EP2747835B1 - Implantierbare epikardiale elektroden anordnung - Google Patents

Implantierbare epikardiale elektroden anordnung Download PDF

Info

Publication number
EP2747835B1
EP2747835B1 EP12777847.0A EP12777847A EP2747835B1 EP 2747835 B1 EP2747835 B1 EP 2747835B1 EP 12777847 A EP12777847 A EP 12777847A EP 2747835 B1 EP2747835 B1 EP 2747835B1
Authority
EP
European Patent Office
Prior art keywords
electrode
heart
poles
stimulation
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12777847.0A
Other languages
English (en)
French (fr)
Other versions
EP2747835A1 (de
Inventor
Peter Osypka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2747835A1 publication Critical patent/EP2747835A1/de
Application granted granted Critical
Publication of EP2747835B1 publication Critical patent/EP2747835B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0587Epicardial electrode systems; Endocardial electrodes piercing the pericardium
    • A61N1/059Anchoring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0587Epicardial electrode systems; Endocardial electrodes piercing the pericardium
    • A61N1/0597Surface area electrodes, e.g. cardiac harness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3625External stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3918Heart defibrillators characterised by shock pathway, e.g. by electrode configuration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3956Implantable devices for applying electric shocks to the heart, e.g. for cardioversion

Definitions

  • the invention relates to the design and fixation of an implantable epicardial electrode arrangement which enables measurement, monitoring, stimulation and defibrillation (cardioversion) of the heart in humans in connection with a pacemaker or defibrillator that can be connected outside the body and which can be easily removed by pulling at any time after use
  • the electrodes fixed on the heart are designed to be large and multipolar and can be used as sensing and stimulation electrodes at the same time.
  • Atrial fibrillation occurs relatively frequently with increasing age and after cardiac surgery and is one of the most important reasons for postoperative morbidity. Overall, atrial fibrillation seems to have increased in general and especially after cardiac operations in recent years, which can be explained by an increasingly aging patient population. Literature data on postoperative atrial fibrillation in patients with previous sinus rhythm showed an average occurrence in 30% - 40% after cardiac bypass operations.
  • Atrial fibrillation leads to a rapid transfer of excitation to the ventricles, which can lead to acute hemodynamic instability.
  • the previously used electrical cardioversion is a non-drug and very effective method for restoring the sinus rhythm, which, however, requires a short anesthetic.
  • This short-term anesthesia can, however, exacerbate the existing neuronal problems (vigilance) in patients after bypass surgery due to the cardiac surgery that has just been completed, which can lead to a prolonged waking up phase or even make re-intubation with mechanical ventilation necessary.
  • Another problem is anticoagulation in postoperative patients with atrial fibrillation. If the arrhythmia persists for more than 24 hours, anticoagulation is necessary to reduce the formation of thrombi with the risk of stroke.
  • Atrial fibrillation can recur while the patient is in the intensive care unit.
  • multisite pacing For prophylaxis, the so-called “multisite pacing” is described in the literature. The left atrium in particular is affected in several areas at the same time stimulates.
  • multisite pacing for example, unipolar heart wires are used, which are operated opposite an external anode.
  • the anatomical position of the left atrium makes it particularly difficult to fix several electrodes there, which is noticeable in the frequent failure of stimulation during use. There is currently no real research into the cause of the recurrence of atrial fibrillation due to a lack of suitable electrodes.
  • Atrial fibrillation has hitherto been eliminated by an external electrical energy pulse using a defibrillator, applied by placing or sticking large-area electrodes on the patient's chest. To do this, it is necessary that the patient must first have an ultrasound examination of the left atrial appendage and that anesthesia is necessary during cardioversion.
  • methods are also described after heart operations, each with a bare wire on the atria and then the cardioversion takes place between the atria. The shock energies required for this are between 5 and 9 joules and continue to cause considerable pain.
  • Electrodes in accordance with protection claim 1 results in the possibility of immediate elimination and suppression of recurrence of atrial fibrillation without anesthesia for the patient. Later, these electrodes can be easily removed - as with the heartwires commonly used today.
  • Temporary myocardial electrodes allow the heart to be stimulated externally after heart surgery. Such electrodes have been known for many years and are routinely used after every open heart operation to stimulate the atria and ventricles. The fixation on the heart must be done in such a way that on the one hand the electrodes are firmly fixed during the time in the intensive care unit, on the other hand, they must then be easy to pull out through a small opening in the patient's abdominal wall.
  • Fig.1 shows temporary electrodes commonly used today for stimulating the heart after heart surgery in the form of metal braids with different fixings.
  • Fig. 2 shows an exemplary electrode arrangement for cardioversion and stimulation of the heart in the form of a tennis racket with metal coils arranged over a large area (1,3).
  • they advantageously enlarge the electrode surface or can adapt to the anatomy of the heart very well. Defibrillation can take place between these two poles of the helix (1,3), which are isolated from one another.
  • the stimulation of the heart can take place between each pole (2) and the Helix (1), between the poles (2) and helix (3), or between the individual poles (2) with one another.
  • the defibrillation can take place separately on each atrium. Furthermore, the shape of the electrode arrangement is essential in order to make the defibrillation and stimulation electrodes possible in one arrangement, since this is the only way to solve the problem of the difficult fixing of the electrodes.
  • the shock energies required for the defibrillation are below 5 joules, preferably below 2 joules, particularly preferably below 1 joule, so that the defibrillation can take place largely painlessly.
  • the arrangement according to the invention also allows stimulation without a further stimulation electrode having to be fixed.
  • the structure of the electrode poles can consist of single or multiple parallel-wound wires, strips, bare or partially insulated with different diameters and materials. Silicone films with a number of conductive poles made of metal or plastic that are adapted to the target area are also used.
  • the electrode can be constructed from wire mesh, metal braid or parallel conductors.
  • Fig. 3 shows another exemplary electrode arrangement for cardioversion and stimulation of the heart in the form of a tennis racket with arranged metal coils (1). So that the field strength distribution that occurs during electrical stimulation / defibrillation is only effective in the direction of the heart, the part of the electrode arrangement facing away from the heart is isolated by a thin plastic membrane (4). A silicone film is particularly suitable as the insulation material.
  • the different electrode pole (2) can be displaced for optimal positioning on the thread (50) and then fixed (not shown here).
  • Fig. 4 shows another exemplary electrode arrangement for cardioversion and stimulation of the heart in the form of a tennis racket with arranged metal coils (5-8).
  • the tennis racket-shaped arrangement of the isolated poles results in a multitude of possible areas on the heart that can be programmed to stimulate in order to prevent atrial fibrillation.
  • the side of the electrode arrangement facing away from the heart can be insulated by a plastic membrane (4).
  • the electrode arrangement on the heart must have a stable position when in use; on the other hand, the arrangement must be easy to remove after a few days simply by pulling through a small opening in the chest cavity.
  • the helical shape of the pole (10) is used for this purpose, the helix of which is designed so that the individual turns are larger in diameter than the poles 5-8. Because the silicone membrane presses on one side of the enlarged helix (10), it is pressed against the tissue of the heart, thus largely preventing a change in position.
  • Fig. 5 shows another exemplary electrode arrangement for cardioversion and for multipolar stimulation at different points of the heart with helices (14, 15) arranged in the form of a hexagon, which have additional knobs (13) (eg made of silicone) on the side facing away from the heart To prevent the electrode from slipping and which contains an array of electrodes (16) on the side facing the heart, which can electrically scan (mapping) or stimulate the areas of the heart.
  • helices 14, 15
  • additional knobs (13) eg made of silicone
  • Fig. 6 shows another exemplary electrode arrangement for cardioversion and for multipolar stimulation at different points of the heart in the form of circularly arranged outer coils (14, 15) which are integrated in a silicone tube (39), wherein the silicone tube has openings (40) on the side facing the heart.
  • the shape, spacing and size of the holes are designed so that they are fully effective as stimulation or defibrillation electrodes.
  • the inner part of the electrode arrangement is also covered by a perforated silicone tube (38) so that the number and size of the individual poles are fully effective on the side facing the heart.
  • the curved heart needle (49) and the zigzag-shaped thread (48) are used to fix the epicardial arrangement on the heart.
  • the leads to the electrodes can be arranged parallel, coaxially or one above the other.
  • Fig. 7 shows another exemplary electrode arrangement for cardioversion and for multipolar stimulation at different points of the heart in the form of circularly arranged outer coils (14, 15) and four inner positionable poles (23), which are recessed for better fixation on the surface of the heart.
  • the curved heart needle (49) and the zigzag-shaped thread (48) are used to fix the epicardial arrangement on the heart.
  • Fig. 8 shows another exemplary electrode arrangement for multipolar stimulation at different points of the heart, which is made of silicone rubber and has a number of poles ((31). Due to their flexibility due to the biocompatible silicone, such electrodes for monitoring and stimulation can easily be used during an operation also slide under the heart
  • the stimulation electrode can be used separately, but can also be used as in Fig. 5 shown to be part of the electrode arrangement according to the invention.
  • Fig. 9 shows another exemplary electrode arrangement (32), which is also made of silicone and has several poles (41).
  • the balloon (33) located behind the electrode area can be filled if necessary.
  • the poles are pressed against the heart wall as desired.
  • Fig. 10 shows another exemplary electrode arrangement (35) which is also made of silicone and has several poles (41).
  • a pocket-shaped bulge (34) is provided here, which can direct the electrode into the desired position with the aid of a suitable slide (spoon) made of plastic or metal.
  • Fig.11 shows another exemplary electrode arrangement for cardioversion and for multipolar stimulation at different points of the heart in the form of electrode poles (18, 19) arranged in a cross shape (17).
  • Fig.12 shows a further exemplary electrode arrangement for cardioversion and for multipolar stimulation at different points of the heart in the form of star-shaped electrode poles (20).
  • Fig. 13 shows a further exemplary electrode arrangement for cardioversion and for multipolar stimulation at different points of the heart in the form of elliptically arranged electrode poles (21).
  • Fig. 11-13 The electrode arrangements shown can be used separately as stimulation electrodes. But they can also be part of the arrangement according to the invention. It is possible to install such a stimulation electrode between circularly attached defibrillation electrodes.
  • the pole 18 can also be designed as an oak leaf-shaped helix.
  • Fig. 14 shows another exemplary electrode arrangement for multipolar stimulation at different points of the heart in the form of fan-shaped electrode poles (22).
  • This stimulation electrode can also be part of the electrode arrangement according to the invention.
  • Fig. 15 shows an exemplary representation of an electrical and mechanical connection attached to the outside of the human body between the internal electrode arrangement (25) and the medical devices (24) to be connected.
  • the electrodes (25) coming from the heart are led outwards to a flexible plastic disk (26) which can be fixed on the patient's skin.
  • the 8 holes shown in the disc can be made more elastic.
  • Magnets (28) are integrated at four points on the disc (26) and the removable connection cap (24), which ensure that the connection cap (24) is firmly connected electrically and mechanically to the plastic disc (26).
  • the connection to the external devices is made via a cable connection 100.
  • Fig. 16 shows an exemplary representation of a telemetry device (29) attached to the outside of the human body, for example a coil that is integrated in the connection cap (24), which can transmit or store the data measured from the heart, but also from the outside transmitted data, such as electrical impulses or other medical data, to the electrodes.
  • This telemetry device can also be implanted subcutaneously. Telemetry devices for the transmission of medical data are state of the art today. There is therefore no further explanation and functionality.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Description

    Die Erfindung:
  • Die Erfindung betrifft Ausführung und Fixierung einer implantierbaren epikardialen Elektroden Anordnung, die eine Messung, Überwachung, Stimulation und Defibrillation (Kardioversion) des Herzens beim Menschen in Verbindung mit einem außerhalb des Körpers anschließbaren Herzschrittmacher oder Defibrillator ermöglicht und nach erfolgter Anwendung jederzeit leicht durch Zug entfernbar ist, wobei die auf dem Herzen fixierten Elektroden großflächig und multipolar ausgebildet sind und gleichzeitig als Sensing- und Stimulationselektroden verwendet werden können.
  • Problem:
  • Vorhofflimmern tritt mit zunehmendem Lebensalter und nach Herzoperationen relativ häufig auf und ist einer der wichtigsten Gründe für die postoperative Morbidität. Insgesamt scheint Vorhofflimmern im Allgemeinen und besonders nach Herzoperationen in den letzten Jahren zugenommen zu haben, was mit einem immer älter werdenden Patientenkollektiv erklärt wird. Literaturangaben über postoperatives Vorhofflimmern bei Patienten mit bisherigem Sinusrhythmus ergaben ein durchschnittliches Auftreten in 30% - 40% nach Bypass-Operationen am Herzen.
  • Vorhofflimmern führt zu einer schnellen Überleitung der Erregung auf die Ventrikel, so dass es zu akuter hämodynamischer Instabilität kommen kann. Die bisherige angewandte elektrische Kardioversion ist eine nicht-medikamentöse und sehr effektive Methode zur Wiederherstellung des Sinusrhythmus, die allerdings eine Kurznarkose zur Voraussetzung hat. Diese Kurznarkose kann jedoch gerade bei Patienten nach Bypass-Operation die bestehenden neuronalen Probleme (Vigilanz) durch die soeben überstandene Herzoperation verschärfen, was zu einer verlängerten Aufwachphase führen kann oder sogar eine erneute Intubation mit maschineller Beatmung erforderlich machen. Ein weiteres Problem stellt die Antikoagulation bei postoperativen Patienten mit Vorhofflimmern dar. Wenn die Rhythmusstörung länger als 24 Stunden anhält, ist eine Antikoagulation erforderlich, um die Thrombenbildung mit der Gefahr eines Schlaganfalls zu reduzieren. All diese Faktoren führen zu einem komplizierten postoperativen Verlauf bei Patienten nach Bypass-Operation, der sich in einem um ca. 5 Tage verlängerten Krankenhaus Aufenthalt mit vermehrten Kosten niederschlägt. Vorhofflimmern kann während der Liegedauer des Patienten auf der Intensivstation wiederholt auftreten. Zur Prophylaxe wird in der Literatur das sogenannte "Multisite Pacing" beschrieben. Hierbei wird besonders der linke Vorhof an mehreren Arealen gleichzeitig stimuliert. Für das "Multisite Pacing" werden z.B. unipolare Herzdrähte verwendet, die gegenüber einer äußeren Anode betrieben werden.
  • Durch die anatomische Lage des linken Vorhofs ist die Fixierung von mehreren Elektroden dort besonders erschwert, was sich durch häufigen Stimulationsausfall bei der Anwendung bemerkbar macht. Eine echte Ursachenforschung für das erneute Auftreten von Vorhofflimmern gibt es aus Mangel an geeigneten Elektroden bisher nicht.
  • Wie wird das Problem bisher gelöst:
    Die Beseitigung von Vorhofflimmern erfolgt bisher durch einen äußeren elektrischen Energieimpuls mittels eines Defibrillators, appliziert durch Auflage oder Aufkleben von großflächigen Elektroden auf den Brustkorb des Patienten. Dazu ist es notwendig, dass beim Patienten vorher eine Ultraschalluntersuchung des linken Herzohres durchgeführt werden muss und während der Kardioversion eine Narkose notwendig ist. In der Literatur werden auch Methoden nach Herzoperationen beschrieben, die mit jeweils einer blanken Litze auf den Vorhöfen und dann zwischen den Vorhöfen die Kardioversion stattfindet. Die dafür notwendigen Schockenergien liegen zwischen 5 - 9 Joule und verursachen weiterhin erhebliche Schmerzen.
  • Es besteht daher die Aufgabe, Elektroden nach der eingangs beschriebenen Art zu schaffen, die eine gute Verankerung und eine stabile temporäre Stimulation auch für eine mehrfache gleichzeitige Stimulation an verschiedenen Arealen des Herzens (Multisite Pacing) ermöglichen oder eine schmerzfreie Beseitigung des Vorhofflimmerns des Herzens durch Kardioversion und eine Prophylaxe zur Verhinderung von wiederholtem Auftreten von Vorhofflimmern zu ermöglichen.
  • Diese Aufgabe wird mit den Mitteln und Merkmalen des Schutzanspruches 1 gelöst. Dadurch dass die Kardioversion mit Elektroden, die temporär an den beiden Vorhöfen epikardial und lokal fixiert sind, vorgenommen wird, reduziert sich die notwendige elektrische Energieabgabe zur Kardioversion erheblich.
  • Durch Einsatz von Elektroden entsprechend Schutzanspruch 1 ergibt sich die Möglichkeit einer unmittelbaren Beseitigung und Unterdrückung von erneutem Auftreten des Vorhofflimmerns ohne Narkose für den Patienten. Später lassen sich diese Elektroden - wie bei den üblich heute benutzten Herzdrähten - leicht entfernen.
  • Temporäre Myokardiale Elektroden (auch als Herzdrähte bekannt), ermöglichen nach einer Herzoperationen eine externe Stimulation des Herzens. Derartige Elektroden sind seit vielen Jahren bekannt und werden routinemäßig nach jeder offenen Herzoperation zur Stimulation der Vorhöfe und Ventrikel eingesetzt. Die Fixierung am Herzen muss so erfolgen, dass einerseits die Elektroden während der Zeit auf der Intensivstation stabil fixiert sind, andererseits müssen sie sich leicht danach durch eine kleine Öffnung in der Bauchdecke des Patienten nach außen herausziehen lassen.
  • Für die temporäre Fixierung der Elektroden im Herzmuskel sind in Fig.1 die verschiedenen heute gebräuchlichen Methoden dargestellt. Fixierungsarten bei denen nach der Entfernung der Elektroden Nahtmaterial im Herzmuskel verbleibt werden nicht immer akzeptiert, insbesondere bei kleinen Herzen von Kindern. Auch die Zick-Zack Fixierung und die Kunststoffwendel sind für derartige Anwendungen oft zu groß. Sehr gern wird die Fixierung mit dem Kunststoffanker eingesetzt. Der Nachteil hierbei ist die unbestimmte Fläche der Elektrode. Der Anker wird aus der Isolierung der Litze in drei Streifen herausgeschnitten. Der Rest der übrig bleibenden Litze bildet den differenten Pol. Da diese Fläche sehr klein ist, bewirkt jede kleine physische Bewegung eine Reizschwellenänderung Aus US2007106359 A1 ist eine korsett-förmige epikardiale Elektrodenanordnung zur Defibrillation und Stimulation mittels einer externen Spannungsquelle bekannt.
  • Es besteht daher die Aufgabe, eine Fixierung von Herzdrähten nach der eingangs beschriebenen Art zu schaffen, die eine gute Verankerung und eine stabile temporäre Stimulation des Herzens ermöglicht.
  • Abbildungen:
  • Weitere Einzelheiten, Merkmale und Vorteile der Erfindung lassen sich dem folgenden Beschreibungsteil entnehmen, in dem anhand der Zeichnungen und Ausführungsbeispiele die Erfindung näher erläutert wird.
  • Sie zeigen in schematischer Darstellung in
    • Fig.1 zeigt verschiedene distale Enden der heute gebräuchlichen temporären Elektroden für die Stimulation des Herzens nach einer Herzoperation in Form von Metalllitze mit unterschiedlichen Fixierungen.
    • Fig.2 zeigt eine beispielhafte Elektrodenanordnung für die Defibrillation (Kardioversion) und Stimulation des Herzens in Form eines Tennisschlägers.
    • Fig.3 zeigt eine weitere beispielhafte Elektrodenanordnung für die Defibrillation (Kardioversion) und Stimulation des Herzens mit in Form eines Tennisschlägers angeordneten Elektroden in Form von Metallwendeln, dessen gesamte, dem Herzen abgewandte Fläche, isoliert ist.
    • Fig.4 zeigt eine weitere beispielhafte Elektrodenanordnung für die Defibrillation (Kardioversion) und gleichzeitige Stimulation an unterschiedlichen Stellen des Herzens in Form von kreisförmig angeordneten Metallwendeln, dessen Außen Fläche ebenfalls isoliert ist.
    • Fig.5 zeigt eine weitere beispielhafte Elektrodenanordnung für die Defibrillation (Kardioversion) und multipolare Stimulation an unterschiedlichen Stellen des Herzens mit in Form eines Hexagons angeordneten Wendeln, die auf der dem Herzen abgewandten Seite zusätzliche Noppen aufweist, um ein Verrutschen der Elektrode zu verhindern und die auf der dem Herzen zugewandten Seite ein Array von Elektroden enthält, die die Areale des Herzen elektrisch abtasten (Mapping) und stimulieren können.
    • Fig. 6 zeigt eine weitere beispielhafte Elektrodenanordnung für die Defibrillation (Kardioversion) und multipolare Stimulation an unterschiedlichen Stellen des Herzens in Form von kreisförmig angeordneten Außen Wendeln (14,15), die in einem Silikonschlauch (39) integriert sind, der auf der dem Herzen zugewandten Seite Öffnungen (40) aufweist.
    • Fig.7 zeigt eine weitere beispielhafte Elektrodenanordnung für die Defibrillation (Kardioversion) und multipolaren Stimulation an unterschiedlichen Stellen des Herzens in Form von kreisförmig angeordneten Außen Wendeln und vier inneren positionierbaren Polen, die vertieft angeordnet sind, um eine bessere Fixierung auf der Oberfläche des Herzens zu erreichen.
    • Fig. 8 zeigt eine weitere beispielhafte Elektrodenanordnung für die multipolare Stimulation an unterschiedlichen Stellen des Herzens die aus Silikonkautschuk gefertigt ist und eine Reihe von Polen aufweist (31).
    • Fig. 9 zeigt eine weitere beispielhafte Elektrodenanordnung (32), die ebenfalls aus Silikon besteht und mehrere Pole (41) aufweist.
      Um die Reizschwelle niedrig zu halten, kann bei Bedarf der sich hinter dem Elektrodenareal befindlichen Ballon (33) gefüllt werden. Dabei werden die Pole wunschgemäß gegen die Herzwand gedrückt.
    • Fig.10 zeigt eine weitere beispielhafte Elektrodenanordnung (35), die ebenfalls aus Silikon besteht und mehrere Pole (41) aufweist. Zur besseren Platzierung im Herz ist hier eine taschenförmige Ausbuchtung (34) vorgesehen, die mit Hilfe eines geeigneten Schiebers (Löffel) aus Kunststoff oder Metall die Elektrode in die gewünschte Position dirigieren kann.
    • Fig.11 zeigt eine weitere beispielhafte Elektrodenanordnung für die Defibrillation (Kardioversion) und multipolaren Stimulation an unterschiedlichen Stellen des Herzens in Form von kreuzförmig angeordneten Elektroden Polen.
    • Fig. 12 zeigt eine weitere beispielhafte Elektrodenanordnung für die Defibrillation (Kardioversion) und multipolare Stimulation an unterschiedlichen Stellen des Herzens in Form von sternförmig angeordneten Elektroden Polen.
    • Fig.13 zeigt eine weitere beispielhafte Elektrodenanordnung für die Defibrillation (Kardioversion) und multipolare Stimulation an unterschiedlichen Stellen des Herzens in Form von elliptisch ähnlichen angeordneten Elektroden Polen.
    • Fig.14 zeigt eine weitere beispielhafte Elektrodenanordnung für die Defibrillation (Kardioversion) und multipolare Stimulation an unterschiedlichen Stellen des Herzens in Form von fächerförmig angeordneten Elektroden Polen.
    • Fig. 15 zeigt eine beispielhafte Darstellung einer an der Außenseite des menschlichen Körpers angebrachten elektrischen und mechanischen Verbindung zwischen der Inneren Elektroden Anordnung und den anzuschließenden Medizinischen Geräten.
    • Fig.16 zeigt eine beispielhafte Darstellung einer an der Außenseite des menschlichen Körpers angebrachte Telemetrie Einrichtung, die die aus dem Herzen gemessenen Daten weiter senden kann, die aber auch von außen gesendete Daten, wie elektrische Impulse etc. an die Elektroden Anordnung weiter leiten kann. Diese Telemetrie Einrichtung kann auch subkutan implantiert werden.
    Beschreibung der Abbildung:
  • Fig.1 zeigt heute gebräuchliche temporäre Elektroden für die Stimulation des Herzens nach einer Herzoperation in Form von Metalllitze mit unterschiedlichen Fixierungen.
  • Fig.2 zeigt eine beispielhafte Elektrodenanordnung für die Kardioversion und Stimulation des Herzens in Form eines Tennisschlägers mit großflächig angeordneten Metallwendeln (1,3). Neben ihrer Flexibilität und Anordnung vergrößern sie vorteilhaft die Elektroden Oberfläche oder können sich der Anatomie des Herzens sehr gut anpassen. Zwischen diesen beiden voneinander isolierten Polen der Wendel (1,3) kann eine Defibrillation erfolgen. Die Stimulation des Herzens kann zwischen den einzelnen Polen (2) und der Wendel (1), zwischen den Polen (2) und Wendel (3), oder zwischen den einzelnen Polen (2) untereinander, erfolgen.
  • Wichtig ist, dass bei der erfindungsgemäßen Anordnung aufgrund der großflächig angeordneten Elektroden (Metallwendeln) die Defibrillation separat an jedem Vorhof erfolgen kann. Ferner ist die Form der Elektrodenanordnung wesentlich um die Defibrillations-und die Stimulationselektroden in einer Anordnung möglich zu machen, denn nur dadurch wird das Problem der schwierigen Fixierung der Elektroden gelöst.
  • Die für die Defibrillation benötigten Schockenergien liegen unter 5 Joule, vorzugsweise unter 2 Joule, besonders bevorzugt unter 1 Joule, sodass die Defibrillation weitgehend schmerzfrei erfolgen kann.
  • Ebenso erlaubt die erfindungsgemäße Anordnung eine Stimulation ohne dass eine weitere Stimulationselektrode fixiert werden muss.
  • An unterschiedlichen Ausführungsbeispielen soll die Vielfalt der erfindungsgemäßen Elektrode beschrieben werden.
  • Der Aufbau der Elektrodenpole kann neben einer Wendel aus einfach oder mehrfach parallel gewickelten Drähten, Bändern, blank oder teilweise isoliert mit unterschiedlichen Durchmessern und Materialien bestehen. Auch Silikonfolien mit einer Anzahl von leitfähigen Polen aus Metall oder Kunststoff, die an das Zielgebiet angepasst sind, kommen zur Anwendung. Weiterhin kann die Elektrode aus Drahtgeflecht, Metalllitze oder parallelen Leitern aufgebaut sein.
  • Unterschiedliche Ausgestaltung der erfindungsgemässen Elektrodenanordnung: Materialauswahl: Edelstahl, Platin, Gold, Elgiloy, Nitinol, Isotan, elektrisch leitfähige Fäden, Karbonfäden, elektrisch leitfähiger Kunststoff, auch mit Nanopartikeln gemischt.
    • Isolation: Polyurethan, Polyethylen, Silikon, PTFE, Pebax, Polyamid, Peek, alle biokompatiblen Kunststoffe incl. Lacke, z.B. Polyimid,
    • Aufbau: Wendel, Geflecht, Litze, Draht, Kunststoff, Metallbänder, Metallrohr, Karbonfasern, jeweils den Herzkonturen angepasst, sodass unterschiedliches Drahtmaterial, Drahtstärken und Anzahl der Drähte und Kunststofffäden in Betracht gezogen werden kann.
    • Form der Anordnung: kreisförmig, tennisschlägerartig, elliptisch, Hexagonal, rechteckig, eichenblattförmig, sternförmig, kleeblattförmig,
    • Form der Pole: Hülse, Zylinder, Kugel, Olivenförmig, Halbkugel, Wendel, Spirale, Pilzform,
    • Fixierung am Herzen: Fäden, Ösen, Haken, Zick-Zack, Wendel, Spirale, Chirurgisches Nahtmaterial, weiche Kunststoff Noppen z.B. aus Silikon,
    • Schaft - Zuleitung: Litze, Draht, Wendel, Kanüle, isoliert oder in Schutzschläuchen,
  • Fig.3 zeigt eine weitere beispielhafte Elektrodenanordnung für die Kardioversion und Stimulation des Herzens in Form eines Tennisschlägers mit angeordneten Metallwendeln (1). Damit die bei der elektrischen Stimulation/Defibrillation auftretende Feldstärkeverteilung ausschließlich in die Richtung des Herzens wirksam wird, wird der dem Herzen abgewandte Teil der Elektrodenanordnung durch eine dünne Kunststoffmembran (4) isoliert. Als Isolationsmaterial eignet sich besonders eine Folie aus Silikon. Der differente Elektroden Pol (2) ist zur optimalen Positionierung auf dem Faden (50) verschiebbar und anschließend fixierbar (hier nicht dargestellt).
  • Fig.4 zeigt eine weitere beispielhafte Elektrodenanordnung für die Kardioversion und Stimulation des Herzens in Form eines Tennisschlägers mit angeordneten Metallwendeln (5-8). Durch die tennisschlägerförmige Anordnung der isolierten Polen ergibt sich eine Vielzahl von möglichen Arealen auf dem Herzen, die man programmiert stimulieren kann, um so das Entstehen von Vorhofflimmern zu verhindern. Auch hier kann die dem Herzen abgewandte Seite der Elektrodenanordnung durch eine Kunststoffmembran (4) isoliert werden. Die Elektrodenanordnung auf dem Herzen muss einerseits bei Gebrauch eine stabile Position haben, andererseits muss die Anordnung nach ein paar Tagen leicht allein durch Zug durch eine kleine Öffnung im Brustraum entfernt werden können. Hierzu dient die Wendelform des Pols (10), dessen Wendel so gestaltet ist, dass die einzelnen Windungen im Durchmesser größer sind als die Pole 5-8. Dadurch dass die Silikonmembran einseitig auf die vergrößerte Wendel (10) drückt, wird diese gegen das Gewebe des Herzens gedrückt und damit eine Positions- Änderung weitgehend verhindert.
  • Fig.5 zeigt eine weitere beispielhafte Elektrodenanordnung für die Kardioversion und zur multipolaren Stimulation an unterschiedlichen Stellen des Herzens mit in Form eines Hexagons angeordneten Wendeln (14,15), die auf der dem Herzen abgewandten Seite zusätzliche Noppen (13) (z.B. aus Silikon) aufweisen, um ein Verrutschen der Elektrode zu verhindern und die auf der dem Herzen zugewandten Seite ein Array von Elektroden (16) enthält, die die Areale des Herzen elektrisch abtasten (Mapping) oder stimulieren können.
  • Fig.6 zeigt eine weitere beispielhafte Elektroden Anordnung für die Kardioversion und zur multipolaren Stimulation an unterschiedlichen Stellen des Herzens in Form von kreisförmig angeordneten Außen Wendeln (14,15), die in einem Silikonschlauch (39) integriert sind, wobei der Silikonschlauch auf der dem Herzen zugewandten Seite Öffnungen (40) aufweist. Die Löcher sind in Form, Abstand und Größe so ausgebildet, dass sie als Stimulations-oder Defibrillations- Elektrode voll wirksam sind. Auch der innere Teil der Elektroden Anordnung wird durch einen gelochten Silikonschlauch (38) so umhüllt, dass die einzelnen Pole in Anzahl und Größe auf der dem Herzen zugewandten Seite voll wirksam sind. Die gebogene Herznadel (49) und der zick-zack-förmige Faden (48) dienen zur Fixierung der epikardialen Anordnung auf dem Herzen.
  • Die Zuleitungen zu den Elektroden können sowohl parallel, koaxial oder übereinander angeordnet sein.
  • Fig.7 zeigt eine weitere beispielhafte Elektrodenanordnung für die Kardioversion und zur multipolaren Stimulation an unterschiedlichen Stellen des Herzens in Form von kreisförmig angeordneten Außen Wendeln (14,15) und vier inneren positionierbaren Polen (23), die vertieft angeordnet sind, um eine bessere Fixierung auf der Oberfläche des Herzens zu erreichen. Die gebogene Herznadel (49) und der zick-zack-förmige Faden (48) dienen zur Fixierung der epikardialen Anordnung auf dem Herzen.
  • Fig. 8 zeigt eine weitere beispielhafte Elektrodenanordnung für die multipolare Stimulation an unterschiedlichen Stellen des Herzens die aus Silikonkautschuk gefertigt ist und eine Reihe von Polen ((31) aufweist. Aufgrund ihrer Flexibilität durch das biokompatible Silikon, lassen sich derartige Elektroden zur Überwachung und Stimulation leicht während einer Operation auch unter das Herz schieben. Die Stimulationselektrode kann separat verwendet werden, kann aber auch wie in Fig. 5 dargestellt Teil der erfindungsgemäßen Elektrodenanordnung sein.
  • Fig. 9 zeigt eine weitere beispielhafte Elektrodenanordnung (32), die ebenfalls aus Silikon besteht und mehrere Pole (41) aufweist. Um die Reizschwelle niedrig zu halten, kann bei Bedarf der sich hinter dem Elektrodenareal befindlichen Ballon (33) gefüllt werden. Dabei werden die Pole wunschgemäß gegen die Herzwand gedrückt.
  • Fig.10 zeigt eine weitere beispielhafte Elektrodenanordnung (35) die ebenfalls aus Silikon besteht und mehrere Pole (41) aufweist. Zur besseren Platzierung im Herz ist hier eine taschenförmige Ausbuchtung (34) vorgesehen, die mit Hilfe eines geeigneten Schiebers (Löffel) aus Kunststoff oder Metall die Elektrode in die gewünschte Position dirigieren kann.
  • Fig.11 zeigt eine weitere beispielhafte Elektrodenanordnung für die Kardioversion und zur multipolaren Stimulation an unterschiedlichen Stellen des Herzens in Form von kreuzförmig (17) angeordneten Elektroden Polen (18,19).
  • Fig.12 zeigt eine weitere beispielhafte Elektrodenanordnung für die Kardioversion und zur multipolaren Stimulation an unterschiedlichen Stellen des Herzens in Form von sternförmig angeordneten Elektroden Polen (20).
  • Fig.13 zeigt eine weitere beispielhafte Elektrodenanordnung für die Kardioversion und zur multipolaren Stimulation an unterschiedlichen Stellen des Herzens in Form von elliptisch ähnlichen angeordneten Elektroden Polen (21).
  • In Fig. 11-13 dargestellten Elektrodenanordnungen können separat als Stimulationselektroden verwendet werden. Sie können aber auch Teil der erfindungsgemäßen Anordnung sein. Es ist möglich eine solche Stimulationselektrode zwischen kreisförmig angebrachte Defibrillationselektroden zu installieren. Auch kann der Pol 18 als Wendel eichenblattförmig ausgebildet sein.
  • Fig.14 zeigt eine weitere beispielhafte Elektrodenanordnung zur multipolaren Stimulation an unterschiedlichen Stellen des Herzens in Form von fächerförmig angeordneten Elektroden Polen (22). Diese Stimulationselektrode kann auch Teil der erfindungsgemäßen Elektrodenanordnung sein.
  • Die bisherigen Darstellungen zeigen, dass die Erfindung nicht allein auf diese Formen beschränkt ist, sondern die Gestaltung leicht veränderbar und an die anatomischen Gegebenheiten anpassbar ist.
  • Fig. 15 zeigt eine beispielhafte Darstellung einer an der Außenseite des menschlichen Körpers angebrachten elektrischen und mechanischen Verbindung zwischen der Inneren Elektroden Anordnung (25) und den anzuschließenden Medizinischen Geräten (24). Die vom Herzen kommenden Elektroden (25) werden nach außen zu einer flexiblen Kunststoffscheibe (26) geführt, die auf der Haut des Patienten fixiert werden kann. Durch die in der Scheibe dargestellten 8 Löcher kann die Scheibe elastischer gestaltet werden. An vier Stellen der Scheibe (26) und der abnehmbaren Anschlusskappe(24) sind Magnete (28) integriert, die dafür sorgen, dass die Anschlusskappe (24) elektrisch und mechanisch fest mit der Kunststoffscheibe (26) verbunden wird. Die Verbindung zu den externen Geräten (Stimulator, Defibrillator) erfolgt über eine Kabelverbindung 100.
  • Fig. 16 zeigt eine beispielhafte Darstellung einer an der Außenseite des menschlichen Körpers angebrachten Telemetrie Einrichtung (29), beispielsweise eine Spule, die in der Anschlusskappe (24) integriert ist, die die aus dem Herzen gemessenen Daten weiter senden oder speichern kann, die aber auch von außen gesendete Daten, wie elektrische Impulse oder andere medizinische Daten an die Elektroden weiter leiten kann. Diese Telemetrie Einrichtung kann auch subkutan implantiert werden. Telemetrie Einrichtungen zur Übertragung medizinische Daten sind heute Stand der Technik. Es wurde daher auf eine weitere Erklärung und Funktionsweise verzichtet.

Claims (7)

  1. Implantierbare epikardiale Elektrodenanordnung, die eine Messung, Überwachung, Stimulation und Defibrillation (Kardioversion) des Herzens beim Menschen in Verbindung mit einem außerhalb des Körpers anschließbaren Herzschrittmacher oder Defibrillator ermöglicht, wobei die auf dem Herzen fixierten Elektroden großflächig und multipolar ausgebildet sind und gleichzeitig als Sensing- und Stimulationselektroden verwendet werden können;
    wobei die Elektrodenanordnung aus mindestens zwei großflächig angeordneten Elektroden (1,3),
    einer weiteren Elektrode (2) die zwischen den großflächig angeordneten Elektroden (1,3) angeordnet ist, wobei die Elektrode (2) multipolar ist und die Stimulation des Herzens zwischen den einzelnen Polen der multipolaren Elektrode erfolgen kann. und einer Fixierungsvorrichtung besteht,
    wobei zwischen den voneinander isolierten Polen der Elektroden (1,3) die Defibrillation erfolgen kann und wobei zwischen einer der Elektroden (1 oder 3) und einem Pol der Elektrode (2) die Stimulation des Herzens erfolgen kann, dadurch gekennzeichnet, dass die Elektrodenanordnung die Form eines Tennischlägers besitzt.
  2. Implantierbare epikardiale Elektrodenanordnung gemäß Anspruch 1, wobei die Elektroden (1,3) und die Elektrode (2) aus einem Metallgeflecht, Metalllitze oder aus einer Metallwendel bestehen.
  3. Implantierbare epikardiale Elektrodenanordnung gemäß Anspruch 1 bis 2, wobei der vom Herzen abgewandte Teil der Elektrodenanordnung durch eine dehnbare isolierende Folie, vorzugsweise Silikonfolie, abgedeckt ist.
  4. Implantierbare epikardiale Elektrodenanordnung gemäß einem der Ansprüche 1 bis 3, wobei die Elektroden (1, 3) und (2) in einem isolierenden hochflexiblen Schlauch integriert sind, der für jeden Pol mit mindestens einer Öffnung versehen ist, die in Gebrauchsstellung in Richtung Herz zeigt.
  5. Implantierbare epikardiale Elektrodenanordnung gemäß Anspruch 4, wobei die Pole der Elektrode in ihrem Abstand veränderbar sind und durch eine Öffnung des Schlauches auch Flüssigkeiten oder Medikamente transportiert werden können.
  6. Implantierbare epikardiale Elektrodenanordnung gemäß einem der Ansprüche 1 bis 5, wobei die Fixierung der Elektrode auf der äußeren Herzwand durch unterschiedliche Ankerformen mittels Fäden, Wendel oder Loops vorgenommen werden kann.
  7. Implantierbare Elektroden nach Anspruch 1 bis 6,dadurch gekennzeichnet, das sämtliche Informationen, Signale und die zugeführte Energie für die Stimulation oder Kardioversion des Herzens, gespeichert und drahtlos in beiden Richtungen übertragen werden können.
EP12777847.0A 2011-08-26 2012-08-16 Implantierbare epikardiale elektroden anordnung Active EP2747835B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011111649A DE102011111649A1 (de) 2011-08-26 2011-08-26 Implantierbare Epikardiale Elektroden Anordnung
PCT/DE2012/000825 WO2013029587A1 (de) 2011-08-26 2012-08-16 Implantierbare epikardiale elektroden anordnung

Publications (2)

Publication Number Publication Date
EP2747835A1 EP2747835A1 (de) 2014-07-02
EP2747835B1 true EP2747835B1 (de) 2021-02-24

Family

ID=47073243

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12777847.0A Active EP2747835B1 (de) 2011-08-26 2012-08-16 Implantierbare epikardiale elektroden anordnung

Country Status (4)

Country Link
US (1) US9283383B2 (de)
EP (1) EP2747835B1 (de)
DE (2) DE102011111649A1 (de)
WO (1) WO2013029587A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2845622B1 (de) * 2013-09-04 2018-02-21 Peter Osypka Stiftung Temporär implantierbare Elektrodenanordnung für die Stimulation und intrakardiale Kardioversion des Herzens nach einer Operation
US10682511B2 (en) * 2016-08-05 2020-06-16 Stephen T. Epstein Defibrillator for minimally invasive surgical procedures
US11338135B2 (en) 2017-10-23 2022-05-24 Cardiac Pacemakers, Inc. Medical devices for cancer therapy with electric field shaping elements
EP4378519A1 (de) 2019-04-22 2024-06-05 Boston Scientific Scimed, Inc. Elektrische stimulationsvorrichtungen zur krebsbehandlung
US11420049B2 (en) 2019-04-22 2022-08-23 Boston Scientific Scimed, Inc. Systems for administering electrical stimulation to treat cancer
JP2022529374A (ja) 2019-04-23 2022-06-21 ボストン サイエンティフィック サイムド,インコーポレイテッド がん治療のための電気刺激用電極
CN113766950A (zh) 2019-04-23 2021-12-07 波士顿科学国际有限公司 带有热治疗或热监测的电刺激
US11607542B2 (en) 2019-04-23 2023-03-21 Boston Scientific Scimed, Inc. Electrical stimulation for cancer treatment with internal and external electrodes
US11883655B2 (en) 2020-02-24 2024-01-30 Boston Scientific Scimed, Inc. Systems and methods for treatment of pancreatic cancer
DE102021100685A1 (de) * 2021-01-14 2022-07-14 Osypka Ag Elektromedizinische Elektrode
DE102022109680A1 (de) * 2022-04-21 2023-10-26 Osypka Ag Elektromedizinische Elektrodenanordnung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774952A (en) * 1985-06-20 1988-10-04 Medtronic, Inc. Cardioversion and defibrillation lead
US5063932A (en) * 1989-10-03 1991-11-12 Mieczyslaw Mirowski Controlled discharge defibrillation electrode
EP0855196A1 (de) * 1997-01-28 1998-07-29 Sulzer Osypka GmbH Defibrillationselektrode
US6973349B2 (en) * 2001-12-05 2005-12-06 Cardiac Pacemakers, Inc. Method and apparatus for minimizing post-infarct ventricular remodeling
US20070106359A1 (en) * 2003-11-07 2007-05-10 Alan Schaer Cardiac harness assembly for treating congestive heart failure and for pacing/sensing
US20070106336A1 (en) 2003-11-07 2007-05-10 Alan Schaer Cardiac harness assembly for treating congestive heart failure and for pacing/sensing
US20070043416A1 (en) * 2005-08-19 2007-02-22 Cardiac Pacemakers, Inc. Implantable electrode array
US20070073218A1 (en) * 2005-09-26 2007-03-29 Lilip Lau Inflatable cardiac device for treating and preventing ventricular remodeling
US7640065B1 (en) 2006-03-17 2009-12-29 Pacesetter, Inc. Cardiac constraint/therapeutic stimulation device
US7949404B2 (en) * 2006-06-26 2011-05-24 Medtronic, Inc. Communications network for distributed sensing and therapy in biomedical applications
DE202010011338U1 (de) * 2010-08-12 2010-10-28 Osypka, Peter, Dr.-Ing. Elektroden für die intrakardiale Kardioversion
DE202010016681U1 (de) * 2010-12-16 2011-05-05 Osypka, Peter, Dr.-Ing. Implantierbare Myokardiale Elektroden

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2013029587A1 (de) 2013-03-07
EP2747835A1 (de) 2014-07-02
DE112012003539A5 (de) 2014-05-08
US9283383B2 (en) 2016-03-15
US20140194965A1 (en) 2014-07-10
DE102011111649A1 (de) 2013-02-28

Similar Documents

Publication Publication Date Title
EP2747835B1 (de) Implantierbare epikardiale elektroden anordnung
EP2674189B1 (de) Implantierbarer Elektroden Pol
EP2130566B1 (de) Langgestrecktes Implantat mit externer Energieeinkopplung
EP2773421B1 (de) Ballon katheter
DE3914662A1 (de) Vorrichtung zum uebertragen elektrischer signale zwischen einem implantierbaren medizinischen geraet und elektrisch erregbarem menschlichen gewebe
DE3015260A1 (de) Endocard-elektrodenanordnung
DE112010001330T5 (de) MRT-kompatible implantierbare Anschlusselektroden-Schnittstelle
WO1998026836A1 (de) Stimulationselektrodenanordnung
DE2539553A1 (de) Elektrodenanordnung fuer medizinische zwecke
DE102007008154A1 (de) Stapediusmuskelelektrode
EP2679275B1 (de) Epikardiale Mapping-Elektrode
EP0855196A1 (de) Defibrillationselektrode
DE102008040304A1 (de) Implantierbare Elektrodenleitung oder Elektrodenleitungsanordnung
EP2845622B1 (de) Temporär implantierbare Elektrodenanordnung für die Stimulation und intrakardiale Kardioversion des Herzens nach einer Operation
DE102017008720A1 (de) Temporär implantierbare myokardiale bipolare Elektrodenvorrichtung
DE202010016681U1 (de) Implantierbare Myokardiale Elektroden
DE202010016945U1 (de) Transthorakaler AFIB Herz-Katheter
EP2785410A2 (de) Implantierbare indifferente elektrode
EP2809388A1 (de) Fixierung von implantierbaren myokardialen elektroden
EP2703038B1 (de) Elektrodenanordnung mit einer drei hohle Kanäle aufweisenden Zuleitung und mit einer Positionierungs-Fixierungsvorrichtung
EP2817063B1 (de) Myokardiale herzschrittmacher elektrode
DE202013011345U1 (de) Implantierbare indifferente Elektrode
DE202011003353U1 (de) Elektrodenkatheter zur Stimulation des Gehirns
EP2497526A1 (de) Implantierbare Elektrodenleitung
DE102019116755A1 (de) Implementierbares Verfahren zum Betreiben eines Herzschrittmachers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140306

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190326

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20201208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012016643

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1363705

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210525

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012016643

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210728

Year of fee payment: 10

Ref country code: GB

Payment date: 20210730

Year of fee payment: 10

Ref country code: CH

Payment date: 20210730

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

26N No opposition filed

Effective date: 20211125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210816

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1363705

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012016643

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120816

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224