EP2742011A1 - Vitrage automobile avec motifs emailles - Google Patents

Vitrage automobile avec motifs emailles

Info

Publication number
EP2742011A1
EP2742011A1 EP12730988.8A EP12730988A EP2742011A1 EP 2742011 A1 EP2742011 A1 EP 2742011A1 EP 12730988 A EP12730988 A EP 12730988A EP 2742011 A1 EP2742011 A1 EP 2742011A1
Authority
EP
European Patent Office
Prior art keywords
glazing
enamel
sheets
bending
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12730988.8A
Other languages
German (de)
English (en)
Inventor
Sophie Danneels
Fabien DESCAMPS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Glass Europe SA
Original Assignee
AGC Glass Europe SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Glass Europe SA filed Critical AGC Glass Europe SA
Publication of EP2742011A1 publication Critical patent/EP2742011A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10339Specific parts of the laminated safety glass or glazing being colored or tinted
    • B32B17/10348Specific parts of the laminated safety glass or glazing being colored or tinted comprising an obscuration band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10889Making laminated safety glass or glazing; Apparatus therefor shaping the sheets, e.g. by using a mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0252Re-forming glass sheets by bending by gravity by gravity only, e.g. sagging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2205/00Compositions applicable for the manufacture of vitreous enamels or glazes
    • C03C2205/02Compositions applicable for the manufacture of vitreous enamels or glazes for opaque enamels or glazes

Definitions

  • the present invention relates to automotive glazings comprising enamelled patterns.
  • the glazings comprising an enamelled part offer particularities both as regards certain heat treatments, bending or quenching, or as regards the properties of the glazing in question.
  • the accent is put in the following on the aspect relating to the heat treatments but also on the properties which derive from the characteristics of these glazings.
  • enamelled strips modifies the local behavior of the glass sheets vis-à-vis the heat transfer during their shaping.
  • these enamels arranged on essentially transparent glass sheets are, for their part, mainly opaque to visible radiation but especially to infrared radiation.
  • Thermal transfers in the bending or quenching furnaces are for the most part related to the radiative mode, even if a significant part can be of the convective type.
  • the radiative mode of heat transfer is for the most part concentrated in the near infrared
  • FIRE REPLACEMENT LIGHT (RULE 26) (789-2500nm) or far (more than 2500nm) and for less in the visible.
  • Clear glass absorbs infrared radiation, but this absorption is significant, especially when its temperature rises, remains lower than that observed for opaque enamel products, especially when the color of these is very dark, which is the case of the most used products for the masking which has been mentioned above.
  • the bending of the leaves can be carried out according to different techniques. In all cases, however, the presence of enamelled parts intervenes on the thermal conditioning of the leaves.
  • these techniques the most sensitive to the establishment of precise temperature conditions are those which comprise at least partially a "gravity" forming step. In these techniques the shaping of the glass takes place, when the latter is at its softening temperature, under the effect of its own weight. In this case, the glass sheets being supported only at their periphery, the forces acting locally are greater at the edge than at the center of the sheets, leading to greater deformation, making it difficult to obtain the shape. desired. This type of difficulty is encountered as soon as a part of the process comprises deformation by gravity, even if the technique also includes accessory methods such as localized partial pressing.
  • Successful shaping involves controlling the local temperature conditions at the different points on the surface of the leaves, a higher temperature favoring more intense deformation and vice versa.
  • the edges should be kept at a lower temperature than the center of the sheets. To achieve this result it is traditional to control the absorption of glass by transferring part of the thermal input locally to the elements that accompany the glazing during bending, and / or by modifying the distribution of radiation on the curved sheet or leaves by adding infrared sources.
  • thermal masses made of metal plates are distributed around the perimeter of the sheet support. These thermal masses absorb a controlled portion of the infrared radiation opposite the areas of the enamel-coated sheets likely to absorb more heat than the neighboring uncoated areas. This mode of control is not perfectly satisfactory even if it makes it possible to obtain bumps having the essential geometrical characteristics desired. In practice the adjustment of thermal masses to the need for absorption requires multiple tests and a great experience in this field. But the presence of these thermal masses has other disadvantages.
  • the invention proposes to respond at least in part to the difficulties stated with regard to the production of glazing comprising enamelled parts and if necessary to improve the properties of these windows.
  • the invention provides glazings such as those which are the subject of claim 1.
  • glazing according to the invention it is appropriate to choose enamelled compositions which while giving a high opacity to the coated parts, limit the absorption infrared radiation from these coatings.
  • the reflected part must not exceed that which would lead to insufficient heating of the glasses located under these enamels with respect to the incident IR rays.
  • the limit in question is a function of various parameters which are related to the configuration of the furnace, the arrangement of the sources of radiation, the material on which the glass sheets are arranged, and the glass sheets themselves.
  • the reflection of the enamelled parts measured according to the ISO 9050 standard preferably does not exceed 30% of the lengths of glass. wave of more than 800nm, and more commonly, no more than 25% of these wavelengths.
  • Glazing according to the invention must simultaneously have a light transmission that corresponds to the type of glazing considered, windshield, rear window, roof, side windows ..., but also whose parts having an enamelled coating are essentially opaque to the visible.
  • the masking function for these enamelled parts leads to a light transmittance of the visible range that is practically zero. This transmission must be less than 1% and generally less than 0.1% measured according to EN 410. This concerns only the coated parts. Glazing often has edge edges enamelled edges made of points providing progressive masking. These selvedges present a transmission that decreases from the uncoated part of the glazing to that in which the enamelled layer is uniform.
  • Glazing for the automotive sector shall comply with the characteristics prescribed by regulations or practice for these uses.
  • the reflection in the wavelengths of the visible glazing should not be too important to maintain a good light transmission of the transparent parts, but also not to generate a mirror effect.
  • the enamelled parts must not present a reflection too important of the visible field.
  • reflection in the visible range should not be too important to maintain a good light transmission of the transparent parts, but also not to generate a mirror effect.
  • the enamelled parts must not present a reflection too important of the visible field.
  • (Remail) measured according to EN 410 preferably should not exceed 25%, particularly preferably not more than 20%, and preferably not more than 10%.
  • the reflection of the glazing in the visible does not show a strong difference between the coated parts and those which are not (Rverre). This difference is advantageously less than 10% and preferably less than 5%.
  • the implementation of the invention in bending techniques allows better local control of the temperature of the shaped sheets and especially in the steps of modifying the sheets under the effect of their own weight.
  • the invention is advantageously applicable that the bending is performed entirely by gravity or that the process comprises elements of forming by pressing of the sheets, in particular pressings concerning only certain parts of the glazing, as is often the case for glazings with locally very pronounced curvatures.
  • the implementation of the invention is particularly useful when the bending is performed simultaneously on two sheets for subsequent assembly by means of a polyvinyl butyraal (PVB) thermoplastic interlayer sheet.
  • PVB polyvinyl butyraal
  • the glass sheets that are part of the composition of laminated glazings have the enamelled parts either on the face 2 or on the face 4, according to the traditional name which leads to the numbering of the faces of the glass sheets from that facing outwards. of the vehicle.
  • the enamelled parts can be either between the two sheets of glass, or on the face of the upper sheet directly exposed to infrared. The choice between these two positions is at least partly a function of the enamel and its treatment.
  • the applied layer may undergo no treatment prior to introduction into the bending and / or quenching furnace.
  • the coating goes through the different stages of cooking as the temperature rises.
  • the first step leads to the removal of the most volatile solvents and possibly organic constituents used in the composition of the enamel pastes.
  • the coating is no longer "tacky".
  • the temperature of the glass sheets continuing to rise, the fried contained in the enamel paste is brought to its melting point and the glass sheets reach their state of softening which leads to bending.
  • the enamel composition is only in contact with the atmosphere. It is not likely to be moved or altered.
  • the simultaneous bending of two sheets also leads in some cases to the reversal of the order of the sheets in the final assembled glazing.
  • the bending being performed the sheet in the upper position during the bending is placed below for assembly. This way allows to proceed with the enamelled coating exposed to the atmosphere on the upper sheet during bending. In other words cooking can be conducted as in the first case indicated above, with or without pre-cooking enamel while having the enamel in position 2 in the laminated glazing.
  • the invention is applicable to all glazing irrespective of the thickness of the sheets or their possible color. It has particularly sensitive advantages for the bending of the least thick leaves. Controlling the thermal conditions for these sheets is difficult to ensure because of their lower thermal inertia. It is therefore very useful to improve this control by implementing the provisions of the invention.
  • infrared-reflecting enamels also offers advantages for the glazings obtained.
  • the fact of having enamels whose characteristic compared to traditional masking enamels is to reflect a significantly greater share of infrared radiation can reduce heating of elements of the glazing or those which are in contact with this glazing when these windows are exposed to solar radiation.
  • a lower heating of the enamelled edges of a glazing avoids too fast aging adhesives gluing the glazing to the vehicle body. This is particularly noticeable on glazing that is highly exposed to solar radiation, such as roofs.
  • the implementation products according to the invention makes it possible to improve the protection of the heat-sensitive functional elements that may comprise these glazings in the immediate vicinity, possibly partially under these enamelled parts. This is for example the case of materials used in the composition of certain glazing whose light transmission is electro-controlled, including those which include particles such as cells called "SPD" (suspended particle device).
  • FIG. 2a represents the state of the thermal masses necessary for a frame bending of a windshield model with a usual enamel
  • FIG. 1 compares the reflection spectra as a function of the wavelengths of enamels conventionally used on automotive glazing on the one hand and enamels meeting the criteria of the invention on the other hand. All enamels used are based on mineral pigments. Applied pastes contain solvents, binders and fries in addition to dark colored pigments based on metal oxides, especially iron oxide.
  • the application of the paste leads to an enamel layer of 40 ⁇ thick.
  • the reflection measurements are carried out by exposing the enamel layer directly to the radiation, the glass only serving as a support.
  • the traditional enamel composition has a reflection A that is practically uniform over the entire infrared spectrum.
  • the level of reflection is of the order of 5%.
  • the spectrum of enamel corresponding to the invention B has a very rapidly increasing reflection for wavelengths greater than 750 nm. This reflection increases to a level that is about 35%.
  • the two samples are placed in the open air side by side and flat against a source of infrared radiation of limited power. Both samples are identically exposed. The temperature rise of the glass sheets is measured. Under the conditions of the test, the temperature stabilizes after 10 minutes of exposure.
  • the temperature of the sample coated with traditional enamel is 92 ° C, that of the enamel whose reflection of the infrared is increased to 77 ° C. For exposure to low power infrared radiation, a significant difference is thus obtained.
  • This mechanism is applied in a series of tests relating to the bending of glass sheets of a windshield model. The bending is conducted entirely by gravity on the two superimposed sheets. The cut leaves are placed horizontally on frames intended to support their periphery in the bending. The entire frame and two sheets is passed through a so-called "tunnel" furnace in which the temperature rises gradually to reach the temperature of deflection of the glass with a good distribution of the temperature on the surface of the leaves. The progression in the oven must be fast enough for reasons of economic efficiency. The residence time in the oven to the deflection of the leaves that are applied against the frame that supports them, in this case is 12 minutes.
  • the temperature In the distribution of temperatures on the surface of the leaves it is important to ensure that the parts which are subjected to the most important forces of gravity do not undergo an excessive deformation with respect to that of the central parts of the leaves. To avoid undesirable deformation, the temperature must be lower on the edges of the glass sheets.
  • the temperature control for the windshield model leads to maintaining a ten or so degrees of difference between the center of the sheets and the edges thereof, respectively about 625.degree. and 615 ° C.
  • the two sheets are ordinary "float" glass and each have a thickness of 2.1mm.
  • the enamel is applied on the edges of the upper sheet on the face directly exposed to the radiation.
  • the bending being completed, the order of the sheets is reversed during the subsequent assembly.
  • the width of the enamelled strip varies according to the location thereof. It is about 2.5cm on the side edges, 5cm at the top of the windshield with an extension at the location of the mirror brackets and rain or light sensors, up to 15cm, and about 16cm in the bottom of the windshield.
  • the support frames used are provided with thermal masses consisting of steel plates. These plates arranged under the glass sheets are in planes substantially parallel to these sheets. The presence of these plates is necessary in front of the parts having the widest enamelled strips at the top and bottom of the windshield, with a particularly sensitive point corresponding to the location of attachment of the mirror and the various sensors.
  • Figures 2a and 2b are the representation of the location and shape of the heat masses relative to the glass sheets. On each plate its thickness in millimeters is indicated. The choice of masses is such that the result obtained is practically identical, or even improved, in the case of the invention as regards the shape obtained but also the optical and mechanical characteristics of these glazings.
  • Figure 2a presents the case of the use of traditional low reflection enamel.
  • the thickness of the plates used as thermal masses appears all the more important that they are under the largest enamelled areas. Also in this example the most sensitive point is the one at the center of the upper part where two superimposed plates are needed totaling 11.5mm thick.
  • the set of thermal masses for identical conditions of passage in the oven has reduced thicknesses. The evolution is particularly noticeable in the fixing area of the mirror. In this area the plate goes from 11.5mm to 5mm thick. But all plates have a reduced thickness of at least 2mm.
  • thermal masses allow a more convenient maintenance of the tooling, but especially results in a reduction of the energy consumption.
  • Part of the energy consumed is used to heat these thermal masses.
  • the energy thus expended does not contribute to the heating operation of the glass. It is lost to the extent that the frames after bending the sheets, and out of the oven, are cooled to room temperature in the circuit which leads them to a new cycle of use.
  • the energy consumption related to the temperature rise of the thermal masses is of the order of 10% of that used for heating the glass itself, and about 1.5% of the total energy. consumed in the oven.
  • the reduction of the order of 30% of these masses therefore allows a reduction of the order of 0.5% of the total energy consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Glass Compositions (AREA)

Abstract

L'invention concerne un vitrage automobile lequel comporte sur une partie au moins de sa surface un revêtement émaillé faisant obstacle à la transmission lumineuse, caractérisé en ce que ledit revêtement émaillé présente une réflexion des longueurs d'onde de plus de 800nm qui n'est pas inférieure à 10% et de préférence pas inférieure à 15%.

Description

Vitrage automobile avec motifs émaillés
La présente invention concerne des vitrages automobile comportant des motifs émaillés.
Les vitrages comportant une partie émaillée offrent des particularités tant en ce qui concerne certains traitements thermiques, bombage ou trempe, ou en ce qui concerne les propriétés des vitrages en question. L'accent est mis dans ce qui suit sur l'aspect relatif aux traitements thermiques mais aussi sur les propriétés qui découlent des caractéristiques de ces vitrages.
Dans les vitrages automobile, il est d'usage notamment de disposer une zone émaillée le long des bords du vitrage. La présence de cette zone émaillée est liée au masquage des cordons de colle qui fixent le vitrage à la carrosserie du véhicule. C'est le cas par exemple pour les pare-brise, les lunettes arrière les custodes ou les toits vitrés. Dans la suite il sera fait référence aux pare-brise ou aux toits étant entendu que l'invention s'applique à tous les vitrages comportant des parties émaillées opaques, ou substantiellement opaques.
La présence de bandes émaillées modifie le comportement local des feuilles de verre vis-à-vis des transferts thermiques lors de leur mise en forme. La raison en est que ces émaux disposés sur des feuilles de verre essentiellement transparentes, sont, pour leur part, principalement opaques au rayonnement visible mais surtout au rayonnement infrarouge.
Les transferts thermiques dans les fours de bombage ou de trempe sont pour la part la plus importante liés au mode radiatif, même si une part non négligeable peut être du type convectif. Le mode radiatif de transfert de chaleur est pour la plus grande partie concentré dans l'infrarouge proche
FEUI LLE DE REMPLACEMENT (RÈGLE 26) (789-2500nm) ou lointain (plus de 2500nm) et pour partie moindre dans le visible.
Le verre clair absorbe le rayonnement infrarouge, mais cette absorption tout en étant significative, en particulier lorsque sa température s'élève, reste inférieure à celle que l'on observe pour les produits émaillés opaques, notamment lorsque la couleur de ceux-ci est très sombre, ce qui est le cas des produits les plus utilisés pour les masquages dont il a été question plus haut.
La différence d'absorption des rayonnements infrarouges par les parties émaillées du vitrage par rapport à celle des parties non émaillées conduit à des difficultés de contrôle des températures des feuilles lors des traitements thermiques. Plus précisément, la difficulté tient à la nécessité d'avoir des températures bien déterminées, et différentes, selon les parties de la surface des feuilles considérées, et la présence des bandes émaillées absorbantes conditionne partiellement la température du verre dans ces parties revêtues.
Le bombage des feuilles peut être effectué suivant différentes techniques. Dans tous les cas néanmoins la présence des parties émaillées intervient sur le conditionnement thermique des feuilles. Parmi ces techniques, les plus sensibles à l'établissement de conditions précises de températures sont celles qui comportent au moins partiellement une étape de formage par "gravité". Dans ces techniques la mise en forme du verre s'effectue, lorsque celui-ci est à sa température de ramollissement, sous l'effet de son propre poids. Dans ce cas les feuilles verre n'étant soutenues qu'à leur périphérie, les forces qui s'exercent localement sont plus importantes au bord qu'au centre des feuilles, conduisant à une déformation plus importante, rendant difficile l'obtention de la forme souhaitée. Ce type de difficulté est rencontré dès l'instant où une part du procédé comporte une déformation par gravité, même si la technique inclut aussi des modalités accessoires comme un pressage partiel localisé. La réussite de la mise en forme passe par la maîtrise des conditions de température locales aux différents points de la surface des feuilles, une température plus élevée favorisant une déformation plus intense et inversement. Dans le formage par gravité réalisé sur un cadre porteur il convient de maintenir les bords à une température moindre que celle du centre des feuilles. Pour atteindre ce résultat il est traditionnel de contrôler l'absorption du verre en transférant localement une partie de l'apport thermique aux éléments qui accompagnent le vitrage au cours du bombage, et/ou en modifiant la distribution du rayonnement sur la ou les feuilles bombées par addition de sources d'infrarouges.
Par exemple, des "masses thermiques", constituées de plaques métalliques sont distribuées sur le pourtour du support des feuilles. Ces masses thermiques absorbent une part contrôlée du rayonnement infrarouge en regard des zones des feuilles revêtues d'émail susceptibles d'absorber plus de chaleur que les zones voisines non revêtues. Ce mode de contrôle n'est pas parfaitement satisfaisant même s'il permet d'obtenir des bombages présentant les caractéristiques géométriques essentielles souhaitées. Dans la pratique l'ajustement des masses thermiques aux nécessités d'absorption requiert des essais multiples et une grande expérience dans ce domaine. Mais la présence de ces masses thermiques a d'autres inconvénients.
Ainsi l'accumulation de chaleur dans les cadres qui comportent ces masses, allonge le processus qui conduit après bombage au figeage des formes par abaissement de la température. En dehors des feuilles il faut aussi refroidir les cadres et ces masses thermiques. De la même façon l'énergie emmagasinée, qui est ensuite dissipée lors du refroidissement ne contribue pas au bombage et accroît la consommation globale.
L'invention propose de répondre au moins en partie aux difficultés énoncées en ce qui concerne la production de vitrages comportant des parties émaillées et le cas échéant d'améliorer les propriétés de ces vitrages.
L'invention propose des vitrages tels que ceux qui qui font l'objet de la revendication 1. Pour les vitrages selon l'invention, il convient de choisir des compositions émaillées qui tout en conférant une grande opacité aux parties revêtues, limitent l'absorption des rayonnements infrarouges de ces revêtements.
Une part du rayonnement infrarouge est donc réfléchie. Pour la mise en forme des vitrages, la part réfléchie ne doit pas excéder ce qui conduirait à un échauffement insuffisant des verres situés sous ces émaux par rapport aux rayons IR incidents. La limite en question est fonction de divers paramètres qui sont liés à la configuration du four, à la disposition des sources du rayonnement, au matériel sur lequel les feuilles de verre sont disposées, et aux feuilles de verre elles-mêmes. En pratique dans les configurations et pour les feuilles de verre les plus usuelles, selon l'invention la réflexion des parties émaillées mesurée selon la norme ISO 9050 (illuminant A sous 2°), n'excède pas de préférence 30% des longueurs d'onde de plus de 800nm, et de façon plus usuelle, pas plus de 25% de ces longueurs d'onde. Les vitrages selon l'invention doivent simultanément présenter une transmission lumineuse qui corresponde au type de vitrage considéré, pare-brise, lunette arrière, toit, vitrages latéraux..., mais aussi dont les parties comportant un revêtement émaillé soient essentiellement opaques au visible. La fonction de masquage pour ces parties émaillées, conduit à une transmission lumineuse du domaine visible pratiquement nulle. Cette transmission doit être inférieure à 1% et généralement est inférieure à 0,1% mesurée selon la norme EN 410. Ceci ne concerne que les parties revêtues. Les vitrages comportent souvent en bordure des parties émaillées, des lisières faites de points offrant un masquage progressif. Ces lisières présentent une transmission qui décroit depuis la partie du vitrage non revêtue à celle dans laquelle la couche émaillée est uniforme.
Les vitrages destinés au domaine automobile doivent respecter les caractéristiques que les règlements ou la pratique imposent pour ces utilisations. De façon générale la réflexion dans les longueurs d'onde du visible du vitrage ne doit pas être trop importante pour maintenir une bonne transmission lumineuse des parties transparentes, mais aussi pour ne pas engendrer un effet de miroir. De même les parties émaillées ne doivent pas présenter une réflexion trop importante du domaine visible. Pour les parties émaillées la réflexion dans le domaine visible
(Rémail) mesurée selon la norme EN 410, de préférence ne doit pas excéder 25%, de façon particulièrement préférée pas 20%, et avantageusement n'est pas supérieure à 10%.
Il est généralement souhaitable que la réflexion du vitrage dans le visible ne montre pas une forte différence entre les parties revêtues et celles qui ne le sont pas (Rverre). Cette différence est avantageusement inférieure à 10% et de préférence inférieure à 5%.
La mise en oeuvre de l'invention dans les techniques de bombage permet de mieux contrôler localement la température des feuilles mise en forme et tout particulièrement dans les étapes de modification des feuilles sous l'effet de leur propre poids.
Si, comme indiqué précédemment, des différences de température sont nécessaires entre les zones périphériques revêtues d'émail (Témail) et celles non revêtues (Tverre), ces différence doivent néanmoins être bien contrôlées. En pratique elles n'excèdent pas 30°C et de préférence ne sont pas supérieure à 25°C.
L'invention est applicable avantageusement que le bombage soit effectué entièrement par gravité ou que le processus comporte des éléments de formage par pressage des feuilles, notamment des pressages ne concernant que certaines parties du vitrage comme souvent pour les vitrages présentant localement des courbures très accentuées.
La mise en oeuvre de l'invention est particulièrement utile lorsque le bombage est réalisé simultanément sur deux feuilles destinées à un assemblage ultérieur au moyen d'une feuille intercalaire thermoplastique de type polyvinyl-butyraal (PVB).
Les feuilles de verre qui entrent dans la composition de vitrages feuilletés présentent les parties émaillées soit en face 2, soit en face 4, selon la dénomination traditionnelle qui conduit à la numérotation des faces des feuilles de verre à partir de celle tournée vers l'extérieur du véhicule.
Dans les opérations de bombage par gravité de deux feuilles de verre, celles-ci reposent sur un cadre support qui soutient les feuilles à leur périphérie. Dans cette configuration les parties émaillées peuvent se trouver soit entre les deux feuilles de verre, soit sur la face de la feuille supérieure directement exposée aux infrarouges. Le choix entre ces deux positions est en partie au moins fonction de l'émail et de son traitement.
Aucune précaution particulière n'est nécessaire quand l'émail est sur la face supérieure. La couche appliquée peut ne subir aucun traitement préalable à l'introduction dans le four de bombage et/ou de trempe. Le revêtement passe par les différents stades de cuisson au fur et à mesure de l'élévation de la température. La première étape conduit à l'élimination des solvants les plus volatiles et éventuellement des constituants organiques entrant dans la composition des pâtes d'émail. Ces modifications ainsi que la stabilisation des constituants minéraux, nommée sintérisation, termine ce qui constitue la pré-cuisson. A ce stade le revêtement n'est plus "collant". Dans la suite du procédé, la température des feuilles de verre continuant de s'élever, la frite contenue dans la pâte d'émail est portée à son point de fusion et les feuilles de verre atteignent leur état de ramollissement qui conduit au bombage. Tout au long de ce processus la composition d'émail n'est qu'au contact de l'atmosphère. Elle n'est pas susceptible d'être déplacée ou altérée.
Lorsque l'émail se trouve sur l'une des face des feuilles qui sont au contact l'une de l'autre au cours du bombage, il est nécessaire de faire en sorte qu'il soit précuit jusqu'à rendre la couche émaillée non "collante" avant la superposition des feuilles de verre pour éviter tout transfert d'émail par contact d'une feuille à l'autre. L'opération de pré-cuisson nécessite donc un traitement séparé supplémentaire.
Le bombage simultané de deux feuilles conduit aussi dans certains cas à l'inversion de l'ordre des feuilles dans le vitrage assemblé final. Le bombage étant effectué, la feuille en position supérieure durant le bombage est placée en dessous pour l'assemblage. Cette manière permet de procéder avec le revêtement émaillé exposé à l'atmosphère sur la feuille supérieure pendant le bombage. Autrement dit la cuisson peut être conduite comme dans le premier cas indiqué précédemment, avec ou sans pré-cuisson de l'émail tout en ayant l'émail en position 2 dans le vitrage feuilleté.
L'invention est applicable à tous les vitrages indépendamment de l'épaisseur des feuilles ou leur couleur éventuelle. Elle présente des avantages particulièrement sensibles pour le bombage des feuilles les moins épaisses. La maîtrise des conditions thermiques pour ces feuilles est délicate à assurer en raison de leur moindre inertie thermique. Il est donc très utile d'améliorer cette maîtrise en mettant en oeuvre les dispositions de l'invention.
Dans la maîtrise des conditions thermiques interviennent notamment les conditions de refroidissement des vitrages destinées à leur conférer les contraintes nécessaires, en particulier les contraintes de bord, qui conditionnent la résistance mécanique des vitrages. Les contraintes recherchées proviennent de la cinétique de refroidissement de la surface des feuilles par rapport à celle existant au coeur des feuilles. La différence de vitesse de refroidissement engendre les contraintes en question. Dans la distribution des contraintes celles qui se situent sur le bords du vitrages sont les plus sensibles.
Pour les vitrages minces, il est difficile de procéder au refroidissement en maintenant un gradient de température adéquat dans l'épaisseur des feuilles. Le refroidissement doit être très rapide. Le refroidissement rapide est d'autant plus difficile à obtenir que les feuilles de verre se trouvent dans un environnement ayant emmagasiné une quantité plus importante de chaleur. Nous avons souligné plus haut qu'un des moyens mis en oeuvre systématiquement dans les vitrages bombés par gravité pour améliorer la distribution des températures, consistait à disposer des masses thermiques notamment en regard des bords du vitrage. Ces masses thermiques sont traditionnellement solidaires du support utilisé pour le bombage par gravité. Si ces masses assurent une bonne distribution des températures, elles ajoutent à l'inertie qui réduit la vitesse de refroidissement. Comme indiqué dans les exemples figurant dans la suite de la description, la mise en oeuvre de l'invention permet de réduire de manière significative ces masses thermiques. Par voie de conséquence l'application de d'émail réfléchissant les IR conduit donc à une amélioration de la trempe des verres minces.
Indépendamment de l'intérêt lié à la technique de formage des feuilles de verre, l'utilisation des émaux réfléchissant les infrarouges offre aussi des avantages pour les vitrages obtenus. En particulier sur les vitrages automobile, le fait de disposer d'émaux dont la caractéristique par rapport aux émaux de masquage traditionnels est de réfléchir une part significativement plus importante des rayons infrarouges, permet de réduire échauffement des éléments du vitrage ou de ceux qui sont en contact avec ce vitrage lorsque ces vitrages sont exposés au rayonnement solaire.
A titre indicatif, un échauffement moindre des bords émaillés d'un vitrage évite un vieillissement trop rapide des adhésifs collant le vitrage à la carrosserie du véhicule. Ceci est particulièrement sensible sur les vitrage très exposés au rayonnement solaire que sont les toits. De même la mise en oeuvre des produits selon l'invention permet d'améliorer la protection des éléments fonctionnels sensibles à la chaleur que peuvent comporter ces vitrages à proximité immédiate, éventuellement partiellement sous ces parties émaillées. C'est par exemple le cas des matériaux entrant dans la composition de certains vitrages dont la transmission lumineuse est électro-commandée, notamment ceux qui incluent des particules comme les cellules dites "SPD" (suspended particle device) .
L'invention est décrite dans la suite en faisant référence à la planche annexée dans laquelle : - la figure 1 , présente des spectres de réflexions pour des applications d'émaux selon les techniques usuelles et selon l'invention ;
- la figure 2a représente l'état des masses thermiques nécessaires pour un bombage sur cadre d'un modèle de pare-brise avec un émail usuel ;
- la figure 2b présente l'état des masses thermiques nécessaires pour le même pare-brise avec une bordure émaillée selon l'invention.
La figure 1 établit une comparaison des spectres de réflexion en fonction des longueurs d'onde, d'émaux traditionnellement utilisés sur les vitrages automobile d'une part, et d'émaux répondant aux critères de l'invention d'autre part. Tous les émaux utilisés sont à base de pigments minéraux. Les pâtes appliquées contiennent solvants, liants et frite en plus des pigments colorés sombres à base d'oxydes métalliques, notamment d'oxyde de fer.
Pour les émaux présentant une réflexion IR accrue des pigments commerciaux sont disponibles comme par exemple le pigment "Sicopal Black K 0095" de BASF. Ce pigment à base d'oxyde de fer et de chrome est bien adapté à son incorporation dans des pâtes, destinées à l'application sur feuilles de verre pour constituer des motifs opaques. Les pâtes sont appliquées sur une feuille de verre "float" ordinaire. L'émail est précuit à environ 180°C pendant 6mn pour le sintériser. Il est ensuite porté à 630°C, température correspondant à celle atteinte au cours des opérations de bombage de feuilles de verre. Cette température est supérieure à celle nécessaire pour fondre la frite et finir la cuisson.
Pour toutes les compositions, l'application de la pâte conduit à une couche d'émail de 40μ d'épaisseur.
Les mesures de réflexion sont effectuées en exposant la couche d'émail directement au rayonnement, le verre ne servant que de support.. La composition d'émail traditionnelle présente une réflexion A pratiquement uniforme sur l'ensemble du spectre infrarouge. Le niveau de réflexion est de l'ordre de 5%. Le spectre de l'émail correspondant à l'invention B présente une réflexion croissant très rapidement pour les longueurs d'onde supérieures à 750nm. Cette réflexion croit jusqu'à un palier qui se situe à environ 35%.
Pour établir l'effet de cette réflexion sur le comportement de feuilles de verre, les deux échantillons sont disposés à l'air libre côte à côte et à plat face à une source de rayonnement infrarouge de puissance limitée. Les deux échantillons sont exposés de manière identique. On mesure l'élévation de température des feuilles de verre. Dans les conditions de l'essai la température se stabilise après lOmn d'exposition.
La température de l'échantillon revêtu d'émail traditionnel est de 92°C, celle de l'émail dont la réflexion des infrarouges est accrue, s'établit à 77°C. Pour une exposition à un rayonnement infrarouge de faible puissance on obtient donc une différence sensible. Ce mécanisme est mis en application dans une série d'essais relatifs au bombage de feuilles de verre d'un modèle de pare-brise. Le bombage est conduit entièrement par gravité sur les deux feuilles superposées. Les feuilles découpées sont placées horizontalement sur des cadres destinés à soutenir leur périphérie au cour du bombage . L'ensemble du cadre et des deux feuilles est passé dans un four dit "tunnel" dans lequel la température s'élève progressivement pour atteindre la température de fléchissement du verre avec une bonne répartition de la température sur la surface des feuilles. La progression dans le four doit être suffisamment rapide pour des raisons de rendement économique. La durée de séjour dans le four jusqu'au fléchissement des feuilles qui viennent s'appliquer contre le cadre qui les supporte, dans le cas présent est de 12mn.
Dans la distribution des températures sur la surface des feuilles il est important de faire en sorte que les parties qui sont soumises aux forces de gravité les plus importantes ne subissent pas une déformation excessive par rapport à celle des parties centrales des feuilles. Pour éviter une déformation indésirable, la température doit être moins élevée sur les bords des feuilles de verre.
Le contrôle des températures, pour le modèle de pare-brise dont la représentation est exposée aux figures 2a et 2b, conduit à maintenir une dizaine de degrés de différences entre le centre des feuilles et les bords de celles-ci, respectivement d'environ 625 et 615°C. Dans cet exemple les deux feuilles sont de verre "float" ordinaire et ont chacune une épaisseur de 2,1mm.
Dans cet exemple l'émail est appliqué sur les bords de la feuille supérieure sur la face directement exposée au rayonnement. Le bombage étant achevé, l'ordre des feuilles est inversé lors de l'assemblage ultérieur. La largeur de la bande émaillée varie selon l'emplacement de celle-ci. Elle est de l'ordre de 2,5cm sur les bords latéraux, de 5cm en haut du pare -brise avec une extension à l'emplacement des supports de rétroviseur et de capteurs de pluie ou de lumière, allant jusqu' à 15cm, et d'environ 16cm dans le bas du pare -brise. Pour atteindre le profil de température qui évite les déformations excessives à proximité des bords, les cadres supports utilisés sont pourvus de masses thermiques constituées de plaques d'acier. Ces plaques disposées sous les feuilles de verre sont dans des plans sensiblement parallèles à ces feuilles. La présence de ces plaques est nécessaire en face des parties comportant les bandes émaillées les plus larges, en haut et en bas du pare- brise, avec un point particulièrement sensible correspondant à l'emplacement de fixation du rétroviseur et des différents capteurs.
La présence des plaques absorbant une partie du rayonnement, évite un échauffement localisé excessif au cours du processus d'élévation de température dans le four de bombage.
Les figures 2a et 2b sont la représentation de l'emplacement et de la forme des masses thermiques par rapport aux feuilles de verre. Sur chaque plaque son épaisseur en millimètres est indiquée. Le choix des masses est tel que le résultat obtenu soit pratiquement identique, ou même amélioré, dans le cas de l'invention pour ce qui concerne la forme obtenue mais aussi, les caractéristique optiques et mécaniques de ces vitrages.
La figure 2a présente le cas de l'utilisation de l'émail traditionnel à faible réflexion. L'épaisseur des plaques servant de masses thermiques apparaît d'autant plus importante que celles-ci sont sous les zones émaillées les plus larges. Toujours dans cet exemple le point le plus sensible est celui au centre de la partie haute ou deux plaques superposées sont nécessaires totalisant 11,5mm d'épaisseur. Le même pare-brise, en utilisant un émail dont la réflexion est celle indiquée précédemment, conduit à l'utilisation d'un cadre comportant les plaques représentées à la figure 2b. Dans l'exemple de mise en œuvre de l'invention, l'ensemble des masses thermiques pour des conditions identiques de passage dans le four, présente des épaisseurs réduites. L'évolution est particulièrement sensible dans la zone de fixation du rétroviseur. Dans cette zone la plaque passe de 11,5mm à 5mm d'épaisseur. Mais toutes les plaques voient leur épaisseur réduite d'au moins 2mm.
La réduction des masses thermiques permet une maintenance plus commode de l'outillage, mais surtout se traduit par une réduction de la consommation énergétique. Une part de l'énergie consommée est en effet utilisée pour le chauffage de ces masses thermiques. L'énergie ainsi dépensée ne contribue pas à l'opération de chauffage du verre. Elle est perdue dans la mesure où les cadres après le bombage des feuilles, et sortis du four, sont refroidis à température ambiante dans le circuit qui les conduit à un nouveau cycle d'utilisation. Pour le cas considéré la consommation énergétique liée à l'élévation de température des masses thermiques est de l'ordre de 10% de celle utilisée pour le chauffage du verre lui-même, et d'environ 1 ,5% de l'énergie totale consommée dans le four. La réduction de l'ordre de 30% de ces masses permet donc une réduction de l' ordre de 0 , 5% de la consommation énergétique totale.

Claims

REVENDICATIONS
1. Vitrage automobile lequel comporte sur une partie au moins de sa surface un revêtement émaillé faisant obstacle à la transmission lumineuse, caractérisé en ce que ledit revêtement émaillé présente une réflexion des longueurs d'onde de plus de 800nm qui n'est pas inférieure à 10% et de préférence pas inférieure à 15%.
2. Vitrage selon la revendication 1 dans lequel la transmission lumineuse de la partie revêtue d'émail est inférieure à 1% et de préférence inférieure à 0,1%.
3. Vitrage selon l'une des revendications précédentes dans lequel la réflexion infrarouge de l'émail n'excède pas 30%.
4. Vitrage selon l'une des revendications précédentes dans lequel la partie revêtue de l'émail est au moins localisée à la périphérie du vitrage.
5. Vitrage selon l'une des revendications précédentes dans lequel les parties revêtues d'émail présentent un taux de réflexion dans le visible (Rémail), qui ne dépasse pas 25% et de préférence 20%.
6. Vitrage selon la revendication 5 dans lequel les taux de réflexion dans le visible Rémail et Rverre sont tels que leur différence n'excède pas 10% et de préférence pas 5%.
7. Procédé de bombage dans lequel la ou les feuilles de verre soumises au bombage comportent un revêtement émaillé faisant obstacle à la transmission lumineuse, caractérisé en ce que ledit revêtement émaillé présente une réflexion des longueurs d'onde de plus de 800nm qui n'est pas inférieure à 10% et de préférence pas inférieure à 15%.
8. Procédé selon la revendication 7 dans lequel le bombage eest effectué au moins en partie par gravité, la ou les feuilles de verre revêtues de l'émail étant supportées pendant leur bombage sur leur périphérie, le support se situant sous les parties revêtues d'émail.
9. Procédé selon la des revendication 8 dans lequel au cours du bombage l'écart des températures les plus élevées entre les parties des feuilles revêtues d'émail (Témail), et celles qui ne le sont pas (Tverre), ne dépasse pas 30°C et de préférence pas 20°C.
10. Procédé selon l'une des revendications 7 à 9 dans lequel deux feuilles de verre disposées l'une sur l'autre sont bombées simultanément, la feuille située sur le dessus portant seule une partie émaillée sur la face qui n'est pas en contact avec la deuxième feuille.
EP12730988.8A 2011-08-12 2012-07-03 Vitrage automobile avec motifs emailles Withdrawn EP2742011A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2011/0493A BE1020191A3 (fr) 2011-08-12 2011-08-12 Vitrage automobile avec motifs emailles.
PCT/EP2012/062889 WO2013023832A1 (fr) 2011-08-12 2012-07-03 Vitrage automobile avec motifs emailles

Publications (1)

Publication Number Publication Date
EP2742011A1 true EP2742011A1 (fr) 2014-06-18

Family

ID=46420216

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12730988.8A Withdrawn EP2742011A1 (fr) 2011-08-12 2012-07-03 Vitrage automobile avec motifs emailles

Country Status (4)

Country Link
US (1) US20160185656A1 (fr)
EP (1) EP2742011A1 (fr)
BE (1) BE1020191A3 (fr)
WO (1) WO2013023832A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3034296A1 (fr) * 2014-12-19 2016-06-22 AGC Glass Europe Vitrage feuillete
CN113548806B (zh) * 2015-10-23 2022-11-11 皮尔金顿集团有限公司 制造窗玻璃的方法,和由此生产的窗玻璃
US10513457B2 (en) 2016-02-18 2019-12-24 Prince Minerals Italy S.R.L. Ceramic ink for automotive glass
FR3050730B1 (fr) * 2016-04-27 2018-04-13 Saint-Gobain Glass France Procede d'impression d'email pour vitrage feuillete a couches fonctionnelles
CN111417515A (zh) 2018-11-05 2020-07-14 法国圣戈班玻璃厂 具有功能元件和遮蔽印刷物的复合玻璃板
DE102019133073B3 (de) * 2019-12-04 2021-01-28 Hochschule Düsseldorf Körperschaft des öffentlichen Rechts Verfahren zur Herstellung einer Verbundglasscheibe mit einer Sichtabdeckung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095007A1 (fr) * 2005-03-10 2006-09-14 Glaverbel Procede de bombage de feuilles de verre

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2663885B1 (fr) * 1990-07-02 1993-05-28 Saint Gobain Vitrage Int Vitrage en forme muni d'un reseau chauffant.
US6221147B1 (en) * 1998-12-18 2001-04-24 Cerdec Aktiengesellschaft Keramischre Farben Bismuth manganese oxide pigments
EP1140704B2 (fr) * 1998-12-18 2008-06-18 Ferro GmbH Pigments d'oxyde de bismuth manganese
US6983104B2 (en) * 2002-03-20 2006-01-03 Guardian Industries Corp. Apparatus and method for bending and/or tempering glass
BE1015822A3 (fr) * 2003-12-17 2005-09-06 Glaverbel Procede de bombage de feuilles de verre.
JP5610183B2 (ja) * 2009-11-11 2014-10-22 戸田工業株式会社 赤外線反射性黒色顔料、該赤外線反射性黒色顔料を用いた塗料及び樹脂組成物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095007A1 (fr) * 2005-03-10 2006-09-14 Glaverbel Procede de bombage de feuilles de verre

Also Published As

Publication number Publication date
BE1020191A3 (fr) 2013-06-04
US20160185656A1 (en) 2016-06-30
WO2013023832A1 (fr) 2013-02-21

Similar Documents

Publication Publication Date Title
BE1020191A3 (fr) Vitrage automobile avec motifs emailles.
EP1919838B1 (fr) Vitrage muni d'un empilement de couches minces agissant sur le rayonnement solaire
EP3856518B1 (fr) Procede d'obtention d'un materiau comprenant une feuille de verre
EP3122694B1 (fr) Vitrage muni d'un empilement de couches minces pour la protection solaire
CA2267842A1 (fr) Plaque vitroceramique et son procede de fabrication
FR2634753A1 (fr) Vitrage a couche electro-conductrice obtenue par pyrolyse de composes en poudre, utilisable en tant que pare-brise pour automobile
EP1289897B1 (fr) Composition d'email noir a base d'eau pour substrat en verre
WO2017216483A1 (fr) Feuille de verre avec email reflechissant le rayonnement infrarouge
EP0526263B1 (fr) Vitrage et son procédé d'obtention
EP4225711B1 (fr) Procede d'obtention d'un vitrage bombe feuillete
EP4038033B1 (fr) Procede d'obtention d'un vitrage bombe feuillete
WO2016051068A1 (fr) Substrat muni d'un empilement a proprietes thermiques et a couche intermediaire sous stoechiometrique
BE1015822A3 (fr) Procede de bombage de feuilles de verre.
FR3118769A1 (fr) Procédé d’obtention d’un vitrage bombé feuilleté
FR2736348A1 (fr) Procede d'emaillage de substrats en verre, composition d'email utilisee et produis obtenus
EP2861420B1 (fr) Toit vitré de véhicule automobile
WO2024068051A1 (fr) Panneau, vitrage et moyens d'obturation, d'un dispositif de traitement thermique utilisant les micro-ondes
BE1015831A3 (fr) Bombage de feuilles de verre.
WO2019145361A1 (fr) Procédé de traitement et d'assemblage de vitrage comprenant une couche á faible émissivité
BE1015056A3 (fr) Vitrage chauffant pour vehicule.
FR3118768A1 (fr) Procédé d’obtention d’un vitrage bombé feuilleté
FR3038599A1 (fr) Materiau comprenant un empilement de couches minces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140312

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20171018

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180501

P01 Opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER: APP_37362/2024

Effective date: 20240622