l'un des deux enroulements secondaires. Il est prévu un circuit amplificateur pour imposer un potentiel de polarisation au point de connexion commun des deux enroulements secondaires de façon à se prémunir des ondulations du circuit primaire lors de la mesure.  Among the existing devices capable of measuring contactless currents the best known is the transformer. Its main disadvantage is that it only runs on AC power. EP-0499589 discloses a transformer comprising two secondary windings. A current generator supplies one of the two secondary windings. An amplifier circuit is provided for imposing a bias potential at the common connection point of the two secondary windings so as to guard against ripples of the primary circuit during the measurement.
Un autre dispositif connu est la bobine Rogowski qui présente le même désavantage que le transformateur.  Another known device is the Rogowski coil which has the same disadvantage as the transformer.
Un autre dispositif connu est le capteur de courant à effet Hall utilisant un circuit magnétique pour concentrer le champ magnétique du courant à mesurer sur une cellule Hall. Un tel capteur de courant est sensible à des champs magnétiques externes qui peuvent même saturer ledit circuit magnétique et affecter ainsi la mesure. Un autre désavantage est la présence d'un profil hystérésis du circuit magnétique.  Another known device is the Hall effect current sensor using a magnetic circuit to focus the magnetic field of the current to be measured on a Hall cell. Such a current sensor is sensitive to external magnetic fields which can even saturate said magnetic circuit and thus affect the measurement. Another disadvantage is the presence of a hysteresis profile of the magnetic circuit.
Un autre dispositif connu, appelé « Flux-Gate » se base sur la saturation de matériaux magnétiques sensibles et souffre des mêmes inconvénients que ceux à effet Hall. Le document US-2004/0201373 décrit un capteur de courant de type Rogowski associé à un fluxgate pour couvrir une large plage de fréquence du signal à mesurer. Ce capteur est basé sur le principe de mesure de circulation du champ magnétique fermé, cela supposant de réaliser une boucle autour du conducteur.  Another known device, called "Flux Gate" is based on the saturation of sensitive magnetic materials and suffers from the same disadvantages as Hall effect. US-2004/0201373 discloses a Rogowski type current sensor associated with a fluxgate to cover a wide frequency range of the signal to be measured. This sensor is based on the principle of closed magnetic field circulation measurement, this supposes to make a loop around the driver.
Un autre dispositif, celui présenté dans le brevet US8076931 Another device, that presented in the patent US8076931
(également publié sous le numéro FR2891917), utilise la non-linéarité magnétique des matières souples à faible perméabilité magnétique, ou de matières souples super-paramagnétiques, pour mesurer la circulation du champ magnétique autour d'un conducteur primaire où circule le courant à mesurer. En faisant le tour complet du conducteur primaire, son gabarit est grand et il s'expose d'avantage à des champs magnétiques perturbateurs externes. Autre désavantage pourrait être le prix de fabrication des bobines flexibles. Le document WO2009153485 est également basé sur la technologie de capteur autour du conducteur. Le noyau magnétique est un élément allongé souple destiné à être fermé en boucle autour du conducteur dans lequel circule le courant à mesurer. (also published under the number FR2891917), uses the magnetic non-linearity of soft materials with low magnetic permeability, or super-paramagnetic soft materials, to measure the circulation of the magnetic field around a primary conductor where the current to be measured flows. . By making the complete turn of the primary conductor, its size is large and it exposes itself more to disturbing magnetic fields External. Another disadvantage could be the cost of manufacturing flexible coils. WO2009153485 is also based on sensor technology around the driver. The magnetic core is a flexible elongated element intended to be closed in a loop around the conductor in which the current to be measured flows.
On connaît le document EP-0010921 décrivant un capteur de mesure différentiel de courant continu. Ce capteur comprend au moins un élément de mesure constitué par un noyau traversé par le conducteur dont le courant doit être mesuré. Un bobinage est réalisé autour du noyau. Ce noyau ne comprend nullement un matériau superparamagnétique.  Document EP-0010921 describes a differential current measurement sensor. This sensor comprises at least one measuring element consisting of a core traversed by the conductor whose current must be measured. A winding is performed around the core. This core does not include a superparamagnetic material.
Le document US-2006/0113987 décrit un jeu de bobines disposées autour d'un conducteur de façon orthogonale deux à deux. Ce jeu de bobine forme un capteur pour la mesure de courant alternatif. Ces bobines ne comprennent pas de noyau et sont de préférence des bobines plates réalisées sur PCB (Printed Circuit Board).  US-2006/0113987 discloses a set of coils arranged around a conductor orthogonally in pairs. This coil set forms a sensor for AC measurement. These coils do not include a core and are preferably flat coils made on PCB (Printed Circuit Board).
La présente invention a pour but de remédier aux inconvénients précités en proposant un nouveau capteur pratique et simple d'utilisation. Un autre but de l'invention est un capteur peu onéreux. L'invention a encore pour but un capteur peu encombrant. The present invention aims to overcome the aforementioned drawbacks by providing a new sensor convenient and easy to use. Another object of the invention is an inexpensive sensor. The invention also aims a compact sensor.
On atteint au moins l'un des objectifs précités avec un capteur de courant sans contact comprenant :  At least one of the aforementioned objectives is achieved with a non-contact current sensor comprising:
- un jeu de bobines composé au moins d'une bobine autour d'un moyeu sensible au champ magnétique, ce moyeu comprenant un matériau superparamagnétique, et  a set of coils composed of at least one coil around a hub responsive to the magnetic field, this hub comprising a superparamagnetic material, and
- un contrôleur pour envoyer un courant d'excitation et un courant de contre-réaction vers le jeu de bobines et pour recevoir comme information la tension induite par la variation temporelle de l'induction magnétique B au moins dans le moyeu de ladite au moins une bobine du jeu de bobines.  a controller for sending an excitation current and a feedback current to the set of coils and for receiving as information the voltage induced by the temporal variation of the magnetic induction B at least in the hub of said at least one reel of the reels game.
Selon l'invention, le jeu de bobines est situé à immédiate proximité d'une barre destinée à recevoir le courant à mesurer. Le jeu de bobines est suffisamment proche pour être suffisamment sensible (c'est à dire obtenir un résultat notable pour l'homme du métier) au champ magnétique créé par la barre.  According to the invention, the set of coils is located in close proximity to a bar intended to receive the current to be measured. The set of coils is close enough to be sufficiently sensitive (that is to say obtain a result notable for the skilled person) to the magnetic field created by the bar.
Par ailleurs, le moyeu est avantageusement rigide de forme cylindrique. Avec l'invention, le moyeu est un élément rigide cylindrique, c'est-à-dire droit et ouvert contrairement aux capteurs de l'art antérieur sous forme de câble à disposer tout autour du conducteur. Furthermore, the hub is advantageously rigid cylindrical. With the invention, the hub is a cylindrical rigid element, that is to say straight and open unlike the sensors of the prior art in the form of cable to be arranged all around the driver.
La forme et la structure des capteurs à circulation de champ selon l'art antérieur sont conditionnées par le respect d'un principe d'interprétation du théorème d'Ampère qui préconise de réaliser la mesure en intégrant le champ magnétique le long d'une courbe fermée, c'est le principe de la circulation de champ magnétique.  The shape and the structure of the field-circulating sensors according to the prior art are conditioned by the respect of a principle of interpretation of the Ampère theorem which recommends carrying out the measurement by integrating the magnetic field along a curve. closed, this is the principle of magnetic field circulation.
Le sens du terme « circulation magnétique » est celui de la loi d'Ampère : The meaning of the term "magnetic circulation" is that of Ampère's law:
 or
ê'G est l'intégrale au long d'une courbe fermée C; ' G is the integral along a closed curve C;
H est le champs magnétique F en Ampère par mètre;  H is the magnetic field F in Ampere per meter;
« » est le produit scalaire de deux vecteurs ; " " is the scalar product of two vectors;
di est un élément infinitésimal de la courbe (un vecteur avec le module égal à la longueur de l'élément infinitésimal de courbe et la direction donnée par la tangente à la courbe);  di is an infinitesimal element of the curve (a vector with the modulus equal to the length of the infinitesimal element of curve and the direction given by the tangent to the curve);
If,enc est le courant net pénétrant une surface assise sur la courbe C. C'est sur la base de ce principe qu'ont été élaborée la plupart des capteurs de l'art antérieur, à savoir un capteur de forme circulaire autour du conducteur.  If, enc is the net current penetrating a surface sitting on the curve C. It is on the basis of this principle that most of the sensors of the prior art were developed, namely a sensor of circular shape around the driver. .
La présente invention va à encontre de ce préjugé et propose de n'utiliser qu'une partie de la ligne de champ magnétique. Pour ce faire, on utilise une bobine autour d'un moyeu en forme de cylindre. Par cylindre, on entend un solide (rigide), tel un cylindre de révolution (base circulaire), un parallélépipède, un cube,... Les inventeurs ont démontré qu'un tel composant superparamagnétique placé sur une ligne de champ magnétique à proximité d'une barre véhiculant le courant à mesurer, permet de mesurer efficacement le courant. L'avantage est un encombrement réduit par rapport aux dispositifs de l'art antérieur où il était nécessaire d'entourer complètement le conducteur. Un capteur de l'art antérieur nécessite :  The present invention goes against this prejudice and proposes to use only part of the magnetic field line. To do this, a coil is used around a hub in the form of a cylinder. By cylinder is meant a solid (rigid), such as a cylinder of revolution (circular base), a parallelepiped, a cube, ... The inventors have demonstrated that such a superparamagnetic component placed on a magnetic field line near the a bar carrying the current to be measured makes it possible to effectively measure the current. The advantage is a smaller footprint compared to the devices of the prior art where it was necessary to completely surround the driver. A sensor of the prior art requires:
une longueur suffisamment grande pour pouvoir faire le tour du conducteur, un mécanisme parfois complexe pour raccorder les deux extrémités de façon à réaliser une boucle fermée selon le préjugé de courbe fermée de la loi d'Ampère, préjugé que les inventeurs récusent, et a length large enough to go around the driver, a sometimes complex mechanism for connecting the two ends so as to achieve a closed loop according to the closed curve prejudices of Ampère's law, a prejudice that the inventors reject, and
- un noyau (moyeu) souple pour pouvoir entourer le conducteur  - a flexible core (hub) to surround the driver
Au contraire, le dispositif selon la présente invention est de taille plus réduite que le capteur de l'art antérieur puisqu'il est rectiligne, donc ne fait pas le tour du conducteur. Sa mise en œuvre est simple puisqu'on le place à proximité de la barre sur une ligne de champ pour être sensible au champ magnétique. On the contrary, the device according to the present invention is of smaller size than the sensor of the prior art since it is rectilinear, so does not go around the driver. Its implementation is simple since it is placed near the bar on a field line to be sensitive to the magnetic field.
L'invention est notamment, mais pas uniquement, remarquable par le fait qu'on utilise uniquement une partie de la ligne de champ proche du conducteur pour réaliser la mesure et non une courbe fermée de la ligne de champ.  The invention is particularly, but not only, remarkable in that only part of the near-field line of the conductor is used to make the measurement and not a closed curve of the field line.
Selon l'invention, le jeu de bobines peut contenir deux bobines, notamment indépendantes, identiques et bobinées respectivement sur leurs moyeux, moyeux sensibles au champ magnétique.  According to the invention, the set of coils can contain two coils, in particular independent, identical and wound respectively on their hubs, hubs sensitive to the magnetic field.
Avantageusement, la forme cylindrique est une forme de l'un des cylindres suivants :  Advantageously, the cylindrical shape is a form of one of the following cylinders:
- cylindre de révolution,  - cylinder of revolution,
- cylindre à base rectangulaire ou carré, ou  - cylinder with rectangular or square base, or
- cylindre à base triangulaire ou prisme.  - cylinder with triangular base or prism.
De préférence, le moyeu est un élément allongé qui est disposé à l'endroit où les lignes de champ magnétique traversent le moyeu sur sa longueur ; ce champ magnétique étant créé par la barre lorsqu'alimentée en courant à mesurer. On peut ainsi dimensionner et disposer le moyeu de façon à ce que le champ magnétique soit par exemple parallèle à la droite génératrice du moyeu. Pour de raison de coût de fabrication, ce moyeu est suffisamment petit et proche de la barre pour être disposé dans une section où la ligne de champ est une ligne droite.  Preferably, the hub is an elongate member which is disposed where the magnetic field lines cross the hub along its length; this magnetic field being created by the bar when fed with current to be measured. It is thus possible to dimension and arrange the hub so that the magnetic field is for example parallel to the generating line of the hub. For reasons of manufacturing cost, this hub is sufficiently small and close to the bar to be disposed in a section where the field line is a straight line.
Afin de favoriser notamment des lignes de champ rectilignes, la barre peut être plate et présenter deux faces latérales de forme rectangulaire, le courant circulant selon la longueur du rectangle. Dans ce cas, le moyeu peut être disposé selon la largeur du rectangle ; la distance longitudinale du moyeu étant inférieure à la largeur du rectangle. A titre d'exemple non limitatif, la distance longitudinale du moyeu peut être inférieure à la largeur du rectangle dans un rapport supérieur à Vi. In order to promote in particular rectilinear field lines, the bar may be flat and have two rectangular side faces, the current flowing along the length of the rectangle. In this case, the hub can be arranged according to the width of the rectangle; the longitudinal distance of the hub being less than the width of the rectangle. As an example limiting, the longitudinal distance of the hub may be less than the width of the rectangle in a ratio greater than Vi.
Selon une caractéristique de l'invention, le capteur comprend des moyens de maintien pour maintenir le jeu de bobines à distances fixes par rapport à la barre. De cette façon, le rapport de transformation magnétique entre la barre et le jeu de bobine est fixe et déterminé par étalonnage. Ensuite l'ensemble jeu de bobines et barre peut être raccordé à un conducteur par insertion en série de la barre avec un conducteur véhiculant le courant à mesurer.  According to one characteristic of the invention, the sensor comprises holding means for maintaining the set of coils at fixed distances relative to the bar. In this way, the magnetic transformation ratio between the bar and the coil set is fixed and determined by calibration. Then the set of coils and bar can be connected to a conductor by series insertion of the bar with a conductor carrying the current to be measured.
Par ailleurs, cette barre peut être montée de façon amovible dans les moyens de maintien.  Moreover, this bar can be removably mounted in the holding means.
Bien entendu, les différentes caractéristiques, formes et variantes de réalisation de l'invention peuvent être associées les unes avec les autres selon diverses combinaisons dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres. Of course, the various features, forms and embodiments of the invention may be associated with each other in various combinations to the extent that they are not incompatible or exclusive of each other.
D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de mise en œuvre nullement limitatif, et des dessins annexés, sur lesquels : Other advantages and characteristics of the invention will appear on examining the detailed description of a non-limiting embodiment, and the appended drawings, in which:
La figure 1 est une vue schématique simplifiée d'un capteur sans contact selon l'invention, ce capteur n'entourant nullement la barre dont le courant est à mesurer ; et  FIG. 1 is a simplified schematic view of a non-contact sensor according to the invention, this sensor not surrounding the bar whose current is to be measured; and
La figure 2 est une vue schématique simplifiée d'un capteur sans contact selon l'invention dans lequel des bobines sont illustrées de part et d'autre de la barre.  Figure 2 is a simplified schematic view of a non-contact sensor according to the invention in which coils are illustrated on either side of the bar.
La figure 1 représente le schéma bloc du capteur de courant conformément à la présente invention. Un jeu de bobines 8, positionné à proximité d'une barre 1 parcourue par le courant à mesurer I, reçoit un courant d'excitation 10 de la part d'un contrôleur 11. La proximité entre le jeu de bobines et la barre est telle qu'il y a une interaction notable entre le champ magnétique du courant à mesurer I et le champ magnétique du courant d'excitation 10 dans les moyeux des bobines formant le jeu de bobines 8. Par exemple, cette proximité se concrétise par une distance entre la barre et le jeu de bobines inférieure à 20mm, voire 10mm, voire 5mm. Le courant d'excitation a une fréquence élevée par rapport à la fréquence maximale du courant à mesurer et son spectre de fréquences ne présente pas des harmoniques paires. Par interaction entre le champ magnétique du courant à mesurer I et le champ magnétique du courant d'excitation 10 dans les moyeux des bobines formant le jeu 8, des harmoniques paires naissent portant l'information 9 sur la polarité et la grandeur du courant primaire I. Cette information est transmise au contrôleur 11 qui renvoie un courant de contre-réaction 12 au jeu de bobines 8 de telle manière à minimiser les harmoniques paires générées dans le jeu 8 ou en d'autres termes annuler l'effet du champ magnétique du courant primaire. La valeur du courant de contre réaction représente le courant primaire jusqu'à un facteur de proportionnalité fixe qui est fonction de la construction du jeu de bobines 8 et peut être livré directement comme résultat de la mesure 13 ou un posttraitement appliqué en fonction des besoins. Figure 1 shows the block diagram of the current sensor according to the present invention. A set of coils 8, positioned near a bar 1 traversed by the current to be measured I, receives an excitation current 10 from a controller 11. The proximity between the set of coils and the bar is such that that there is a significant interaction between the magnetic field of the current to be measured I and the magnetic field of the excitation current 10 in the hubs of the coils forming the set of coils 8. For example, this proximity is concretized by a distance between the bar and the set of coils lower than 20mm, even 10mm, even 5mm. The excitation current has a high frequency with respect to the maximum frequency of the current to be measured and its frequency spectrum does not have even harmonics. By interaction between the magnetic field of the current to be measured I and the magnetic field of the excitation current 10 in the hubs of the coils forming the set 8, even harmonics are born carrying the information 9 on the polarity and the magnitude of the primary current I This information is transmitted to the controller 11 which returns a feedback current 12 to the set of coils 8 in such a way as to minimize the even harmonics generated in the set 8 or in other words to cancel the effect of the magnetic field of the current primary. The counter-current current value represents the primary current up to a fixed proportionality factor which is a function of the construction of the coil set 8 and can be delivered directly as a result of the measurement 13 or a post-processing applied as needed.
La figure 2 représente un exemple de réalisation du jeu de bobines 8 à côté d'une barre de courant primaire 1 de section rectangulaire - épaisseur E et hauteur H- parcourue d'un courant électrique I. Le rapport entre E et H peut être compris entre Vi et 1/50. De la même manière, le rapport entre la longueur du moyeu et H peut être compris aussi entre Vi et 1/50. Sur la figure 2 la barre est dessinée en pointillés pour laisser visibles les autres éléments du capteur. Sur les faces opposées de la barre primaire 1 sont positionnées deux bobines identiques 3 et 5 ayant des moyeux 2 et respectivement 4 dans une matière choisie en fonction des contraintes sur l'utilisation du capteur de courant. A titre d'exemple : on choisira une matière à grande perméabilité relative et faible champ de saturation pour des mesures de faibles courants sans perturbation magnétiques externes et on choisira une matière à faible perméabilité mais grand champ de saturation pour le cas où les perturbations magnétiques externes sont importantes. Le bobinage se fait sur des moyeux de forme cylindrique ou de préférence parallélépipédique, comme représenté dans la figure 2, permettant ainsi leur fabrication facile.  FIG. 2 represents an exemplary embodiment of the set of coils 8 next to a primary current bar 1 of rectangular section - thickness E and height H - traversed by an electric current I. The ratio between E and H can be understood between Vi and 1/50. In the same way, the ratio between the length of the hub and H can also be between Vi and 1/50. In Figure 2 the bar is drawn in dotted lines to leave visible the other elements of the sensor. On the opposite sides of the primary bar 1 are positioned two identical coils 3 and 5 having hubs 2 and 4 respectively in a material selected according to the constraints on the use of the current sensor. By way of example: a material with a high relative permeability and a low saturation field will be chosen for measurements of small currents without external magnetic disturbance and a material with low permeability but large saturation field will be chosen for the case where the external magnetic disturbances are important. The winding is done on hubs of cylindrical or preferably parallelepiped shape, as shown in Figure 2, thus allowing their easy manufacture.
Le moyeu 2 est excité par un champ magnétique alternatif créé à l'aide de sa bobine qui reçoit un courant d'excitation, de haute fréquence, par exemple 100kHz pour une fréquence maximale de 10kHz du courant à mesurer, de la part d'un bloc électronique appelé ici contrôleur. Comme forme d'onde, on peut utiliser un courant sinusoïdal, triangulaire, trapézoïdal, carré, etc. ou toute autre forme d'onde à condition que les semi-alternances du courant d'excitation soient symétriques, ce qui revient à dire que les amplitudes des harmoniques paires sont nulles. Supposant que le courant primaire I reste nul et étant donné la symétrie de la caractéristique B(H) de la matière du moyeu, l'effet de la non linéarité de cette même caractéristique B(H) est une distorsion temporelle de l'induction B symétrique par rapport aux deux semi-alternances, c'est à dire une redistribution spectrale de la puissance d'excitation tout en respectant la règle des harmoniques paires nulles. Quand le courant primaire I n'est pas nul, la superposition des deux champs, celui du courant d'excitation et celui du courant primaire crée une distorsion asymétrique de l'induction magnétique B dans le moyeu, donc les harmoniques d'ordre 2, 4, 6, etc .. apparaissent dans son spectre. La variation temporaire de l'induction B dans la bobine 3 induit une tension électromotrice à la fréquence d'excitation et ses harmoniques impaires en absence du courant primaire I. Quand le courant primaire est présent, dans le spectre de la tension induite, on retrouve des harmoniques paires. The hub 2 is excited by an alternating magnetic field created by means of its coil which receives an excitation current, of high frequency, for example 100 kHz for a maximum frequency of 10 kHz of the current to be measured, from a electronic block here called controller. As a waveform, it is possible to use a sinusoidal, triangular, trapezoidal current, square, etc. or any other waveform provided that the semi-alternations of the excitation current are symmetrical, which means that the amplitudes of the even harmonics are zero. Assuming that the primary current I remains zero and given the symmetry of the characteristic B (H) of the material of the hub, the effect of the non-linearity of this same characteristic B (H) is a temporal distortion of the induction B symmetrical with respect to the two semi-alternations, ie a spectral redistribution of the excitation power while respecting the rule of zero-harmonic harmonics. When the primary current I is not zero, the superimposition of the two fields, that of the excitation current and that of the primary current creates an asymmetrical distortion of the magnetic induction B in the hub, therefore the second order harmonics, 4, 6, etc. appear in his spectrum. The temporary variation of the induction B in the coil 3 induces an electromotive voltage at the excitation frequency and its odd harmonics in the absence of the primary current I. When the primary current is present, in the spectrum of the induced voltage, we find even harmonics.
Le contrôleur 11, par l'interprétation de la phase de la tension induite dans la bobine 3 trouve la polarité du champ magnétique ajoutée par le primaire, donc la polarité du courant primaire. Par l'interprétation de l'amplitude des harmoniques paires (par exemple l'harmonique 2), le contrôleur trouve aussi la grandeur du courant primaire mais cette information reste approximative car elle inclut les distorsions générées par la matière du moyeu. Pour réaliser une mesure précise, le contrôleur renvoie un courant de contre réaction dans la bobine 3 d'une telle valeur telle que la génération d'harmonique paires provoquée par le courant primaire soit annulée. Ainsi le moyeu travail dans une condition de champ magnétique, autre que l'excitation, quasi nul.  The controller 11, by the interpretation of the phase of the voltage induced in the coil 3 finds the polarity of the magnetic field added by the primary, and therefore the polarity of the primary current. By interpreting the amplitude of the even harmonics (for example the harmonic 2), the controller also finds the magnitude of the primary current but this information remains approximate because it includes the distortions generated by the material of the hub. To make an accurate measurement, the controller sends a feedback current in the coil 3 of such a value that the pair harmonic generation caused by the primary current is canceled. Thus the hub works in a magnetic field condition, other than excitation, almost zero.
Du récit précédent, il en résulte que la bobine 3 joue un triple rôle : excitation, mesure harmoniques paires et contre-réaction. Pour des raisons d'optimisation, il est raisonnable de créer plusieurs enroulements sur le même moyeu complètement superposés. Ainsi on pourrait avoir des fils de bobinage adaptés aux contraintes d'utilisation du capteur de courant et à diverses contraintes technologiques. On peut considérer un enroulement à fils très fin et beaucoup de spires pour la mesure des harmoniques, un enroulement à fil de moyenne épaisseur pour l'excitation et un bobinage à fil plus épais pour la contre-réaction. En combinant ou pas les trois fonctions on peut donc utiliser un deux ou trois enroulements sur le moyeu 2. Sur la figure 1, pour simplification du dessin, seulement un enroulement est suggéré pour la bobine3. From the previous story, it follows that the coil 3 plays a triple role: excitation, harmonic measurement pairs and feedback. For reasons of optimization, it is reasonable to create several windings on the same hub completely superimposed. Thus one could have winding son adapted to the constraints of use of the current sensor and to various technological constraints. A very fine wire winding and many turns for harmonic measurement can be considered, a medium wire winding for excitation and a thick wire winding for feedback. By combining or not combining the three functions can therefore use a two or three windings on the hub 2. In Figure 1, for simplification of the drawing, only a winding is suggested for the coil3.
Le terme «harmoniques paires » ne signifie pas l'obligation d'utiliser plusieurs harmoniques paires à la fois. Dans le cas d'utilisation d'une excitation sinusoïdale, il suffit d'utiliser l'harmonique 2 seulement, par exemple.  The term "even harmonics" does not mean the obligation to use several even harmonics at a time. In the case of using a sinusoidal excitation, it suffices to use harmonic 2 only, for example.
La construction et le fonctionnement de la bobine 5 sur son moyeu 4 est identique à la bobine 3 sur le moyeu 2. La particularité qui différentie les deux est le fait qu'elles se trouvent sur les faces opposées de la barre 1. Observons que le champ magnétique autour de la barre primaire 1 créé par un courant I pénètre en sens opposés les moyeux 2 et 4 tandis qu'un champ magnétique d'une source lointaine, étant plus ou moins un champ parallèle, pénètre dans le même sens lesdits moyeux. On exploite cette particularité: en choisissant le sens de connexion des deux bobines on arrange l'addition des signaux d'origine courant primaire et extinction des signaux d'origine champ magnétique externe. Au même sujet d'immunité aux champs magnétiques externes, il faut souligner l'intérêt pour réaliser une structure le plus compacte possible, de façon à avoir des champs de perturbation sur les deux bobines, le plus semblable possible. A cette fin, l'utilisation d'une barre 1 pour le courant primaire dont l'épaisseur E et très petite par rapport à sa hauteur H est un avantage car elle permet de rapprocher les bobines 3 et 5.  The construction and operation of the spool 5 on its hub 4 is identical to the spool 3 on the hub 2. The particularity that differentiates the two is the fact that they are on the opposite sides of the bar 1. Let us observe that the magnetic field around the primary bar 1 created by a current I enters in opposite directions the hubs 2 and 4 while a magnetic field of a distant source, being more or less a parallel field, penetrates in the same direction said hubs. This advantage is exploited: by choosing the connection direction of the two coils, the addition of the original primary current signals and the extinction of the signals of external magnetic field origin are arranged. On the same subject of immunity to external magnetic fields, it is necessary to emphasize the interest to realize a structure as compact as possible, so as to have fields of disturbance on the two coils, the most possible as possible. To this end, the use of a bar 1 for the primary current whose thickness E and very small compared to its height H is an advantage because it allows to bring together the coils 3 and 5.
L'utilisation de deux bobines 3 et 5 n'est pas obligatoire, elle reste juste une option à évaluer en fonction des besoins d'immunité au champ magnétique externe, prix de fabrication, gabarit, etc.  The use of two coils 3 and 5 is not obligatory, it remains just an option to evaluate according to the needs of immunity to the external magnetic field, manufacturing price, template, etc.
Le capteur de courant peut contenir encore deux autres bobines 6 et 7 avec géométries similaires aux bobines 3 et 5 mais sans moyeux sensibles au champ magnétique. Etant donnée la proximité des bobines 3, 5, 6 et 7 à la barre primaire, quand cela est parcouru par un courant alternatif, une tension électromotrice est induite dans chaque desdites bobines. Le nombre de spires pour les bobines 6 et 7 est ajusté pour générer la même tension induite par un courant primaire que les bobines 3 et 5.  The current sensor may contain two other coils 6 and 7 with similar geometries to the coils 3 and 5 but without hubs sensitive to the magnetic field. Given the proximity of the coils 3, 5, 6 and 7 to the primary bar, when this is traversed by an alternating current, an electromotive voltage is induced in each of said coils. The number of turns for the coils 6 and 7 is adjusted to generate the same voltage induced by a primary current as the coils 3 and 5.
Les bobines sont connectées entre elles de façon que les tensions induites par un courant primaire variable dans les bobines sans moyeux sensibles au champ magnétique annulent par soustraction les tensions induites par ledit courant dans les bobines à moyeux sensible au champ magnétique. L'intérêt pour la réjection des signaux générés par le courant primaire en bande de base dépend du spectre de fréquence dudit courant primaire, de la dynamique permissible à l'entrée de mesure du contrôleur et en général des effets que la présence des signaux en bande de base pourrait avoir sur la précision de la détection du nul sur les harmoniques paires par le contrôleur. The coils are connected together so that the voltages induced by a variable primary current in the coils without hubs sensitive to the magnetic field cancel by subtraction the voltages induced by said current in the field-sensitive hub coils. magnetic. The interest for the rejection of the signals generated by the baseband primary current depends on the frequency spectrum of said primary current, the permissible dynamics at the measurement input of the controller and, in general, the effects that the presence of the band signals base could have on the accuracy of the null detection on even harmonics by the controller.
Le capteur magnétique est intrinsèquement peu sensible aux champs magnétiques extérieurs, dans la mesure où le matériau utilisé pour la transduction présente un champ de saturation très élevé. Cependant, en présence de champ externe très intense, comme par exemple la présence d'une barre de retour, ou bien d'un autre conducteur électrique d'un autre pôle électrique ou bien d'un aimant permanent, il se peut que celui-ci perturbe la mesure. Il est alors bénéfique d'utiliser un matériau magnétique pour réaliser un blindage permettant de canaliser le champ extérieur et de le détourner légèrement du transducteur. Ce matériau peut être constitué d'un matériau magnétique doux ou bien dur. La forme et l'épaisseur de ce blindage est optimisé en fonction du niveau de champ perturbateur. The magnetic sensor is intrinsically insensitive to external magnetic fields, since the material used for transduction has a very high saturation field. However, in the presence of a very intense external field, such as the presence of a return bar, or another electrical conductor of another electrical pole or a permanent magnet, it may be that it disturbs the measurement. It is then beneficial to use a magnetic material to provide a shield for channeling the outside field and diverting it slightly from the transducer. This material may be made of a soft or hard magnetic material. The shape and thickness of this shield is optimized according to the disturbing field level.
La forme du blindage peut être une simple plaque interposée entre la source de perturbation et le transducteur. Ce peut être une cage avec ou sans entrefer.  The form of the shield may be a simple plate interposed between the source of disturbance and the transducer. It can be a cage with or without gap.
De façon générale, le capteur de courant sans contact selon l'invention comprend au moins: In general, the non-contact current sensor according to the invention comprises at least:
- un jeu de bobines composé au moins d'une bobine autour de son moyeu en matière sensible au champ magnétique, jeu situé à immédiate proximité d'une barre parcourue par le courant à mesurer, et  a set of coils consisting of at least one coil around its hub made of material sensitive to the magnetic field, a set located immediately close to a bar traversed by the current to be measured, and
un contrôleur qui envoie un courant d'excitation et un courant de contre-réaction vers le jeu de bobines et qui reçoit comme information la tension induite par la variation temporelle de l'induction magnétique B dans le moyeu de ladite au moins une bobine du jeu de bobines ou dans les moyeux des bobines du jeu de bobines.  a controller which sends an excitation current and a feedback current to the set of coils and which receives as information the voltage induced by the temporal variation of the magnetic induction B in the hub of said at least one reel of the game of coils or in the hubs of the coils of the set of coils.
Le jeu de bobines peut contenir deux bobines, identiques et bobinées respectivement sur leurs moyeux, moyeux sensibles au champ magnétique. Le jeu de bobines peut également contenir au moins une bobine sans moyeu sensible au champ magnétique qui génère la même tension induite par le courant primaire comme la bobine à moyeu sensible au champ magnétique. Par ailleurs, la matière du moyeu ou des moyeux peut être super- paramagnétique. The set of coils can contain two coils, identical and wound respectively on their hubs, hubs sensitive to the magnetic field. The set of coils may also contain at least one coil without a magnetic field sensitive hub which generates the same voltage induced by the primary current as the magnetic field-sensitive hub coil. Moreover, the material of the hub or hubs can be super paramagnetic.
Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. Of course, the invention is not limited to the examples that have just been described and many adjustments can be made to these examples without departing from the scope of the invention.

Claims

REVENDICATIONS
1. Capteur de courant sans contact comprenant : Non-contact current sensor comprising:
- un jeu de bobines (8) composé au moins d'une bobine (3) autour d'un moyeu (2) sensible au champ magnétique, ce moyeu comprenant un matériau superparamagnétique, et  a set of coils (8) composed of at least one coil (3) around a hub (2) sensitive to the magnetic field, this hub comprising a superparamagnetic material, and
- un contrôleur ( 11) pour envoyer un courant d'excitation ( 10) et un courant de contre-réaction ( 12) vers le jeu de bobines (8) et pour recevoir comme information la tension (9) induite par la variation temporelle de l'induction magnétique B au moins dans le moyeu de ladite au moins une bobine du jeu de bobines (8),  a controller (11) for sending an excitation current (10) and a feedback current (12) to the set of coils (8) and for receiving as information the voltage (9) induced by the time variation of the magnetic induction B at least in the hub of said at least one coil of the set of coils (8),
caractérisé en ce que le jeu de bobines est situé à immédiate proximité d'une barre ( 1) destinée à recevoir le courant à mesurer (I) ; et en ce que le moyeu (2) est rigide de forme cylindrique. characterized in that the set of coils is located immediately adjacent a bar (1) for receiving the current to be measured (I); and in that the hub (2) is cylindrically rigid.
2. Capteur de courant sans contact selon la revendication 1, caractérisé en ce que le jeu de bobines (8) contient deux bobines (3, 5), identiques et bobinées respectivement sur leurs moyeux (2, 4), moyeux sensibles au champ magnétique. 2. Non-contact current sensor according to claim 1, characterized in that the set of coils (8) contains two coils (3, 5), identical and wound respectively on their hubs (2, 4), hubs sensitive to the magnetic field. .
3. Capteur de courant sans contact selon la revendication 1 ou 2, caractérisé en ce que le jeu de bobines (8) contient au moins une bobine (7) sans moyeu sensible au champ magnétique qui génère la même tension induite par le courant primaire (I) comme la bobine à moyeu sensible au champ magnétique (3) . Non-contact current sensor according to Claim 1 or 2, characterized in that the set of coils (8) contains at least one coil (7) without a magnetic field-sensitive hub which generates the same voltage induced by the primary current ( I) as the magnet-sensitive hub coil (3).
4. Capteur de courant sans contact selon l'une quelconque des revendications précédentes, caractérisé en ce que le jeu de bobines (8) contient deux bobines (6, 7) sans moyeu sensible au champ magnétique qui génère la même tension induite par le courant primaire (I) comme les bobines à moyeu sensible au champ magnétique (3, 5) . Non-contact current sensor according to one of the preceding claims, characterized in that the set of coils (8) contains two coils (6, 7) without a magnetic field-sensitive hub which generates the same voltage induced by the current. primary (I) as the coils with magnetic field sensitive hub (3, 5).
5. Capteur de courant sans contact selon l'une quelconque des revendications précédentes, caractérisé en ce que le contrôleur ( 11 ) envoie un courant d'excitation vers le jeu de bobines (8) avec un spectre sans harmoniques paires. Non-contact current sensor according to one of the preceding claims, characterized in that the controller (11) supplies an excitation current to the coil set (8) with a spectrum without even harmonics.
6. Capteur de courant sans contact selon la revendication 5, caractérisé en ce que le contrôleur (11) analyse au moins une des harmoniques paires du spectre de la tension (9) induite dans les bobines à moyeu sensible au champ magnétique pour déterminer la grandeur du courant de contre- réaction (12) à renvoyer vers le jeu de bobines (8) afin de minimiser la somme entre le champ magnétique de la barre primaire (1) et le champ magnétique du courant de contre-réaction (10). Non-contact current sensor according to Claim 5, characterized in that the controller (11) analyzes at least one of the even harmonics of the voltage spectrum (9) induced in the magnetic field-sensitive hub coils to determine the magnitude. a feedback current (12) to be returned to the set of coils (8) to minimize the sum between the magnetic field of the primary bar (1) and the magnetic field of the feedback current (10).
7. Capteur de courant sans contact selon la revendication 6, caractérisé en ce que le courant de contre-réaction (10) représente la valeur mesurée (13) du courant (I) sauf une constante multiplicative dépendante de la construction du capteur. 7. Non-contact current sensor according to claim 6, characterized in that the feedback current (10) represents the measured value (13) of the current (I) except for a multiplicative constant dependent on the construction of the sensor.
8. Capteur de courant sans contact selon l'une quelconque des revendications précédentes, caractérisé en ce que la forme cylindrique est une forme de l'un des cylindres suivants : 8. Non-contact current sensor according to any one of the preceding claims, characterized in that the cylindrical shape is a form of one of the following cylinders:
- cylindre de révolution,  - cylinder of revolution,
- cylindre à base rectangulaire ou carré, ou  - cylinder with rectangular or square base, or
- cylindre à base triangulaire ou prisme. - cylinder with triangular base or prism.
9. Capteur de courant sans contact selon l'une quelconque des revendications précédentes, caractérisé en ce que le moyeu est un élément allongé qui est disposé à l'endroit où les lignes de champ magnétique traversent le moyeu sur sa longueur ; ce champ magnétique étant créé par la barre lorsqu'alimentée en courant à mesurer. A non-contact current sensor according to any one of the preceding claims, characterized in that the hub is an elongate member which is disposed at the location where the magnetic field lines pass through the hub along its length; this magnetic field being created by the bar when fed with current to be measured.
10. Capteur de courant sans contact selon l'une quelconque des revendications précédentes, caractérisé en ce que la barre est plate et présente deux faces latérales de forme rectangulaire, le courant circulant selon la longueur du rectangle, le moyeu étant disposé selon la largeur du rectangle ; la distance longitudinale du moyeu étant inférieure à la largeur du rectangle. 10. Non-contact current sensor according to any one of the preceding claims, characterized in that the bar is flat and has two rectangular-shaped side faces, the current flowing along the length of the rectangle, the hub being arranged according to the width of the rectangle; the longitudinal distance of the hub being less than the width of the rectangle.
11. Capteur de courant sans contact selon la revendication 10, caractérisé en ce que la distance longitudinale du moyeu est inférieur à la largeur du rectangle dans un rapport supérieur à Vi. 11. Non-contact current sensor according to claim 10, characterized in that the longitudinal distance of the hub is smaller than the width of the rectangle in a ratio greater than Vi.
12. Capteur de courant sans contact selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des moyens de maintien pour maintenir le jeu de bobines à distances fixes par rapport à la barre. 12. Non-contact current sensor according to any one of the preceding claims, characterized in that it comprises holding means for maintaining the set of coils at fixed distances relative to the bar.
13. Capteur de courant sans contact selon la revendication 12, caractérisé en ce que la barre est montée de façon amovible dans les moyens de maintien. 13. Non-contact current sensor according to claim 12, characterized in that the bar is removably mounted in the holding means.
EP12756766.7A 2011-09-26 2012-08-02 Contactless current sensor Withdrawn EP2761309A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158584A FR2980581B1 (en) 2011-09-26 2011-09-26 CONTACTLESS CURRENT SENSOR.
PCT/FR2012/051836 WO2013045778A1 (en) 2011-09-26 2012-08-02 Contactless current sensor

Publications (1)

Publication Number Publication Date
EP2761309A1 true EP2761309A1 (en) 2014-08-06

Family

ID=46829800

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12756766.7A Withdrawn EP2761309A1 (en) 2011-09-26 2012-08-02 Contactless current sensor

Country Status (3)

Country Link
EP (1) EP2761309A1 (en)
FR (1) FR2980581B1 (en)
WO (1) WO2013045778A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013212764A1 (en) 2013-06-28 2014-12-31 Schmidhauser Ag power converters
BE1022018B1 (en) * 2013-08-14 2016-02-04 Cockerill Maintenance & Ingenierie S.A. DEVICE FOR SWITCHING AND REMOTELY PROTECTING ELECTRICAL SYSTEMS.
FR3019903B1 (en) 2014-04-11 2016-05-06 Neelogy MAGNETIC FIELD TRANSDUCER WITH EXCITATION IN QUADRATURE
FR3033198B1 (en) * 2015-02-26 2018-07-27 Nexans SYSTEM FOR MONITORING A HIGH VOLTAGE LINE WITH CONTINUOUS CURRENT
FR3063544B1 (en) * 2017-03-06 2021-01-22 Neelogy INSULATED DC / AC CURRENT SENSOR WITH NEEL® EFFECT INTEGRATED IN A PCB
FR3133677B1 (en) 2022-03-18 2024-02-23 Socomec Sa MAGNETIC FIELD SENSOR FOR MEASURING A DIRECT CURRENT
CN116953333A (en) * 2023-07-28 2023-10-27 瑶芯微电子科技(上海)有限公司 High-frequency near-field current sensor and probe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0010921B1 (en) * 1978-10-30 1983-02-09 Hitachi, Ltd. Direct current detecting device using saturable reactors
CH684216A5 (en) * 1991-02-15 1994-07-29 Lem Liaisons Electron Mec Device for measuring currents.
US5896027A (en) * 1997-03-27 1999-04-20 National Research Council Of Canada Current ratio device for use in forming a current transformer
JP4332623B2 (en) * 2003-02-26 2009-09-16 テクトロニクス・インコーポレイテッド Current probe
US7227348B2 (en) * 2003-03-27 2007-06-05 Thomas Sorensen Apparatus for measuring an a.c. current in a cable
FR2891917B1 (en) 2005-10-07 2008-01-11 Billanco MAGNETIC FIELD AND CURRENT SENSORS, CONTROL METHOD AND MAGNETIC CORE FOR THESE SENSORS
FR2931945B1 (en) * 2008-05-22 2010-06-18 Billanco MAGNETIC FIELD CIRCULATION SENSOR AND CURRENT SENSOR EMPLOYING SUCH A SENSOR
FR2942880A1 (en) * 2009-03-04 2010-09-10 Commissariat Energie Atomique Current sensor i.e. single-phase current sensor, has coils electrically connected in series between terminals of electrical signal processing unit such that electrical signal is null when coils are placed in same magnetic field

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013045778A1 *

Also Published As

Publication number Publication date
FR2980581B1 (en) 2017-08-18
WO2013045778A8 (en) 2013-07-18
FR2980581A1 (en) 2013-03-29
WO2013045778A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
EP2761309A1 (en) Contactless current sensor
EP1012609B1 (en) Device with wide pass band for measuring electric current intensity in a conductor
FR3033647B1 (en) CURRENT SENSOR FOR MEASURING ALTERNATING CURRENT
EP3729107B1 (en) Device for measuring an electric and/or magnetic field in particular in a conductor for transporting electrical power
EP2426563A1 (en) Method for calibrating a device with nuclear operation
EP1947469A1 (en) Magnetic amplifier device comprising a magnetic sensor with longitudinal sensitivity
EP1283409A1 (en) Detection device
WO2015181383A1 (en) Current-detection device
FR3060757A1 (en) FLOW VALVE CURRENT SENSOR
EP3314281A1 (en) Device for measuring a magnetic field
EP2710393B1 (en) Method and system for controlling the turn-on time of a device that includes a magnetic circuit
FR2989171A1 (en) METHOD AND DEVICE FOR MEASURING A MAGNETIC FIELD AND THE TEMPERATURE OF A MAGNETO-RESISTIVE TRANSDUCER
EP1936389B1 (en) Inductive current sensor
WO2013093249A1 (en) Current sensor measuring the inner magnetic field of the conductor
EP4088381A1 (en) Capacitive detection device comprising a module for biasing by induction
EP3642635B1 (en) Current sensor with magnetic field circulation
FR3105825A1 (en) Optical measuring device of a physical parameter
FR2687478A1 (en) Device for measuring a magnetic field gradient with minimal errors due to sensitivity and misalignment
EP2411825B1 (en) Device for detecting and/ord measuring a small magnetic field
EP3828554B1 (en) Portable contactless device for measuring current by induced magnetic fields
FR2983621A1 (en) VIBRATION SENSOR DEVICE FOR MUSICAL INSTRUMENTS
Mahish et al. Frequency Tuning Properties of Magneto-Optic Sensor
WO2009156697A1 (en) Magnetic field measurement device and method
FR2795825A1 (en) Inductive current sensor for electrical equipment, comprises single conductor primary circuit located within a multiturn ferromagnetic circuit and means to detect the magnetic field created
BE490319A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141125