EP2746477B1 - Verfahren für den Betrieb einer Abwasserpumpstation - Google Patents

Verfahren für den Betrieb einer Abwasserpumpstation Download PDF

Info

Publication number
EP2746477B1
EP2746477B1 EP12198741.6A EP12198741A EP2746477B1 EP 2746477 B1 EP2746477 B1 EP 2746477B1 EP 12198741 A EP12198741 A EP 12198741A EP 2746477 B1 EP2746477 B1 EP 2746477B1
Authority
EP
European Patent Office
Prior art keywords
pump
wastewater
pumping
pressure
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12198741.6A
Other languages
English (en)
French (fr)
Other versions
EP2746477A1 (de
Inventor
Peter Jungklas Nybo
Carsten Skovmose Kallesøe
Klaus Grønnegård Lauridsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Holdings AS
Original Assignee
Grundfos Holdings AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Holdings AS filed Critical Grundfos Holdings AS
Priority to EP12198741.6A priority Critical patent/EP2746477B1/de
Priority to US14/133,938 priority patent/US9719241B2/en
Priority to CN201310711391.3A priority patent/CN103882938B/zh
Publication of EP2746477A1 publication Critical patent/EP2746477A1/de
Application granted granted Critical
Publication of EP2746477B1 publication Critical patent/EP2746477B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/22Adaptations of pumping plants for lifting sewage
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • E03F1/006Pneumatic sewage disposal systems; accessories specially adapted therefore
    • E03F1/007Pneumatic sewage disposal systems; accessories specially adapted therefore for public or main systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0209Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid
    • F04D15/0218Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid the condition being a liquid level or a lack of liquid supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/029Stopping of pumps, or operating valves, on occurrence of unwanted conditions for pumps operating in parallel

Definitions

  • Pumping stations are a natural part of the wastewater transport system including pressurized pumping stations, network pumping stations and main pumping stations. Prefabricated pumping stations are mainly used in pressurized network system.
  • a pumping station in such a pressurized system normally includes 1 or 2 grinder pumps, a level system, a controller, and a pumping station.
  • each building or house will have a pumping station.
  • the wastewater will then be transferred from the discharge units (showers, toilets, etc.) to a small pumping station. From there it will be pumped through small pressure pipes to a bigger pumping station or directly to a treatment plant.
  • the above system pressure problem will mainly occur during peak periods in the morning and evening depending on which application or building is connected to the pressure system.
  • US 5 190 442 A discloses a sewage pumping system with a container, an inlet for the inflow of liquid and a modality for ascertaining the liquid level in the container.
  • Two or more pumps are provided, each having an inlet communicating with a container and an outlet communicating with the common conduit.
  • a pump controller receives information from the modality for ascertaining the liquid level and is adapted to start and stop individual pumps.
  • a pressure sensing device is located in the conduit for sensing the backpressure against which pumps in operation are pumping, and for generating a second signal corresponding to the sensed backpressure, the signal going to the pump controller.
  • On high backpressure the pump controller avoids pumpstarts which will not result in a net increase in the total pumping rate.
  • the pump controller allows more pumps to start when called for, and allows for the starting of more pumps than the minimum necessary, in order to decrease the duration of pumping.
  • This object can be achieved by a method for operating a wastewater pumping station of a wastewater pumping network having the features defined in claim 1, a control unit for a wastewater pumping station of a wastewater pumping network having the features defined in claim 14, and a system for centrally controlling a plurality of pumps of wastewater pumping stations in a wastewater pumping network having the features disclosed in claim 16.
  • a method for operating a wastewater pumping station of a wastewater pumping network comprising at least one pump, wherein the pump starts pumping if a level of the wastewater in a tank of the wastewater pumping station exceeds a first wastewater level, and the pump stops pumping if the level of the wastewater in the tank drops below a second level
  • the method comprises determining the magnitude of a parameter expressing the load in a common outlet pipe of the wastewater pumping network, wherein if it is determined that the magnitude of the parameter expressing the load has passed a specified threshold, performing a step of activating the at least one pump to start pumping in an energy optimization mode, wherein the specified threshold of the load expressing parameter is determined by measuring or deriving the size of the parameter during each of a plurality of activations of the at least one pump, and then selecting or calculating the specified threshold on the basis of these sizes.
  • the at least one pump in the energy optimization mode if it is determined that the pressure exceeds a specified upper pressure limit, the at least one pump is deactivated. Thus, it may be prevented that the pump is operating without moving any wastewater into the common pipeline because the pressure in the latter is already too high.
  • the method comprises a step of increasing or decreasing in the energy optimization mode the speed of the at least one pump in accordance with the pressure detected. Increasing and decreasing the speed of the pump in accordance with the pressure detected in the outlet or the common pipeline, respectively, may further save energy.
  • the pressure is a fluid pressure of the wastewater in the common outlet pipe of the wastewater pumping network
  • the step of determining the pressure is carried out by measuring the pressure, in particular, by means of a pressure sensor for measuring an absolute pressure or a pressure difference, in the common outlet pipe to which the wastewater pumping station is connected.
  • the step of determining the pressure is carried out by determining a pressure difference across the at least one pump, and determining a wastewater level in the tank in which the at least one pump is accommodated.
  • the step of determining the pressure difference across the at least one pump comprises determining the flow of pumped wastewater, in particular, determining the flow of pumped wastewater on the basis of changes in the wastewater level in the tank.
  • the step of determining the pressure comprises determining the power of a drive motor used for driving the at least one pump, and/or a power factor (cos( ⁇ )) wherein ⁇ is the phase angle between current (I) and voltage (U), and/or a motor current (I).
  • the method further comprises a step of individually controlling the at least one pump on the basis of the determined pressure by a local pump controller.
  • the at least one pump may be controlled centrally from a central control station of the wastewater pumping network.
  • the wastewater pumping network comprises a plurality of wastewater pumping stations.
  • a control unit for a wastewater pumping station of a wastewater pumping network comprising a plurality of wastewater pumping stations, the wastewater pumping station comprising at least one pump adapted to pump wastewater from a tank to a common outlet pipe of the wastewater pumping network, a level sensor which detects the wastewater level in the tank, and a pressure sensor for detecting the pressure in the common outlet pipe, wherein the control unit is adapted to control the at least one pump to start pumping if a wastewater level exceeds a first level in the tank, and to stop pumping if the level of the wastewater drops below a second level in the tank, wherein the control unit is adapted to control the activity of the at least one pump in an energy optimization mode on the basis of a determined parameter expressing the load in a common outlet pipe of the wastewater pumping network, wherein if it is determined that the magnitude of the parameter expressing the load has passed a specified threshold, the control unit is adapted to activate the at least one pump to start pumping in an energy optimization mode, where
  • control unit is further adapted to increase or decrease the speed of the at least one pump on the basis of the pressure determined in the outlet pipe to further save energy.
  • the system comprises a central control unit and a wastewater pumping network comprising a plurality of wastewater pumping stations, the wastewater pumping station comprising at least one pump adapted to pump wastewater from a tank to a common outlet pipe of the wastewater pumping network, a level sensor which detects the wastewater level in the tank, and a pressure sensor for detecting the pressure in the common outlet pipe, wherein the control unit is adapted to control the at least one pump to start pumping if a wastewater level exceeds a first level in the tank, and to stop pumping if the level of the wastewater drops below a second level in the tank, wherein the control unit is adapted to control the activity of the at least one pump in an energy optimization mode on the basis of a determined parameter expressing the load in a common outlet pipe of the wastewater pumping network, wherein if it is determined that the magnitude of the parameter expressing the load has passed a specified threshold, the control unit is adapted to activate the at
  • Fig. 1A and Fig. 1B show two typical daily profiles, respectively, on when the usage of water is high, which means that wastewater flows into the pumping stations.
  • the water usage in m 3 /hour (y-axis) is plotted against the time of day (x-axis).
  • Fig. 1A on the left hand side, a discharge pattern for flats, a restaurant and a kitchen in a hotel is illustrated.
  • AM o'clock
  • PM o'clock
  • a discharge pattern for a laundry in a hotel is shown wherein it can be seen that there are only two peaks, namely, at about 9 o'clock in the morning (AM) and at about three o'clock (PM) in the afternoon.
  • AM 9 o'clock in the morning
  • PM three o'clock
  • a very high system pressure can be expected in the common pipeline to which the wastewater stations of these buildings are connected so that pumping wastewater into the pipeline may be rather ineffective and, thus, energy consuming.
  • the system pressure in the common pipeline will be very low due to the low water consumption and therefore few operating pumps.
  • pumping wastewater out of the wastewater pumping stations will be more effective during these times.
  • Fig. 2 shows a pressurized wastewater pumping network 1 according to an embodiment.
  • a plurality of wastewater pumping stations 2 are connected in a network via respective connection pipes 4 to a common outlet pipe 3.
  • Each of the wastewater pumping stations 2 in the embodiment shown comprises two pumps 5 (e.g. Grundfos' SEG pump type) for pumping wastewater out of respective tanks 6 in which the pumps 5 are accommodated.
  • Each tank 6 has an outlet 7 which opens into the respective connection pipe 4 which in turn leads to the common outlet pipe 3. Downstream the outlet 7, a pressure sensor 8 for detecting the pressure in the common outlet pipe 3 may be installed.
  • a central control unit 9 is provided for centrally controlling the pumps 5 to start pumping when the pressure in the common outlet pipe 3 is low and to stop pumping when the pressure in the common outlet pipe 3 is high. Specifically, the control unit 9 controls the activity of the pumps 5 in an energy optimization mode on the basis of a pressure determined in the common outlet pipe 3 such that if the pressure drops below a specified lower pressure limit, a specified number of pumps 5 start pumping, and if the pressure exceeds a specified upper pressure limit, the control unit 9 deactivates the specified number of pumps 5 so as to stop pumping. Thus, each of the pits is controlled such that the energy consumption is minimized since in the energy optimization mode pumping is only carried out when the pressure in the common outlet pipe 3 is low. Further, the control unit 9 communicates with the pumps 5 either in a wireless manner, as indicated by reference numeral 10 in Fig. 2 , or via a cable connection 11.
  • Fig. 3 shows a single wastewater pumping station 2 from the wastewater pumping network 1 shown in Fig. 2 according to an embodiment.
  • the wastewater pumping station 2 comprises a tank 6 in which a grinder pump 5 of the SEG pump type is arranged.
  • wastewater 12 is present having a certain wastewater level 13.
  • the wastewater 12 is introduced into the tank 6 through an inlet 18.
  • a connection pipe 4 runs through an outlet 7 of the tank 6 to the common outlet pipe 3 which is shown in Fig. 2 .
  • a pressure sensor 8 detects the pressure in the connection pipe 4 upstream of a non-return valve 14 which opens and closes the connection pipe 4.
  • a level sensor 15 is arranged which detects the wastewater level 13 in the tank 6.
  • the level sensor can be of any kind.
  • a simple standard level switch may be used just as well.
  • the level sensor 15 and the pump 5 each are connected via respective wires 16, 17 to a local control unit 9' which controls the pump 5 in the wastewater pumping station 2 individually and locally according to the wastewater level 13 in the tank and the pressure in the common outlet pipe 3 (not shown here, see Fig. 2 ).
  • the pump 5 is controlled so as to always start pumping when the level 13 of the wastewater 12 in a tank 6 exceeds a first wastewater level 19 which is called a "start level, safety" in order to run an emptying procedure.
  • the pump 5 is controlled to always stop pumping when the wastewater level 13 in the tank 6 drops below a second level 20 which is called a "stop level". Between the “start level, safety” and the “stop level”, there is a third level 21 which is called the “start level, energy” at which the pump 5 may be controlled so as to start pumping in an energy optimization mode when a low pressure has been detected in the common outlet pipe 3 of the wastewater pumping network 1 (see Fig. 2 ).
  • the system pressure can be determined by direct measurement or can be estimated. It should be mentioned that the selection on how to ensure that the pumps run in the most optimal way depends on the level of control and communication connected to the installation.
  • a local control unit 9' it is also possible to centrally control the pumps 5 in the network from a central control unit 9, as shown, e.g., in Fig. 2 .
  • an external pressure sensor measures the system pressure in the common outlet pipe 3 and the individual pumps 5 in the network will be started and stopped under control of the central control unit 9, taking the whole pressurized system in consideration.
  • the energy optimization algorithm is executed from the pump 5 itself to ensure that it runs in the most efficient and optimal manner.
  • the pumps 5 may then be started and stopped also by a local pumping station controller.
  • An extra minimum start level could be built below the maximum start level 19 ("start level, safety").
  • start level, safety the minimum start level 19
  • the pump 5 could start up in intervals to evaluate if the pressure in the system is at an acceptable level for the pump to pump down to the stop level 20. If the pump 5 does not empty the pumping station 2 before the wastewater level 13 reaches the maximum start level 19, it will forcedly start pumping cycles.
  • Fig. 4 shows a control example for a case in which a system pressure sensor is used.
  • Three different events 22, 23, and 24 are shown which activate a pump 5 to start pumping.
  • the first event indicated by reference numeral 22 is a start of the pump 5 with no network activity where the wastewater level has reached the "start level, energy", namely, the third level 21 shown in Fig. 3 and the system pressure P sys which here is used as the parameter expressing the load of the wastewater pumping network (1) measured in the common outlet pipe 3 (see Fig. 2 ) is rather low and has passed a specified threshold which here is the minimum system pressure indicated by reference numeral 26 so that the pump 5 can pump wastewater 12 out of the tank 6 in the energy optimization mode.
  • the second event indicated by reference numeral 23 is a start of the pump 5 after ended network activity where the wastewater level 13 is between the "start level, energy”, namely, third level 21, and "start level, safety", namely first level 19 and the system pressure P sys still is low to ensure that the pump 5 might run efficiently.
  • the third event indicated by reference numeral 24 is a forced start when the wastewater level 13 reaches the "start level, safety", the first level 19, in the tank 6 when wastewater needs to be pumped out of the tank 6 so as to avoid an overflow of the latter. It should be noted that the start event may be scaled with the system pressure such that an increasingly larger system pressure is accepted as the wastewater level gets closer and closer to the "start level, safety".
  • Fig. 5 shows another control example for a case in which the wastewater level and a difference pressure of the pump are used for controlling the pump 5.
  • the three events to activate the pump 5 to start pumping as explained with respect to Fig. 4 are indicated by reference numerals 22, 23, and 24.
  • the necessary measurement cycles indicated by reference numeral 25 are shown in gray color.
  • the pressure is detectable.
  • the detectable pressure values are marked with the thick parts in the upper solid line. According to this approach, however, it is not possible to measure the minimum pressure in the network but rather only the pressure when the pump 5 of a wastewater pumping station 2 is running. Therefore, this pressure is identified and compared to the actual pressure in the measurement cycles.
  • p sys ⁇ ⁇ p + ⁇ gl
  • ⁇ p the pressure difference across the pump 5 (estimated pump pressure)
  • the mass density of the waste water
  • g the gravitation constant
  • I the measured wastewater level 13 of the tank 6.
  • Fig. 6 shows a further control example in which the parameter expressing the load of the wastewater pumping network 1 is the pump flow Q which is used to start the pump 5 in the energy optimization mode when the threshold 26 which here is represented by the maximum pump flow is passed.
  • the pump flow Q may be estimated from various signals measurable on the pump 5. For example, the pump power and speed and the motor current may be used to estimate this value.
  • Fig. 7 shows another control example with a variable threshold 26.
  • the threshold 26 for starting the pump 5 be a function of, for example, time. For example, if it is required to empty the tank 6 each day and use the pressure as the parameter expressing the load of the network, the pressure threshold 26 for starting the pump 5 could be increased, meaning that the probability of starting the pumps 5 is increased.
  • the threshold 26 for the system pressure could be a function of the level in the tank 6. Then, if the level is low, the threshold 26 is also low, meaning that the pump 5 will only start if the energy consumption of pumping is very small. As the level increases, the threshold 26 for the system pressure is also increased, meaning that the pump 5 starts under less efficient conditions. The less efficient operation is accepted, because it is becoming more and more important that the tank 6 is emptied. A figure presenting this idea is shown in Fig. 7 .
  • Fig. 8 shows the relation between the pump pressure ⁇ p and the pump flow Q.
  • Fig. 9 shows the relation between the pump flow Q and the pump power P.
  • the relation between the pump power P and the pump flow Q here is monotone.
  • the monotone relationship means that the power P could be used as an alternative to the flow Q in the control approach presented in Fig. 6 .
  • the power P is a measurement that indicates the load of the pump 5.
  • Other signals that indicate the load are the motor current or cos phi of the motor.
  • the flow Q is the difference between the inflow into the tank 6 and the pump flow. This means that the pump flow can be determined by calculating the flow just before the pump is turned on, and subtract this value from the flow calculated after the pump is turned on. This flow difference can be used as the flow in the procedure shown in Fig. 6 .
  • the threshold value 26 with which the load expressing parameter P sys is compared is preferably generated automatically. More specifically, when initializing the wastewater pumping station 2, the first ten activations of the pump 5 are accompanied with a determination of the magnitude of the pressure Psys. The ten magnitudes are logged by the control unit 9', and the lowest value (which equals low pressure in outlet pipe 3) is selected as the threshold value 26. A similar approach can be made when using, e.g., the pump flow Q as the parameter expressing the load of the system network. Additionally to using only the first ten activations for storage in the log, a continuously updated log can be used. This means that, e.g., always the magnitude of the parameter of the latest ten pump activations is stored and used for determining the threshold 26.
  • Fig. 10 shows a flow chart of the operation of a pump 5 in a wastewater pumping network 1 as shown, e.g., in Fig. 2 . It is assumed that the pumps 5 are connected via a communication network that enables all pumps 5 to send information to other pumps 5 of the wastewater pumping network 1. The number of active pumps 5 is stored in each pump 5 in a counter P. The counter P is controlled by broadcasting information on the communication network each time a pump 5 is turned on or off. As can be seen in the flow chart, first it is determined if the "start level, energy", namely, the third level 21 has been reached. If it has not been reached, the procedure returns to the start point.
  • start level, energy namely, the third level 21
  • n is lower or equal to a certain threshold. If it is higher than the threshold value, then it is determined if the "start level, safety", namely, the first level 19 has been reached. If the "start level, safety” has been reached, the pump is started and the counter P is incremented by 1. This information is distributed via the network to all other pumps 5. Then, if it is determined, if the "stop level”, namely, the second level 20 has been reached, the pump 5 will be stopped and the counter P will be decreased by 1. Again, this information is provided to all other pumps over the communication network.
  • the counter n may be located at the central control unit 9 so that only one instant of n is necessary. In this case, each pump 5 would need to ask the central control unit 9 for a permission to start pumping when the third level 21, namely, the "start level, energy" is reached.
  • the third level 21 namely, the "start level, energy" is reached.
  • the parameter expressing the load of the waste water pumping network is n, and the higher ni, the higher is the number of active pumps, and hence, the traffic in the network. According to the invention, energy savings can be obtained by stopping pumps or delaying activation of pumps until n is below the specified threshold.

Claims (16)

  1. Verfahren zum Betreiben einer Abwasserpumpstation (2) eines Abwasserpumpennetzes (1), wobei die Abwasserpumpstation (2) mindestens eine Pumpe (5) umfasst, wobei die Pumpe (5) mit dem Pumpen beginnt, wenn ein Pegel (13) des Abwassers (12) in einem Tank (6) der Abwasserpumpstation (2) einen ersten Abwasserpegel (19) überschreitet, und die Pumpe (5) das Pumpen stoppt, wenn der Füllstand (13) des Abwassers (12) im Tank (6) unter einen zweiten Füllstand (20) fällt, wobei das Verfahren das Bestimmen der Größe eines Parameters (Psys, Q, n, ΔP, Pelectrical, cos ϕ) umfasst, I) Ausdrücken der Last in einer gemeinsamen Auslassleitung (3) des Abwasserpumpennetzes (1), wobei, wenn bestimmt wird, dass die Größe des Parameters, der die Last ausdrückt, einen bestimmten Schwellenwert (26) überschritten hat, ein Schritt zum Aktivieren der mindestens einen Pumpe (5) durchgeführt wird, um mit dem Pumpen in einem Energieoptimierungsmodus zu beginnen, dadurch gekennzeichnet, dass der angegebene Schwellenwert des Parameters, der die Last ausdrückt, durch Messen oder Ableiten der Größe des Parameters während jeder von einer Vielzahl von Aktivierungen der mindestens einen Pumpe (5) bestimmt wird, und dann Auswählen oder Berechnen des angegebenen Schwellenwerts (26) auf der Grundlage dieser Größen.
  2. Verfahren nach Anspruch 1, wobei ein Druck (p) in einer gemeinsamen Auslassleitung (3) des Abwasserpumpennetzes (1) erfasst wird.
  3. Verfahren nach Anspruch 1 oder 2, wobei der Schritt des Aktivierens der mindestens einen Pumpe (5) nur durchgeführt wird, wenn ein vorgegebener dritter Abwasserspiegel (21) erreicht oder überschritten wurde.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der die Last ausdrückende Parameter einer oder mehrere der folgenden ist: Systemdruck Psys, Pumpendurchfluss Q, Anzahl der im System aktiven Pumpen (n), Differenzdruck ΔP über der Pumpe, elektrische Leistung Pelektrisch von der Pumpe verwendet, cos ϕ des Elektromotors, der elektrische Strom I des Motors.
  5. Verfahren nach einem der Ansprüche 2 bis 4, wobei im Energieoptimierungsmodus, wenn bestimmt wird, dass der Druck (p) eine vorgegebene obere Druckgrenze überschreitet, die mindestens eine Pumpe (5) deaktiviert wird.
  6. Verfahren nach einem der Ansprüche 2 bis 5, worin das Verfahren ferner einen Schritt zum Erhöhen oder Verringern der Drehzahl der mindestens einen Pumpe (5) im Energieoptimierungsmodus gemäß dem erfassten Druck (p) umfasst.
  7. Verfahren nach einem der Ansprüche 2 bis 6, wobei der Druck (p) ein Fluiddruck des Abwassers (12) in der gemeinsamen Auslassleitung (3) des Abwasserpumpennetzes (1) ist, und wobei der Schritt zum Bestimmen des Drucks (p) durch Messen des Drucks (p), insbesondere mittels eines Drucksensors (8) zum Messen eines Absolutdrucks oder einer Druckdifferenz, in der gemeinsamen Auslassleitung (3), mit der die Abwasserpumpstation (2) verbunden ist, durchgeführt wird.
  8. Verfahren nach einem der Ansprüche 4 bis 6, wobei der Schritt des Bestimmens des Drucks (p) durch Bestimmen einer Druckdifferenz über die mindestens eine Pumpe (5) und Bestimmen eines Abwasserspiegels (13) in dem Tank (6), in dem die mindestens eine Pumpe (5) untergebracht ist, durchgeführt wird.
  9. Verfahren nach Anspruch 8, wobei der Schritt zum Bestimmen der Druckdifferenz über die mindestens eine Pumpe (5) das Bestimmen des Durchflusses (Q) von gepumptem Abwasser, insbesondere das Bestimmen des Durchflusses (Q) von gepumptem Abwasser auf der Grundlage von Änderungen des Abwasserspiegels (13) im Tank (6) oder auf der Grundlage der elektrischen Leistung oder Drehzahl der Pumpe (5) umfasst.
  10. Verfahren nach einem der Ansprüche 2 bis 6, wobei der Schritt zum Bestimmen des Drucks (p) das Bestimmen der Leistung (P) eines Antriebsmotors, der zum Antreiben der mindestens einen Pumpe (5) verwendet wird, und/oder eines Leistungsfaktors (cos(ϕ)) umfasst, wobei ϕ der Phasenwinkel zwischen Strom (I) und Spannung (U) und/oder einem Motorstrom (I) ist.
  11. Verfahren nach einem der Ansprüche 2 bis 10, wobei das Verfahren ferner einen Schritt zum individuellen Steuern der mindestens einen Pumpe (5) auf der Grundlage des bestimmten Drucks durch eine lokale Pumpensteuerung umfasst.
  12. Verfahren nach einem der Ansprüche 1 bis 10, wobei die mindestens eine Pumpe (5) zentral von einer zentralen Steuerstation (9) des Abwasserpumpennetzes (1) gesteuert wird.
  13. Verfahren nach einem der vorhergehenden Ansprüche, worin das Abwasserpumpennetz (1) eine Vielzahl von Abwasserpumpstationen (2) umfasst.
  14. Steuereinheit (9, 9') für eine Abwasserpumpstation (2) eines Abwasserpumpennetzes (1) mit einer Vielzahl von Abwasserpumpstationen (2), wobei die Abwasserpumpstation (2) mindestens eine Pumpe (5) zum Pumpen von Abwasser (12) aus einem Tank (6) zu einer gemeinsamen Auslassleitung (3) des Abwasserpumpennetzes (1), einen Niveausensor (15), der den Abwasserstand (13) im Tank (6) erfasst, umfasst, und einen Drucksensor (8) zum Erfassen des Drucks in der gemeinsamen Auslassleitung (3), wobei die Steuereinheit (9, 9') angepasst ist, um die mindestens eine Pumpe (5) zu steuern, um mit dem Pumpen zu beginnen, wenn ein Abwasserspiegel (13) einen ersten Pegel (19) im Tank (6) überschreitet, und das Pumpen zu stoppen, wenn der Pegel (13) des Abwassers (12) unter einen zweiten Pegel (20) im Tank (6) fällt, wobei die Steuereinheit (9), 9') angepasst ist, um die Aktivität der mindestens einen Pumpe (5) in einem Energieoptimierungsmodus auf der Grundlage eines bestimmten Parameters (Psys, Q, n ΔP, Pelectrical, cos ϕ, I) zu steuern, der die Last in einer gemeinsamen Auslassleitung (3) des Abwasserpumpennetzes ausdrückt, worin, wenn bestimmt wird, dass die Größe des die Last ausdrückenden Parameters einen bestimmten Schwellenwert (26) überschritten hat, die Steuereinheit (9), 9') angepasst ist, um die mindestens eine Pumpe (5) zu aktivieren, um das Pumpen in einem Energieoptimierungsmodus zu starten, dadurch gekennzeichnet, dass der spezifizierte Schwellenwert des lastabtragenden Parameters bestimmt wird, indem die Größe des Parameters während jeder von einer Vielzahl von Aktivierungen der mindestens einen Pumpe (5) gemessen oder abgeleitet wird und dann der spezifizierte Schwellenwert (26) auf der Grundlage dieser Größen ausgewählt oder berechnet wird.
  15. Steuereinheit (9, 9') nach Anspruch 15, wobei die Steuereinheit (9, 9') ferner angepasst ist, um die Drehzahl der mindestens einen Pumpe (5) auf der Grundlage eines bestimmten Drucks (p) zu erhöhen oder zu verringern.
  16. System zum zentralen Steuern einer Vielzahl von Pumpen (5), wobei das System eine zentrale Steuereinheit (9) und ein Abwasserpumpennetz (1) mit einer Vielzahl von Abwasserpumpstationen (2) umfasst, wobei die Abwasserpumpstation (2) mindestens eine Pumpe (5) umfasst, die zum Pumpen von Abwasser (12) aus einem Tank (6) zu einem gemeinsamen Auslassrohr (3) des Abwasserpumpennetzes (1) geeignet ist, einen Niveausensor (15), der den Abwasserstand (13) in dem Tank (6) erfasst, und einen Drucksensor (8) zum Erfassen des Drucks in der gemeinsamen Auslassleitung (3), wobei die Steuereinheit (9, 9') angepasst ist, um die mindestens eine Pumpe (5) zu steuern, um mit dem Pumpen zu beginnen, wenn ein Abwasserstand (13) einen ersten Pegel (19) in dem Tank (6) überschreitet, und das Pumpen zu stoppen, wenn der Pegel (13) des Abwassers (12) unter einen zweiten Pegel (20) in dem Tank (6) fällt, wobei die Steuereinheit (9, 9') angepasst ist, um die Aktivität der mindestens einen Pumpe (5) in einem Energieoptimierungsmodus auf der Grundlage eines bestimmten Parameters (Psys, Q, n ΔP, Pelectrical, cos ϕ, I) zu steuern, der die Last in einer gemeinsamen Auslassleitung (3) des Abwasserpumpennetzes ausdrückt, wobei, wenn festgelegt ist, dass die Größe des die Last ausdrückenden Parameters einen bestimmten Schwellenwert (26) überschritten hat, die Steuereinheit (9, 9') angepasst ist, um die mindestens eine Pumpe (5) zu aktivieren, um das Pumpen in einem Energieoptimierungsmodus zu starten, dadurch gekennzeichnet, dass der vorgegebene Schwellenwert des lastabtragenden Parameters bestimmt wird, indem die Größe des Parameters während jeder von einer Vielzahl von Aktivierungen der mindestens einen Pumpe (5) gemessen oder abgeleitet wird und dann der vorgegebene Schwellenwert (26) auf der Grundlage dieser Größen ausgewählt oder berechnet wird.
EP12198741.6A 2012-12-20 2012-12-20 Verfahren für den Betrieb einer Abwasserpumpstation Active EP2746477B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12198741.6A EP2746477B1 (de) 2012-12-20 2012-12-20 Verfahren für den Betrieb einer Abwasserpumpstation
US14/133,938 US9719241B2 (en) 2012-12-20 2013-12-19 Method for operating a wastewater pumping station
CN201310711391.3A CN103882938B (zh) 2012-12-20 2013-12-20 用于操作污水泵站的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12198741.6A EP2746477B1 (de) 2012-12-20 2012-12-20 Verfahren für den Betrieb einer Abwasserpumpstation

Publications (2)

Publication Number Publication Date
EP2746477A1 EP2746477A1 (de) 2014-06-25
EP2746477B1 true EP2746477B1 (de) 2019-10-16

Family

ID=47563082

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12198741.6A Active EP2746477B1 (de) 2012-12-20 2012-12-20 Verfahren für den Betrieb einer Abwasserpumpstation

Country Status (3)

Country Link
US (1) US9719241B2 (de)
EP (1) EP2746477B1 (de)
CN (1) CN103882938B (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016003654A1 (de) 2016-03-10 2017-09-14 Wllo Se Verfahren zum Betreiben eines Druckentwässerungssystems für Abwässer
CZ306856B6 (cs) * 2016-06-28 2017-08-09 Vysoké Učení Technické V Brně Způsob automatického proplachování tlakové kanalizace a systém k provádění tohoto způsobu
EP3367533A1 (de) * 2017-02-27 2018-08-29 Xylem IP Management S.à.r.l. Verfahren zu steuern eine pumpe, die an einer pumpennetz verbunden ist
GB201707479D0 (en) * 2017-05-10 2017-06-21 Severn Trent Water Ltd Control system for waste water pumping station
WO2019099419A1 (en) 2017-11-14 2019-05-23 EmNet, LLC Systems and methods using probabilistic forecast for agent-based control of sewers
CN109339211B (zh) * 2018-11-14 2021-02-26 南京合工智能环保研究院有限公司 一种雨污分流处理装置及处理方法
EP3690758A1 (de) 2019-02-04 2020-08-05 INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência Verfahren und vorrichtung zur steuerung des pumpsystems eines abwassertanks
CN110656691B (zh) * 2019-10-08 2021-04-20 东莞市唯美陶瓷工业园有限公司 虹吸式排污装置、电气设备、容积泵通电和停止流程的控制方法
EP3904682B1 (de) * 2020-04-27 2023-11-29 Xylem Europe GmbH Verfahren zur überwachung und steuerung des betriebs einer pumpstation

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608157A (en) * 1982-06-14 1986-08-26 Norwalk Wastewater Equipment Company Wastewater treatment plant
US4505813A (en) * 1982-06-14 1985-03-19 Norwalk Wastewater Equipment Company Wastewater treatment plant
US4594153A (en) * 1985-02-21 1986-06-10 Smith & Loveless, Inc. Sewage pumping station
FI80933C (fi) * 1988-06-08 1990-08-10 Sarlin Ab Oy E Oevervakningsfoerfarande foer avlopps- pumpstation samt oevervakningsanordning foer foerverkligande av foerfarandet.
US5228996A (en) * 1991-02-15 1993-07-20 Mark Lansdell Method for treating waste water
US5190442A (en) * 1991-09-06 1993-03-02 Jorritsma Johannes N Electronic pumpcontrol system
DE4244417A1 (de) * 1992-12-30 1994-07-07 Wilo Gmbh Vorrichtung zum Ein- und Ausschalten einer Tauchmotorpumpe
ES2079264B1 (es) * 1993-03-02 1997-12-16 Puig Jordi Renedo Mejoras en la regulacion de centrales de acondicionamiento de fluidos.
US5422550A (en) * 1993-05-27 1995-06-06 Southwest Electric Company Control of multiple motors, including motorized pumping system and method
US5591010A (en) * 1995-01-19 1997-01-07 Milltronics Ltd. Time shift control of wastewater pumping system
US6178393B1 (en) * 1995-08-23 2001-01-23 William A. Irvin Pump station control system and method
US5742500A (en) * 1995-08-23 1998-04-21 Irvin; William A. Pump station control system and method
US5772403A (en) * 1996-03-27 1998-06-30 Butterworth Jetting Systems, Inc. Programmable pump monitoring and shutdown system
US6322325B1 (en) * 1999-01-15 2001-11-27 Metropolitan Industries, Inc. Processor based pump control systems
US6378554B1 (en) * 2000-01-14 2002-04-30 Little Giant Pump Company Controlled sewage sump network system
US6638023B2 (en) * 2001-01-05 2003-10-28 Little Giant Pump Company Method and system for adjusting operating parameters of computer controlled pumps
US6464465B2 (en) * 2001-02-14 2002-10-15 Glenn P. House Level control device for a wastewater collection basin
US7010393B2 (en) * 2002-06-20 2006-03-07 Compressor Controls Corporation Controlling multiple pumps operating in parallel or series
DE102004004401B8 (de) * 2004-01-29 2008-11-06 Jung Pumpen Gmbh Verfahren zur Installation und/oder zum Betrieb eines Abwassersammelschachts
US20060089752A1 (en) * 2004-10-27 2006-04-27 Voigt Donald R Method of and system for reducing utility costs associated with machine operation
HK1086984A2 (en) * 2006-02-23 2006-09-29 David Man Chu Lau An industrial process efficiency method and system
US8600568B2 (en) * 2006-12-20 2013-12-03 Data Flow Systems, Inc. Fluid flow management system and associated methods
US8983667B2 (en) * 2006-12-20 2015-03-17 Data Flow Systems, Inc. Fluid flow management through a wastewater level manipulation system and associated methods
US8594851B1 (en) * 2006-12-20 2013-11-26 Data Flow Systems, Inc. Wastewater collection flow management system and techniques
FI20075382L (fi) * 2007-05-28 2008-11-29 Grundfos Pumput Ab Oy Viemäriveden välipumppaamo
AU2008217000B2 (en) * 2007-09-21 2012-02-09 Multitrode Pty Ltd A pumping installation controller
US20090283457A1 (en) * 2008-05-14 2009-11-19 Isos Ventures Llc Waste water management system and method
FR2936051B1 (fr) * 2008-09-16 2011-08-05 Sauermann Ind Sa Dispositif de pilotage d'une pompe de relevage de condensats detecteur capacitif et systeme correspondants.
JP5184416B2 (ja) * 2009-03-30 2013-04-17 株式会社クボタ 水中ポンプの制御装置、マンホールポンプ装置、及びマンホールポンプ装置の運転方法
US8032256B1 (en) * 2009-04-17 2011-10-04 Sje-Rhombus Liquid level control systems
PL2354555T5 (pl) * 2010-01-19 2020-03-31 Grundfos Management A/S Sposób optymalizacji energetycznej pomp
CN103153880A (zh) * 2010-08-24 2013-06-12 三T净化有限公司 污水处理系统
US8920131B2 (en) * 2010-12-13 2014-12-30 A.Y. Mcdonald Mfg. Co. Pump control and method
EP2476907B1 (de) * 2011-01-14 2014-08-06 Grundfos Management a/s System und Verfahren zur Drucksteuerung in einem Netzwerk
MX2013012306A (es) * 2011-04-20 2014-08-01 Anue Water Technologies Inc Sistemas y metodos de tratamiento de agua.
CN202298882U (zh) * 2011-08-02 2012-07-04 梅莉 废水回收节能装置
US8371821B1 (en) * 2012-08-17 2013-02-12 Nasser Fred Mehr Green waste water pump station control system
EP2895746B1 (de) * 2012-09-13 2019-01-02 ABB Schweiz AG Vorrichtung und verfahren zum betrieb paralleler kreiselpumpen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US9719241B2 (en) 2017-08-01
US20140178211A1 (en) 2014-06-26
EP2746477A1 (de) 2014-06-25
CN103882938B (zh) 2017-04-12
CN103882938A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
EP2746477B1 (de) Verfahren für den Betrieb einer Abwasserpumpstation
US5591010A (en) Time shift control of wastewater pumping system
EP3187735B1 (de) Pumpensystem sowie pumpendurchflussbestimmungsverfahren
US9733650B2 (en) Water supply apparatus and water supply method
JP2015034513A (ja) 異常検出装置、汚水搬送ポンプ装置及び監視装置
US11536276B2 (en) Volumetric real time flow engine
EP2721303B1 (de) Verfahren zur steuerung mindestens eines teils einer pumpstation
CN107767292B (zh) 智能供水管理系统及其方法
KR20110097342A (ko) 배수지의 지능화 운전 시스템 및 방법
EP2870363A1 (de) Verfahren zur steuerung einer pumpstation
JP2007040135A (ja) 可変速給水装置
KR101321349B1 (ko) 펌프 성능 추정 방법 및 시스템
Luc et al. Performance indicators of irrigation pumping stations: application to drill holes of minor irrigated areas in the Kairouan plains (Tunisia) and impact of malfunction on the price of water
CN114320861A (zh) 一种矿井排水系统的排水调度方法
JPH08129421A (ja) ポンプ運転制御装置
Kallesøe et al. Supervision of pumps and their operating conditions in sewage pumping stations
JP2012027670A (ja) 需要量診断計量装置
EP2562424A2 (de) Verfahren und Vorrichtung zur Steuerung eines Mehrpunktsystems zur Verteilung von Flussigkeit
JP2007187002A (ja) ポンプ
JP7293106B2 (ja) シミュレーション装置、および、シミュレーション方法
WO2023169990A1 (en) Method and system for leakage detection in a fluid system
TW201243531A (en) Energy-saving water tower system and water pump energy-saving control method
CN108884835A (zh) 用于控制天气依赖发电机所产生的电力的供应的方法和系统
GB2599312A (en) Control system for waste water pumping station
Flint Ultrasonics control in sewage stations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20140826

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180525

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190424

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012064863

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1191380

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191016

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1191380

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200217

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012064863

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

26N No opposition filed

Effective date: 20200717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191220

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602012064863

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221223

Year of fee payment: 11

Ref country code: FR

Payment date: 20221222

Year of fee payment: 11

Ref country code: DE

Payment date: 20221213

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221228

Year of fee payment: 11