EP2758712B1 - Thermal afterburning system and method for operating such a system - Google Patents

Thermal afterburning system and method for operating such a system Download PDF

Info

Publication number
EP2758712B1
EP2758712B1 EP12761544.1A EP12761544A EP2758712B1 EP 2758712 B1 EP2758712 B1 EP 2758712B1 EP 12761544 A EP12761544 A EP 12761544A EP 2758712 B1 EP2758712 B1 EP 2758712B1
Authority
EP
European Patent Office
Prior art keywords
carbon monoxide
combustion chamber
gas
clean gas
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12761544.1A
Other languages
German (de)
French (fr)
Other versions
EP2758712A1 (en
Inventor
Apostolos Katefidis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisenmann SE
Original Assignee
Eisenmann SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisenmann SE filed Critical Eisenmann SE
Publication of EP2758712A1 publication Critical patent/EP2758712A1/en
Application granted granted Critical
Publication of EP2758712B1 publication Critical patent/EP2758712B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/21Measuring temperature outlet temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/18Incinerating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05001Measuring CO content in flue gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties

Definitions

  • the invention relates to a thermal post-combustion plant according to the preamble of claim 1 and to a method for operating a thermal post-combustion plant according to the preamble of claim 4.
  • thermal afterburner systems and methods as they are currently on the market, the procedure is as follows: At the maximum expected and permitted loading of the exhaust air that temperature is determined at which the clean air, the desired purity, in particular a certain maximum value of carbon monoxide Content. This temperature is then constantly adjusted during operation of the thermal afterburner, regardless of which pollutant load actually has the supplied exhaust air. This generally has the consequence that a higher temperature in the combustion chamber of the combustion chamber is brought about over longer operating periods, as would actually be required in view of the currently present pollutant loading of the exhaust air to achieve the desired purity. This is different in thermal afterburner systems of the type mentioned, as shown in the WO 2009/130180 A2 or the US 2002/0033125 A1 are described.
  • the temperature in the combustion chamber is adapted to the CO content in the clean gas.
  • Object of the present invention is to provide a thermal afterburner or a method for their To specify the type mentioned above, in which or which a cheaper and gentler operation of the combustion chamber is possible.
  • the combustion chamber temperature is controlled primarily by the carbon monoxide content in the discharged clean gas, it can with very strong changes in the loading of the processed exhaust air control technical reasons to over or under shooting the pollutant content come in the clean air.
  • the pollutant loading of the exhaust air is already measured at its inlet into the combustion chamber and the combustion chamber temperature already changed in one direction at this time, as is necessary to maintain the desired emission levels in the clean air.
  • a particular change in the loading of the exhaust air makes this anticipatory change in the combustion chamber temperature required can be determined by simple tests and, for example, by a corresponding characteristic, deposited in the control device.
  • the modification of the setpoint value stored in the control device and / or of the output signal of the carbon monoxide sensor is traceable again after a certain period of time.
  • the modification of the desired value and / or the control signal has only the meaning of keeping inertia-related control fluctuations in the carbon monoxide content of the clean gas low. Such control fluctuations occur However, some time after the change in the exhaust air charge no longer occurs, so that an anticipatory setting of the combustion chamber temperature is no longer required.
  • the main component of the thermal post-combustion system is a combustion chamber 1, in the interior of which a combustion chamber 13 is located. This or the atmosphere in it no pollutants incurred in the supplied exhaust air, the combustion chamber temperature is lowered and adjusted so far the pollutant content in the exhaust air. Due to the lower average temperatures that are set in the combustion chamber of the thermal afterburner system according to the invention, not only energy is saved; It also protects the materials used there, which extends the life of the system. In the embodiment of the thermal afterburning system according to the invention, a reduction in the pollutant loading of the supplied exhaust air, as already mentioned above, results in a lower temperature in the combustion chamber. This leads accordingly to a lower temperature of the discharged clean gas. This is certainly desirable, since less production or breaks in the entire process line also require less energy in the parts of the system that are supplied by the post-combustion plant.
  • the advantages of this method correspond mutatis mutandis to the above-mentioned advantages of a thermal afterburner system according to the invention.
  • An embodiment of the invention will be explained in more detail with reference to the drawing; the single figure shows the layout of a thermal post-combustion plant.
  • the main component of the thermal post-combustion system is a combustion chamber 1, in the interior of which a combustion chamber 13 is located. This or the atmosphere in it can be heated by means of a burner 2 to a desired temperature.
  • the burner 2 is supplied via a line 3 burner gas.
  • this line 3 is a gas control valve 4, which is controlled in a manner to be described later.
  • the combustion chamber 1 is also fed via a line 5 by means of a blower 6 to be cleaned, loaded with pollutants exhaust air.
  • the exhaust air is introduced into the combustion chamber 13 and there into the flame generated by the burner 2 via an inner conduit system 7 within the combustion chamber 1, the design of which does not depend in detail here.
  • the pollutants are burned in the exhaust air.
  • the clean gases thus produced are supplied via a line 8 to a heat consumer. Ultimately, they can then be released into the outside atmosphere.
  • a temperature sensor 9 measures the prevailing in the combustion chamber 13 operating temperature.
  • a pollutant sensor 10 detects the loading of the supplied through the line 5 to the combustion chamber 1 exhaust air with pollutants, especially hydrocarbons.
  • a carbon monoxide sensor 11 measures the carbon monoxide content of the clean gas flowing via the line 8.
  • the output signals of the temperature sensor 9, the pollutant sensor 10 and the carbon monoxide sensor 11 are supplied to a control device 12.
  • the control device 12 determines the opening degree of the gas control valve 4 according to the following logic:
  • a desired value for the carbon monoxide content in the line 8 is stored. If the actual value of the carbon monoxide content in the line 8 measured by the carbon monoxide sensor 11 exceeds this setpoint value, this means that the operating temperature in the interior of the combustion chamber 13 is still insufficient.
  • the control device 12 now opens the gas control valve 4 slightly further, so that the burner 2 brings the combustion chamber 13 of the combustion chamber 1 to a slightly higher operating temperature. With this, the carbon monoxide content of the clean gas then drops within the combustion space 13 for the same residence time of the gases, until the content of carbon monoxide in the line 8 detected by the carbon monoxide sensor 11 again corresponds to the stored nominal value.
  • the controller 12 reduces the supply of burner gas to the burner 2 by closing the gas control valve 4 slightly more. The result is that the operating temperature in the combustion chamber 13 of the combustion chamber 1 decreases and the content of carbon monoxide in the clean gas increases, until the desired carbon monoxide content in the line 8 is again detected by the carbon monoxide sensor 11.
  • the respective operating temperature in the combustion chamber 13 is determined and, if these are not due to signals from the carbon monoxide sensor 11 has to be changed, held by means of the control device 12 at the desired value.
  • the pollutant sensor 10 now intervenes. This can determine before entering the pollutant-laden exhaust air into the combustion chamber 13, that in a short time a larger burner power will be required.
  • the pollutant sensor 10 sends to the carbon monoxide sensor 11 a signal which influences its output signal, that it simulates a higher than the actually measured carbon monoxide content.
  • the controller 12 now interprets the output of the carbon monoxide sensor 11 as if in fact the carbon monoxide content in the conduit 8 were too high and drives the supply of burner gas to the burner 2 by means of the gas control valve 4 and, as a result, the operating temperature in the combustion chamber 13 correspondingly high. If now the laden with more pollutants exhaust air in the combustion chamber 13, so it meets here already on a higher or at least already in the rising operating temperature, so that the increased combustion of pollutants in the combustion chamber 13 is already prepared the way.
  • the shift of the output signal of the carbon monoxide sensor 11 can be withdrawn again after a certain transitional period, so that the control device 12 again compares the true actual value of the carbon monoxide content in the line 8 with the stored nominal value and hereafter the operating temperature in the Combustion chamber 13 regulates.
  • the output value of the pollutant sensor 10 can also be used to shift the setpoint value stored in the control device 12. This occurs in the direction which leads to an increase in the operating temperature in the combustion chamber 13 with increased pollutant loading of the exhaust air, and vice versa.
  • the following procedure is also possible: Instead of coupling the withdrawal of the modification to a fixed period of time, this can also be done with temperature control. Signals the temperature sensor 9 in the combustion chamber 13 that there is a sufficiently high temperature, the anticipatory control by the pollutant sensor 10 can be omitted or canceled. As a sufficiently high temperature in particular about 700 ° C in question. The temperature at which the oxidation of CO to CO 2 begins is just below this value.

Description

Die Erfindung betrifft eine thermische Nachverbrennungsanlage nach dem Oberbegriff des Anspruches 1 sowie ein Verfahren zum Betreiben einer thermischen Nachverbrennungsanlage nach dem Oberbegriff des Anspruches 4.The invention relates to a thermal post-combustion plant according to the preamble of claim 1 and to a method for operating a thermal post-combustion plant according to the preamble of claim 4.

Bei vielen bekannten thermischen Nachverbrennungsanlagen sowie Verfahren, wie sie derzeit auf dem Markt befindlich sind, wird folgendermaßen vorgegangen: Bei der maximal zu erwartenden und zugelassenen Beladung der Abluft wird diejenige Temperatur ermittelt, bei welcher die Reinluft die gewünschte Reinheit, insbesondere einen bestimmten Maximalwert des Kohlenmonoxid-Gehaltes, aufweist. Diese Temperatur wird dann im Betrieb der thermischen Nachverbrennungsanlage ständig eingeregelt, und zwar unabhängig davon, welche Schadstoffbeladung die zugeführte Abluft tatsächlich besitzt. Dies hat im Allgemeinen zur Folge, dass über größere Betriebsdauern hinweg eine höhere Temperatur im Brennraum der Brennkammer herbeigeführt wird, als dies eigentlich angesichts der aktuell vorliegenden Schadstoffbeladung der Abluft zur Erzielung der gewünschten Reinheit erforderlich wäre.
Dies ist bei thermischen Nachverbrennungsanlagen der eingangs genannten Art anders, wie sie in der WO 2009/ 130180 A2 oder der US 2002/0033 125 A1 beschrieben sind. Hier wird die Temperatur im Brennraum an den CO-Gehalt im Reingas angepasst.
Aufgabe der vorliegenden Erfindung ist es, eine thermische Nachverbrennungsanlage bzw. ein Verfahren zu deren Betreiben der eingangs genannten Art anzugeben, bei welcher bzw. welchem ein kostengünstigerer und schonenderer Betrieb der Brennkammer möglich ist.
In many known thermal afterburner systems and methods as they are currently on the market, the procedure is as follows: At the maximum expected and permitted loading of the exhaust air that temperature is determined at which the clean air, the desired purity, in particular a certain maximum value of carbon monoxide Content. This temperature is then constantly adjusted during operation of the thermal afterburner, regardless of which pollutant load actually has the supplied exhaust air. This generally has the consequence that a higher temperature in the combustion chamber of the combustion chamber is brought about over longer operating periods, as would actually be required in view of the currently present pollutant loading of the exhaust air to achieve the desired purity.
This is different in thermal afterburner systems of the type mentioned, as shown in the WO 2009/130180 A2 or the US 2002/0033125 A1 are described. Here, the temperature in the combustion chamber is adapted to the CO content in the clean gas.
Object of the present invention is to provide a thermal afterburner or a method for their To specify the type mentioned above, in which or which a cheaper and gentler operation of the combustion chamber is possible.

Diese Aufgabe wird, was die thermische Nachverbrennungsanlage selbst angeht, durch die im Anspruch 1 angegebene Erfindung gelöst.This object is achieved, as far as the thermal incinerator itself is concerned, by the invention defined in claim 1.

Mit der Erfindung hat es folgende Bewandtnis: Dadurch, dass die Brennraumtemperatur in erster Linie nach dem Kohlenmonoxid-Gehalt in dem abgeführten Reingas geregelt wird, kann es bei sehr starken Änderungen der Beladung der verarbeiteten Abluft aus regeltechnischen Gründen zu einem Über- oder Unterschießen des Schadstoffgehaltes in der Reinluft kommen. Um dem vorzubeugen, wird die Schadstoffbeladung der Abluft bereits bei deren Einlass in die Brennkammer gemessen und die Brennraumtemperatur bereits zu diesem Zeitpunkt in einer Richtung verändert, wie dies zur Aufrechterhaltung der gewünschten Emissionswerte in der Reinluft erforderlich ist. In welchem Ausmaße eine bestimmte Änderung in der Beladung der Abluft diese vorauseilende Veränderung der Brennraumtemperatur erforderlich macht, kann durch einfache Versuche ermittelt und, beispielsweise durch eine entsprechende Kennlinie, in der Steuereinrichtung hintergelegt werden.With the invention it has the following reason: The fact that the combustion chamber temperature is controlled primarily by the carbon monoxide content in the discharged clean gas, it can with very strong changes in the loading of the processed exhaust air control technical reasons to over or under shooting the pollutant content come in the clean air. To prevent this, the pollutant loading of the exhaust air is already measured at its inlet into the combustion chamber and the combustion chamber temperature already changed in one direction at this time, as is necessary to maintain the desired emission levels in the clean air. To what extent a particular change in the loading of the exhaust air makes this anticipatory change in the combustion chamber temperature required can be determined by simple tests and, for example, by a corresponding characteristic, deposited in the control device.

Zweckmäßig ist, wenn die Modifikation des in der Steuereinrichtung gespeicherten Soll-Wertes und/oder des Ausgangssignales des Kohlenmonoxid-Sensors nach einer gewissen Zeitspanne wieder zurückführbar ist. Die Modifikation des Soll-Wertes und/oder des Steuersignales hat ja nur den Sinn, trägheitsbedingte Regelschwankungen in dem Kohlenmonoxid-Gehalt des Reingases gering zu halten. Derartige Regelschwankungen treten jedoch einige Zeit nach Eintritt der Änderung der Abluftbeladung nicht mehr auf, so dass eine vorauseilende Einstellung der Brennraumtemperatur nicht mehr erforderlich ist.It is expedient if the modification of the setpoint value stored in the control device and / or of the output signal of the carbon monoxide sensor is traceable again after a certain period of time. The modification of the desired value and / or the control signal has only the meaning of keeping inertia-related control fluctuations in the carbon monoxide content of the clean gas low. Such control fluctuations occur However, some time after the change in the exhaust air charge no longer occurs, so that an anticipatory setting of the combustion chamber temperature is no longer required.

Alternativ und aus demselben Grunde ist eine temperaturgesteuerte Rücknahme der Modifikation möglich, nämlich in der Weise, dass die Modifikation nur erfolgt, wenn die Temperatur im Brennraum der Brennkammer unterhalb eines bestimmten Wertes, insbesondere unterhalb von 700°C, liegt.Alternatively and for the same reason, a temperature-controlled withdrawal of the modification is possible, namely in such a way that the modification takes place only when the temperature in the combustion chamber of the combustion chamber is below a certain value, in particular below 700 ° C.

Die oben genannte Aufgabe wird, was das Verfahren zum Betreiben einer thermischen Nachverbrennungsanlage angeht, durch die in Anspruch 4 angegebene Erfindung gelöst.The above object is, as far as the method for operating a thermal post-combustion plant, by the invention specified in claim 4 solved.

Die Vorteile dieses Verfahres entsprechen sinngemäß den oben erläuterten Vorteilen einer erfindungsgemäßen thermischen Nachverbrennungsanlage.The advantages of this method correspond mutatis mutandis to the above-mentioned advantages of a thermal afterburner system according to the invention.

Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert; die einzige Figur zeigt das Layout einer thermischen Nachverbrennungsanlage.An embodiment of the invention will be explained in more detail with reference to the drawing; the single figure shows the layout of a thermal post-combustion plant.

Hauptbestandteil der thermischen Nachverbrennungsanlage ist eine Brennkammer 1, in deren Innerem sich ein Brennraum 13 befindet. Dieser bzw. die in ihm befindliche Atmosphäre keine Schadstoffe in der zugeführten Abluft anfallen, so wird die Brennraumtemperatur abgesenkt und insoweit dem Schadstoffgehalt in der Abluft angepasst.
Aufgrund der im Mittel niedrigeren Temperaturen, die sich in dem Brennraum der erfindungsgemäßen thermischen Nachverbrennungsanlage einstellen, wird nicht nur Energie eingespart; es werden ausserdem die dort eingesetzten Materialien geschont, was die Lebensdauer der Anlage verlängert.
Bei der erfindungsgemäßen Ausgestaltung der thermischen Nachverbrennungsanlage hat eine Verringerung der Schadstoffbeladung der zugeführten Abluft, wie oben schon erwähnt, eine niedrigere Temperatur in dem Brennraum zur Folge. Dies führt entsprechend auch zu einer niedrigeren Temperatur des abgeführten Reingases. Dies ist durchaus erwünscht, da bei einer geringerern Produktion oder in Pausen der gesamten Prozesslinie auch weniger Energie in den von der Nachverbrennungsanlage versorgten Anlagenteilen benötigt wird.
The main component of the thermal post-combustion system is a combustion chamber 1, in the interior of which a combustion chamber 13 is located. This or the atmosphere in it no pollutants incurred in the supplied exhaust air, the combustion chamber temperature is lowered and adjusted so far the pollutant content in the exhaust air.
Due to the lower average temperatures that are set in the combustion chamber of the thermal afterburner system according to the invention, not only energy is saved; It also protects the materials used there, which extends the life of the system.
In the embodiment of the thermal afterburning system according to the invention, a reduction in the pollutant loading of the supplied exhaust air, as already mentioned above, results in a lower temperature in the combustion chamber. This leads accordingly to a lower temperature of the discharged clean gas. This is certainly desirable, since less production or breaks in the entire process line also require less energy in the parts of the system that are supplied by the post-combustion plant.

Bei der erfindungsgemäßen Ausgestaltung der Erfindung ist ein Schadstoff-Sensor vorgesehen, welcher die Beladung der zugeführten Abluft mit Schadstoffen misst und bei einer Änderung der Beladung den in der Steuereinrichtung abgespeicherten Sollwert und/oder das von dem Kohlenmonoxid-Sensor abgegebene Ausgangssignal so modifiziert, dass die Temperatur im Brennraum der Brennkammer vorauseilend in der Richtung verändert wird, die zur Aufrechterhaltung des Sollwertes des Kohlenmonoxids im Reingas erforderlich ist.
Mit dieser Ausgestaltung der Erfindung hat es folgende Bewandtnis: Dadurch, dass erfindungsgemäß die Brennraumtemperatur in erster Linie nach dem Kohlenmonoxid-Gehalt in dem abgeführten Reingas geregelt wird, kann es bei sehr starken Änderungen der Beladung der verarbeiteten Abluft aus regeltechnischen Gründen zu einem Über- oder Unterschießen des Schadstoffgehaltes im Reingas kommen. Um dem vorzubeugen, wird die Schadstoffbeladung der Abluft bereits bei deren Einlass in die Brennkammer gemessen und die Brennraumtemperatur bereits zu diesem Zeitpunkt in einer Richtung verändert, wie dies zur Aufrechterhaltung der gewünschten Emissionswerte im Reingas erforderlich ist. In welchem Ausmaße eine bestimmte Änderung in der Beladung der Abluft diese vorauseilende Veränderung der Brennraumtemperatur erforderlich macht, kann durch einfache Versuche ermittelt und, beispielsweise durch eine entsprechende Kennlinie, in der Steuereinrichtung hintergelegt werden.
Zweckmäßig ist bei dieser letztgenannten Ausgestaltung der Erfindung, wenn die Modifikation des in der Steuereinrichtung gespeicherten Soll-Wertes und/oder des Ausgangssignales des Kohlenmonoxid-Sensors nach einer gewissen Zeitspanne wieder zurückführbar ist. Die Modifikation des Soll-Wertes und/oder des Steuersignales hat ja nur den Sinn, trägheitsbedingte Regelschwankungen in dem Kohlenmonoxid-Gehalt des Reingases gering zu halten. Derartige Regelschwankungen treten jedoch einige Zeit nach Eintritt der Änderung der Abluftbeladung nicht mehr auf, so dass eine vorauseilende Einstellung der Brennraumtemperatur nicht mehr erforderlich ist.
Alternativ und aus demselben Grunde ist eine temperaturgesteuerte Rücknahme der Modifikation möglich, nämlich in der Weise, dass die Modifikation nur erfolgt, wenn die Temperatur im Brennraum der Brennkammer unterhalb eines bestimmten Wertes, insbesondere unterhalb von 700°C, liegt.
Die oben genannte Aufgabe wird, was das Verfahren zum Betreiben einer thermischen Nachverbrennungsanlage angeht, dadurch gelöst, dass

  • d) der Kohlenmonoxid-Gehalt in dem Reingas gemessen wird;
  • e) die Zufuhr von Brennergas zum Brenner so geregelt wird, dass ein vorgegebener Sollwert für den Kohlenmonoxid-Gehalt im Reingas aufrecht erhalten wird;
  • f) die Schadstoffbeladung in der dem Brennraum zugeführten Abluft gemessen wird und bei Änderungen der Beladung vorab die Zufuhr von Brennergas zum Brenner so geändert wird, wie dies voraussichtlich zur Aufrechterhaltung des Sollwertes des Kohlenmonoxid-Gehaltes im Reingas erforderlich ist.
In the embodiment of the invention, a pollutant sensor is provided which measures the loading of the supplied exhaust air with pollutants and modified in a change in the load stored in the control unit setpoint value and / or output from the carbon monoxide sensor output signal that the Temperature in the combustion chamber of the combustion chamber is advanced in the direction required to maintain the setpoint of carbon monoxide in the clean gas.
With this embodiment of the invention it has the following reason: the fact that according to the invention the combustion chamber temperature is controlled in the first place after the carbon monoxide content in the discharged clean gas, it can come at very strong changes in the loading of the processed exhaust air for technical control reasons to over or under shooting the pollutant content in the clean gas. To prevent this, the pollutant loading of the exhaust air is already measured at its inlet into the combustion chamber and the combustion chamber temperature already changed in one direction at this time, as is necessary to maintain the desired emission levels in the clean gas. To what extent a particular change in the loading of the exhaust air makes this anticipatory change in the combustion chamber temperature required can be determined by simple tests and, for example, by a corresponding characteristic, deposited in the control device.
It is expedient in this last-mentioned embodiment of the invention if the modification of the desired value stored in the control device and / or of the output signal of the carbon monoxide sensor can be traced back again after a certain period of time. The modification of the desired value and / or the control signal has only the meaning of keeping inertia-related control fluctuations in the carbon monoxide content of the clean gas low. However, such control fluctuations no longer occur some time after the change in the exhaust air charge, so that an anticipatory setting of the combustion chamber temperature is no longer necessary.
Alternatively, and for the same reason, a temperature-controlled withdrawal of the modification is possible, namely in such a way that the modification takes place only if the Temperature in the combustion chamber of the combustion chamber below a certain value, in particular below 700 ° C, is located.
With regard to the method for operating a thermal post-combustion plant, the above object is achieved in that
  • d) the carbon monoxide content in the clean gas is measured;
  • e) the supply of burner gas to the burner is controlled so that a predetermined setpoint for the carbon monoxide content in the clean gas is maintained;
  • f) the pollutant loading in the exhaust air supplied to the combustion chamber is measured and, in the event of changes in the charge, the supply of burner gas to the burner is changed in advance as is expected to be required to maintain the carbon monoxide target in the clean gas.

Die Vorteile dieses Verfahrens entsprechen sinngemäß den oben erläuterten Vorteilen einer erfindungsgemäßen thermischen Nachverbrennungsanlage. Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert; die einzige Figur zeigt das Layout einer thermischen Nachverbrennungsanlage.
Hauptbestandteil der thermischen Nachverbrennungsanlage ist eine Brennkammer 1, in deren Innerem sich ein Brennraum 13 befindet. Dieser bzw. die in ihm befindliche Atmosphäre kann mit Hilfe eines Brenners 2 auf eine gewünschte Temperatur erhitzt werden. Hierzu wird dem Brenner 2 über eine Leitung 3 Brennergas zugeführt. In dieser Leitung 3 liegt ein Gasregelventil 4, das in später noch zu beschreibender Weise angesteuert wird.
The advantages of this method correspond mutatis mutandis to the above-mentioned advantages of a thermal afterburner system according to the invention. An embodiment of the invention will be explained in more detail with reference to the drawing; the single figure shows the layout of a thermal post-combustion plant.
The main component of the thermal post-combustion system is a combustion chamber 1, in the interior of which a combustion chamber 13 is located. This or the atmosphere in it can be heated by means of a burner 2 to a desired temperature. For this purpose, the burner 2 is supplied via a line 3 burner gas. In this line 3 is a gas control valve 4, which is controlled in a manner to be described later.

Der Brennkammer 1 wird außerdem über eine Leitung 5 mit Hilfe eines Gebläses 6 die zu reinigende, mit Schadstoffen beladene Abluft zugeleitet. Die Abluft wird über ein inneres Leitungsystem 7 innerhalb der Brennkammer 1, auf dessen Ausgestaltung es im Einzelnen hier nicht ankommt, in den Brennraum 13 und dort in die vom Brenner 2 erzeugte Flamme eingebracht. Dort werden die Schadstoffe in der Abluft verbrannt. Die so erzeugten Reingase werden über eine Leitung 8 einem Wärmeverbraucher zugeführt. Letztendlich können sie dann in die Außenatmosphäre entlassen werden.The combustion chamber 1 is also fed via a line 5 by means of a blower 6 to be cleaned, loaded with pollutants exhaust air. The exhaust air is introduced into the combustion chamber 13 and there into the flame generated by the burner 2 via an inner conduit system 7 within the combustion chamber 1, the design of which does not depend in detail here. There, the pollutants are burned in the exhaust air. The clean gases thus produced are supplied via a line 8 to a heat consumer. Ultimately, they can then be released into the outside atmosphere.

Soweit bisher beschrieben, stimmt der Aufbau der thermischen Nachverbrennungsanlage mit demjenigen nach dem Stande der Technik überein.As far as described so far, the construction of the thermal post-combustion plant is consistent with that of the prior art.

Nicht mehr dem Stande der Technik entspricht, wie verschiedene Betriebsparameter der thermischen Nachverbrennungsanlage mit verschiedenen Sensoren überwacht werden:No longer conforming to the state of the art as to how different operating parameters of the thermal post-combustion plant are monitored with different sensors:

Ein Temperatursensor 9 misst die in dem Brennraum 13 herrschende Betriebstemperatur. Eine Schadstoff-Sensor 10 erfasst die Beladung der durch die Leitung 5 dem Brennraum 1 zugeführten Abluft mit Schadstoffen, insbesondere mit Kohlenwasserstoffen. Ein Kohlenmonoxid-Sensor 11 schließlich misst den Kohlenmonoxid-Gehalt des über die Leitung 8 strömenden Reingases.A temperature sensor 9 measures the prevailing in the combustion chamber 13 operating temperature. A pollutant sensor 10 detects the loading of the supplied through the line 5 to the combustion chamber 1 exhaust air with pollutants, especially hydrocarbons. Finally, a carbon monoxide sensor 11 measures the carbon monoxide content of the clean gas flowing via the line 8.

Die Ausgangssignale des Temperatursensors 9, des schadstoff-Sensors 10 sowie der Kohlenmonoxid-Sensors 11 werden einer Steuereinrichtung 12 zugeführt. Die Steuereinrichtung 12 bestimmt den Öffnungsgrad des Gasregelventils 4 nach folgender Logik:The output signals of the temperature sensor 9, the pollutant sensor 10 and the carbon monoxide sensor 11 are supplied to a control device 12. The control device 12 determines the opening degree of the gas control valve 4 according to the following logic:

In der Steuereinrichtung 12 ist ein Soll-Wert für den Kohlenmonoxid-Gehalt in der Leitung 8 abgelegt. Übersteigt der von der Kohlenmonoxid-Sensor 11 gemessene Ist-Wert des Kohlenmonoxid-Gehaltes in der Leitung 8 diesen Soll-Wert, so bedeutete dies, dass die Betriebstemperatur im Inneren des Brennraums 13 noch nicht ausreicht. Die Steuereinrichtung 12 öffnet nunmehr das Gasregelventil 4 etwas weiter, so dass der Brenner 2 den Brennraum 13 der Brennkammer 1 auf eine etwas höhere Betriebstemperatur bringt. Bei dieser sinkt dann bei gleicher Verweildauer der Gase innerhalb des Brennraums 13 der Kohlenmonoxid-Gehalt des Reingases, bis der von dem Kohlenmonoxid-Sensor 11 erfasste Gehalt an Kohlenmonoxid in der Leitung 8 wieder dem abgespeicherten Soll-Wert entspricht.In the control device 12, a desired value for the carbon monoxide content in the line 8 is stored. If the actual value of the carbon monoxide content in the line 8 measured by the carbon monoxide sensor 11 exceeds this setpoint value, this means that the operating temperature in the interior of the combustion chamber 13 is still insufficient. The control device 12 now opens the gas control valve 4 slightly further, so that the burner 2 brings the combustion chamber 13 of the combustion chamber 1 to a slightly higher operating temperature. With this, the carbon monoxide content of the clean gas then drops within the combustion space 13 for the same residence time of the gases, until the content of carbon monoxide in the line 8 detected by the carbon monoxide sensor 11 again corresponds to the stored nominal value.

Wenn umgekehrt der Kohlenmonoxid-Sensor 11 feststellt, dass der Kohlenmonoxid-Gehalt in der Leitung 8 unter den vorgegebenen Soll-Wert sinkt, so reduziert die Steuereinrichtung 12 die Zufuhr von Brennergas zum Brenner 2, indem sie das Gasregelventil 4 etwas mehr schließt. Folge ist, dass die Betriebstemperatur im Brennraum 13 der Brennkammer 1 abnimmt und der Gehalt an Kohlenmonoxid im Reingas anwächst, bis dann wieder von dem Kohlenmonoxid-Sensor 11 der gewünschte Kohlenmonoxid-Gehalt in der Leitung 8 festgestellt wird.Conversely, if the carbon monoxide sensor 11 detects that the carbon monoxide level in line 8 is falling below the predetermined target value, then the controller 12 reduces the supply of burner gas to the burner 2 by closing the gas control valve 4 slightly more. The result is that the operating temperature in the combustion chamber 13 of the combustion chamber 1 decreases and the content of carbon monoxide in the clean gas increases, until the desired carbon monoxide content in the line 8 is again detected by the carbon monoxide sensor 11.

Mit Hilfe des Temperatursensors 9 wird die jeweilige Betriebstemperatur in dem Brennraum 13 bestimmt und, soweit diese nicht aufgrund von Signalen des Kohlenmonoxid-Sensors 11 verändert werden muss, mit Hilfe der Steuereinrichtung 12 auf dem gewünschten Wert gehalten.With the aid of the temperature sensor 9, the respective operating temperature in the combustion chamber 13 is determined and, if these are not due to signals from the carbon monoxide sensor 11 has to be changed, held by means of the control device 12 at the desired value.

Bei der obigen Beschreibung der Funktionsweise der thermischen Nachverbrennungsanlage wurde bisher der Schadstoff-Sensor 10 außer Betracht gelassen. Dieser wird so lange nicht benötigt, wie die Beladung der über die Leitung 5 zuströmende Abluft mit Verunreinigungen nicht sehr stark schwankt. Bei plötzlichen Änderungen in der Beladung dieser Abluft jedoch könnte die Regelung der Betriebstemperatur alleine aufgrund des Ausgangssignales des Kohlenmonoxid-Sensors 11 zu träge sein. Es könnte dann insbesondere zu einem kurzzeitigen Überschießen des Kohlenmonoxid-Gehaltes in der Leitung 8 kommen, bis durch Erhöhung der Leistung des Brenners 2 diejenige Betriebstemperatur in dem Brennraum 13 erreicht ist, die bei dem höheren Anfall an Schadstoffen in der Abluft zur Erreichung des gewünschten Kohlenmonoxid-Gehaltes in der Leitung 8 erforderlich ist.In the above description of the operation of the thermal post-combustion plant so far the pollutant sensor 10 has been disregarded. This is not needed as long as the loading of the incoming air via the line 5 exhaust air with impurities does not vary very much. However, in the event of sudden changes in the charge of this exhaust air, the control of the operating temperature alone may be too slow due to the output of the carbon monoxide sensor 11. It could then come in particular to a brief overshoot of the carbon monoxide content in the line 8 until the operating temperature in the combustion chamber 13 is reached by increasing the power of the burner 2, which at the higher accumulation of pollutants in the exhaust air to achieve the desired carbon monoxide Content in the line 8 is required.

In einem solchen Falle greift nunmehr der Schadstoff-sensor 10 ein. Dieser kann bereits vor Eintritt der schadstoffbeladenen Abluft in den Brennraum 13 feststellen, dass in Kürze eine größere Brennerleistung erforderlich werden wird. Um nunmehr die Verzögerung zu vermeiden, die mit der Messung des Kohlenmonoxid-Gehaltes in der Leitung 8 durch den Kohlenmonoxid-Sensor 11 verbunden ist, gibt der Schadstoff-Sensor 10 an den Kohlenmonoxid-Sensor 11 ein Signal ab, welches dessen Ausgangssignal so beeinflusst, dass es einen höheren als den tatsächlich gemessenen Kohlenmonoxid-Gehalt simuliert. Die Steuereinrichtung 12 interpretiert nunmehr das Ausgangssignal des Kohlenmonoxid-Sensors 11 so, als ob tatsächlich der Kohlenmonoxid-Gehalt in der Leitung 8 zu hoch wäre und fährt die Zufuhr von Brennergas zum Brenner 2 mit Hilfe des Gasregelventiles 4 sowie, in der Folge, die Betriebstemperatur in dem Brennraum 13 entsprechend hoch. Kommt nunmehr die mit mehr Schadstoffen beladene Abluft in der Brennraum 13 an, so trifft sie hier bereits auf eine höhere oder jedenfalls schon im Steigen befindliche Betriebstemperatur, so dass der verstärkten Verbrennung von Schadstoffen in dem Brennraum 13 bereits der Weg bereitet ist.In such a case, the pollutant sensor 10 now intervenes. This can determine before entering the pollutant-laden exhaust air into the combustion chamber 13, that in a short time a larger burner power will be required. In order now to avoid the delay associated with the measurement of the carbon monoxide content in the line 8 through the carbon monoxide sensor 11, the pollutant sensor 10 sends to the carbon monoxide sensor 11 a signal which influences its output signal, that it simulates a higher than the actually measured carbon monoxide content. The controller 12 now interprets the output of the carbon monoxide sensor 11 as if in fact the carbon monoxide content in the conduit 8 were too high and drives the supply of burner gas to the burner 2 by means of the gas control valve 4 and, as a result, the operating temperature in the combustion chamber 13 correspondingly high. If now the laden with more pollutants exhaust air in the combustion chamber 13, so it meets here already on a higher or at least already in the rising operating temperature, so that the increased combustion of pollutants in the combustion chamber 13 is already prepared the way.

Die Verschiebung des Ausgangssignales des Kohlenmonoxid-Sensors 11 kann nach einer gewissen Übergangszeit wieder zurückgenommen werden, so dass die Steuereinrichtung 12 wieder den wahren Ist-Wert des Kohlenmonoxid-Gehaltes in der Leitung 8 mit dem abgespeicherten Soll-Wert vergleicht und hiernach die Betriebstemperatur in dem Brennraum 13 regelt.The shift of the output signal of the carbon monoxide sensor 11 can be withdrawn again after a certain transitional period, so that the control device 12 again compares the true actual value of the carbon monoxide content in the line 8 with the stored nominal value and hereafter the operating temperature in the Combustion chamber 13 regulates.

Alternativ zur Modifikation des Ausgangssignales des Kohlenmonoxid-Sensors 11 kann durch das Ausgangssignal des Schadstoff-Sensors 10 auch der in der Steuereinrichtung 12 abgespeicherte Soll-Wert verschoben werden. Dies geschieht in der Richtung, welche bei erhöhter Schadstoffbeladung der Abluft zu einer Erhöhung der Betriebstemperatur im Brennraum 13 führt, und umgekehrt.Alternatively to the modification of the output signal of the carbon monoxide sensor 11, the output value of the pollutant sensor 10 can also be used to shift the setpoint value stored in the control device 12. This occurs in the direction which leads to an increase in the operating temperature in the combustion chamber 13 with increased pollutant loading of the exhaust air, and vice versa.

Schließlich ist auch folgende Vorgehensweise möglich: Statt die Rücknahme der Modifikation an eine feste Zeitspanne zu koppeln, kann dies auch temperaturgesteuert erfolgen. Signalisiert der Temperatursensor 9 im Brennraum 13, dass dort eine ausreichend hohe Temperatur vorliegt, kann die vorauseilende Steuerung durch den Schadstoff-Sensor 10 unterbleiben oder abgebrochen werden. Als ausreichend hohe Temperatur kommt insbesondere etwa 700°C in Frage. Knapp unter diesem Wert liegt nämlich die Temperatur, bei welcher die Aufoxidation von CO zu CO2 beginnt.Finally, the following procedure is also possible: Instead of coupling the withdrawal of the modification to a fixed period of time, this can also be done with temperature control. Signals the temperature sensor 9 in the combustion chamber 13 that there is a sufficiently high temperature, the anticipatory control by the pollutant sensor 10 can be omitted or canceled. As a sufficiently high temperature in particular about 700 ° C in question. The temperature at which the oxidation of CO to CO 2 begins is just below this value.

Claims (4)

  1. Thermal afterburning system comprising
    a) a combustion chamber (1), which for its part comprises:
    aa) a combustion space (13);
    ab) a burner (2) capable of heating the combustion space;
    ac) an inlet (5) for pollutant-containing exhaust air;
    ad) an outlet for clean gas;
    b) a supply line (3), via which the burner is feedable with burnable gas;
    c) a gas regulating valve (4) in the supply line;
    d) an outlet line (8), via which the clean gas is dischargeable;
    e) a control device (12), which controls the gas regulating valve (4) for setting a desired temperature in the combustion space;
    wherein
    f) in the outlet line (8) there is provided a carbon monoxide sensor (11) which generates an output signal representative of the carbon monoxide content of the clean gas and feedable to the control device (12);
    g) in the control device (12) there is storable a target value for the carbon monoxide content of the clean gas;
    h) the control device (12) being programmed such that in the event of a deviation of the actual value measured by the carbon monoxide sensor (11) from the target value of the carbon monoxide content of the clean gas, the gas regulating valve (4) is adjusted such that in the combustion space (13) of the combustion chamber (1) a temperature is set at which the actual value corresponds to the target value;
    characterised in that
    a pollutant sensor (10) is provided, which measures the pollutant load of the supplied exhaust air and in the event of a change of the load modifies the target value stored in the control device (12) and/or the output signal delivered by the carbon monoxide sensor (11) such that the temperature in the combustion space (13) of the combustion chamber (1) is changed in advance in the direction which is required to maintain the target value of the carbon monoxide content in the clean gas.
  2. Thermal afterburning system according to Claim 1, characterised in that the modification of the target value stored in the control device (12) and/or of the output signal of the carbon monoxide sensor (11) is reversible after a certain period of time.
  3. Thermal afterburning system according to Claim 1 or 2, characterised in that the modification of the target value stored in the control device (12) and/or of the output signal of the carbon monoxide sensor (11) takes place only in the event of the temperature in the combustion space (13) of the combustion chamber (1) being below a certain value, in particular below approximately 700°C.
  4. Method for operating a thermal afterburning system, in which
    a) burnable gas is fed to a burner (2) heating a combustion space (13) of a combustion chamber (1);
    b) pollutant-laden exhaust gas is fed to the combustion space of the combustion chamber;
    c) clean gas is discharged from the combustion space of the combustion chamber;
    d) the carbon monoxide content in the clean gas is measured;
    e) the supply of burnable gas to the burner is regulated such that a predetermined target value for the carbon monoxide content in the clean gas is maintained;
    characterised in that
    the pollutant load in the exhaust air fed to the combustion space (13) is measured and, in the event of a change of the load, the supply of burnable gas to the burner (2) is changed in advance in such a manner as is expected to be required to maintain the target value of the carbon monoxide content in the clean gas.
EP12761544.1A 2011-09-23 2012-09-06 Thermal afterburning system and method for operating such a system Active EP2758712B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011114292A DE102011114292A1 (en) 2011-09-23 2011-09-23 Thermal post-combustion system and method for operating such
PCT/EP2012/003737 WO2013041185A1 (en) 2011-09-23 2012-09-06 Thermal afterburning system and method for operating such a system

Publications (2)

Publication Number Publication Date
EP2758712A1 EP2758712A1 (en) 2014-07-30
EP2758712B1 true EP2758712B1 (en) 2017-11-08

Family

ID=46880662

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12761544.1A Active EP2758712B1 (en) 2011-09-23 2012-09-06 Thermal afterburning system and method for operating such a system

Country Status (5)

Country Link
US (1) US9523500B2 (en)
EP (1) EP2758712B1 (en)
CN (1) CN103814253B (en)
DE (1) DE102011114292A1 (en)
WO (1) WO2013041185A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015219898A1 (en) 2015-10-14 2017-04-20 Dürr Systems GmbH Workpiece processing system and method for operating a workpiece processing system
DE102017212322A1 (en) * 2017-07-19 2019-01-24 Thyssenkrupp Ag Method and system for purifying a gas stream
DE102017222517A1 (en) * 2017-12-12 2019-06-13 Dürr Systems Ag Method for cleaning exhaust gas and exhaust gas purification device
GB2588775A (en) * 2019-11-05 2021-05-12 Edwards Ltd Optimising operating conditions in an abatement apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101632A (en) * 1976-10-28 1978-07-18 Aluminum Company Of America Waste gas incineration control
DE3527835A1 (en) * 1985-08-02 1987-02-05 Ibk Ingenieurbuero Dipl Ing Fr Process and device for selectively separating off hydrocarbon vapours from gas streams containing these in addition to steam
US5160259A (en) * 1991-05-01 1992-11-03 Hauck Manufacturing Company Draft control method and apparatus for material processing plants
DE4222469C1 (en) * 1992-07-08 1994-01-27 Gossler Kg Oscar Method and device for the thermal treatment of gas, in particular thermal and / or catalytic afterburning of exhaust gas
US5662049A (en) * 1994-05-30 1997-09-02 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Combustion method and apparatus
JP3051040B2 (en) * 1994-11-30 2000-06-12 日立造船株式会社 Exhaust gas treatment equipment in incineration equipment
JP3844941B2 (en) * 2000-03-30 2006-11-15 株式会社神戸製鋼所 Temperature control device and temperature control method for high temperature exhaust gas
US6499412B2 (en) * 2000-09-15 2002-12-31 Rohm And Haas Company Method of firebox temperature control for achieving carbon monoxide emission compliance in industrial furnaces with minimal energy consumption
CN1265119C (en) * 2001-01-09 2006-07-19 阿部俊广 Method of garbage incineration and apparatus thereof
JP2002364821A (en) * 2001-06-12 2002-12-18 Sumitomo Seika Chem Co Ltd Method and device for disposing of exhaust gas
DE102004051491B3 (en) * 2004-07-27 2006-03-02 Eisenmann Maschinenbau Gmbh & Co. Kg Thermal post-combustion device and method for operating such
US20060204911A1 (en) * 2005-03-14 2006-09-14 Yu-Shan Teng High efficiency fuel injection system for gas appliances
CN102132099B (en) * 2008-04-22 2013-11-13 巴斯夫欧洲公司 Method for controlling the addition of an additional fuel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2758712A1 (en) 2014-07-30
US9523500B2 (en) 2016-12-20
WO2013041185A1 (en) 2013-03-28
DE102011114292A1 (en) 2013-03-28
US20140322657A1 (en) 2014-10-30
CN103814253B (en) 2016-02-17
CN103814253A (en) 2014-05-21

Similar Documents

Publication Publication Date Title
EP1698827B1 (en) Process for burning fuels and more particularly wastes
DE2656840C2 (en) Method and device for regulating the energy supply to a heating device for the combustion chamber of an incineration unit
EP1621811B1 (en) Operating Method for a Combustion Apparatus
EP2758712B1 (en) Thermal afterburning system and method for operating such a system
DE3100267C2 (en) A method of optimizing the operation of a multi-burner natural draft burn zone
EP0614046A1 (en) Control device for gas burner automats of heating installations
DE102006015230A1 (en) combustion chamber
EP2017531B1 (en) Method for monitoring an ionisation electrode signal in burners
EP2210044B1 (en) Method for regulating a solid fuel firing unit
DE2950646A1 (en) METHOD AND DEVICE FOR OPTIMIZING THE OPERATION OF A COMBUSTION ZONE WITH A NATURAL TRAIN
WO2010149687A2 (en) Method for controlling a combustion process, in particular in a combustion chamber of a fossil-fueled steam generator, and combustion system
EP2500650A2 (en) Method for regulating a heating device
EP0331918A2 (en) Actuating method for a heating apparatus, and heating apparatus
AT505521A1 (en) DEVICE FOR BURNING SOLID FUEL ELEMENTS
EP1934528B1 (en) Method and device for monitoring the deposition of solid particles, in particular in the fuel line of a gas turbine
EP1971804B1 (en) Method for the operation of a firing plant
DE102009019118A1 (en) House heating system with continuous solids combustion and method for their operation
DE19714073C2 (en) Fluid bed system, especially for sludge
EP2643637B1 (en) Method for controlling combustion in a combustion boiler
AT412903B (en) METHOD FOR CONTROLLING BZW. CONTROL OF FUELING SYSTEMS AND THEREBY REGULATORY FIRING SYSTEM
EP1788306B1 (en) Control Method for Refuse Incinerators having Auxiliary Burners
EP4303489A1 (en) Method for operating a heating device, computer program, control and control device, heating device and use of a two-part gas supply
DE19712771C2 (en) Method and arrangement for automatic combustion control in boilers
EP4215815A1 (en) Device and use of a flow rate of a heating system and an ionisation signal of a heating system
EP3869100A1 (en) Method for combustion of fuel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140312

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EISENMANN SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170201

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 944481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012011628

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012011628

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

26N No opposition filed

Effective date: 20180809

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180906

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 944481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120906

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 12

Ref country code: DE

Payment date: 20230920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 12