EP2754859A1 - Strömungsmaschine mit aktiver elektrischer Spielsteuerung und zugehöriges Verfahren - Google Patents

Strömungsmaschine mit aktiver elektrischer Spielsteuerung und zugehöriges Verfahren Download PDF

Info

Publication number
EP2754859A1
EP2754859A1 EP13150874.9A EP13150874A EP2754859A1 EP 2754859 A1 EP2754859 A1 EP 2754859A1 EP 13150874 A EP13150874 A EP 13150874A EP 2754859 A1 EP2754859 A1 EP 2754859A1
Authority
EP
European Patent Office
Prior art keywords
turbo
machine
casing
heating device
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13150874.9A
Other languages
English (en)
French (fr)
Inventor
Wilhelm Reiter
Stefan Rofka
Giovanni Cataldi
Thomas Peter Sommer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Priority to EP13150874.9A priority Critical patent/EP2754859A1/de
Priority to EP13196258.1A priority patent/EP2754860B1/de
Priority to US14/152,108 priority patent/US20140193237A1/en
Priority to CN201410011614.XA priority patent/CN103925012B/zh
Publication of EP2754859A1 publication Critical patent/EP2754859A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings

Definitions

  • the invention relates to a turbo-machine with active clearance control as well as to a method of operation of such a machine with active clearance control.
  • Clearance control allows a reduction in clearances of a turbo-machine, mainly the clearance between rotating blades and casing, and the clearance between vanes and rotor.
  • Thermal match means that the components react on thermal transients with the same speed, i.e. they expand and contract with the same speed and therefore maintain the same clearance. This is called Passive Clearance Control.
  • Passive Clearance Control the design can only be optimized for certain transient operation modes and regimes and not for the whole operation regime (e.g. stand still, part load, base load) and transients operating modes (e.g. start-up, loading, de-loading, and shut down).
  • One aspect of the present disclosure is to provide a Turbo-machine comprising a stator and a rotor arranged rotatable inside the stator with at least one electric heating device, which is arranged on the surface of at least one stator part for active clearance control.
  • the stator in this context includes all non-rotating components of the turbo-machine, in particular the casing, which typically comprises an inner casing, an outer casing and a connecting wall, as well as a support for the casing and a bearing support for the bearings, which hold the rotor.
  • Active clearance control allows a reduction in clearances of a turbo-machine, mainly the clearance between rotating blades and casing, and the clearance between vanes and rotor. Clearances can be reduced by active clearance control in order to increase the efficiency and power of the turbo-machine.
  • the electrical heating device is arranged in a cavity of the stator part to heat the fluid, which is at least partly surrounding the stator part and/or in that the electrical heating device is arranged with direct mechanical contact on the stator part to allow conductive heat transfer from the electrical heating device to the stator part.
  • a suitable cavity in which a heating device can be arranges is for example a compressor bleed or a cooling air distribution plenum.
  • the electrical heating device is arranged in a cooling air supply bore.
  • it can be arranged on the surface of a cooling air supply bore of the stator.
  • stator part on which the electrical heating device is arranged is an inner and/or outer casing of the turbo-machine.
  • the electrical heating device is arranged on a connecting wall, which is connecting the inner casing with the outer casing.
  • the electrical heating device comprises an induction heating.
  • an induction heating can be arranged on the surface of the respective stator part to induce an alternating electromagnetic field into the stator part and to thereby induction heat the stator part.
  • an electromagnet can be arranged on or above the surface of a stator part. The stator part can then be heated by inducing an eddy current into the stator part by the electromagnet.
  • a plurality of electrical heating devices is arranged distributed in axial and circumferential direction around the casing of the turbo-machine.
  • the different electrical heating devices are configured and connected to a power source such that they can be individually controlled to control the heating intensity in circumferential and axial direction of the turbo-machine.
  • the different electrical heating devices can for example be individually connected to a power source.
  • the turbo-machine is a gas turbine and according to another embodiment the turbo-machine is a steam turbine.
  • the turbo-machine comprising an electric heating device for a stator part
  • a method to actively control clearances in a turbo-machine with an electric heating device is an object of the disclosure.
  • the at least one electric heating device is controlled to heat the at least one stator part for controlling the clearance of the rotor to the stator.
  • At least one heating element is arranged at a position on the upper or lower half of the casing.
  • the heating element is controlled to heat the region of the casing on which it is arranged to reduce circumferential temperature inhomogeneity of the casing. For example if a temperature measurement indicates that a region in the upper half of the casing has a lower temperature than the corresponding region in the lower half (for example at the same axial position) the heating element in the region of the upper half of the casing can be activated to heat that region until it has the same temperature as the corresponding region in the lower half.
  • a temperature inhomogeneity can be caused for example by cooling air supply lines which are entering the casing on one side or which are not equally distributed around the casing.
  • a temperature inhomogeneity can for example also be caused by a damaged insulation leading to higher heat loss of the casing on one side.
  • At least one electrical heating device is controlled to keep the temperature profile of the turbo-machine's casing in axial direction within a predetermined range. Depending on the load and operating condition (steady state or transient) a certain temperature profile is expected in axial direction of the gas turbine. If a measured temperature profile of the casing is outside the expected profile, the casing can be locally heated to establish the expected temperature profile.
  • At least one heating element is arranged at a position on the lower half of the casing and it is used for heating the lower half of the casing during shut down and cooling of the turbo-machine. It is heating the lower half of the casing to compensate for an increase in the temperature of the upper half relative to the temperature of the lower half due to convective heat transfer from the bottom to the top half. By heating the lower half so called buckling, which is due to a higher temperature in the upper half, can be mitigated.
  • At least one heating element is arranged to heat a flange connecting the lower and upper half casing to reduce or avoid ovalisation of the casing.
  • the flange typically at least partially remains cooler than the circular portion of the casing. It remains cooler because of additional heat loss due to the flange surface and in particular remains cooler during loading of the turbo-machine (i.e. heating of the turbo-machine) because the additional flange material needs more time to be heated.
  • At least one heating element is arranged on a bearing support of the turbo-machine.
  • the at least one electrical heating device arranged on a bearing support is used for heating the bearing support.
  • the heating is controlled such that the rotor is kept centrally aligned relative to the casing.
  • the bearing support is thermally insulated. Therefore its thermal expansion is at least partly decoupled from the thermal expansion of the casing. If the casing's expansion is different from the expansion of the bearing support this can lead to a misalignment of the rotor and therefore increases the required cold clearance of the turbo-machine. This misalignment can be mitigated by heating the bearing support. For example if the casing heats up during operation the bearing support is heated such that the bearing support's expansion compensates the expansion of the warm casing and thereby keeps the rotor and the casing aligned.
  • the control of the power supplied to the electric heating device can be carried out according to different control schemes.
  • the heating is done according to a schedule.
  • the temperature changes in a turbo-machine during a change of operating conditions are known from measurements and calculations. Therefore, starting from a defined condition as for example a cold turbo-machine at standstill the typical transient changes are known and the electric heating required to specific stator parts to minimize clearances is also known as a function of time. Therefore the heat input for the electric heating device can be given for example with a schedule as a function of time.
  • the heating schedule can for example begin from a defined operating state.
  • the heating schedule typically starts from a defined steady state operating point such as the starting of the turbo-machine, or from a steady load point.
  • the heating can also be carried out depending on an operating parameter of the turbo-machine such as the speed, the power, a mass flow, or an operating temperature.
  • Relevant mass flows are for example the inlet mass flow, the exhaust mass flow, the fuel flow or mass flow of water or steam injected for power augmentation or emission control as well as cooling air mass flows.
  • the heating can also be used to control the temperature of at least one section of the casing based on a temperature measurement.
  • the temperature of a specific part can be used or multiple temperature measurements as well as a temperature difference or a combination of both.
  • the heating can be controlled based on a direct measurement of the clearance with a blade clearance transducer and/ or a vane clearance transducer.
  • an embodiment of the turbo-machine comprises an inlet shutter and/or outlet shutter to close the fluid flow path at the inlet or outlet of the turbo-machine.
  • the heating control can be limited to certain operating conditions such as stand still, cooling of the engine, e.g. at less than 5% rotational speed (relative to the design operating speed) or during run up to the operating speed and loading, e.g. at more than 50% rotational speed.
  • the control can be carried out with an open or closed loop controller.
  • the above gas turbine can be a single combustion gas turbine or a sequential combustion gas turbine as known for example from EP0620363 B1 or EP0718470 A2 .
  • the disclosed method and use as well as retrofit method can also be applied to a single combustion gas turbine or a sequential combustion gas turbine.
  • FIG. 1 An exemplary arrangement is schematically shown in Fig. 1 .
  • the gas turbine 10 is supplied with compressor inlet gas 11.
  • a compressor 12 is followed by a first combustor comprising a first burner 24 and a first combustion chamber 13.
  • fuel 37 is added to the compressed gas and the mixture burns in the first combustion chamber 13.
  • Hot combustion gases are fed from the first combustion chamber 13 into a first turbine 14 which is followed by a second combustor comprising a sequential burner 25 (also known as second burner) and a sequential combustion chamber 15 (also known as second combustion chamber).
  • Fuel 37 can be added to the gases leaving the first turbine 14 in the sequential burner 35 and the mixture burns in the sequential combustion chamber 15.
  • Hot combustion gases are fed from the sequential combustion chamber 15 into a second turbine 16.
  • Steam and/or water 38 can be injected into the first and/or sequential burner for emission control and to increase the power output.
  • the stator of the gas turbine comprises a casing.
  • the casing comprises a vane carrier or inner casing wall 22 and an outer casing wall 23.
  • the inner and outer casing walls 22, 23 can be connected by a connecting wall 49.
  • the casing comprises an inlet casing 27 and an exhaust casing 17.
  • heating devices for the connecting wall 40 are placed on several connecting walls 49, heating devices for the inner casing 41 are placed on the inner casing walls 22 (also called vane carrier) and heating devices for the outer casing 42 are placed on the outer casing walls 23.
  • blade clearance transducer 20 are arranged on the inner casing wall 22 at locations facing rotating blades of the compressor 12 and at locations facing rotating blades of the first and second turbine 14, 16.
  • Vane clearance transducers 21 are arranged at the tip of a vane in the compressor 12 and on the tip of a turbine vane 18, 19 of the first and second turbine 14, 16 facing the rotor 28.
  • the rotor 28 is supported and kept in position by a bearing support 45.
  • a bearing support heating device 46 is arranged on the bearing support 45 to enable heating of the bearing support 45.
  • Exhaust gas 47 leaves the second turbine 16.
  • the exhaust gas 47 is typically used in a heat recovery steam generator to generate steam for cogeneration or for a water steam cycle in a combined cycle (not shown).
  • part of the exhaust gas 47 can be branched off in a flue gas recirculation 34 (typically downstream of heat recovery steam generator) and admixed to the inlet air 35.
  • a flue gas recirculation 34 typically downstream of heat recovery steam generator
  • the recirculation 34 comprises a recooler for cooling the recirculated flue gas.
  • compressor inlet can be closed by an inlet shutter 36 and the turbine exit can be closed by an outlet shutter 39.
  • Fig. 2 schematically shows the section II - II of turbine casing of Fig. 1 .
  • a cooling air supply bore 43 is shown in this region of the second turbine 16 .
  • an electrical heating device in cooling air supply bore 43 is shown in the cooling air supply bore 44.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
EP13150874.9A 2013-01-10 2013-01-10 Strömungsmaschine mit aktiver elektrischer Spielsteuerung und zugehöriges Verfahren Withdrawn EP2754859A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13150874.9A EP2754859A1 (de) 2013-01-10 2013-01-10 Strömungsmaschine mit aktiver elektrischer Spielsteuerung und zugehöriges Verfahren
EP13196258.1A EP2754860B1 (de) 2013-01-10 2013-12-09 Strömungsmaschine und zugehöriges betriebsverfahren
US14/152,108 US20140193237A1 (en) 2013-01-10 2014-01-10 Turbo-machine with active electrical clearance control
CN201410011614.XA CN103925012B (zh) 2013-01-10 2014-01-10 具有主动电间隙控制的涡轮机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13150874.9A EP2754859A1 (de) 2013-01-10 2013-01-10 Strömungsmaschine mit aktiver elektrischer Spielsteuerung und zugehöriges Verfahren

Publications (1)

Publication Number Publication Date
EP2754859A1 true EP2754859A1 (de) 2014-07-16

Family

ID=47561357

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13150874.9A Withdrawn EP2754859A1 (de) 2013-01-10 2013-01-10 Strömungsmaschine mit aktiver elektrischer Spielsteuerung und zugehöriges Verfahren
EP13196258.1A Active EP2754860B1 (de) 2013-01-10 2013-12-09 Strömungsmaschine und zugehöriges betriebsverfahren

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13196258.1A Active EP2754860B1 (de) 2013-01-10 2013-12-09 Strömungsmaschine und zugehöriges betriebsverfahren

Country Status (3)

Country Link
US (1) US20140193237A1 (de)
EP (2) EP2754859A1 (de)
CN (1) CN103925012B (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012415A1 (de) * 2014-10-20 2016-04-27 Alstom Technology Ltd Turbomaschine und verfahren zum betrieb einer turbomaschine
WO2016064389A1 (en) * 2014-10-23 2016-04-28 Siemens Aktiengesellschaft Gas turbine clearance control system including electric radiant infrared heater and corresponding method of operating a gas turbine engine
EP3421733A1 (de) * 2017-06-30 2019-01-02 Ansaldo Energia IP UK Limited Schaufelträger für eine gasturbine und gasturbine mit dem schaufelträger
WO2019099009A1 (en) * 2017-11-16 2019-05-23 Siemens Aktiengesellschaft Gas turbine clearance control system including embedded electrical heating circuitry
WO2019135760A1 (en) * 2018-01-05 2019-07-11 Siemens Aktiengesellschaft Gas turbine engine induction system, corresponding induction heater and method for inductively heating a component
WO2019135758A1 (en) * 2018-01-05 2019-07-11 Siemens Aktiengesellschaft Gas turbine induction system, corresponding induction heater and method for inductively heating a component
EP3904642A1 (de) * 2020-04-28 2021-11-03 General Electric Company Verbessertes wärmeübertragungssystem für turbomaschinen
US11486266B2 (en) 2019-07-02 2022-11-01 General Electric Company Turbomachinery heat management system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957830B2 (en) * 2013-03-07 2018-05-01 United Technologies Corporation Hybrid passive and active tip clearance system
DE102014203318A1 (de) * 2014-02-25 2015-08-27 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Gasturbine bei aktiver hydraulischer Spalteinstellung
JP6276210B2 (ja) * 2015-03-11 2018-02-07 三菱日立パワーシステムズ株式会社 回転機械並びに回転機械のクリアランス制御装置及び方法
JP7300944B2 (ja) 2019-09-11 2023-06-30 三菱重工業株式会社 蒸気タービン

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994472A (en) * 1958-12-29 1961-08-01 Gen Electric Tip clearance control system for turbomachines
FR2458676A1 (fr) * 1979-06-06 1981-01-02 Mtu Muenchen Gmbh Dispositif d'etancheite pour l'intervalle peripherique d'une turbomachine a flux axial
GB2103718A (en) * 1981-08-03 1983-02-23 Nuovo Pignone Spa Gas turbine plant
GB2117450A (en) * 1981-03-20 1983-10-12 Rolls Royce Casing support for a gas turbine engine
DE3901167A1 (de) * 1989-01-17 1990-07-26 Klein Schanzlin & Becker Ag Spaltminimierung
EP0492865A1 (de) * 1990-12-21 1992-07-01 General Electric Company Regelungssystem für das Schaufelspitzenspiel einer Turbine
DE4309199A1 (de) * 1993-03-22 1994-09-29 Abb Management Ag Vorrichtung zur Befestigung von Wärmestausegmenten und Leitschaufeln in axialdurchströmten Turbinen
EP0620363A1 (de) 1993-03-12 1994-10-19 Praxair Technology, Inc. Einbauen von Brennkammer-Turbineeinheiten und Druck-Prozessoren mittels integralen Getriebes
EP0713977A2 (de) * 1994-11-26 1996-05-29 ABB Management AG Verfahren und Vorrichtung zur Beeinflussung des Radialspieles der Beschaufelung in axialdurchströmten Verdichtern
EP0718470A2 (de) 1994-12-24 1996-06-26 ABB Management AG Verfahren zum Betrieb einer Gasturbogruppe
WO2000004278A1 (en) * 1998-07-16 2000-01-27 Siemens Westinghouse Power Corporation A turbine interstage sealing arrangement
FR2890685A1 (fr) * 2005-09-14 2007-03-16 Snecma Pilotage de jeu au sommet d'aubes de rotor de turbine haute pression dans une turbomachine
US7329953B2 (en) 2003-10-29 2008-02-12 Taiwan Semiconductor Manufacturing Co., Ltd. Structure for reducing leakage currents and high contact resistance for embedded memory and method for making same
US20080131270A1 (en) * 2006-12-04 2008-06-05 Siemens Power Generation, Inc. Blade clearance system for a turbine engine
FR2933131A1 (fr) * 2008-06-25 2010-01-01 Snecma Support pour fixer un anneau entourant les aubes mobiles d'une turbine
US20100054912A1 (en) * 2008-08-29 2010-03-04 General Electric Company Device, system and method for thermally activated displacement
DE102009043832A1 (de) * 2008-08-29 2010-03-04 General Electric Co. System und Verfahren zur Einstellung des Spiels in einer Gasturbine
FR2943093A1 (fr) * 2009-03-16 2010-09-17 Snecma Dispositif de reglage de la position radiale et/ou axiale d'une virole de stator de turbomachine
FR2943717A1 (fr) * 2009-03-27 2010-10-01 Snecma Stator de compresseur ou turbine de turbomachine permettant un controle du jeu en sommet d'aubes d'un rotor en regard
FR2949808A1 (fr) * 2009-09-08 2011-03-11 Snecma Pilotage des jeux en sommet d'aubes dans une turbomachine
EP2527601A2 (de) * 2011-05-24 2012-11-28 General Electric Company Wärmesystem zur Verwendung in einem Turbinenmotor und Betriebsverfahren dafür

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083471B2 (en) * 2007-01-22 2011-12-27 General Electric Company Turbine rotor support apparatus and system

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994472A (en) * 1958-12-29 1961-08-01 Gen Electric Tip clearance control system for turbomachines
FR2458676A1 (fr) * 1979-06-06 1981-01-02 Mtu Muenchen Gmbh Dispositif d'etancheite pour l'intervalle peripherique d'une turbomachine a flux axial
GB2117450A (en) * 1981-03-20 1983-10-12 Rolls Royce Casing support for a gas turbine engine
GB2103718A (en) * 1981-08-03 1983-02-23 Nuovo Pignone Spa Gas turbine plant
DE3901167A1 (de) * 1989-01-17 1990-07-26 Klein Schanzlin & Becker Ag Spaltminimierung
EP0492865A1 (de) * 1990-12-21 1992-07-01 General Electric Company Regelungssystem für das Schaufelspitzenspiel einer Turbine
EP0620363A1 (de) 1993-03-12 1994-10-19 Praxair Technology, Inc. Einbauen von Brennkammer-Turbineeinheiten und Druck-Prozessoren mittels integralen Getriebes
DE4309199A1 (de) * 1993-03-22 1994-09-29 Abb Management Ag Vorrichtung zur Befestigung von Wärmestausegmenten und Leitschaufeln in axialdurchströmten Turbinen
EP0713977A2 (de) * 1994-11-26 1996-05-29 ABB Management AG Verfahren und Vorrichtung zur Beeinflussung des Radialspieles der Beschaufelung in axialdurchströmten Verdichtern
EP0718470A2 (de) 1994-12-24 1996-06-26 ABB Management AG Verfahren zum Betrieb einer Gasturbogruppe
WO2000004278A1 (en) * 1998-07-16 2000-01-27 Siemens Westinghouse Power Corporation A turbine interstage sealing arrangement
US7329953B2 (en) 2003-10-29 2008-02-12 Taiwan Semiconductor Manufacturing Co., Ltd. Structure for reducing leakage currents and high contact resistance for embedded memory and method for making same
FR2890685A1 (fr) * 2005-09-14 2007-03-16 Snecma Pilotage de jeu au sommet d'aubes de rotor de turbine haute pression dans une turbomachine
US20080131270A1 (en) * 2006-12-04 2008-06-05 Siemens Power Generation, Inc. Blade clearance system for a turbine engine
FR2933131A1 (fr) * 2008-06-25 2010-01-01 Snecma Support pour fixer un anneau entourant les aubes mobiles d'une turbine
US20100054912A1 (en) * 2008-08-29 2010-03-04 General Electric Company Device, system and method for thermally activated displacement
DE102009043832A1 (de) * 2008-08-29 2010-03-04 General Electric Co. System und Verfahren zur Einstellung des Spiels in einer Gasturbine
FR2943093A1 (fr) * 2009-03-16 2010-09-17 Snecma Dispositif de reglage de la position radiale et/ou axiale d'une virole de stator de turbomachine
FR2943717A1 (fr) * 2009-03-27 2010-10-01 Snecma Stator de compresseur ou turbine de turbomachine permettant un controle du jeu en sommet d'aubes d'un rotor en regard
FR2949808A1 (fr) * 2009-09-08 2011-03-11 Snecma Pilotage des jeux en sommet d'aubes dans une turbomachine
EP2527601A2 (de) * 2011-05-24 2012-11-28 General Electric Company Wärmesystem zur Verwendung in einem Turbinenmotor und Betriebsverfahren dafür

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012415A1 (de) * 2014-10-20 2016-04-27 Alstom Technology Ltd Turbomaschine und verfahren zum betrieb einer turbomaschine
US10100669B2 (en) 2014-10-20 2018-10-16 Ansaldo Energia Ip Uk Limited Turbo machine and method for operating such turbo machine
WO2016064389A1 (en) * 2014-10-23 2016-04-28 Siemens Aktiengesellschaft Gas turbine clearance control system including electric radiant infrared heater and corresponding method of operating a gas turbine engine
EP3421733A1 (de) * 2017-06-30 2019-01-02 Ansaldo Energia IP UK Limited Schaufelträger für eine gasturbine und gasturbine mit dem schaufelträger
WO2019099009A1 (en) * 2017-11-16 2019-05-23 Siemens Aktiengesellschaft Gas turbine clearance control system including embedded electrical heating circuitry
WO2019135758A1 (en) * 2018-01-05 2019-07-11 Siemens Aktiengesellschaft Gas turbine induction system, corresponding induction heater and method for inductively heating a component
WO2019135760A1 (en) * 2018-01-05 2019-07-11 Siemens Aktiengesellschaft Gas turbine engine induction system, corresponding induction heater and method for inductively heating a component
CN111542683A (zh) * 2018-01-05 2020-08-14 西门子股份公司 燃气涡轮发动机感应系统、对应感应加热器以及用于感应加热部件的方法
US11268403B2 (en) 2018-01-05 2022-03-08 Siemens Energy Global GmbH & Co. KG Gas turbine engine induction system, corresponding induction heater and method for inductively heating a component
US11371377B2 (en) 2018-01-05 2022-06-28 Siemens Energy Global GmbH & Co. KG Gas turbine induction system, corresponding induction heater and method for inductively heating a component
CN111542683B (zh) * 2018-01-05 2022-08-30 西门子能源全球两合公司 燃气涡轮发动机感应系统、对应感应加热器以及用于感应加热部件的方法
US11486266B2 (en) 2019-07-02 2022-11-01 General Electric Company Turbomachinery heat management system
EP3904642A1 (de) * 2020-04-28 2021-11-03 General Electric Company Verbessertes wärmeübertragungssystem für turbomaschinen
US11603773B2 (en) 2020-04-28 2023-03-14 General Electric Company Turbomachinery heat transfer system

Also Published As

Publication number Publication date
CN103925012B (zh) 2016-01-06
CN103925012A (zh) 2014-07-16
EP2754860B1 (de) 2020-07-22
EP2754860A1 (de) 2014-07-16
US20140193237A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
EP2754860B1 (de) Strömungsmaschine und zugehöriges betriebsverfahren
EP2587028A2 (de) Aktives Spaltregelungssystem und Verfahren für ein Gasturbinentriebwerk
US7708518B2 (en) Turbine blade tip clearance control
JP6165879B2 (ja) ガスタービンエンジンのベーンキャリア温度制御システム
EP2857656A1 (de) Gasturbine mit Kühlluftkühlsystem und Verfahren zum Betrieb einer Gasturbine bei niedriger Teillast
EP3155233B1 (de) Gasturbinenmotor mit rotorzentrierungs- und -kühlsystem in einem abgasdiffusor
JP5268957B2 (ja) 停止中のガスタービンからの熱損失を低下させるシステムおよび方法
JP5367592B2 (ja) 軸受けオイルの廃熱を利用したコンプレッサクリアランス制御システム
Clementoni et al. Steady-state power operation of a supercritical carbon dioxide Brayton cycle
US7785063B2 (en) Tip clearance control
JP6745079B2 (ja) 排熱を動力とする能動的クリアランス制御のためのシステムおよび方法
US20140230400A1 (en) Heat retention and distribution system for gas turbine engines
JP2011027109A (ja) 回転機械におけるクリアランス制御用のシステム及び方法
CN109563744B (zh) 带有吸气面密封的涡轮发动机
JP2010164053A (ja) タービンの排気を利用したコンプレッサクリアランス制御システム
US10329940B2 (en) Method and system for passive clearance control in a gas turbine engine
CN105637200A (zh) 燃气轮机
JP2010255628A (ja) タービンロータホイールを熱絶縁するためのシステム、方法及び装置
JP6649808B2 (ja) 蒸気タービンプラント
US20180274451A1 (en) Compressor arrangement and gas turbine engine
JP6088643B2 (ja) 中空の冷却されたタービン翼内に挿入可能とされる、ガスタービンのための冷媒ブリッジ配管
TW201623779A (zh) 具有輻射加熱器的燃氣渦輪機空隙控制
WO2019099009A1 (en) Gas turbine clearance control system including embedded electrical heating circuitry
JP2017078412A (ja) ターボ機械の原位置でロータ内部を加熱する加熱システム及び関連するロータ
JP2017082768A (ja) ターボ機械の原位置でロータを加熱するシステム

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150117