EP2740574A1 - Device and acoustically monitored water jet method - Google Patents

Device and acoustically monitored water jet method Download PDF

Info

Publication number
EP2740574A1
EP2740574A1 EP12195482.0A EP12195482A EP2740574A1 EP 2740574 A1 EP2740574 A1 EP 2740574A1 EP 12195482 A EP12195482 A EP 12195482A EP 2740574 A1 EP2740574 A1 EP 2740574A1
Authority
EP
European Patent Office
Prior art keywords
water jet
component
jet method
blade
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12195482.0A
Other languages
German (de)
French (fr)
Inventor
Torsten Melzer-Jokisch
Andreas Oppert
Dimitrios Thomaidis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12195482.0A priority Critical patent/EP2740574A1/en
Publication of EP2740574A1 publication Critical patent/EP2740574A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • B24C1/045Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass for cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/26Perforating by non-mechanical means, e.g. by fluid jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting

Definitions

  • the invention relates to a water jet method in which acoustic signals are used for monitoring and a device therefor.
  • the object is achieved by a water jet method according to claim 3 and a device according to claim 1.
  • FIG. 1 shows a device 1 for water jet method for the machining of a component 4, 120, 130 for the purpose of material removal.
  • the device 1 comprises a holder or a mounting (not shown) for a wall of a component 4, 120, 130 into which a through hole 13 '(FIG. Fig. 4 ) is to be generated.
  • the material that is processed is preferably a metal, in particular a nickel- or cobalt-based alloy, in particular an alloy according to FIG. 6 ,
  • a specific frequency signal 16, 16' is generated on the component 4, 120, 130 or in the wall 4 as a function of the depth of the hole, which is detected by a corresponding sensor 19.
  • the frequency is low and then increases.
  • an upper portion 13 of the through-hole 13 ' is generated at which low, inaudible or low audible frequencies 16 are generated.
  • the frequency has shifted into a higher or audible range 16 '.
  • the frequency is then in the no longer audible range.
  • FIG. 5 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole Workpiece consists of a single crystal.
  • directionally solidified columnar grain structure
  • monocrystalline structure ie the whole Workpiece consists of a single crystal.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures. Such methods are known from U.S. Patent 6,024,792 and the EP 0 892 090 A1 known.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • the density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8Al-0.6Y-0.7Si or Co-28Ni-24Cr-10Al-0.6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-11Al-0.4Y-2Re or Ni-25Co-17Cr-10Al-0.4Y-1 are also preferably used , 5RE.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The device has a holder or support for a component i.e. turbine blade, to be processed (4). A water jet nozzle is provided with a variable water jet (7) that flow in and flow out such that a sensor is able to receive acoustic signals of a contact point of water jet with the component to be processed. A control and/or regulating device is arranged for the water jet nozzle, where the control and/or regulating device is able to process the signals of the sensor. The water jet is provided with an ablating surface (14). An independent claim is also included for a water jet method.

Description

Die Erfindung betrifft ein Wasserstrahlverfahren, bei dem akustische Signale zur Überwachung verwendet werden und eine Vorrichtung dafür.The invention relates to a water jet method in which acoustic signals are used for monitoring and a device therefor.

Wasserstrahlverfahren zur Materialbearbeitung oder Durchgangslöcher sind Stand der Technik. Das Herstellen von Durchgangslöchern bei Hohlkörpern wie bei Turbinenschaufeln wird erschwert, wenn das Durchbohren von Wänden zu Rückwandschädigungen im Innenbereich des Hohlraums führt.Water jet processes for material processing or through holes are state of the art. Producing through holes in hollow bodies such as turbine blades is made more difficult when drilling through walls leads to back wall damage in the interior of the cavity.

Bisher wurde durch aufwändiges Maskieren die Rückwandschädigung verhindert.Up to now the back wall damage was prevented by complex masking.

Es ist daher Aufgabe der Erfindung oben genanntes Problem zu lösen.It is therefore an object of the invention to solve the above-mentioned problem.

Die Aufgabe wird gelöst durch ein Wasserstrahlverfahren gemäß Anspruch 3 und eine Vorrichtung gemäß Anspruch 1.The object is achieved by a water jet method according to claim 3 and a device according to claim 1.

In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden können, um weitere Vorteile zu erzielen.In the dependent claims further advantageous measures are listed, which can be combined with each other in order to achieve further advantages.

Es zeigen:

Figur 1 bis 4
schematisch die Vorgehensweise beim Wasserstrahlverfahren,
Figur 5
eine Turbinenschaufel als ein Beispiel für ein zu bearbeitendes Bauteil und
Figur 6
eine Liste von Superlegierungen.
Show it:
Figure 1 to 4
schematically the procedure in the water jet method,
FIG. 5
a turbine blade as an example of a component to be machined and
FIG. 6
a list of superalloys.

Die Figuren und die Beschreibung stellen nur Ausführungsbeispiele der der Erfindung dar.The figures and the description represent only embodiments of the invention.

Figur 1 zeigt eine Vorrichtung 1 zum Wasserstrahlverfahren für die Bearbeitung eines Bauteils 4, 120, 130 zwecks Materialabtrags. FIG. 1 shows a device 1 for water jet method for the machining of a component 4, 120, 130 for the purpose of material removal.

Die Vorrichtung 1 umfasst eine Halterung oder eine Lagerung (nicht dargestellt) für eine Wand eines Bauteils 4, 120, 130, in das ein Durchgangsloch 13' (Fig. 4) erzeugt werden soll.The device 1 comprises a holder or a mounting (not shown) for a wall of a component 4, 120, 130 into which a through hole 13 '(FIG. Fig. 4 ) is to be generated.

Das Material, das bearbeitet ist, ist vorzugsweise ein Metall, insbesondere eine nickel- oder kobaltbasierte Legierung, insbesondere eine Legierung nach Figur 6.The material that is processed is preferably a metal, in particular a nickel- or cobalt-based alloy, in particular an alloy according to FIG. 6 ,

Dies erfolgt mittels einer Wasserstrahldüse 10, die einen Wasserstrahl 7, 7' aufweist, für den bestimmte Parameter einstellbar sind.This is done by means of a water jet nozzle 10, which has a water jet 7, 7 ', for which certain parameters are adjustable.

Durch den Wasserstrahl 7, 7' wird am Bauteil 4, 120, 130 oder in der Wand 4 ein bestimmtes Frequenzsignal 16, 16' in Abhängigkeit von der Tiefe des Lochs erzeugt, das durch einen entsprechenden Sensor 19 erfasst wird.By means of the water jet 7, 7 ', a specific frequency signal 16, 16' is generated on the component 4, 120, 130 or in the wall 4 as a function of the depth of the hole, which is detected by a corresponding sensor 19.

Anfangs ist die Frequenz tief und steigt dann an.Initially, the frequency is low and then increases.

Zuerst wird in Figur 1, 2 ein oberer Bereich 13 des Durchgangslochs 13' erzeugt, bei dem tiefe, nicht hörbare oder tiefe hörbare Frequenzen 16 generiert werden.First in FIG. 1 . 2 an upper portion 13 of the through-hole 13 'is generated at which low, inaudible or low audible frequencies 16 are generated.

Erreicht der Wasserstrahl 7 eine gewisse Tiefe bzw. ist nur noch ein gewisser Wandstärkerest 22 der Wand des Bauteils 4, 120, 130 vorhanden, hat sich die Frequenz in einen höheren oder hörbaren Bereich 16' verschoben. Vorzugsweise liegt die Frequenz dann im nicht mehr hörbaren Bereich.If the water jet 7 reaches a certain depth or if only a certain wall thickness test 22 of the wall of the component 4, 120, 130 is present, the frequency has shifted into a higher or audible range 16 '. Preferably, the frequency is then in the no longer audible range.

Ab diesem Zeitpunkt des Erreichens einer bestimmten Frequenz, die experimentell vorab einmalig ermittelt werden kann, wird die Bearbeitung abgebrochen mit einem anderen Verfahren fortgeführt (beispielsweise manuell) oder das Wasserstrahlverfahren wird mit angepassten Parametern, dem veränderten Wasserstrahl 7' weiter durchgeführt, die nicht zu einer Schädigung des Innenbereichs 25 (Fig. 4) führen.From this time of reaching a certain frequency, which can be experimentally determined beforehand once, the processing is stopped with another method continued (for example, manually) or the water jet method with adjusted parameters, the changed water jet 7 ', which does not damage the interior area 25 (FIG. Fig. 4 ) to lead.

Dies geschieht insbesondere durch die Reduzierung des Drucks, also der verwendeten Pressluft und/oder der Reduzierung der Pulsrate und/oder der Reduzierung der Energie pro Puls.This is done in particular by reducing the pressure, ie the compressed air used and / or the reduction of the pulse rate and / or the reduction of energy per pulse.

Dies verringert zwar die Abtragsrate, aber das Durchgangsloch 13' wird ohne weitere Beschädigungen des Innenbereichs 25 hergestellt.Although this reduces the removal rate, but the through hole 13 'is made without further damage to the inner region 25.

Es treten keine Rückwandschäden innerhalb des Hohlraums auf. Das Verfahren funktioniert ohne vorherige Ermittlung der Wandstärke.There are no back wall damage within the cavity. The procedure works without prior determination of the wall thickness.

Die Figur 5 zeigt in perspektivischer Ansicht eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.The FIG. 5 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.

Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.The turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.

Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.The blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.

Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt).As a guide blade 130, the blade 130 may have at its blade tip 415 another platform (not shown).

Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).In the mounting region 400, a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).

Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.The blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.

Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.The blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.

Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet.In conventional blades 120, 130, for example, solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130.

Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 oder WO 00/44949 bekannt.Such superalloys are for example from EP 1 204 776 B1 . EP 1 306 454 . EP 1 319 729 A1 . WO 99/67435 or WO 00/44949 known.

Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.The blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.

Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.

Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.The production of such monocrystalline workpieces takes place e.g. by directed solidification from the melt. These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.

Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.Here, dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole Workpiece consists of a single crystal. In these processes, it is necessary to avoid the transition to globulitic (polycrystalline) solidification, since non-directional growth necessarily produces transverse and longitudinal grain boundaries which negate the good properties of the directionally solidified or monocrystalline component.

Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures). Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 A1 bekannt.The term generally refers to directionally solidified microstructures, which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures. Such methods are known from U.S. Patent 6,024,792 and the EP 0 892 090 A1 known.

Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf)). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 .Likewise, the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)). Such alloys are known from the EP 0 486 489 B1 . EP 0 786 017 B1 . EP 0 412 397 B1 or EP 1 306 454 A1 ,

Die Dichte liegt vorzugsweise bei 95% der theoretischen Dichte.The density is preferably 95% of the theoretical density.

Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer).A protective aluminum oxide layer (TGO = thermal grown oxide layer) is formed on the MCrAlX layer (as an intermediate layer or as the outermost layer).

Vorzugsweise weist die Schichtzusammensetzung Co-30Ni-28Cr-8Al-0,6Y-0,7Si oder Co-28Ni-24Cr-10Al-0,6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al-0,6Y-3Re oder Ni-12Co-21Cr-11Al-0,4Y-2Re oder Ni-25Co-17Cr-10Al-0,4Y-1,5Re.Preferably, the layer composition comprises Co-30Ni-28Cr-8Al-0.6Y-0.7Si or Co-28Ni-24Cr-10Al-0.6Y. In addition to these cobalt-based protective coatings, nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-11Al-0.4Y-2Re or Ni-25Co-17Cr-10Al-0.4Y-1 are also preferably used , 5RE.

Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.On the MCrAlX may still be present a thermal barrier coating, which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.

Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht.The thermal barrier coating covers the entire MCrAlX layer.

Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.By suitable coating methods, e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.

Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die MCrAlX-Schicht.Other coating methods are conceivable, e.g. atmospheric plasma spraying (APS), LPPS, VPS or CVD. The thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance. The thermal barrier coating is therefore preferably more porous than the MCrAlX layer.

Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wiederbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130.Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.

Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf.The blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.

Claims (6)

Wasserstrahlvorrichtung (1), die zumindest aufweist: eine Halterung oder Auflage für ein zu bearbeitendes Bauteil (4, 120, 130), eine Wasserstrahldüse (10), die einen veränderbaren Wasserstrahl (7, 7') ausströmen lassen kann sowie zumindest einen Sensor (19), der akustische Signale von dem Berührungspunkt des Wasserstrahls (7, 7') mit dem Bauteil (4, 120, 130) empfangen kann, eine Kontroll- und/oder Regelvorrichtung (11) für die Wasserstrahldüse (10), die (11) die Signale des Sensors (19) verarbeiten kann. Water jet device (1) comprising at least: a holder or support for a component to be processed (4, 120, 130), a water jet nozzle (10), which can flow out a variable water jet (7, 7 ') and at least one sensor (19), which can receive acoustic signals from the point of contact of the water jet (7, 7 ') with the component (4, 120, 130), a control and / or regulating device (11) for the water jet nozzle (10), which (11) can process the signals of the sensor (19). Vorrichtung nach Anspruch 1,
bei dem Parameter des Wasserstrahls (7, 7') einstellbar sind,
insbesondere durch die Kontroll- und/oder Regelvorrichtung (11).
Device according to claim 1,
at the parameter of the water jet (7, 7 ') are adjustable,
in particular by the control and / or regulating device (11).
Wasserstrahlverfahren zur Bearbeitung eines Bauteils (4, 120, 130),
insbesondere mit einer Vorrichtung nach Anspruch 1 oder 2, bei dem zumindest ein der Parameter Druck, Pulsrate, Energie,
insbesondere Energie pro Puls eines bearbeitenden Wasserstrahls (7. 7') verändert wird,
wenn ein akustisches Signal,
das von der Abtragungsfläche (14) des Wasserstrahls (7, 7') ausgesendet wird,
sich ändert.
Water jet method for machining a component (4, 120, 130),
in particular with a device according to claim 1 or 2, wherein at least one of the parameters pressure, pulse rate, energy,
in particular, energy per pulse of a working water jet (7.7 ') is changed,
if an acoustic signal,
which is emitted by the erosion surface (14) of the water jet (7, 7 '),
changes.
Verfahren nach Anspruch 3,
bei dem die Parameter nur am Ende des Verfahrens verändert werden.
Method according to claim 3,
in which the parameters are changed only at the end of the procedure.
Verfahren nach einem oder beiden der Ansprüche 3 oder 4, bei dem der Wasserstrahl (7, 7') gepulst wird.Method according to one or both of claims 3 or 4, in which the water jet (7, 7 ') is pulsed. Verfahren nach einem oder mehreren der Anspruch 3, 4 oder 5,
bei dem ein Durchgangsloch (13') erzeugt wird.
Method according to one or more of claims 3, 4 or 5,
in which a through hole (13 ') is generated.
EP12195482.0A 2012-12-04 2012-12-04 Device and acoustically monitored water jet method Withdrawn EP2740574A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12195482.0A EP2740574A1 (en) 2012-12-04 2012-12-04 Device and acoustically monitored water jet method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12195482.0A EP2740574A1 (en) 2012-12-04 2012-12-04 Device and acoustically monitored water jet method

Publications (1)

Publication Number Publication Date
EP2740574A1 true EP2740574A1 (en) 2014-06-11

Family

ID=47471520

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12195482.0A Withdrawn EP2740574A1 (en) 2012-12-04 2012-12-04 Device and acoustically monitored water jet method

Country Status (1)

Country Link
EP (1) EP2740574A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017212324A1 (en) * 2017-07-19 2019-01-24 Robert Bosch Gmbh Method and apparatus for high pressure fluid processing

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955164A (en) * 1989-06-15 1990-09-11 Flow Research, Inc Method and apparatus for drilling small diameter holes in fragile material with high velocity liquid jet
EP0486489B1 (en) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft High-temperature-resistant, corrosion-resistant coating, in particular for components of gas turbines
EP0412397B1 (en) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Rhenium-containing protective coating with high corrosion and oxidation resistance
EP0892090A1 (en) 1997-02-24 1999-01-20 Sulzer Innotec Ag Method for manufacturing single crystal structures
EP0786017B1 (en) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Protective layer for protecting parts against corrosion, oxidation and excessive thermal stresses, as well as process for producing the same
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6021682A (en) * 1998-08-31 2000-02-08 Ingersoll-Rand Company Automatic machinability measuring and machining methods and apparatus therefor
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (en) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Nickel base superalloy with good machinability
EP1306454A1 (en) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Rhenium containing protective coating protecting a product against corrosion and oxidation at high temperatures
EP1319729A1 (en) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft High temperature resistant part, made of single-crystal or polycrystalline nickel-base superalloy
EP1204776B1 (en) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft High-temperature part and method for producing the same
EP2301730A1 (en) * 2009-09-25 2011-03-30 United Technologies Corporation Hole drilling with close proximity backwall

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955164A (en) * 1989-06-15 1990-09-11 Flow Research, Inc Method and apparatus for drilling small diameter holes in fragile material with high velocity liquid jet
EP0486489B1 (en) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft High-temperature-resistant, corrosion-resistant coating, in particular for components of gas turbines
EP0412397B1 (en) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Rhenium-containing protective coating with high corrosion and oxidation resistance
EP0786017B1 (en) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Protective layer for protecting parts against corrosion, oxidation and excessive thermal stresses, as well as process for producing the same
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0892090A1 (en) 1997-02-24 1999-01-20 Sulzer Innotec Ag Method for manufacturing single crystal structures
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6021682A (en) * 1998-08-31 2000-02-08 Ingersoll-Rand Company Automatic machinability measuring and machining methods and apparatus therefor
WO2000044949A1 (en) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Nickel base superalloy with good machinability
EP1204776B1 (en) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft High-temperature part and method for producing the same
EP1306454A1 (en) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Rhenium containing protective coating protecting a product against corrosion and oxidation at high temperatures
EP1319729A1 (en) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft High temperature resistant part, made of single-crystal or polycrystalline nickel-base superalloy
EP2301730A1 (en) * 2009-09-25 2011-03-30 United Technologies Corporation Hole drilling with close proximity backwall

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017212324A1 (en) * 2017-07-19 2019-01-24 Robert Bosch Gmbh Method and apparatus for high pressure fluid processing
WO2019015846A1 (en) * 2017-07-19 2019-01-24 Robert Bosch Gmbh Method and device for high-pressure fluid machining

Similar Documents

Publication Publication Date Title
EP2444590B1 (en) Method for coating cooling holes
EP2712700A1 (en) Laser drills without burr formation
EP3500395B1 (en) 3-step method of producing air cooling holes using a nanosecond and millisecond laser and workpiece
EP2865781A1 (en) Two layer ceramic layer having different microstructures
EP2613133B1 (en) Production of comparative test bodies for non-destructive testing with representative fissures regarding their orientation and test method
EP2712699A1 (en) Method for protecting a component, method for laser boring and component
EP2878697A1 (en) Method for producing a chamfer, component with chamfer and device
EP2725235A1 (en) Differentially rough airfoil and corresponding manufacturing method
EP2604377B1 (en) Method for laser processing a laminated piece with ceramic coating
EP2774710A1 (en) Surface and crack repair by means of different soldering materials
WO2015104098A1 (en) Method for protecting a component, laser drilling method, and component
EP2740574A1 (en) Device and acoustically monitored water jet method
EP2730364A1 (en) Weld pool backing at the edge area
EP2604378B1 (en) Reopening of cooling holes with nanosecond laser in the microsecond range
WO2015071011A1 (en) Geometrically adapted spraying in coating methods
WO2013068160A1 (en) Method for the build-up welding of a component made from monocrystalline or directionally solidified metal
EP2340909A1 (en) Sealing of circular and oval openings in crown bases of turbine rotor blades using conical plugs
EP2402096A1 (en) Porous beam structure
WO2015078615A1 (en) Device for masking based on a tungsten alloy and a tungsten alloy
EP2599575A1 (en) Laser drilling of through boreholes without internal protection
EP2906383A1 (en) Deposition welding with external thick frame contours
EP2498941B1 (en) Electrical discharge cutting with thick wire electrode
EP3299111A1 (en) Material mixture, method for protecting a component, method for laser boring and component
EP2589456A1 (en) Method for laser boring and component
EP2735399A1 (en) Determining the direction of travel in the welding of directionally solidified material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141212