EP2759587A1 - Method of scavenging mercaptans from hydrocarbons - Google Patents
Method of scavenging mercaptans from hydrocarbons Download PDFInfo
- Publication number
- EP2759587A1 EP2759587A1 EP14164453.4A EP14164453A EP2759587A1 EP 2759587 A1 EP2759587 A1 EP 2759587A1 EP 14164453 A EP14164453 A EP 14164453A EP 2759587 A1 EP2759587 A1 EP 2759587A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- carbon atoms
- group
- quaternary ammonium
- groups
- alkyl groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 47
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 47
- 230000002000 scavenging effect Effects 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims description 34
- 239000000203 mixture Substances 0.000 claims abstract description 49
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 claims abstract description 38
- -1 quaternary ammonium alkoxide Chemical class 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000007789 gas Substances 0.000 claims abstract description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 70
- 239000004215 Carbon black (E152) Substances 0.000 claims description 37
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 30
- 239000012530 fluid Substances 0.000 claims description 29
- 125000000217 alkyl group Chemical group 0.000 claims description 28
- 239000000654 additive Substances 0.000 claims description 25
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 24
- 230000000996 additive effect Effects 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- 125000003118 aryl group Chemical group 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 16
- 239000000908 ammonium hydroxide Substances 0.000 claims description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 15
- 239000010779 crude oil Substances 0.000 claims description 14
- 230000003647 oxidation Effects 0.000 claims description 13
- 238000007254 oxidation reaction Methods 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 9
- 239000003921 oil Substances 0.000 claims description 8
- 239000000446 fuel Substances 0.000 claims description 7
- 230000002378 acidificating effect Effects 0.000 claims description 6
- 125000000623 heterocyclic group Chemical group 0.000 claims description 6
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 6
- 239000010763 heavy fuel oil Substances 0.000 claims description 4
- 239000003849 aromatic solvent Substances 0.000 claims description 3
- 239000003225 biodiesel Substances 0.000 claims description 3
- 239000003209 petroleum derivative Substances 0.000 claims description 3
- 239000002516 radical scavenger Substances 0.000 abstract description 24
- 229910000037 hydrogen sulfide Inorganic materials 0.000 abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 abstract description 8
- 229910017052 cobalt Inorganic materials 0.000 abstract description 5
- 239000010941 cobalt Substances 0.000 abstract description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 5
- 239000003054 catalyst Substances 0.000 abstract description 4
- 230000001590 oxidative effect Effects 0.000 abstract description 4
- 238000009472 formulation Methods 0.000 abstract description 3
- 239000007800 oxidant agent Substances 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract 1
- 229910052804 chromium Inorganic materials 0.000 abstract 1
- 239000011651 chromium Substances 0.000 abstract 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical group CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 abstract 1
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 229910052759 nickel Inorganic materials 0.000 abstract 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 125000002947 alkylene group Chemical group 0.000 description 10
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 9
- 229960001231 choline Drugs 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 150000003512 tertiary amines Chemical class 0.000 description 9
- 150000004679 hydroxides Chemical class 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 7
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 description 6
- HMBHAQMOBKLWRX-UHFFFAOYSA-N 2,3-dihydro-1,4-benzodioxine-3-carboxylic acid Chemical compound C1=CC=C2OC(C(=O)O)COC2=C1 HMBHAQMOBKLWRX-UHFFFAOYSA-N 0.000 description 5
- 239000004721 Polyphenylene oxide Chemical group 0.000 description 5
- 150000004703 alkoxides Chemical class 0.000 description 5
- 229940075419 choline hydroxide Drugs 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 229920000570 polyether Chemical group 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 235000019645 odor Nutrition 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003518 caustics Substances 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 3
- 150000003464 sulfur compounds Chemical class 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- GQWWGRUJOCIUKI-UHFFFAOYSA-N 2-[3-(2-methyl-1-oxopyrrolo[1,2-a]pyrazin-3-yl)propyl]guanidine Chemical compound O=C1N(C)C(CCCN=C(N)N)=CN2C=CC=C21 GQWWGRUJOCIUKI-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- IEORSVTYLWZQJQ-UHFFFAOYSA-N 2-(2-nonylphenoxy)ethanol Chemical compound CCCCCCCCCC1=CC=CC=C1OCCO IEORSVTYLWZQJQ-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 101100352919 Caenorhabditis elegans ppm-2 gene Proteins 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000006177 alkyl benzyl group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- MPMSMUBQXQALQI-UHFFFAOYSA-N cobalt phthalocyanine Chemical compound [Co+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MPMSMUBQXQALQI-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012972 dimethylethanolamine Substances 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical class CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000006178 methyl benzyl group Chemical group 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002780 morpholines Chemical class 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G19/00—Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
- C10G19/02—Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment with aqueous alkaline solutions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G27/00—Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
- C10G27/04—Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
- C10G27/10—Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen in the presence of metal-containing organic complexes, e.g. chelates, or cationic ion-exchange resins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G29/00—Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
- C10G29/06—Metal salts, or metal salts deposited on a carrier
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1033—Oil well production fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/207—Acid gases, e.g. H2S, COS, SO2, HCN
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/80—Additives
Definitions
- the present invention relates to methods and compositions for scavenging of mercaptans in hydrocarbon fluids and more particularly to the use of quaternary ammonium hydroxides and/or quaternary ammonium alkoxides as mercaptan and/or H 2 S scavengers.
- Hydrocarbon fluids such as crude oil, crude oil emulsions, oilfield condensate, petroleum residua and even refined fuels often contain a variety of mercaptans, including mercaptans of relatively low molecular weight.
- mercaptans of relatively low molecular weight.
- the mercaptans encountered can cause many problems ranging from malodors to metal corrosion.
- mercaptans of relatively low molecular weight for example, methyl mercaptan, CH 3 SH, ethyl mercaptan, CH 3 CH 2 SH and propyl mercaptan, CH 3 CH 2 CH 2 SH
- mercaptans of relatively low molecular weight for example, methyl mercaptan, CH 3 SH, ethyl mercaptan, CH 3 CH 2 SH and propyl mercaptan, CH 3 CH 2 CH 2 SH
- choline or choline hydroxide has been found to alleviate hydrogen sulfide evolution and to scavenge mercaptans. See, for example, U.S. Pat. Nos. 4,594,147 to Roof et al. , 4,867,865 to Roof and 5,183,560 to Roof et al.
- choline and choline hydroxide are not well suited for many uses and media, such as in crude oil.
- choline and choline hydroxide might scavenge mercaptans in such media, they also form a volatile and malodorous by-product with the sulfur compounds indigenous to such media.
- European application 0 538 819 A3 to Roof et al. describes the use of oil-soluble quaternary ammonium compounds of the formula: to scavenge various sulfur compounds, including mercaptans, from certain oils, especially high boiling, heavy residual fuels.
- These compounds, prepared under anhydrous conditions, are what are described herein as "internal ions"; i.e., the positive charge on the nitrogen and the negative charge on the oxygen result in overall electrically neutral compounds without the presence of counter ions such as halides.
- the European application stresses the significance of the oil solubility of these compounds, noting that they are more oil soluble than choline base and so disperse through the oil being treated more thoroughly to decrease the concentration of undesirable sulfur compounds more effectively. Nevertheless, the compositions of the European application suffer from certain disadvantages. For example, compositions that are produced in higher yields, yet still at low cost, and that reduce mercaptan concentrations more effectively are still desired.
- U.S. Pat. Nos. 5,840,177 and 6,013,175 relate to methods for scavenging mercaptans in hydrocarbon fluids using quaternary ammonium hydroxides.
- chemistries and methods for removing mercaptans from hydrocarbons include caustic (NaOH solutions) and cobalt with caustic (MeroxTM process of UOP, Merichem processes).
- a method for scavenging H 2 S and/or mercaptans in a hydrocarbon fluid that involves adding to the hydrocarbon fluid an effective scavenging amount of an aqueous scavenging composition.
- the scavenging composition includes an additive selected from the group consisting of a quaternary ammonium hydroxide, a quaternary ammonium alkoxide, and mixtures thereof, in the presence of a metal in an oxidation state of 3+ or greater.
- the additive reacts with H 2 S and/or mercaptans in the fluid.
- the quaternary ammonium hydroxide has the formula selected from the group consisting of R 1 R 2 R 3 N + OH OH - , R 1 R 2 R 3 N + CH 2 CHR 5 OH OH- and R 1 R 2 R 3 R 4 N + OH - , and the quaternary ammonium alkoxide has the formula R 1 R 2 R 3 R 4 N + O - , where:
- a hydrocarbon composition that has a reduced H 2 S and/or mercaptan presence which includes a hydrocarbon fluid, H 2 S and/or mercaptans, and an effective scavenging amount of an aqueous scavenging composition.
- the composition includes an additive selected from the group consisting of a quaternary ammonium hydroxide, a quaternary ammonium alkoxide, and mixtures thereof, in the presence of a metal in an oxidation state of 3+ or greater.
- the quaternary ammonium hydroxide has the formula R 1 R 2 R 3 N + OH OH - , R 1 R 2 R 3 N + CH 2 CHR 5 OH OH- and/or R 1 R 2 R 3 R 4 N + OH -
- the quaternary ammonium alkoxide has the formula R 1 R 2 R 3 R 4 N + O - , where R 1 , R 2 , R 3 , and R 4 are as defined above. At least some of the additive in the hydrocarbon composition has reacted with the H 2 S and/or mercaptan.
- mercaptans are thiols and are defined as any of a group of organic compounds resembling alcohols, but having the oxygen of the hydroxyl group replaced by sulfur.
- Hydrogen sulfide (H 2 S) may also be scavenged by the methods and additives herein, and while not technically a mercaptan may be understood as included among the species being scavenged. It will thus be understood that when “mercaptan" is discussed, H 2 S is included as a species that will also be scavenged herein.
- compositions and methods herein have accomplished a goal when the amounts of H 2 S and/or mercaptan are reduced as a consequence of being contacted with the compositions described herein.
- the efficacy of the hydroxides and alkoxides is especially surprising in view of the findings that the hydroxides are significantly more effective scavengers than compounds differing only in the counter ion ( i.e ., it is other than hydroxide), and that in some non-limiting cases the hydroxides are even more effective mercaptan scavengers than the corresponding internal ions ( i.e ., R 3 N + R'O - where R 3 N + R'OH OH - is the hydroxide).
- the selectivity of the hydroxides reduces the waste that would otherwise be encountered in scavenging higher molecular weight mercaptans unnecessarily, and so permits scavenging of the less desirable mercaptans with relatively small amounts of the hydroxides. And, even though the European application noted above stresses the importance of the oil-solubility of its compounds to their efficacy, the superior efficacy of the hydroxides in scavenging mercaptans in hydrocarbons has been found even though the hydroxides would be expected to be significantly less oil-soluble than their corresponding internal ions.
- the quaternary ammonium hydroxide has the formula R 1 R 2 R 3 N + OH OH - , R 1 R 2 R 3 N + CH 2 CHR 5 OH OH- or R 1 R 2 R 3 R 4 N + OH - , and the quaternary ammonium alkoxide has the formula R 1 R 2 R 3 R 4 N + O - .
- R 1 and R 2 are independently selected from the group consisting of alkyl groups of from 1 to about 18 carbon atoms, aryl groups of from 8 to about 18 carbon atoms and alkylaryl groups of from 7 to about 18 carbon atoms.
- R 3 is selected from the group consisting of alkyl groups of from 2 to about 18 carbon atoms, aryl groups of from 6 to about 18 carbon atoms and alkylaryl groups of from 7 to about 18 carbon atoms, provided, however, that R 2 and R 3 may be joined to form a heterocyclic ring including the N and optionally an oxygen atom.
- R 4 is selected from the group consisting of H, alkyl groups of from 2 to about 18 carbon atoms, alkylaryl groups of from 7 to about 18 carbon atoms, -(CH 2 CH 2 O) n H, where n is from 1 to about 18, where m and p are independently selected from integers from 0 to about 18, except that the sum m+p is less than or equal to 18, and -CHR 5 CHR 6 Y, where R 5 and R 6 are independently selected from the group consisting of hydrogen, alkyl groups of from 1 to about 18 carbon atoms, aryl groups of from 6 to about 18 carbon atoms and alkylaryl groups of from 7 to about 18 carbon atoms, and Y is a non-acidic group selected from the group consisting of -OH, -SR 7 and -NR 7 R 8 , where R 7 and R 8 are independently selected from the group consisting of hydrogen, alkyl groups of from 1 to about 18 carbon atoms, aryl groups of from 6 to about 18 carbon atoms
- R 5 may be hydrogen, alkyl groups of from 1 to about 18 carbon atoms or alkylaryl groups of from 7 to about 18 carbon atoms.
- each of R 1 , R 2 and R 3 is methyl. It now has been found that if one of R 1 , R 2 and R 3 is longer than methyl, scavenging may be carried out even in crude oil without the volatile, malodorous scavenging byproducts trimethylamine generated with use of the choline base. Accordingly, R 3 has been designated as the radical having at least two carbon atoms. In some non-limiting forms, R 1 and R 2 are alkyl groups of eighteen or fewer carbon atoms and in other non-restrictive embodiments lower alkyl groups of six carbons or fewer, especially three carbons or fewer and, alternatively, methyl groups.
- R 3 is a fatty group, such as from about eight to about eighteen carbon atoms, on the other hand about ten to about fourteen carbons atoms, such as a coco- group.
- R 3 may be a benzyl group or substituted aryl groups, for example, alkylbenzyl groups such as methyl benzyl, or, less desirably, even may be an alkyl group of at least about two carbon atoms.
- R 2 and R 3 may be joined to form a heterocyclic ring including the N and optionally an oxygen atom. In the latter case, a morpholine may be formed.
- Such ring products have been found to be less effective than some other products and may be more difficult to prepare by oxyalkylation of a tertiary amine.
- R 4 corresponds to the formula -(CH 2 CH 2 O) n H, where n is an integer from one to about eighteen, the formula where m and p are integers from zero to about eighteen (independently selected except that m+p is less than or equal to about eighteen), or the formula -CHR 5 CHR 6 Y, where R 5 and R 6 and Y are defined as above. Inclusion of such R 4 groups in the quaternary compound has been found to increase the performance of the compound as a mercaptan scavenger significantly over that of tetra-alkyl quaternary compounds.
- R 4 corresponds to the formula -CHR 6 CHR 6 Y, where R 5 and R 6 are hydrogen or lower alkyls of fewer than about six carbon atoms, in one non-restrictive version hydrogen, and Y is -OH.
- the quaternary compound is prepared by reacting a tertiary amine with an alkylene oxide to form a quaternary compound where R 4 is -CH 2 CH 2 OH
- quaternary compounds are also formed where R 4 is the ether or polyether group -(CH 2 CH 2 O) n H.
- a composition containing quaternary compounds where R 4 is -(CH 2 CH 2 O) n H often also contains quaternary compounds where R 4 is the ether or polyether group -(CH 2 CH 2 O) n H.
- the quaternary compound is prepared by oxyalkylating a tertiary amine
- the amine is reacted with the alkylene oxide in a molar ratio of about 1:1 so that, while some amine remains unreacted thereby leaving some alkylene oxide available for polyether formation, typically the ether or polyether chains that do form are short; n being mostly one, two or three.
- the quaternary ammonium hydroxides of this invention may be prepared by a variety of known techniques that will be readily apparent to those of ordinary skill in the art.
- the quaternary ammonium hydroxides may be prepared by ion exchange techniques from readily available quaternary ammonium halides, such as quaternary ammonium chlorides.
- the quaternary ammonium halides may be passed through an ion exchange column for exposure to an ion exchange resin, exchanging the halide ion for OH - ions (or Y - ions where Y is as defined above and does not correspond to OH) from the column.
- the halide R 1 R 2 R 3 R 4 N + Z - where R 1 , R 2 , R 3 and R 4 are as defined in the broader definition above and Z - is a halide, is brought into contact with an ion exchange resin bearing hydroxide ions to form R 1 R 2 R 3 R 4 N + OH - .
- the quaternary ammonium hydroxides of this invention may be prepared by oxyalkylation of tertiary amines in the presence of water.
- Techniques for oxyalkylation of tertiary amines have been described, for example, in the European patent application noted above, but the European application requires the reaction to be carried out under anhydrous conditions. Anhydrous conditions were necessary for the formation of the internal ions of the European application. This reaction gives the quaternary ammonium alkoxides discovered to be useful herein.
- Quaternary ammonium ethoxides are formed when ethylene oxide is reacted with tertiary amines to give R 1 R 2 R 3 N + CH 2 CHR 4 O - where R 4 is H, and R 1 , R 2 and R 3 are as defined previously.
- the hydroxides have been discovered to be beneficial. Such compounds are formed when the oxyalkylation is carried out in the presence of water. And, surprisingly, it has been discovered that the reaction carried out in the presence of water results in yields of the quaternary ammonium hydroxide product that are significantly higher than the yields of quaternary ammonium internal ion resulting from the reaction carried out under anhydrous conditions. Moreover, carrying out the reaction in the presence of water allows the use of less oxide per amine than called for in the non-aqueous reaction of the European application of Roof et al. (that is, a 1:1 molar ratio may be employed as opposed to bubbling the oxide through the amine as called for by Roof et al.).
- aqueous reaction proceeds much faster than does the non-aqueous reaction and so the quaternary product may be formed in much less time.
- Y of R 4 is a non-acidic group other than OH -
- a similar reaction may be carried out with, for example, an alkylene sulfide or alkyleneimine instead of an alkylene oxide.
- the resulting quaternary ammonium hydroxides not only are more effective mercaptan scavengers in certain non-limiting cases than are the internal ions (the quaternary ammonium alkoxides) that would have been produced had the reaction taken place in the absence of water, but also are produced in higher yields than the internal ions would have been.
- the hydroxide may be prepared by reacting a tertiary amine such as of the form R 1 R 2 R 3 N with an alkylene oxide, in the presence of water.
- the alkylene oxide may be propylene oxide, but ethylene oxide is useful in one non-limiting embodiment.
- R 4 corresponds to the formula -CHR 5 CHR 6 Y, where R 5 and R 6 are defined above and Y is a non-acidic group corresponding to the formula -SR 7 or -NR 7 R 8 , an alkylene sulfide or alkyleneimine, respectively, may be substituted for the alkylene oxide and otherwise the same procedures may be followed.
- R 1 , R 2 and R 3 of the tertiary amine are as defined above. In one non-limiting embodiment, however, R 1 is methyl and alternatively R 2 is also methyl. Although R 2 and R 3 may be joined to form a heterocyclic ring including the N and optionally an oxygen atom, such as to form a morpholine derivative, such compositions have been found to be more difficult to oxyalkylate without the offset of producing more potent scavengers and so in some configurations, R 2 and R 3 are not joined. In one non-restrictive version, R 3 is a fatty group of from about six to about twelve carbon atoms.
- the reaction may be carried out in an aqueous solvent.
- the solvent may comprise about 50% by weight to about 95%, by weight alcohol such as isopropanol or, in one useful embodiment, methanol, and about 5% by weight to about 50% by weight water.
- a typical solvent formulation therefore, might comprise, by weight, two parts solvent to one part water.
- the active ingredients may make up about 70% by weight of the reaction mixture (the remaining 30% being solvent).
- the tertiary amine is stirred in the solvent and the system is pressurized with alkylene oxide added in a molar ratio of about 1:1 to the amine. Generally, the molar ratio is in the range of from about 1:1 to about 1.5:1 alkylene oxide to amine.
- the reaction is carried out at a temperature typically under about 70°C., in one non-limiting embodiment about 40°C. to about 50°C., with continuous stirring and its completion is signaled by a drop in pressure to about atmospheric.
- the resulting mixture aside from unreacted solvent, is a combination of the quaternary compounds where the R 4 s are of the formulae -CH 2 CH 2 OH and -(CH 2 CH 2 O) n H, where n is as defined above, unreacted amine, and glycols formed from reaction of the alkylene oxide and water.
- R 4 corresponds to the formula or the formula -CHR 5 CHR 6 Y where m, p, R 5 , R 6 and Y are as defined above, may be prepared by similar techniques that will be readily apparent to those of ordinary skill in the art.
- the quaternary ammonium hydroxides and quaternary ammonium alkoxides described herein have improved H 2 S and/or mercaptan scavenging properties when they are in the presence of a metal of a high oxidation state.
- high oxidation state means the metal is present in a primary valence that is capable of being reduced without forming the element. Typically this is an oxidation state of 3+ or greater for most metals of interest. In one non-limiting embodiment these metals are believed to act as catalysts in some way, but the inventors do not wish to be limited to any particular theory. Alternatively, the metals may function as an oxidizer. Metals of high oxidation state suitable to give the desired effect include, but are not necessarily limited to, Co(+3), Fe(+3), Cr(+6,+3), Ni(+3), Cu(+2), Ce (+3,+4) and combinations thereof.
- the metals may be present as water or oil soluble salts and complexes.
- Specific, non-limiting examples of metals suitable for use in the compositions and methods herein include, but are not limited to DBM 830, which consists of a mixture of aqueous caustic, water, dimethylethanolamine, monoethanolamine, formaldehyde, nonionic surfactants (nonyl phenol ethoxylate) and Merox catalyst (cobalt phthalocyanine complex) available from UOP.
- the resulting additive be it quaternary ammonium hydroxide or quaternary ammonium alkoxide may be added to the hydrocarbon fluid to be treated by standard techniques, such as by injection or simple pouring and it may be dispersed throughout the fluid by stirring or other agitation. Enough of the additive should be added that is effective to scavenge at least a portion of the H 2 S and/or mercaptan.
- the additive is incorporated at a level sufficient to scavenge the H 2 S and/or mercaptans to a desired degree and will depend on the mercaptan content of the medium and the corresponding stoichiometry.
- typical additive levels may be on the order of about 20 to about 10,000, in one non-limiting embodiment from a lower threshold of about 100 independently to an upper threshold of about 5,000, ppm based on the weight of the medium to be treated, alternatively from a lower threshold of about 500 independently to an upper threshold of about 1000 ppm.
- the amount of metal in the hydrocarbon fluid may range from about 10 to about 1000 ppm, alternatively up to about 500 ppm, based on the hydrocarbon fluid.
- the formulations of the aqueous scavenging composition may have from 0.1 to 5 wt% of the additive being metal with the remainder being alkoxide/hydroxide.
- the medium may be any hydrocarbon fluid, and a liquid is expected to be most common, although dry gas mixtures containing mercaptans may also be treated.
- a liquid is expected to be most common, although dry gas mixtures containing mercaptans may also be treated.
- excellent results have been obtained from treatment of crude oil, petroleum residua and fuels such as kerosene.
- hydrocarbon fluids in some cases (for example, crude oil emulsions), hydrocarbons may make up less than half of the fluid by weight.
- the product is particularly useful for treatment of crude oil in that it does not add an additional malodorous compound as has been associated with the use of choline to treat crude oil.
- the hydrocarbon fluids to which the method herein may be applied include, but are not limited to, crude oil, oil field condensates (e.g. naphtha, etc.), residual fuels, petroleum distillates (e.g. gasoline, kerosene, diesel, etc.) light hydrocarbons (e.g. propane, butane, etc.), aromatic solvents (e.g. toluene, xylene, etc.) and paraffinic solvents (e.g. pentane, heptane, etc.), renewable fuels such as biodiesel, and mixtures thereof.
- the hydrocarbon fluids may contain oxygenated compounds such as alcohols, esters, glycols, ethers and the like and mixtures thereof.
- Effective scavenging may be carried out at the ambient temperature of the hydrocarbon fluid (e.g., about 20°C. for stored crude oil, residuum or fuel), but the performance of the scavenger has been found to be improved at higher temperatures such as about 50°C. to about 75°C.
- the scavenger tends to decompose at even higher temperatures, such as at about 100°C.
- the decomposition at such temperatures occurs relatively slowly while the time for the reaction between the scavenger and the mercaptans is relatively short, generally requiring only several hours to reduce the mercaptan level substantially.
- the scavenger may still be employed at such elevated temperatures with good results.
- the scavenging additives herein remove H 2 S first, and then start removing or reacting with the mercaptans.
- the quaternary ammonium scavengers herein have been found to react selectively with the lower molecular weight mercaptans without imparting to the system an odor of its own.
- the scavengers have been found to scavenge methyl mercaptan in preference to ethyl mercaptan and to scavenge ethyl mercaptan in preference to n-propyl mercaptan and to scavenge n-propyl mercaptan in preference to n-butyl mercaptan, and so forth. It also has been observed that the scavengers react selectively with linear mercaptans over branched mercaptans.
- the scavengers enable removal of the most volatile mercaptans, which are the greatest contributors to odor problems, with limited waste of scavenger on side reactions with less volatile mercaptans. It is believed that adding the high oxidation state metal helps speed the scavenging of lower mercaptans as well as improves the removal of higher mercaptans ( i.e . through C12 or dodecyl mercaptans).
- Mercaptan Scavenger A was made according to the methods of U.S. Pat. Nos. 5,840,177 and 6,013,175 , mentioned above, assigned to Baker Hughes Incorporated. Mercaptan Scavenger A was a quaternary ammonium hydroxide prepared from dimethyl soya amine and ethylene oxide.
- Example 9 using 1000 ppm of Mercaptan Scavenger A reduces the headspace H 2 S from 542 ppm to 475 ppm.
- Example 10 which uses 500 ppm of Mercaptan Scavenger A and 500 ppm of Co +3 (10% solution) reduces the headspace H 2 S from 542 ppm to 329 ppm.
- TABLE II Reduction of H 2 S Portion using Scavenger A and Cobalt Ex. Additive Dosage (ppm) Headspace H 2 S (ppm) 8 Blank 0 542 9 Scavenger A 1000 475 10 Scavenger A + Co +3 (10% soln.) 500 + 500 329
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Description
- The present invention relates to methods and compositions for scavenging of mercaptans in hydrocarbon fluids and more particularly to the use of quaternary ammonium hydroxides and/or quaternary ammonium alkoxides as mercaptan and/or H2S scavengers.
- Hydrocarbon fluids, such as crude oil, crude oil emulsions, oilfield condensate, petroleum residua and even refined fuels often contain a variety of mercaptans, including mercaptans of relatively low molecular weight. In the drilling, production, transport, storage, and processing of hydrocarbon stocks, the mercaptans encountered can cause many problems ranging from malodors to metal corrosion. Because of the volatility of mercaptans of relatively low molecular weight (for example, methyl mercaptan, CH3SH, ethyl mercaptan, CH3CH2SH and propyl mercaptan, CH3CH2CH2SH), they tend to evolve into vapor spaces, where their offensive odors create problems in and around storage areas and throughout pipelines and shipping systems used for transporting the hydrocarbon.
- Various additives have been employed in efforts to alleviate these problems. For example, choline or choline hydroxide has been found to alleviate hydrogen sulfide evolution and to scavenge mercaptans. See, for example,
U.S. Pat. Nos. 4,594,147 to Roof et al. ,4,867,865 to Roof and5,183,560 to Roof et al. However, choline and choline hydroxide are not well suited for many uses and media, such as in crude oil. Although choline and choline hydroxide might scavenge mercaptans in such media, they also form a volatile and malodorous by-product with the sulfur compounds indigenous to such media. Accordingly, the use of choline and choline hydroxide to control odors associated with light weight mercaptans is self-defeating in media such as crude oil. Thus, the cited patents to Roof and Roof, et al. fail to address this problem and instead describe the use of choline or choline hydroxide in the more refined fuel oils. -
European application 0 538 819 A3 to Roof et al. describes the use of oil-soluble quaternary ammonium compounds of the formula: -
U.S. Pat. Nos. 5,840,177 and6,013,175 relate to methods for scavenging mercaptans in hydrocarbon fluids using quaternary ammonium hydroxides. - Other chemistries and methods for removing mercaptans from hydrocarbons include caustic (NaOH solutions) and cobalt with caustic (Merox™ process of UOP, Merichem processes).
- There is a continuing need in the liquid fuel industry for treating liquid hydrocarbon stocks and wet or dry gas mixtures containing mercaptans using new compositions and methods.
- There is provided, in one non-limiting embodiment a method for scavenging H2S and/or mercaptans in a hydrocarbon fluid that involves adding to the hydrocarbon fluid an effective scavenging amount of an aqueous scavenging composition. The scavenging composition includes an additive selected from the group consisting of a quaternary ammonium hydroxide, a quaternary ammonium alkoxide, and mixtures thereof, in the presence of a metal in an oxidation state of 3+ or greater. The additive reacts with H2S and/or mercaptans in the fluid.
- The quaternary ammonium hydroxide has the formula selected from the group consisting of R1R2R3N+OH OH-, R1R2R3N+CH2CHR5OH OH- and R1R2R3R4N+OH-, and the quaternary ammonium alkoxide has the formula R1R2R3R4N+O-, where:
- R1 and R2 are independently selected from the group consisting of alkyl groups of from 1 to about 18 carbon atoms, aryl groups of from 8 to about 18 carbon atoms and alkylaryl groups of from 7 to about 18 carbon atoms,
- R3 is selected from the group consisting of alkyl groups of from 2 to about 18 carbon atoms, aryl groups of from 6 to about 18 carbon atoms and alkylaryl groups of from 7 to about 18 carbon atoms, provided, however, that R2 and R3 may be joined to form a heterocyclic ring including the N and optionally an oxygen atom, and
- R4 is selected from the group consisting of H, alkyl groups of from 2 to about 18 carbon atoms, alkylaryl groups of from 7 to about 18 carbon atoms, -(CH2CH2O)nH, where n is from 1 to about 18,
-CHR5CHR6Y, where R5 and R6 are independently selected from the group consisting of hydrogen, alkyl groups of from 1 to about 18 carbon atoms, aryl groups of from 6 to about 18 carbon atoms and alkylaryl groups of from 7 to about 18 carbon atoms, and Y is a non-acidic group selected from the group consisting of -OH, -SR7 and -NR7R8, where R7 and R8 are independently selected from the group consisting of hydrogen, alkyl groups of from 1 to about 18 carbon atoms, aryl groups of from 6 to about 18 carbon atoms and alkylaryl groups of from 7 to about 18 carbon atoms, and - R5 is selected from the group consisting of hydrogen, alkyl groups of from 1 to about 18 carbon atoms or alkylaryl groups of from 7 to about 18 carbon atoms.
- Further, there is provided in another non-restrictive version a hydrocarbon composition that has a reduced H2S and/or mercaptan presence which includes a hydrocarbon fluid, H2S and/or mercaptans, and an effective scavenging amount of an aqueous scavenging composition. The composition includes an additive selected from the group consisting of a quaternary ammonium hydroxide, a quaternary ammonium alkoxide, and mixtures thereof, in the presence of a metal in an oxidation state of 3+ or greater. The quaternary ammonium hydroxide has the formula R1R2R3N+OH OH-, R1R2R3N+CH2CHR5OH OH- and/or R1R2R3R4N+OH-, and the quaternary ammonium alkoxide has the formula R1R2R3R4N+O-, where R1, R2, R3, and R4 are as defined above. At least some of the additive in the hydrocarbon composition has reacted with the H2S and/or mercaptan.
- As defined herein mercaptans are thiols and are defined as any of a group of organic compounds resembling alcohols, but having the oxygen of the hydroxyl group replaced by sulfur. Hydrogen sulfide (H2S) may also be scavenged by the methods and additives herein, and while not technically a mercaptan may be understood as included among the species being scavenged. It will thus be understood that when "mercaptan" is discussed, H2S is included as a species that will also be scavenged herein.
- In accordance with the present invention, it has been unexpectedly discovered that certain quaternary ammonium hydroxides and alkoxides are surprisingly effective mercaptan scavengers that scavenge H2S and mercaptans, particularly low weight mercaptans selectively in preference to higher weight mercaptans. These additives are believed to react with the H2S and/or mercaptans in the fluid. It has been further unexpectedly discovered that these quaternary ammonium hydroxides and alkoxides have their scavenging ability improved in the presence of a high oxidative state metal, such as cobalt, which may act as a catalyst when combined with the quaternary ammonium hydroxides and/or alkoxides. The exact mechanism by which the methods herein operate is not known, and it may be that the presence of a high oxidative state metal is not "catalytic" in the strict chemical sense; the inventors herein do not wish to be limited by any particular explanation.
- It will also be appreciated that it is not necessary for all of the H2S and/or mercaptan present in the hydrocarbon to be reacted and/or removed for the compositions, additives, and methods herein to be considered successful. The compositions and methods have accomplished a goal when the amounts of H2S and/or mercaptan are reduced as a consequence of being contacted with the compositions described herein.
- The efficacy of the hydroxides and alkoxides is especially surprising in view of the findings that the hydroxides are significantly more effective scavengers than compounds differing only in the counter ion (i.e., it is other than hydroxide), and that in some non-limiting cases the hydroxides are even more effective mercaptan scavengers than the corresponding internal ions (i.e., R3N+R'O- where R3N+R'OH OH- is the hydroxide).
- The selectivity of the hydroxides reduces the waste that would otherwise be encountered in scavenging higher molecular weight mercaptans unnecessarily, and so permits scavenging of the less desirable mercaptans with relatively small amounts of the hydroxides. And, even though the European application noted above stresses the importance of the oil-solubility of its compounds to their efficacy, the superior efficacy of the hydroxides in scavenging mercaptans in hydrocarbons has been found even though the hydroxides would be expected to be significantly less oil-soluble than their corresponding internal ions.
- Moreover, it has been found that introducing oxygen such as by sparging the treated fluid with air increases the scavenging activity dramatically.
- The quaternary ammonium hydroxide has the formula R1R2R3N+OH OH-, R1R2R3N+CH2CHR5OH OH- or R1R2R3R4N+OH-, and the quaternary ammonium alkoxide has the formula R1R2R3R4N+O-. R1 and R2 are independently selected from the group consisting of alkyl groups of from 1 to about 18 carbon atoms, aryl groups of from 8 to about 18 carbon atoms and alkylaryl groups of from 7 to about 18 carbon atoms.
- R3 is selected from the group consisting of alkyl groups of from 2 to about 18 carbon atoms, aryl groups of from 6 to about 18 carbon atoms and alkylaryl groups of from 7 to about 18 carbon atoms, provided, however, that R2 and R3 may be joined to form a heterocyclic ring including the N and optionally an oxygen atom.
- R4 is selected from the group consisting of H, alkyl groups of from 2 to about 18 carbon atoms, alkylaryl groups of from 7 to about 18 carbon atoms, -(CH2CH2O)nH, where n is from 1 to about 18,
- R5 may be hydrogen, alkyl groups of from 1 to about 18 carbon atoms or alkylaryl groups of from 7 to about 18 carbon atoms.
- In choline base, each of R1, R2 and R3 is methyl. It now has been found that if one of R1, R2 and R3 is longer than methyl, scavenging may be carried out even in crude oil without the volatile, malodorous scavenging byproducts trimethylamine generated with use of the choline base. Accordingly, R3 has been designated as the radical having at least two carbon atoms. In some non-limiting forms, R1 and R2 are alkyl groups of eighteen or fewer carbon atoms and in other non-restrictive embodiments lower alkyl groups of six carbons or fewer, especially three carbons or fewer and, alternatively, methyl groups. In another non-limiting embodiment, R3 is a fatty group, such as from about eight to about eighteen carbon atoms, on the other hand about ten to about fourteen carbons atoms, such as a coco- group. However, alternatively, R3 may be a benzyl group or substituted aryl groups, for example, alkylbenzyl groups such as methyl benzyl, or, less desirably, even may be an alkyl group of at least about two carbon atoms. In other non-restrictive embodiments, R2 and R3 may be joined to form a heterocyclic ring including the N and optionally an oxygen atom. In the latter case, a morpholine may be formed. Such ring products have been found to be less effective than some other products and may be more difficult to prepare by oxyalkylation of a tertiary amine.
- R4, as noted, corresponds to the formula -(CH2CH2O)nH, where n is an integer from one to about eighteen, the formula
- However, when the quaternary compound is prepared by reacting a tertiary amine with an alkylene oxide to form a quaternary compound where R4 is -CH2CH2OH, quaternary compounds are also formed where R4 is the ether or polyether group -(CH2CH2O)nH. Thus, a composition containing quaternary compounds where R4 is -(CH2CH2O)nH often also contains quaternary compounds where R4 is the ether or polyether group -(CH2CH2O)nH. Generally, however, if the quaternary compound is prepared by oxyalkylating a tertiary amine, the amine is reacted with the alkylene oxide in a molar ratio of about 1:1 so that, while some amine remains unreacted thereby leaving some alkylene oxide available for polyether formation, typically the ether or polyether chains that do form are short; n being mostly one, two or three.
- The quaternary ammonium hydroxides of this invention may be prepared by a variety of known techniques that will be readily apparent to those of ordinary skill in the art. For example, the quaternary ammonium hydroxides may be prepared by ion exchange techniques from readily available quaternary ammonium halides, such as quaternary ammonium chlorides. By such techniques, the quaternary ammonium halides may be passed through an ion exchange column for exposure to an ion exchange resin, exchanging the halide ion for OH- ions (or Y- ions where Y is as defined above and does not correspond to OH) from the column. Thus, according to this method for producing the hydroxide, the halide R1R2R3R4N+Z-, where R1, R2, R3 and R4 are as defined in the broader definition above and Z- is a halide, is brought into contact with an ion exchange resin bearing hydroxide ions to form R1R2R3R4N+ OH-.
- Alternatively, the quaternary ammonium hydroxides of this invention may be prepared by oxyalkylation of tertiary amines in the presence of water. Techniques for oxyalkylation of tertiary amines have been described, for example, in the European patent application noted above, but the European application requires the reaction to be carried out under anhydrous conditions. Anhydrous conditions were necessary for the formation of the internal ions of the European application. This reaction gives the quaternary ammonium alkoxides discovered to be useful herein. Quaternary ammonium ethoxides are formed when ethylene oxide is reacted with tertiary amines to give R1R2R3N+CH2CHR4O- where R4 is H, and R1, R2 and R3 are as defined previously.
- The hydroxides have been discovered to be beneficial. Such compounds are formed when the oxyalkylation is carried out in the presence of water. And, surprisingly, it has been discovered that the reaction carried out in the presence of water results in yields of the quaternary ammonium hydroxide product that are significantly higher than the yields of quaternary ammonium internal ion resulting from the reaction carried out under anhydrous conditions. Moreover, carrying out the reaction in the presence of water allows the use of less oxide per amine than called for in the non-aqueous reaction of the European application of Roof et al. (that is, a 1:1 molar ratio may be employed as opposed to bubbling the oxide through the amine as called for by Roof et al.). In addition, the aqueous reaction proceeds much faster than does the non-aqueous reaction and so the quaternary product may be formed in much less time. Where Y of R4 is a non-acidic group other than OH-, a similar reaction may be carried out with, for example, an alkylene sulfide or alkyleneimine instead of an alkylene oxide.
- Thus, it has been discovered that if the oxyalkylation reaction is carried out in the presence of water, the resulting quaternary ammonium hydroxides not only are more effective mercaptan scavengers in certain non-limiting cases than are the internal ions (the quaternary ammonium alkoxides) that would have been produced had the reaction taken place in the absence of water, but also are produced in higher yields than the internal ions would have been.
- Accordingly, in more detail, where R4 of the quaternary ammonium hydroxide R1R2R3R4N+ OH- is hydroxyethyl or hydroxypropyl, or if R4 is an ether or polyether group as described above, the hydroxide may be prepared by reacting a tertiary amine such as of the form R1R2R3N with an alkylene oxide, in the presence of water. The alkylene oxide may be propylene oxide, but ethylene oxide is useful in one non-limiting embodiment. In alternative embodiments where the quaternary ammonium compound R1R2R3R4N+ is not a hydroxide, but R4 corresponds to the formula -CHR5CHR6Y, where R5 and R6 are defined above and Y is a non-acidic group corresponding to the formula -SR7 or -NR7R8, an alkylene sulfide or alkyleneimine, respectively, may be substituted for the alkylene oxide and otherwise the same procedures may be followed.
- R1, R2 and R3 of the tertiary amine are as defined above. In one non-limiting embodiment, however, R1 is methyl and alternatively R2 is also methyl. Although R2 and R3 may be joined to form a heterocyclic ring including the N and optionally an oxygen atom, such as to form a morpholine derivative, such compositions have been found to be more difficult to oxyalkylate without the offset of producing more potent scavengers and so in some configurations, R2 and R3 are not joined. In one non-restrictive version, R3 is a fatty group of from about six to about twelve carbon atoms.
- The reaction may be carried out in an aqueous solvent. For example, the solvent may comprise about 50% by weight to about 95%, by weight alcohol such as isopropanol or, in one useful embodiment, methanol, and about 5% by weight to about 50% by weight water. A typical solvent formulation, therefore, might comprise, by weight, two parts solvent to one part water.
- The active ingredients may make up about 70% by weight of the reaction mixture (the remaining 30% being solvent). In one non-limiting method of preparation, the tertiary amine is stirred in the solvent and the system is pressurized with alkylene oxide added in a molar ratio of about 1:1 to the amine. Generally, the molar ratio is in the range of from about 1:1 to about 1.5:1 alkylene oxide to amine. The reaction is carried out at a temperature typically under about 70°C., in one non-limiting embodiment about 40°C. to about 50°C., with continuous stirring and its completion is signaled by a drop in pressure to about atmospheric. The resulting mixture, aside from unreacted solvent, is a combination of the quaternary compounds where the R4s are of the formulae -CH2CH2OH and -(CH2CH2O)nH, where n is as defined above, unreacted amine, and glycols formed from reaction of the alkylene oxide and water. Other quaternary ammonium hydroxides where R4 corresponds to the formula
- It has been unexpectedly discovered that the quaternary ammonium hydroxides and quaternary ammonium alkoxides described herein have improved H2S and/or mercaptan scavenging properties when they are in the presence of a metal of a high oxidation state. As used herein, "high oxidation state" means the metal is present in a primary valence that is capable of being reduced without forming the element. Typically this is an oxidation state of 3+ or greater for most metals of interest. In one non-limiting embodiment these metals are believed to act as catalysts in some way, but the inventors do not wish to be limited to any particular theory. Alternatively, the metals may function as an oxidizer. Metals of high oxidation state suitable to give the desired effect include, but are not necessarily limited to, Co(+3), Fe(+3), Cr(+6,+3), Ni(+3), Cu(+2), Ce (+3,+4) and combinations thereof.
- The metals may be present as water or oil soluble salts and complexes. Specific, non-limiting examples of metals suitable for use in the compositions and methods herein include, but are not limited to DBM 830, which consists of a mixture of aqueous caustic, water, dimethylethanolamine, monoethanolamine, formaldehyde, nonionic surfactants (nonyl phenol ethoxylate) and Merox catalyst (cobalt phthalocyanine complex) available from UOP.
- The resulting additive, be it quaternary ammonium hydroxide or quaternary ammonium alkoxide may be added to the hydrocarbon fluid to be treated by standard techniques, such as by injection or simple pouring and it may be dispersed throughout the fluid by stirring or other agitation. Enough of the additive should be added that is effective to scavenge at least a portion of the H2S and/or mercaptan. The additive is incorporated at a level sufficient to scavenge the H2S and/or mercaptans to a desired degree and will depend on the mercaptan content of the medium and the corresponding stoichiometry. However, typical additive levels may be on the order of about 20 to about 10,000, in one non-limiting embodiment from a lower threshold of about 100 independently to an upper threshold of about 5,000, ppm based on the weight of the medium to be treated, alternatively from a lower threshold of about 500 independently to an upper threshold of about 1000 ppm.
- The amount of metal in the hydrocarbon fluid may range from about 10 to about 1000 ppm, alternatively up to about 500 ppm, based on the hydrocarbon fluid. In one non-limiting embodiment, the formulations of the aqueous scavenging composition may have from 0.1 to 5 wt% of the additive being metal with the remainder being alkoxide/hydroxide.
- The medium may be any hydrocarbon fluid, and a liquid is expected to be most common, although dry gas mixtures containing mercaptans may also be treated. For example, excellent results have been obtained from treatment of crude oil, petroleum residua and fuels such as kerosene. It should be recognized that while the fluids are referred to as hydrocarbon fluids, in some cases (for example, crude oil emulsions), hydrocarbons may make up less than half of the fluid by weight. The product is particularly useful for treatment of crude oil in that it does not add an additional malodorous compound as has been associated with the use of choline to treat crude oil. More specifically, the hydrocarbon fluids to which the method herein may be applied include, but are not limited to, crude oil, oil field condensates (e.g. naphtha, etc.), residual fuels, petroleum distillates (e.g. gasoline, kerosene, diesel, etc.) light hydrocarbons (e.g. propane, butane, etc.), aromatic solvents (e.g. toluene, xylene, etc.) and paraffinic solvents (e.g. pentane, heptane, etc.), renewable fuels such as biodiesel, and mixtures thereof. Further, the hydrocarbon fluids may contain oxygenated compounds such as alcohols, esters, glycols, ethers and the like and mixtures thereof.
- In addition, even significantly greater degrees of scavenging have been found to result if the medium is first oxygenated such as by aeration prior to addition of the mercaptan scavenger. Although the inventors do not wish to be bound by any particular theory, it is believed that the mechanism by which this scavenging occurs is according to the following reaction sequence where R1R2R3R4N+ OH- is the scavenger and RSH is the mercaptan:
R1R2R3R4N+ OH- + RSH → RS- + R1R2R3R4N+
2 RS- + O2 → RSSR (disulfide)
- Thus, increasingly improved results have been noted as the amount of oxygen added such as by aerating or bubbling air into the medium increases to 100% of the stoichiometry of this reaction scheme. Addition of air in an amount beyond 100% has not been found to improve scavenging much more than that associated with addition of 100% of stoichiometry.
- Effective scavenging may be carried out at the ambient temperature of the hydrocarbon fluid (e.g., about 20°C. for stored crude oil, residuum or fuel), but the performance of the scavenger has been found to be improved at higher temperatures such as about 50°C. to about 75°C. The scavenger tends to decompose at even higher temperatures, such as at about 100°C. However, the decomposition at such temperatures occurs relatively slowly while the time for the reaction between the scavenger and the mercaptans is relatively short, generally requiring only several hours to reduce the mercaptan level substantially. Thus, the scavenger may still be employed at such elevated temperatures with good results.
- It has been found that the scavenging additives herein remove H2S first, and then start removing or reacting with the mercaptans. The quaternary ammonium scavengers herein have been found to react selectively with the lower molecular weight mercaptans without imparting to the system an odor of its own. More particularly, for example, the scavengers have been found to scavenge methyl mercaptan in preference to ethyl mercaptan and to scavenge ethyl mercaptan in preference to n-propyl mercaptan and to scavenge n-propyl mercaptan in preference to n-butyl mercaptan, and so forth. It also has been observed that the scavengers react selectively with linear mercaptans over branched mercaptans. Thus, the scavengers enable removal of the most volatile mercaptans, which are the greatest contributors to odor problems, with limited waste of scavenger on side reactions with less volatile mercaptans. It is believed that adding the high oxidation state metal helps speed the scavenging of lower mercaptans as well as improves the removal of higher mercaptans (i.e. through C12 or dodecyl mercaptans).
- The following examples describe certain specific, non-limiting embodiments of the invention. Other embodiments within the scope of the claims herein will be apparent to one skilled in the art from consideration of the specification or practice of the invention as disclosed herein. It is intended that the specification, together with the examples, be considered exemplary only, with the scope and spirit of the invention being indicated by the claims which follow the examples. In the examples, all percentages are given on a weight basis unless otherwise indicated.
- Mercaptan Scavenger A was made according to the methods of
U.S. Pat. Nos. 5,840,177 and6,013,175 , mentioned above, assigned to Baker Hughes Incorporated. Mercaptan Scavenger A was a quaternary ammonium hydroxide prepared from dimethyl soya amine and ethylene oxide. - As shown in Table I, Mercaptan Scavenger A was used alone and together with DBM 830, also used alone, in the indicated dosages. The initial mercaptan proportion was 533 ppm. The liquid phase mercaptan (RSH) proportion after 24 hours and after 5 days was noted. The hydrocarbon used in this testing was Caspian Pipeline Crude containing an unknown mix of naturally occurring mercaptans with an additional 205 ppm of C3 mercaptan (i.e. 1-propanethiol; CH3CH2CH2SH) artificially added.
TABLE I Reduction of RSH Portion Using Scavenger and Cobalt Dosage ppm Liquid Phase RSH Ex. Additive 24 hrs 5 days 1 blank 0 533 ppm 529 ppm 2 Scavenger A 1000 498 ppm 426 ppm 3 DBM 830 1000 346 ppm 159 ppm 4 Scavenger A + DBM 830 500 + 500 276 ppm 112 ppm 5 Scavenger A 2000 308 ppm 185 ppm 6 DBM 830 2000 291 ppm 107 ppm 7 Scavenger A + DBM 830 1000 + 1000 273 ppm 61 ppm - It may be seen from Table I that the mercaptan levels using both Scavenger A and DBM 830 (Examples 4 and 7) are reduced to a greater extent as compared with adding the reductions obtained from the Examples using Scavenger A alone (Examples 2 and 5) or those using DBM 830 alone (Examples 3 and 6). It may be seen that in all Examples, whether calculated as an absolute reduction in ppm units, or as a percentage of the starting RSH content, the reduction in mercaptan is synergistic, that is, greater than would be expected from adding the effects of the two components together. This result is unexpected.
- Among the several advantages of the methods herein, may be noted the provision of a method for scavenging mercaptans more effectively and efficiently than in conventional methods, the provision of such method that scavenges selectively for light weight mercaptans versus heavier weight mercaptans, and the provision of such method that does not tend to generate new malodorous compositions.
- Further evidence of the surprising combined benefit of a quaternary ammonium compound with a metal of an oxidation state of 3+ or greater is seen in Examples of 8, 9 and 10 of Table II below. Example 9 using 1000 ppm of Mercaptan Scavenger A reduces the headspace H2S from 542 ppm to 475 ppm. However, Example 10, which uses 500 ppm of Mercaptan Scavenger A and 500 ppm of Co+3 (10% solution) reduces the headspace H2S from 542 ppm to 329 ppm.
TABLE II Reduction of H2S Portion using Scavenger A and Cobalt Ex. Additive Dosage (ppm) Headspace H2S (ppm) 8 Blank 0 542 9 Scavenger A 1000 475 10 Scavenger A + Co+3 (10% soln.) 500 + 500 329 - In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It has been demonstrated as effective in providing methods and compositions for reacting with and reducing the H2S and/or mercaptan proportions in hydrocarbons, particularly crude oil. However, it will be evident that various modifications and changes can be made thereto without departing from the broader scope of the invention as set forth in the appended claims. Accordingly, the specification is to be regarded in an illustrative rather than a restrictive sense. For example, specific combinations of quaternary ammonium hydroxide, quaternary ammonium alkoxide, high oxidation state metal, and other components falling within the claimed parameters, but not specifically identified or tried in a particular composition or under specific conditions, are anticipated to be within the scope of this invention.
- The words "comprising" and "comprises" as used throughout the claims, is to be interpreted to mean "including but not limited to" and "includes but not limited to", respectively.
Claims (14)
- A method for scavenging H2S and/or mercaptans in a hydrocarbon fluid, comprising adding to the hydrocarbon fluid an aqueous scavenging composition comprising an effective scavenging amount of an additive selected from the group consisting of a quaternary ammonium alkoxide and mixtures of a quaternary ammonium alkoxide and a quaternary ammonium hydroxide, in the presence of a metal of an oxidation state of 3+ or greater, where the quaternary ammonium hydroxide has a formula selected from the group consisting of R1R2R3N+OH OH-, R1R2R3N+CH2CHR5OH OH- and R1R2R3R4N+OH-, and mixtures thereof and the quaternary ammonium alkoxide has the formula R1R2R3R4N+O-, where:R1 and R2 are independently selected from the group consisting of alkyl groups of from 1 to 18 carbon atoms, aryl groups of from 8 to 18 carbon atoms and alkylaryl groups of from 7 to 18 carbon atoms,R3 is selected from the group consisting of alkyl groups of from 2 to 18 carbon atoms, aryl groups of from 6 to 18 carbon atoms and alkylaryl groups of from 7 to 18 carbon atoms, provided, however, that R2 and R3 may be joined to form a heterocyclic ring including the N and optionally an oxygen atom,R4 is selected from the group consisting of hydrogen, alkyl groups of from 2 to 18 carbon atoms, alkylaryl groups of from 7 to 18 carbon atoms, -(CH2CH2O)nH, where n is from 1 to 18,R5 is selected from the group consisting of hydrogen, alkyl groups of from 1 to 18 carbon atoms or alkylaryl groups of from 7 to 18 carbon atoms.
- The method of claim 1 where the hydrocarbon fluid is selected from the group consisting of crude oil, oil field condensates, residual fuels, petroleum distillates, light hydrocarbons, aromatic solvents, dry gas streams, paraffinic solvents, fuels comprising oxygenated compounds, biodiesel, and mixtures thereof.
- The method of claim 1 or 2 where the metal in an oxidation state of 3+ or greater is selected from the group consisting of Co(+3), Fe(+3), Cr(+6,+3), Ni(+3), Cu(+2), Ce(+3,+4) and combinations thereof.
- The method of claim 3 where the amount of additive in the hydrocarbon fluid ranges from 20 to 10,000 ppm.
- The method of claim 3 where the amount of metal in the hydrocarbon fluid ranges from 0.1 to 5 wt% of the additive.
- The method of claim 3 where R4 is -(CH2CH2O)nH and n is from 1 to 18.
- The method of any of claims 1 to 6, wherein the additive is a quaternary ammonium hydroxide.
- A hydrocarbon composition having a reduced H2S and/or mercaptan presence, the composition comprising:a hydrocarbon fluid;H2S and/or mercaptans;an aqueous scavenging composition comprising an effective scavenging amount of an additive selected from the group consisting of a quaternary ammonium alkoxide, and mixtures of a quaternary ammonium alkoxide and a quaternary ammonium hydroxide, in the presence of a metal in an oxidation state of 3+ or greater, where the quaternary ammonium hydroxide has a formula selected from the group consisting of R1R2R3N+OH OH-, R1R2R3N+CH2CHR5OH OH- and R1R2R3RN+OH-, and mixtures thereof and the quaternary ammonium alkoxide has the formula R1R2R3R4N+0-, where:R1 and R2 are independently selected from the group consisting of alkyl groups of from 1 to 18 carbon atoms, aryl groups of from 8 to 18 carbon atoms and alkylaryl groups of from 7 to 18 carbon atoms,R3 is selected from the group consisting of alkyl groups of from 2 to 18 carbon atoms, aryl groups of from 6 to 18 carbon atoms and alkylaryl groups of from 7 to 18 carbon atoms, provided, however, that R2 and R3 may be joined to form a heterocyclic ring including the N and optionally an oxygen atom,R4 is selected from the group consisting of hydrogen, alkyl groups of from 2 to 18 carbon atoms, alkylaryl groups of from 7 to 18 carbon atoms, -(CH2CH2O)nH, where n is from 1 to 18,R5 is selected from the group consisting of hydrogen, alkyl groups of from 1 to 18 carbon atoms or alkylaryl groups of from 7 to 18 carbon atoms.where at least some of the additive has reacted with the H2S and/or mercaptan.
- The hydrocarbon composition of claim 8 where the hydrocarbon fluid is selected from the group consisting of crude oil, oil field condensates, residual fuels, petroleum distillates, light hydrocarbons, aromatic solvents, paraffinic solvents, dry gas streams fuels comprising oxygenated compounds, biodiesel, and mixtures thereof.
- The hydrocarbon composition of claim 8 or 9 where the metal in an oxidation state of 3+ or greater is selected from the group consisting of Co(+3), Fe(+3), Cr(+6,+3), Ni(+3), Cu(+2), Ce (+3,+4) and combinations thereof.
- The hydrocarbon composition of claim 10 where the amount of additive in the hydrocarbon fluid ranges from 20 to 10,000 ppm.
- The hydrocarbon composition of claim 10 where the amount of metal in the hydrocarbon fluid ranges from 0.1 to 5 wt% of the additive.
- The hydrocarbon composition of claim 10 where R4 is -(CH2CH2O)nH and n is from 1 to 18.
- The hydrocarbon composition of any of claims 8 to 13, wherein the additive is a quaternary ammonium alkoxide.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US89562507P | 2007-03-19 | 2007-03-19 | |
US12/042,536 US20080230445A1 (en) | 2007-03-19 | 2008-03-05 | Method of scavenging mercaptans from hydrocarbons |
PCT/US2008/056006 WO2008115704A1 (en) | 2007-03-19 | 2008-03-06 | Method of scavenging mercaptans from hydrocarbons |
EP08731506.5A EP2134814A4 (en) | 2007-03-19 | 2008-03-06 | Method of scavenging mercaptans from hydrocarbons |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08731506.5A Division EP2134814A4 (en) | 2007-03-19 | 2008-03-06 | Method of scavenging mercaptans from hydrocarbons |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2759587A1 true EP2759587A1 (en) | 2014-07-30 |
EP2759587B1 EP2759587B1 (en) | 2020-02-12 |
Family
ID=39766340
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14164453.4A Active EP2759587B1 (en) | 2007-03-19 | 2008-03-06 | Method of scavenging mercaptans from hydrocarbons |
EP08731506.5A Withdrawn EP2134814A4 (en) | 2007-03-19 | 2008-03-06 | Method of scavenging mercaptans from hydrocarbons |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08731506.5A Withdrawn EP2134814A4 (en) | 2007-03-19 | 2008-03-06 | Method of scavenging mercaptans from hydrocarbons |
Country Status (4)
Country | Link |
---|---|
US (1) | US20080230445A1 (en) |
EP (2) | EP2759587B1 (en) |
EA (1) | EA016758B1 (en) |
WO (1) | WO2008115704A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7918905B2 (en) * | 2007-05-17 | 2011-04-05 | Baker Hughes Incorporated | Method for improving biodiesel fuel |
GB2484301B8 (en) * | 2010-10-05 | 2017-11-22 | The Queen's Univ Of Belfast | Process for removing metals from hydrocarbons |
US9296956B2 (en) | 2010-10-28 | 2016-03-29 | Chevron U.S.A. Inc. | Method for reducing mercaptans in hydrocarbons |
US20140084206A1 (en) * | 2012-09-27 | 2014-03-27 | Baker Hughes Incorporated | Treating Additives for the Deactivation of Sulfur Species Within a Stream |
CN103768913B (en) * | 2012-10-22 | 2016-04-27 | 中国石油化工股份有限公司 | A kind of method removing hydrogen sulfide and mercaptan in gas |
RU2532019C1 (en) * | 2013-07-30 | 2014-10-27 | Ахматфаиль Магсумович Фахриев | Agent for neutralising hydrogen sulphide and inhibiting growth of sulphate-reducing bacteria |
EP3781293A2 (en) | 2018-04-18 | 2021-02-24 | Clairion Ltd. | A process for separation of heavy metals and/or sulfur species from ionic liquids |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4033860A (en) * | 1975-09-10 | 1977-07-05 | Uop Inc. | Mercaptan conversion process |
US4594147A (en) | 1985-12-16 | 1986-06-10 | Nalco Chemical Company | Choline as a fuel sweetener and sulfur antagonist |
US4867865A (en) | 1988-07-11 | 1989-09-19 | Pony Industries, Inc. | Controlling H2 S in fuel oils |
US4923596A (en) * | 1989-05-22 | 1990-05-08 | Uop | Use of quaternary ammonium compounds in a liquid/liquid process for sweetening a sour hydrocarbon fraction |
US4929340A (en) * | 1989-07-31 | 1990-05-29 | Uop | Catalyst and process for sweetening a sour hydrocarbon fraction using dipolar compounds |
US5183560A (en) | 1991-09-09 | 1993-02-02 | Baker Hughes Incorporated | Treatment of oils using choline base |
EP0538819A2 (en) | 1991-10-21 | 1993-04-28 | Baker Hughes Incorporated | Treatment of oils using epoxylated tertiary amines |
US5840177A (en) | 1994-03-03 | 1998-11-24 | Baker Hughes Incorporated | Quaternary ammonium hydroxides as mercaptan scavengers |
US6124481A (en) * | 1993-03-22 | 2000-09-26 | Florida State University | Ammonium alkoxides |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3928211A (en) * | 1970-10-21 | 1975-12-23 | Milchem Inc | Process for scavenging hydrogen sulfide in aqueous drilling fluids and method of preventing metallic corrosion of subterranean well drilling apparatuses |
US4124531A (en) * | 1977-01-03 | 1978-11-07 | Uop Inc. | Catalytic composite for the treatment of sour petroleum distillates |
US4778617A (en) * | 1984-11-27 | 1988-10-18 | The Drackett Company | Acid cleaner composition |
US5232887A (en) * | 1992-04-02 | 1993-08-03 | Uop | Catalyst for sweetening a sour hydrocarbon fraction |
US5413704A (en) * | 1993-11-15 | 1995-05-09 | Uop | Process for sweetening a sour hydrocarbon fraction using a mixture of a supported metal chelate and a solid base |
US5744024A (en) * | 1995-10-12 | 1998-04-28 | Nalco/Exxon Energy Chemicals, L.P. | Method of treating sour gas and liquid hydrocarbon |
-
2008
- 2008-03-05 US US12/042,536 patent/US20080230445A1/en not_active Abandoned
- 2008-03-06 EP EP14164453.4A patent/EP2759587B1/en active Active
- 2008-03-06 EP EP08731506.5A patent/EP2134814A4/en not_active Withdrawn
- 2008-03-06 EA EA200901177A patent/EA016758B1/en not_active IP Right Cessation
- 2008-03-06 WO PCT/US2008/056006 patent/WO2008115704A1/en active Search and Examination
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4033860A (en) * | 1975-09-10 | 1977-07-05 | Uop Inc. | Mercaptan conversion process |
US4594147A (en) | 1985-12-16 | 1986-06-10 | Nalco Chemical Company | Choline as a fuel sweetener and sulfur antagonist |
US4867865A (en) | 1988-07-11 | 1989-09-19 | Pony Industries, Inc. | Controlling H2 S in fuel oils |
US4923596A (en) * | 1989-05-22 | 1990-05-08 | Uop | Use of quaternary ammonium compounds in a liquid/liquid process for sweetening a sour hydrocarbon fraction |
US4929340A (en) * | 1989-07-31 | 1990-05-29 | Uop | Catalyst and process for sweetening a sour hydrocarbon fraction using dipolar compounds |
US5183560A (en) | 1991-09-09 | 1993-02-02 | Baker Hughes Incorporated | Treatment of oils using choline base |
EP0538819A2 (en) | 1991-10-21 | 1993-04-28 | Baker Hughes Incorporated | Treatment of oils using epoxylated tertiary amines |
US5344555A (en) * | 1991-10-21 | 1994-09-06 | Baker Hughes Incorporated | Treatment of oils using reaction products of epoxides and tertiary amines |
US6124481A (en) * | 1993-03-22 | 2000-09-26 | Florida State University | Ammonium alkoxides |
US5840177A (en) | 1994-03-03 | 1998-11-24 | Baker Hughes Incorporated | Quaternary ammonium hydroxides as mercaptan scavengers |
US6013175A (en) | 1994-03-03 | 2000-01-11 | Baker Hughes, Inc. | Quaternary ammonium hydroxides as mercaptan scavengers |
Non-Patent Citations (1)
Title |
---|
BASU B ET AL: "MEROX AND RELATED METAL PHTHALOCYANINE CATALYZED OXIDATION PROCESSES", CATALYSIS REVIEWS: SCIENCE AND ENGINEERING, MARCEL DEKKER INC. NEW YORK, US, vol. 35, no. 4, 1 December 1993 (1993-12-01), pages 571 - 609, XP000408832, ISSN: 0161-4940 * |
Also Published As
Publication number | Publication date |
---|---|
WO2008115704A1 (en) | 2008-09-25 |
EA016758B1 (en) | 2012-07-30 |
EA200901177A1 (en) | 2010-04-30 |
EP2134814A1 (en) | 2009-12-23 |
EP2759587B1 (en) | 2020-02-12 |
US20080230445A1 (en) | 2008-09-25 |
EP2134814A4 (en) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8679203B2 (en) | Method of scavenging mercaptans from hydrocarbons | |
EP2759587B1 (en) | Method of scavenging mercaptans from hydrocarbons | |
US6013175A (en) | Quaternary ammonium hydroxides as mercaptan scavengers | |
AU2010245644B2 (en) | Method of scavenging hydrogen sulfide from hydrocarbon stream | |
US20080056974A1 (en) | Fast, high capacity hydrogen sulfide scavengers | |
US8048175B2 (en) | Quick removal of mercaptans from hydrocarbons | |
EP3400087B1 (en) | Hydrogen sulfide scavenging additive composition and method of use thereof | |
CA2755746C (en) | Quaternary ammonium-based mercaptan scavenger composition | |
EP1713885B1 (en) | Hydrocarbons having reduced levels of mercaptans and method and composition useful for preparing same | |
MXPA95001180A (en) | Ammonium hydroxides as mercapt depurers | |
MXPA98006858A (en) | Ammonium hydroxides as mercapt depurers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140411 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2134814 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150122 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170404 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190826 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WEERS, JERRY, J. Inventor name: O'BRIEN, TIMOTHY, J. |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BAKER HUGHES, A GE COMPANY, LLC |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2134814 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1232113 Country of ref document: AT Kind code of ref document: T Effective date: 20200215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008062135 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200512 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200512 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200705 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008062135 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1232113 Country of ref document: AT Kind code of ref document: T Effective date: 20200212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200306 |
|
26N | No opposition filed |
Effective date: 20201113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200306 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220225 Year of fee payment: 15 Ref country code: DE Payment date: 20220217 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20220217 Year of fee payment: 15 Ref country code: IT Payment date: 20220217 Year of fee payment: 15 Ref country code: FR Payment date: 20220218 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008062135 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230401 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230306 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230306 |