EP2731742B1 - Multi-alloy vertical semi-continuous casting method - Google Patents
Multi-alloy vertical semi-continuous casting method Download PDFInfo
- Publication number
- EP2731742B1 EP2731742B1 EP12748724.7A EP12748724A EP2731742B1 EP 2731742 B1 EP2731742 B1 EP 2731742B1 EP 12748724 A EP12748724 A EP 12748724A EP 2731742 B1 EP2731742 B1 EP 2731742B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- separator
- process according
- casting
- section
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 95
- 239000000956 alloy Substances 0.000 title claims description 95
- 238000000034 method Methods 0.000 title claims description 35
- 238000009749 continuous casting Methods 0.000 title claims description 9
- 238000005266 casting Methods 0.000 claims description 44
- 238000007711 solidification Methods 0.000 claims description 35
- 230000008023 solidification Effects 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 16
- 229910000838 Al alloy Inorganic materials 0.000 claims description 12
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 12
- 239000011819 refractory material Substances 0.000 claims description 8
- 238000005096 rolling process Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 239000003870 refractory metal Substances 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 239000011226 reinforced ceramic Substances 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims 2
- 230000013011 mating Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- 229910001152 Bi alloy Inorganic materials 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- 238000009987 spinning Methods 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 240000008042 Zea mays Species 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 239000004411 aluminium Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 208000031968 Cadaver Diseases 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 241001639412 Verres Species 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 210000000887 face Anatomy 0.000 description 2
- 210000001061 forehead Anatomy 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000003351 stiffener Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/14—Plants for continuous casting
- B22D11/141—Plants for continuous casting for vertical casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/007—Continuous casting of metals, i.e. casting in indefinite lengths of composite ingots, i.e. two or more molten metals of different compositions being used to integrally cast the ingots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
Definitions
- the cross section of the separator is, for rectangular plates, calculated by 3D thermal modeling of the solidification front and takes the form of a rectangle with rounded corners according to a specific law. It is possible, if it is desired that the separation of the alloys occurs at a constant distance from the surfaces of the plate, including near the edges, to design a separator of perfectly rectangular section; in the lower part it is no longer delimited by a plane, but by a flat surface whose angles are rolled up to match the shape of the front in the corners, and which can also be calculated by 3D thermal modeling of the front. For billets, the section of the separator is of course circular.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Metal Rolling (AREA)
Description
L'invention concerne le domaine de la fabrication de demi-produits tels que les plaques de laminage et les billettes de filage en alliages d'aluminium par coulée semi-continue verticale.
Plus précisément, l'invention concerne un procédé de coulée semi-continue verticale de plaques ou billettes comportant au moins deux alliages d'aluminium, par coulées simultanées et à l'aide d'au moins un séparateur.
L'invention concerne également le dispositif permettant la mise en oeuvre dudit procédé et la fabrication des dites plaques ou billettes.The invention relates to the field of the manufacture of semi-finished products such as rolling plates and spinning billets of aluminum alloys by vertical semi-continuous casting.
More specifically, the invention relates to a method of vertical semi-continuous casting of plates or billets comprising at least two aluminum alloys, by simultaneous casting and using at least one separator.
The invention also relates to the device for implementing said method and the manufacture of said plates or billets.
L'aluminium est utilisé de manière croissante dans les domaines de la construction aéronautique et automobile, tant en ce qui concerne les tôles de fuselage, longerons et raidisseurs de voilure, que les tôles de carrosserie ainsi que les échangeurs thermiques brasés pour l'automobile, pour des raisons de limitation du poids, mais aussi pour des réflecteurs optiques ou encore des tôles de blindage, des moules pour thermoplastiques, des pièces de forge, des pièces pour usinage..
Notamment ces applications de l'aluminium, mais la liste n'est pas exhaustive, nécessitent de trouver un compromis entre des propriétés souvent antagonistes, par exemple résistance mécanique et aptitude à la mise en forme ou résistance mécanique et résistance à la corrosion ou encore aptitude au perçage et au tournage.Aluminum is increasingly used in the fields of aeronautic and automobile construction, as regards fuselage sheets, longitudinal members and wing stiffeners, as well as body panels and brazed heat exchangers for automobiles, for reasons of weight limitation, but also for optical reflectors or shielding sheets, molds for thermoplastics, forging parts, machining parts.
In particular, these applications of aluminum, but the list is not exhaustive, need to find a compromise between often antagonistic properties, for example mechanical strength and aptitude for shaping or mechanical resistance and corrosion resistance or aptitude. drilling and turning.
Tous les alliages d'aluminium dont il est question dans ce qui suit sont désignés, sauf mention contraire, selon les désignations définies par l' « Aluminum Association » dans les « Registration Record Series » qu'elle publie régulièrement.All aluminum alloys referred to in the following are designated, unless otherwise indicated, in accordance with the designations defined by the "Aluminum Association" in the "Registration Record Series" which it publishes regularly.
L'utilisation d'alliages homogènes permet de remplir certaines exigences, mais des améliorations substantielles pourraient être obtenues s'il était possible, par exemple, de contrôler une variation de composition entre la surface et le coeur d'une tôle ou entre la surface et le coeur d'un lopin d'extrusion, de forge ou d'usinage, et ainsi de différencier les propriétés de surface des propriétés à coeur.
Des produits plaqués, réalisés par co-laminage à chaud de deux plaques en alliages différents, existent pour certaines applications, comme par exemple :
- Les tôles de brasage, destinées principalement à l'industrie des échangeurs thermiques pour l'automobile notamment; le placage est alors un alliage à plus bas point de fusion que le coeur, et deviendra le métal d'apport qui assurera la liaison entre les pièces à assembler lors du procédé de brasage.
- Des tôles aéronautiques pour lesquelles le placage, en alliage peu chargé en éléments d'alliage, assure une protection contre la corrosion à un alliage de coeur très chargé et à très forte résistance mécanique.
- Il en va de même dans le domaine des tôles pour carrosserie automobile pour lesquelles le placage, en alliage peu chargé en éléments d'alliage, assure une bonne formabilité, notamment lors des opérations d'emboutissage, pliage ou sertissage, à un alliage de coeur plus chargé à forte résistance mécanique.
- Mais le même principe s'applique aussi pour d'autres produits dits bicouches parmi lesquels les réflecteurs optiques, avec un alliage quelconque peu onéreux revêtu d'un alliage d'aluminium de haute pureté ou encore les produits bicouches pour blindage dans le domaine militaire.
Veneered products made by hot co-rolling two plates of different alloys exist for certain applications, such as for example:
- Brazing sheets, intended mainly for the heat exchanger industry for the automobile in particular; the plating is then an alloy with a lower melting point than the core, and will become the filler metal which will ensure the connection between the parts to be assembled during the soldering process.
- Aeronautical plates for which the veneer, alloy lightly loaded alloying elements, provides protection against corrosion to a very heavy core alloy and very strong mechanical strength.
- It is the same in the field of automotive body plates for which the plating, alloy lightly loaded alloy elements, ensures good formability, especially during stamping operations, folding or crimping, to a core alloy more loaded with high mechanical strength.
- But the same principle also applies to other so-called bilayer products among which optical reflectors, with any inexpensive alloy coated with a high purity aluminum alloy or the bilayer products for shielding in the military field.
Ce procédé de co-laminage à chaud ne peut toutefois pas s'appliquer à toutes les familles d'alliages notamment aux alliages contenant du magnésium et/ou du zinc en quantité significative (produits destinés en particulier à l'industrie automobile, aéronautique ou autre) en raison de l'oxydabilité de surface des alliages riches en Mg et/ou en Zn. Il nécessite par ailleurs très souvent un double laminage à chaud, ce qui n'est favorable ni du point de vue de la productivité, ni du point de vue économique.However, this hot-rolling method can not be applied to all families of alloys, especially alloys containing magnesium and / or zinc in a significant amount (products intended in particular for the automotive, aeronautical or other industry). ) because of the surface oxidation of Mg and / or Zn-rich alloys. It also very often requires a double hot rolling, which is not favorable from the point of view of productivity, nor from the economic point of view.
De ce fait, des procédés permettant la coulée simultanée de deux couches d'alliages, appelée encore coulée bi-alliage, ont été proposés en coulée semi-continue verticale.As a result, processes for the simultaneous casting of two layers of alloys, also called bi-alloy casting, have been proposed in vertical semi-continuous casting.
La demande
Le brevet
Les demandes
Ce procédé est donc mieux adapté aux couples d'alliages pour lesquels le liquidus de l'alliage extérieur est inférieur à celui de l'alliage intérieur. Dans les autres combinaisons d'alliages, l'obtention d'une liaison métallurgique exige une maîtrise très délicate des phases thermiques transitoires, et peut, dans certains cas, s'avérer tout simplement impossible.The requests
This method is therefore better suited to alloy couples for which the liquidus of the outer alloy is lower than that of the inner alloy. In the other combinations of alloys, obtaining a metallurgical bond requires a very delicate control of the transient thermal phases, and may, in certain cases, be simply impossible.
La demande
La demande
L'invention vise à résoudre ces difficultés en permettant l'introduction d'un séparateur au contact direct du front de solidification sans qu'il soit pris par le métal qui se solidifie et entrainé par le solide ; de cette façon, il s'agit d'assurer l'étanchéité entre les deux alliages en limitant le mélange éventuel, via la zone semi-solide même s'il existe une différence de niveau de part et d'autre du séparateur.The invention aims to solve these difficulties by allowing the introduction of a separator in direct contact with the solidification front without it being taken by the metal which solidifies and entrained by the solid; in this way, it is a question of ensuring the seal between the two alloys by limiting the possible mixture, via the semi-solid zone even if there is a difference in level on either side of the separator.
L'invention a pour objet un procédé de coulée semi-continue verticale à refroidissement direct de plaques de laminage ou billettes de filage dans lequel un séparateur et deux moyens d'alimentation en métal liquide, typiquement des busettes ou goulottes, disposés de part et d'autre dudit séparateur sont utilisés, comportant les étapes suivantes:
- a) Coulée d'un premier alliage d'aluminium dans le moule de coulée semi-continue verticale à l'aide de la première busette,
- b) Mise en place dudit séparateur métallique ou en matériau réfractaire dans le moule, au contact du front de solidification,
- c) Coulée d'un deuxième alliage d'aluminium de l'autre côté dudit séparateur à l'aide de la deuxième busette,
- d) Relèvement dudit séparateur sensiblement en même temps que l'arrêt de la coulée des alliages ou légèrement avant ledit arrêt, autorisant alors un mélange des alliages dans la zone de fin de coulée de la plaque ou billette,
- e) Retrait de la plaque ou billette solidifiée du moule de coulée semi-continue,
Préférentiellement ledit séparateur est relevé légèrement avant l'arrêt de la coulée, autorisant le mélange entre les alliages dans une zone correspondant à ladite fin de coulée, et cette zone est ensuite éboutée.
Ce procédé présente un intérêt tout particulier lorsque lesdits alliages ont des compositions différentes, autorisant la coulée de plaques ou billettes bi-alliages. Avantageusement, la zone de début de coulée obtenue avant introduction du séparateur et coulée du deuxième alliage, constituée d'un seul premier alliage, est également éboutée.
Le séparateur peut être une plaque sensiblement plane dont la découpe en partie inférieure épouse une section verticale du front de solidification en traversant le moule de part en part pour la coulée de plaques ou billettes présentant des couches d'alliages différents superposées.
Il peut aussi être un corps cylindrique creux respectant généralement, mais pas obligatoirement, la symétrie géométrique du produit pour la coulée de billettes composites, mais aussi un corps creux à section sensiblement rectangulaire pour la coulée de plaques dites fourrées intérieurement d'un alliage différent de l'alliage extérieur.
Dans ce dernier cas, la section sensiblement rectangulaire du séparateur peut être à coins arrondis, de façon à épouser une section horizontale du front de solidification de la plaque coulée, ou de section parfaitement rectangulaire. Dans ce dernier cas, ledit séparateur est alors délimité en partie inférieure par une surface plane à angles retroussés de façon épouser la forme du front de solidification dans lesdits coins. En ce qui concerne les matériaux, ledit séparateur peut être en matériau métallique du type acier ou métal réfractaire tel que notamment molybdène ou tungstène, mais ceci n'étant pas limitatif.
Il peut aussi être réalisé en matériau réfractaire à base de céramique ou de céramique renforcée de fibre de verre.
Pour ce qui est de la vibration dudit séparateur, elle est de faible amplitude, typiquement de l'ordre de la centaine de µm à des fréquences de l'ordre de la centaine de Hz jusqu'à des fréquences ultrasoniques.
Cette vibration est produite par un vibrateur choisi dans le groupe des vibrateurs pneumatiques, électriques ou par ultra-sons, sans caractère limitatif. Préférentiellement la fréquence de vibration est de 100 à 20000 Hz et, avantageusement, l'amplitude de vibration est de 100 à 200 µm.
Selon un mode particulier, lesdits premier et deuxième alliages sont de compositions identiques. En effet, la demanderesse a pu constater que la vibration avait pour effet positif de réduire les meso-ségrégations dendritiques.
Par extension, le procédé peut s'appliquer à la coulée de plus de deux alliages mettant alors en oeuvre plus d'un séparateur.The subject of the invention is a method for direct cooling vertical semi-continuous casting of rolling plates or spinning billets in which a separator and two means for supplying liquid metal, typically nozzles or chutes, arranged on both sides. other of said separator are used, comprising the following steps:
- a) Casting a first aluminum alloy in the vertical semi-continuous casting mold using the first nozzle,
- b) placing said metal separator or refractory material in the mold, in contact with the solidification front,
- c) casting a second aluminum alloy on the other side of said separator using the second nozzle,
- d) raising said separator substantially at the same time as stopping the casting of the alloys or slightly before said stop, then allowing a mixture of the alloys in the end of casting zone of the plate or billet,
- e) removing the solidified plate or billet from the semi-continuous casting mold,
Preferably said separator is raised slightly before stopping the casting, allowing mixing between the alloys in an area corresponding to said end of casting, and this area is then trimmed.
This process is of particular interest when said alloys have different compositions, allowing the casting of plates or billets bi-alloys. Advantageously, the casting start zone obtained before introduction of the separator and casting of the second alloy, consisting of a single first alloy, is also trimmed.
The separator may be a substantially flat plate whose cutout in the lower part matches a vertical section of the solidification front through the mold from one side to the casting of plates or billets having layers of different alloys superimposed.
It may also be a hollow cylindrical body generally, but not necessarily, respecting the geometric symmetry of the product for the casting of composite billets, but also a hollow body with a substantially rectangular section for casting so-called internally lined plates with an alloy other than the outer alloy.
In the latter case, the substantially rectangular section of the separator may be rounded corners, so as to marry a horizontal section of the solidification front of the cast plate, or perfectly rectangular section. In the latter case, said separator is then delimited in the lower part by a flat surface with angles rolled up so as to follow the shape of the solidification front in said corners. As regards the materials, said separator may be of metal material of the steel or refractory metal type such as in particular molybdenum or tungsten, but this is not limiting.
It can also be made of refractory material based on ceramic or glass fiber reinforced ceramic.
As for the vibration of said separator, it is of low amplitude, typically of the order of one hundred microns at frequencies of the order of one hundred Hz to ultrasonic frequencies.
This vibration is produced by a vibrator chosen from the group of pneumatic, electric or ultrasonic vibrators, without limitation. Preferably, the vibration frequency is 100 to 20000 Hz and, advantageously, the amplitude of vibration is 100 to 200 μm.
According to a particular mode, said first and second alloys are of identical compositions. Indeed, the Applicant has found that the vibration had the positive effect of reducing meso-segregations dendritic.
By extension, the method can be applied to the casting of more than two alloys then using more than one separator.
L'invention a également pour objet le moyen de mise en oeuvre dudit procédé, à savoir un dispositif de coulée semi-continue verticale à refroidissement direct de plaques ou billettes comportant un moule de coulée semi-continue verticale tubulaire cylindrique ou rectangulaire, à extrémités ouvertes, à l'exception de l'extrémité inférieure fermée en début de coulée par un faux fond qui se déplace en descendant grâce à un descenseur au cours de la coulée de la plaque ou billette, l'extrémité supérieure étant destinée à l'alimentation en métal, l'extrémité inférieure à la sortie de la plaque ou billette, ladite extrémité supérieure étant munie de deux moyens d'alimentation en métal liquide, typiquement des busettes ou goulottes, et d'un séparateur apte à être introduit dans le moule, dans le marais de métal liquide au contact du front de solidification, divisant par la même le marais en deux zones distinctes, caractérisé en ce que ledit séparateur est relié à un vibrateur permettant de l'animer d'un mouvement de vibration typiquement multidirectionnelle, au moins pendant toute la durée de son contact avec le front de solidification, la vibration étant du type à faible amplitude, typiquement de l'ordre de la centaine de µm, préférentiellement de 100 à 200 µm, à des fréquences de l'ordre de la centaine de Hz jusqu'à des fréquences ultrasoniques, et préférentiellement de 100 à 20000 Hz. Comme dit plus haut, le séparateur peut être une plaque sensiblement plane ou un corps cylindrique creux associé à un moule tubulaire de section sensiblement circulaire, ou encore un corps creux à section sensiblement rectangulaire associé à un moule tubulaire de section sensiblement rectangulaire.
Dans ce dernier cas, la section sensiblement rectangulaire dudit séparateur peut être à coins arrondis.
Ladite section peut aussi être parfaitement rectangulaire et ledit séparateur est alors délimité en partie inférieure par une surface plane à angles retroussés pour épouser la forme du front de solidification dans les dits coins.
En ce qui concerne les matériaux, ledit séparateur peut être en matériau métallique du type acier ou métal réfractaire tel que notamment molybdène ou tungstène, mais ceci n'étant pas limitatif.
Il peut aussi être réalisé en matériau réfractaire à base de céramique ou de céramique renforcée de fibre de verre.
En ce qui concerne la vibration, elle est produite par un vibrateur choisi dans le groupe des vibrateurs pneumatiques, électriques ou par ultrasons.
Bien évidemment, par extension, ledit dispositif peut comporter plus d'un séparateur, plus de deux moyens d'alimentation en métal liquide, pour la coulée de plaques ou billettes comportant plus de deux alliages d'aluminium.The subject of the invention is also the means for implementing said method, namely a vertical cooling device with direct cooling of plates or billets comprising a cylindrical or rectangular tubular vertical semi-continuous casting mold with open ends. , with the exception of the lower end closed at the beginning of casting by a false bottom which moves downwards thanks to a descender during the casting of the plate or billet, the upper end being intended for feeding metal, the lower end at the outlet of the plate or billet, said upper end being provided with two liquid metal supply means, typically nozzles or chutes, and a separator adapted to be introduced into the mold, in the liquid metal swamp in contact with the solidification front, thereby dividing the swamp into two distinct zones, characterized in that said separator ur is connected to a vibrator allowing animate it with a typically multidirectional vibration movement, at least during the entire duration of its contact with the solidification front, the vibration being of the low amplitude type, typically of the order of one hundred μm, preferably 100 at 200 μm, at frequencies of the order of one hundred Hz to ultrasonic frequencies, and preferably from 100 to 20000 Hz. As said above, the separator may be a substantially flat plate or a hollow hollow body associated a tubular mold of substantially circular section, or a hollow body of substantially rectangular section associated with a tubular mold of substantially rectangular section.
In the latter case, the substantially rectangular section of said separator may be rounded corners.
Said section may also be perfectly rectangular and said separator is then delimited in the lower part by a flat surface with rolled angles to match the shape of the solidification front in said corners.
As regards the materials, said separator may be of metal material of the steel or refractory metal type such as in particular molybdenum or tungsten, but this is not limiting.
It can also be made of refractory material based on ceramic or glass fiber reinforced ceramic.
As regards the vibration, it is produced by a vibrator chosen from the group of pneumatic, electric or ultrasonic vibrators.
Of course, by extension, said device may comprise more than one separator, more than two liquid metal supply means, for casting plates or billets comprising more than two aluminum alloys.
-
La
figure 1 représente en coupe la première phase de coulée du premier alliage 1, dans le moule 6 muni d'une rehausse en matériau réfractaire 7, sur le « siège » ou « fond de coulée » 8, appelé encore faux fond, le front de solidification portant le repère 2, le séparateur 3, ici du type rectangle ou cylindre, étant fixé au plateau 4 auquel est lui-même fixé le vibrateur (non représenté) relié au montage 5 par des ressorts souples, ledit montage se déplaçant de haut en bas grâce à des guides 9.Thefigure 1 represents in section the first casting phase of thefirst alloy 1, in themold 6 provided with a riser ofrefractory material 7, on the "seat" or "casting" 8, also called false bottom, the solidification front bearing themarker 2, theseparator 3, here of the rectangle or cylinder type, being fixed to theplate 4 which is itself fixed the vibrator (not shown) connected to theassembly 5 by flexible springs, said assembly moving up and down throughguides 9. -
La
figure 2 représente la deuxième phase au cours de laquelle le séparateur 3 est amené au contact du front de solidification et la vibration 10 enclenchée.Thefigure 2 represents the second phase during which theseparator 3 is brought into contact with the solidification front and thevibration 10 is engaged. -
La
figure 3 représente la troisième phase au cours de laquelle la busette d'alimentation 11 en deuxième alliage 12 est mise en place et le deuxième alliage coulé.Thefigure 3 represents the third phase during which thesupply nozzle 11 ofsecond alloy 12 is put in place and the second cast alloy. -
La
figure 4 correspond au régime permanent, le deuxième alliage 12 se trouvant à coeur de la plaque ou billette et le premier 1 en partie basse à ébouter, mélangé au deuxième alliage, et en périphérie.Thefigure 4 corresponds to the steady state, thesecond alloy 12 being at the heart of the plate or billet and the first 1 in the lower part to crop, mixed with the second alloy, and periphery. -
La
figure 5 représente le % en Zn d'une section transversale de la plaque bi-alliage de l'exemple 2 avec extérieur en alliage AA5083 et âme en alliage AA7449 en fonction de la distance d en mm d'une face externe de la plaque dans le sens de l'épaisseur, obtenu par spectrométrie d'étincelle.Thefigure 5 represents the Zn% of a cross-section of the bi-alloy plate of Example 2 with AA5083 alloy exterior and AA7449 alloy core as a function of the distance d in mm from an outer face of the plate in the direction thickness, obtained by spark spectrometry. -
La
figure 6 représente le % en Zn d'une section transversale de la plaque bi-alliage de l'exemple 2 avec extérieur en alliage AA6016 et âme en alliage AA7021 en fonction de la distance d en mm d'une face externe de la plaque dans le sens de l'épaisseur, obtenu par spectrométrie d'étincelle.Thefigure 6 represents the Zn% of a cross-section of the bi-alloy plate of Example 2 with AA6016 alloy exterior and AA7021 alloy core as a function of the distance d in mm from an outer face of the plate in the direction thickness, obtained by spark spectrometry.
Pour empêcher l'entraînement du séparateur par le métal solide, l'invention consiste à animer le séparateur d'un mouvement vibratoire de faible amplitude, typiquement de 100 à 200 µm, qui, brisant les dendrites qui se forment à son contact, repousse localement la cohérence dendritique vers des fractions solidifiées plus élevées et garantit ainsi que le séparateur ne soit pas entraîné par le métal solide. Plusieurs types de vibrateurs peuvent être utilisés : pneumatiques, électriques, par ultrasons, etc..., produisant une vibration d'une fréquence typiquement de 100 à 20000 Hz.
Le séparateur peut être un corps cylindrique creux, de préférence délimité en partie inférieure par un plan horizontal, et dont la section épouse alors une section horizontale du front de solidification, de façon à obtenir une bonne étanchéité. La section transversale du séparateur est, pour les plaques rectangulaires, calculée par modélisation thermique 3D du front de solidification et prend la forme d'un rectangle à coins arrondis selon une loi précise. Il est possible, si l'on souhaite que la séparation des alliages intervienne à distance constante des surfaces de la plaque, y compris près des chants, de concevoir un séparateur de section parfaitement rectangulaire ; en partie inférieure il n'est alors plus délimité par un plan, mais par une surface plane dont les angles sont retroussés pour épouser la forme du front dans les coins, et qui peut également être calculée par modélisation thermique 3D du front. Pour les billettes, la section du séparateur est bien entendu circulaire. Plusieurs types de séparateurs peuvent être employés : en matériau réfractaire non métallique, ou en matériau métallique (acier, métaux réfractaires tels que notamment Mo ou W) avec, selon les cas, un revêtement protecteur contre l'attaque par l'aluminium liquide. Cette configuration permet de respecter, si nécessaire, la symétrie géométrique et thermique de la plaque ou de la billette bi-alliage. Ce concept de plaque ou billette « fourrée », dans lequel une âme d'un premier alliage est totalement incluse dans un second alliage, offre en outre des possibilités nouvelles par rapport aux procédés existants. En effet, grâce à la présence de l'alliage extérieur sur les côtés de la plaque (ce qui n'est pas le cas pour le procédé Fusion™, ni pour les procédés de co-laminage), on peut envisager la transformation par laminage d'alliages de coeur très chargés en magnésium (plus de 5 %, voire 7 %) en Zn (jusqu'à 15% voire plus) en Cu (jusqu'à 5% voire plus), en Li (jusqu'à 2% voire plus), en Si (y compris à teneur hypereutectique), ou en une combinaison de ces éléments, tout en évitant un phénomène de fissuration à partir des bords, rencontré aujourd'hui lors de tentatives de laminage à chaud de ce type de multicouche.
Ces compositions conduisent à un bon compromis résistance mécanique / formabilité et l'enrobage peut permettre en outre d'améliorer notamment leur résistance à la corrosion et/ou leur formabilité. Cela ouvre de nouvelles possibilités d'applications pour l'aluminium, en particulier pour la fabrication de pièces de forme très complexes, notamment dans l'automobile, l'aéronautique, le transport, l'industrie mécanique etc.
Tel est le cas notamment de la combinaison d'un alliage d'âme de la famille AA7xxx, très chargé en éléments d'alliage durcissants, notamment du type AA7021, ou AA5xxx également très chargé, et d'un alliage de périphérie ou de placage de la famille AA6xxx, notamment du type AA6016, pour application à des tôles de carrosserie automobile.
Tel est encore le cas de la combinaison d'un alliage d'âme à nouveau de la famille AA7xxx, très chargé en éléments d'alliage durcissants, notamment du type AA7449, et d'un alliage de périphérie ou de placage de la famille AA5xxx, notamment du type AA5083, pour application à des tôles de blindage.To prevent the entrainment of the separator by the solid metal, the invention consists in animating the separator of a vibratory movement of small amplitude, typically from 100 to 200 μm, which, breaking the dendrites that form on contact with it, repels locally. the dendritic coherence towards higher solidified fractions and thus ensures that the separator is not driven by the solid metal. Several types of vibrators can be used: pneumatic, electric, ultrasonic, etc., producing a vibration with a frequency typically of 100 to 20000 Hz.
The separator may be a hollow cylindrical body, preferably delimited in the lower part by a horizontal plane, and whose section then marries a horizontal section of the solidification front, so as to obtain a good seal. The cross section of the separator is, for rectangular plates, calculated by 3D thermal modeling of the solidification front and takes the form of a rectangle with rounded corners according to a specific law. It is possible, if it is desired that the separation of the alloys occurs at a constant distance from the surfaces of the plate, including near the edges, to design a separator of perfectly rectangular section; in the lower part it is no longer delimited by a plane, but by a flat surface whose angles are rolled up to match the shape of the front in the corners, and which can also be calculated by 3D thermal modeling of the front. For billets, the section of the separator is of course circular. Several types of separators can be used: nonmetallic refractory material, or metal material (steel, refractory metals such as Mo or W) with, depending on the case, a protective coating against attack by liquid aluminum. This configuration makes it possible to respect, if necessary, the geometric and thermal symmetry of the plate or the bi-alloy billet. This concept of "filled" plate or billet, in which a core of a first alloy is totally included in a second alloy, also offers new possibilities compared to existing processes. Indeed, thanks to the presence of the outer alloy on the sides of the plate (which is not the case for the Fusion ™ process, nor for co-rolling processes), we can consider the transformation by rolling magnesium-rich core alloys (more than 5% or even 7%) in Zn (up to 15% or more) in Cu (up to 5% or more), in Li (up to 2% or more), Si (including hypereutectic content), or a combination of these elements, while avoiding a phenomenon of cracking from the edges, encountered today during hot rolling attempts of this type of multilayer .
These compositions lead to a good compromise between mechanical strength / formability and the coating can also make it possible to improve in particular their resistance to corrosion and / or their formability. This opens up new application possibilities for aluminum, particularly for the manufacture of very complex shaped parts, particularly in the automotive, aerospace, transport, mechanical industry and so on.
This is particularly the case of the combination of a core alloy of the AA7xxx family, which is heavily loaded with hardening alloying elements, in particular of the AA7021 or AA5xxx type which is also very heavily loaded, and of a periphery or veneer alloy. of the AA6xxx family, in particular of the AA6016 type, for application to automotive body panels.
This is still the case of the combination of a core alloy of the AA7xxx family, which is heavily loaded with hardening alloying elements, in particular of the AA7449 type, and a peripheral or plating alloy of the AA5xxx family. , in particular of the AA5083 type, for application to shielding plates.
La fabrication de billettes fourrées peut présenter l'avantage supplémentaire de permettre l'extrusion très rapide d'alliages durs protégés par une gaine en alliage moins dur, afin de pouvoir mettre en solution l'alliage dur sur simple chaleur de filage : en effet les vitesses de filage nécessaires sont impraticables sur les alliages durs en raison de leur mauvaise filabilité. Du fait que l'alliage dur est entouré d'une couche d'alliage « mou », l'ensemble devient plus facilement filable et à plus grande vitesse autorisant précisément la mise en solution de l'alliage dur sur simple chaleur de filage. Cette spécificité est particulièrement intéressante, notamment dans le cas du filage inverse.
Le séparateur peut aussi être constitué d'une plaque plane découpée de façon à ce qu'elle épouse une section verticale du front de solidification parallèle à l'une des faces de la plaque, ou à l'une des génératrices dans le cas des billettes. Dans ce cas on n'obtient plus une plaque ou une billette fourrée, mais des produits bi-couches, voire tri-couches si l'on utilise deux séparateurs plans, voire plus.
Dans tous les cas, le séparateur peut ne pas respecter la symétrie géométrique et thermique de la plaque ou billette pour obtenir des épaisseurs de couches différentes sur les différentes faces.
En pratique, la coulée des plaques ou billettes fourrées est démarrée avec le seul alliage de périphérie. Puis le séparateur est introduit dans le métal liquide, mis en vibration, abaissé au contact du front tandis que la goulotte d'amenée de l'alliage d'âme est abaissée de conserve, de façon à alimenter l'intérieur du séparateur avec l'alliage d'âme. Tant que la vibration est activée, elle empêche la prise du séparateur par le front. L'expérience montre qu'il est possible d'obtenir des différences de niveaux entre les deux côtés du séparateur, dans un sens ou dans un autre, ce qui est la preuve d'une bonne étanchéité. En fin de coulée, le séparateur est relevé : il y a donc mélange entre les deux alliages. Cette zone doit être éboutée, à moins que l'on souhaite délibérément obtenir une variation de composition dans la longueur de la plaque ou de la billette coulée, les alliages ayant été choisis en conséquence. C'est un degré de liberté supplémentaire offert par le procédé de coulée avec séparateur vibrant.
Dans le cas où le séparateur est constitué d'une «simple» plaque plane pour la coulée de produits bi-couche, voire tri-couche si l'on utilise deux séparateurs plans, la coulée est démarrée avec un seul alliage. Puis le séparateur plaque est introduit dans le métal liquide, mis en vibration, abaissé au contact du front tandis que la goulotte d'amenée de l'autre alliage est abaissée de conserve de façon à alimenter l'autre côté du séparateur avec l'autre alliage. La suite de la coulée s'effectue comme dans le cas précédent.
Bien entendu, quelle que soit la configuration, billette ou plaque fourrée, ou bicouche simple, outre les applications du type alliage à haute résistance mécanique / alliage à bonne formabilité pour tôles pour carrosserie automobile ou bicouches pour tôles de blindage, ce procédé permet aussi de couler des produits tels que des bicouches avec coeur en alliage quelconque et placage en alliage d'aluminium de haute pureté pour application notamment aux produits dits « grand brillant », ou alliage d'âme plaqué d'un alliage de couverture pour les applications à des tôles de brasage, ou encore bicouches pour longerons et raidisseurs de voilure, cette liste n'étant pas exhaustive.The manufacture of filled billets can have the additional advantage of allowing the very fast extrusion of hard alloys protected by a less hard alloy sheath, in order to be able to dissolve the hard alloy on simple heat of spinning: indeed the Spinning speeds required are impractical on hard alloys because of their poor spinnability. Since the hard alloy is surrounded by a "soft" alloy layer, the assembly becomes easier to spin and at a higher speed, which makes it possible to precisely dissolve the hard alloy on simple spinning heat. This specificity is particularly interesting, especially in the case of reverse spinning.
The separator may also consist of a flat plate cut so that it matches a vertical section of the solidification front parallel to one of the faces of the plate, or to one of the generatrices in the case of billets . In this case, a filled plate or billet is no longer obtained, but two-layer or even three-layer products if two flat separators are used, or even more.
In all cases, the separator may not respect the geometric and thermal symmetry of the plate or billet to obtain different layer thicknesses on the different faces.
In practice, the casting of the filled plates or billets is started with the only peripheral alloy. Then the separator is introduced into the liquid metal, vibrated, lowered in contact with the front while the supply channel of the core alloy is lowered canned, so as to feed the interior of the separator with the soul alloy. As long as the vibration is activated, it prevents the capture of the separator by the forehead. Experience shows that it is possible to obtain level differences between the two sides of the separator, in one direction or another, which is proof of a good seal. At the end of casting, the separator is raised: there is thus mixing between the two alloys. This zone must be trimmed unless it is deliberately desired to obtain a variation of composition in the length of the cast billet or billet, the alloys having been chosen accordingly. It's a additional degree of freedom offered by the casting process with vibrating separator.
In the case where the separator consists of a "simple" flat plate for pouring two-layer or even three-layer products if two flat separators are used, the casting is started with a single alloy. Then the plate separator is introduced into the liquid metal, vibrated, lowered in contact with the front while the supply chute of the other alloy is lowered in order to feed the other side of the separator with the other alloy. The rest of the casting is carried out as in the previous case.
Of course, regardless of the configuration, billet or filled plate, or single bilayer, in addition to the applications of the alloy type with high mechanical strength / alloy with good formability for automotive body panels or bilayers for shielding sheets, this process also makes it possible to casting products such as bilayers with any alloy core and high purity aluminum alloy plating for application in particular to so-called "high gloss" products, or alloy core plated a cover alloy for applications to brazing sheets, or bilayers for stringers and wing stiffeners, this list not being exhaustive.
L'invention peut également s'appliquer pour la réalisation de lingots, plaques, ou billettes, comportant plus de deux couches en alliages d'aluminium en utilisant alors plus d'un séparateur.The invention can also be applied for the production of ingots, plates, or billets, comprising more than two layers of aluminum alloys, while using more than one separator.
Dans ses détails, l'invention sera mieux comprise à l'aide des exemples ci-après, qui n'ont toutefois pas de caractère limitatif.In its details, the invention will be better understood with the aid of the following examples, which are however not limiting in nature.
Ce premier essai n'est pas conforme à l'invention car le séparateur, du type plaque, ne traverse pas le moule de part en part et une seule coulée d'un seul alliage a été mise en oeuvre, mais il était destiné à démontrer l'efficacité de la vibration pour éviter l'entrainement de la plaque par le métal solidifié.This first test is not in accordance with the invention because the separator, of the plate type, does not pass through the mold from one side and a single casting of a single alloy has been implemented, but it was intended to demonstrate the effectiveness of the vibration to avoid the drive of the plate by the solidified metal.
Une plaque monobloc, en composite réfractaire / fibres de verre, a été introduite et vibrée dans le marais d'une coulée de plaque de laminage en alliage AA1050 d'une section transversale de 1100x300mm.
La plaque réfractaire mesurait 200mm de large. Elle a été introduite parallèlement à la grande face de laminage, à 65mm de la paroi du moule.
La vibration de la plaque de réfractaire était assurée par un vibrateur pneumatique du type « Netter NTC » tel que ceux utilisés pour la vidange des silos à grains et autres trémies. Il s'agit d'une vibration multidirectionnelle de faible amplitude.
La plaque vibrée a été amenée et maintenue au contact du front de solidification.
Des sondages à l'aide d'une baguette ont permis de s'assurer de l'effectivité de ce contact. Différentes pressions du vibrateur pneumatique (entre 2 bars et 4 bars) ont été testées, de telle sorte que, compte-tenu des fréquences propres de vibration du montage, on obtienne une amplitude de vibration de l'ordre de 100 à 200µm à une fréquence de l'ordre de 100Hz.
En fin de coulée, après 400mm coulés avec la plaque sur le front (réglage 4 bars), l'air comprimé a été coupé, et donc la vibration.
La plaque a alors immédiatement été prise par le front.A one-piece refractory composite / glass fiber plate was introduced and vibrated in the swamp of an AA1050 alloy rolling plate casting with a cross-section of 1100x300mm.
The refractory plate was 200mm wide. It was introduced parallel to the large rolling face, 65mm from the wall of the mold.
The vibration of the refractory plate was provided by a pneumatic vibrator of the "Netter NTC" type such as those used for the emptying of the grain silos and other hoppers. It is a multidirectional vibration of low amplitude.
The vibrated plate was brought into contact with the solidification front.
Drills using a stick have made sure of the effectiveness of this contact. Different pressures of the pneumatic vibrator (between 2 bars and 4 bars) were tested, so that, taking into account the natural vibration frequencies of the assembly, a vibration amplitude of the order of 100 to 200 μm at a frequency is obtained. of the order of 100Hz.
At the end of the casting, after 400mm cast with the plate on the front (setting 4 bar), the compressed air was cut, and thus the vibration.
The plate was immediately taken by the forehead.
Dans cet essai ont été coulées:
- une plaque bi-alliage avec périphérie en alliage AA5083 et âme en alliage AA7449, typique pour une application comme tôle de blindage.
- une plaque bi-alliage avec périphérie en alliage AA6016 et âme en alliage AA7021, typique pour une application en carrosserie automobile.
Pour ces essais un séparateur monobloc en composite réfractaire / fibres de verre, dont la section transversale, sensiblement rectangulaire, épousait le front de solidification dans un plan horizontal, a été fabriqué et utilisé de façon à obtenir une couche d'alliage extérieur de 75mm d'épaisseur en périphérie de plaque.In this essay were cast:
- a bi-alloy plate with AA5083 alloy periphery and AA7449 alloy core, typical for application as a shielding sheet.
- a bi-alloy plate with AA6016 alloy periphery and AA7021 alloy core, typical for automotive body application.
For these tests, a one-piece refractory composite / glass fiber separator, whose cross-section, substantially rectangular, conformed to the solidification front in a horizontal plane, was manufactured and used to obtain an outer alloy layer of 75 mm thick. thickness at the periphery of the plate.
Aux courbures près dans les angles, dictées par la forme du front de solidification dans ces zones, l'âme était homothétique à la section totale, avec des dimensions typiques de 950x150mm.
L'épaisseur du séparateur était de 12mm sur toute sa hauteur et passait progressivement à 4mm en extrémité basse, sur une hauteur de 15mm.
En pratique, après le démarrage avec l'alliage de périphérie, le séparateur a été introduit dans le marais, descendu au contact du front de solidification, tout en le faisant vibrer dans les mêmes conditions que celles de l'exemple 1, de telle sorte qu'il ne soit pas emporté par le métal solide.
La vibration a été obtenue grâce au même vibrateur pneumatique vissé sur le cadre métallique de support du séparateur. Ce support coulissait sur des tiges de guidage verticales et était motorisé à l'aide d'un système de vis sans fin.
La goulotte amenant l'alliage d'âme a été alors abaissée et la cavité interne du séparateur alimentée.
L'étanchéité, donc la séparation des alliages, a été bien assurée, ce qu'a démontré l'observation pendant les coulées d'une différence de niveau entre l'intérieur et l'extérieur du séparateur, au gré des petites variations de débit de chacun des alliages. Il a été observé sur tranches de plaques que la structure granulaire était localement plus fine à l'emplacement du séparateur, probablement en raison de l'action mécanique de la vibration sur les dendrites.
Une mesure en spectrométrie par étincelle de la teneur en zinc d'une section transversale pour les deux types de plaque en fonction de la distance d en mm d'une face externe de la plaque dans le sens de l'épaisseur a été réalisée.
Ces profils de composition sont représentés en
The thickness of the separator was 12mm over its entire height and gradually increased to 4mm at the bottom end, to a height of 15mm.
In practice, after starting with the periphery alloy, the separator was introduced into the marsh, lowered into contact with the solidification front, while vibrating under the same conditions as those of Example 1, so that that it is not carried away by the solid metal.
The vibration was obtained thanks to the same pneumatic vibrator screwed on the metal support frame of the separator. This support slid on vertical guide rods and was motorized using a worm system.
The chute leading the core alloy was then lowered and the internal cavity of the separator fed.
The sealing, and therefore the separation of the alloys, has been well ensured, as demonstrated by the observation during the pourings of a difference in level between the inside and the outside of the separator, according to the small variations of the flow rate. of each of the alloys. It was observed on slabs of plates that the granular structure was locally finer at the location of the separator, probably due to the mechanical action of the vibration on the dendrites.
A spark spectrometry measurement of the zinc content of a cross-section for the two types of plate as a function of the distance d in mm of an outer face of the plate in the direction of the thickness was carried out.
These composition profiles are represented in
Claims (27)
- A semi-continuous vertical direct chill casting process for manufacturing rolling slabs or extrusion billets, in which a separator and two liquid metal supply systems ,typically spouts or troughs or tundishes arranged on either side of the separator, are used. This process features the following steps:a) One aluminium alloy is cast through a spout into the semi-continuous vertical casting mould,b) The separator , made of metal or a refractory material, is introduced into the mould, in contact with the solidification front,c) The second aluminium alloy is cast into the semi-continuous vertical casting mould, on the other side of the separator, via a second spout,d) The separator is raised almost simultaneously with the end of casting of the alloys, or slightly before casting is complete, in which case, the alloys may mix together in the zone in which slab or billet casting ended,e) The solidified slab or billet is removed from the semi-continuous casting mould,
characterized in that using a vibrator, a vibratory motion is applied to the separator, at least while it is in contact with the solidification front, to prevent said separator from becoming trapped and entrained by the solidified metal. - A process according to claim 1, characterized in that the separator is raised slightly before casting ceases, enabling the alloys to mix in the zone where casting ends, with this end zone then being cropped.
- A process according to one of claims 1 or 2, characterized in that the alloys have different compositions.
- A process according to one of claims 1 to 3, characterized in that the part of the slab or billet where casting begins, before the separator is inserted and the second alloy cast, is also cropped.
- A process according to one of claims 1 to 4, characterized in that the separator is an essentially flat plate cut so as to mate with a vertical section of the solidification front extending across the mould.
- A process according to one of claims 1 to 4, characterized in that the separator is a hollow cylinder.
- A process according to one of claims 1 to 4, characterized in that the separator is a hollow body of essentially rectangular cross-section.
- A process according to claim 7, characterized in that the essentially rectangular cross-section features rounded corners for effective mating with a horizontal section of the cast slab's solidification front.
- A process according to claim 7, characterized in that the hollow body has a perfectly rectangular cross-section and a bottom defined by a non-flat surface with profiled corners that match the shape of the solidification front in the corners.
- A process according to any of claims 1 to 9, characterized in that the separator is made of steel or similar metallic material or a refractory metal such as molybdenum or tungsten.
- A process according to any of claims 1 to 9, characterized in that the aforementioned separator is made of a ceramic or glass fibre-reinforced ceramic refractory material.
- A process according to any of claims 1 to 11, characterized in that the amplitude of the vibrations applied to the separator is small, typically around 100 µm at frequencies ranging from approximately 100 Hz up to ultrasonic frequencies.
- A process according to any of claims 1 to 2, characterized in that the vibratory motion is produced by any pneumatic, electric or ultrasound-emitting vibrator.
- A process according to any of claims 1 to 13, characterized in that the vibration frequency is in a range between 100 and 20,000 Hz.
- A process according to any of claims 1 to 14, characterized in that the vibration amplitude is in a range between 100 and 200 µm.
- A process according to one of claims 1 or 2, characterized in that the first and second alloys have the same composition.
- A process according to any of claims 1 to 16, modified to enable the casting of more than two alloys, using multiple separators.
- A semi-continuous direct chill vertical slab or billet casting device featuring a tubular cylindrical or rectangular semi-continuous vertical casting mould that is open-ended except for the bottom end, which is sealed at the start of casting by a bottom block. A lowering mechanism moves this bottom block downwards as the slab or billet is cast and solidified by water in direct contact with the product. Liquid metal is poured into the top of the mould, and the slab or billet exits from the bottom end. The top opening is equipped with two metal supply devices, typically spouts or troughs, and a separator designed to be inserted into the sump of liquid metal in contact with the solidification front inside the mould, thereby dividing the sump into two separate zones, characterized by the fact that the separator is connected to a vibrator device that enables a typically multidirectional vibratory motion to be imparted to the separator, at least throughout the period in which it is in contact with the solidification front. These vibrations are of low amplitude, typically of the order of 100 µm (preferably between 100 and 200 µm), and are delivered at frequencies in a range between approximately 100 Hz up to ultrasonic frequencies, (preferably between 100 and 20,000 Hz).
- A device according to claim 18, characterized in that the separator is an essentially flat plate.
- A device according to claim 18, characterized in that the separator is a hollow cylinder used in combination with a tubular mould of essentially circular cross-section.
- A device according to claim 19, characterized in that the separator is a hollow body of essentially rectangular cross-section used in combination with a tubular mould of essentially rectangular cross-section.
- A device according to claim 20, characterized in that the essentially rectangular cross-section of the separator features rounded corners matting a horizontal section of the top.
- A process according to claim 21, characterized in that the separator is of perfectly rectangular cross-section and has a bottom defined by a non-flat surface with profiled corners that match the shape of the solidification front in the corners.
- A process according to any of claims 18 to 23, characterized in that the separator is made of steel or similar metallic material or a refractory metal such as molybdenum or tungsten.
- A device according to any of claims 18 to 23 characterized in that the aforementioned separator is made of a ceramic or glass fibre-reinforced ceramic refractory material.
- A device according to any of claims 18 to 25, characterized in that the vibratory motion is produced by any pneumatic, electric or ultrasound-emitting vibrator.
- A device according to any of claims 18 to 26, modified to have more than one separator and more than two liquid metal supply devices, enabling slabs or billets to be cast using more than two aluminium alloys.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1102197A FR2977817B1 (en) | 2011-07-12 | 2011-07-12 | MULTI-ALLOY VERTICAL SEMI-CONTINUE CASTING PROCESS |
PCT/FR2012/000280 WO2013007891A1 (en) | 2011-07-12 | 2012-07-10 | Multi-alloy vertical semi-continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2731742A1 EP2731742A1 (en) | 2014-05-21 |
EP2731742B1 true EP2731742B1 (en) | 2015-04-08 |
Family
ID=46717872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12748724.7A Active EP2731742B1 (en) | 2011-07-12 | 2012-07-10 | Multi-alloy vertical semi-continuous casting method |
Country Status (9)
Country | Link |
---|---|
US (1) | US8985190B2 (en) |
EP (1) | EP2731742B1 (en) |
JP (1) | JP6014663B2 (en) |
CN (1) | CN103648683B (en) |
AU (1) | AU2012282371B2 (en) |
CA (1) | CA2841291C (en) |
ES (1) | ES2541678T3 (en) |
FR (1) | FR2977817B1 (en) |
WO (1) | WO2013007891A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE539823T1 (en) | 2008-03-05 | 2012-01-15 | Southwire Co | ULTRASONIC PROBE WITH NIOBIUM PROTECTIVE LAYER |
US8652397B2 (en) | 2010-04-09 | 2014-02-18 | Southwire Company | Ultrasonic device with integrated gas delivery system |
PL2556176T3 (en) | 2010-04-09 | 2020-08-24 | Southwire Company, Llc | Ultrasonic degassing of molten metals |
RU2696163C1 (en) | 2013-11-18 | 2019-07-31 | САУСВАЙР КОМПАНИ, ЭлЭлСи | Ultrasonic sensors with gas outlet holes for degassing of molten metals |
BR112017016985B1 (en) | 2015-02-09 | 2022-01-04 | Hans Tech, Llc | METAL PROCESSING DEVICE, AND METHOD FOR FORMING A METAL PRODUCT |
CN104827005A (en) * | 2015-05-29 | 2015-08-12 | 内蒙古汇豪镁业有限公司 | Ultrasonic stirring device for alloy continuous-casting crystalline area |
US10233515B1 (en) | 2015-08-14 | 2019-03-19 | Southwire Company, Llc | Metal treatment station for use with ultrasonic degassing system |
RU2020124617A (en) | 2015-09-10 | 2020-08-04 | САУТУАЙР КОМПАНИ, ЭлЭлСи | METHODS AND SYSTEMS FOR ULTRASONIC GRAIN GRINDING AND DEGASSING WHEN CASTING METAL |
CN106735002B (en) * | 2016-12-29 | 2018-10-09 | 重庆大学 | A kind of double mouth of a river Electromagnetic heating pouring devices of formula of suppression flow control certainly |
CN108526425B (en) * | 2018-03-30 | 2020-09-01 | 鞍钢股份有限公司 | Composite metal continuous casting device and continuous casting method |
US20220027620A1 (en) * | 2018-12-04 | 2022-01-27 | Arizona Board Of Regents On Behalf Of Arizona State University | Dendritic tags |
CN109773145B (en) * | 2018-12-27 | 2021-05-07 | 北京科技大学 | High-vacuum continuous casting forming equipment and process for noble metal layered composite material |
CN110508764B (en) * | 2019-09-20 | 2021-01-15 | 哈尔滨工业大学 | Semi-continuous casting equipment and semi-continuous casting method for traveling wave magnetic field/ultrasonic wave collaborative optimization of equal-outer-diameter thin-wall alloy casting |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3206808A (en) * | 1962-08-14 | 1965-09-21 | Reynolds Metals Co | Composite-ingot casting system |
US4567936A (en) | 1984-08-20 | 1986-02-04 | Kaiser Aluminum & Chemical Corporation | Composite ingot casting |
JPH05253651A (en) * | 1992-03-12 | 1993-10-05 | Nippon Steel Corp | Method for casting clad steel sheet by twin roll type continuous casting |
DE4420697C2 (en) | 1994-06-14 | 1997-02-27 | Inst Verformungskunde Und Huet | Continuous casting mold for casting a composite metal strand with a separating body for separating the cast melts of the partial strands |
CA2273923C (en) * | 1996-12-03 | 2006-07-18 | Hoogovens Aluminium Walzprodukte Gmbh | Multilayer metal composite products obtained by compound strand casting |
US6705384B2 (en) | 2001-10-23 | 2004-03-16 | Alcoa Inc. | Simultaneous multi-alloy casting |
PL378708A1 (en) * | 2003-06-24 | 2006-05-15 | Novelis Inc. | Method for casting composite ingot |
BRPI0602943B1 (en) | 2006-06-30 | 2017-05-23 | Brudden Equip | treadmill belt misalignment flag |
US7975752B2 (en) * | 2007-02-28 | 2011-07-12 | Novelis Inc. | Co-casting of metals by direct chill casting |
WO2009024601A1 (en) | 2007-08-23 | 2009-02-26 | Aleris Aluminum Koblenz Gmbh | Method for casting a composite aluminium alloy ingot or billet |
JP5250697B2 (en) | 2008-07-31 | 2013-07-31 | ノベリス・インコーポレイテッド | Continuous casting of multiple metals with similar solidification ranges |
-
2011
- 2011-07-12 FR FR1102197A patent/FR2977817B1/en active Active
-
2012
- 2012-07-10 US US14/131,421 patent/US8985190B2/en not_active Expired - Fee Related
- 2012-07-10 CN CN201280034764.1A patent/CN103648683B/en not_active Expired - Fee Related
- 2012-07-10 EP EP12748724.7A patent/EP2731742B1/en active Active
- 2012-07-10 WO PCT/FR2012/000280 patent/WO2013007891A1/en active Application Filing
- 2012-07-10 JP JP2014519595A patent/JP6014663B2/en not_active Expired - Fee Related
- 2012-07-10 ES ES12748724.7T patent/ES2541678T3/en active Active
- 2012-07-10 AU AU2012282371A patent/AU2012282371B2/en not_active Ceased
- 2012-07-10 CA CA2841291A patent/CA2841291C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20140138041A1 (en) | 2014-05-22 |
EP2731742A1 (en) | 2014-05-21 |
FR2977817B1 (en) | 2013-07-19 |
ES2541678T3 (en) | 2015-07-23 |
US8985190B2 (en) | 2015-03-24 |
JP6014663B2 (en) | 2016-10-25 |
JP2014520674A (en) | 2014-08-25 |
FR2977817A1 (en) | 2013-01-18 |
CA2841291C (en) | 2019-03-05 |
WO2013007891A1 (en) | 2013-01-17 |
AU2012282371A1 (en) | 2014-01-30 |
AU2012282371B2 (en) | 2016-05-12 |
CA2841291A1 (en) | 2013-01-17 |
CN103648683A (en) | 2014-03-19 |
CN103648683B (en) | 2015-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2731742B1 (en) | Multi-alloy vertical semi-continuous casting method | |
EP1965936B1 (en) | Process for manufacturing semi-finished products comprising two aluminium-based alloys | |
RU2460607C2 (en) | Device and method for subsequent casting of metals having equal or similar shrinkage factors | |
EP3056298A1 (en) | Composite metal ingot and composite sheet product which comprises such a hot and cold rolled ingot | |
EP2293894B1 (en) | Method for casting a composite ingot | |
US8534344B2 (en) | System and method of producing multi-layered alloy products | |
EP0092477A1 (en) | Process and apparatus for casting hollow steel ingots | |
WO2006108874A1 (en) | Method for continuous casting of blanks of metal sections | |
FR2498961A1 (en) | PROCESS AND DEVICE FOR MANUFACTURING FLAT INGOTS | |
EP1056559B1 (en) | Ingot mould with multiple angles for loaded continuous casting of metallurgical product | |
BE1012626A3 (en) | Device to produce flat products by means of vertical load continuouscasting of molten metal | |
BE701099A (en) | ||
BE551138A (en) | ||
BE891949A (en) | METHOD AND DEVICE FOR MANUFACTURING PLATE INGOTS | |
FR2521886A3 (en) | Casting pipe for continuous casting mould - has side outlets co-operating with mould walls to produce melt rotation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140128 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22D 11/14 20060101ALI20141128BHEP Ipc: B22D 11/00 20060101AFI20141128BHEP |
|
INTG | Intention to grant announced |
Effective date: 20141223 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 720131 Country of ref document: AT Kind code of ref document: T Effective date: 20150515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012006595 Country of ref document: DE Effective date: 20150528 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20150408 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2541678 Country of ref document: ES Kind code of ref document: T3 Effective date: 20150723 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20150408 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA Effective date: 20150915 Ref country code: FR Ref legal event code: CD Owner name: CONSTELLIUM ISSOIRE, FR Effective date: 20150915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150810 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150709 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012006595 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 720131 Country of ref document: AT Kind code of ref document: T Effective date: 20150408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150408 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: CONSTELLIUM ISSOIRE, FR Free format text: FORMER OWNER: CONSTELLIUM FRANCE, FR |
|
26N | No opposition filed |
Effective date: 20160111 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: CHAD Owner name: CONSTELLIUM ISSOIRE, FR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150710 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602012006595 Country of ref document: DE Owner name: CONSTELLIUM ISSOIRE, FR Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: HC Ref document number: 720131 Country of ref document: AT Kind code of ref document: T Owner name: CONSTELLIUM ISSOIRE, FR Effective date: 20160601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150710 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: CONSTELLIUM ISSOIRE Effective date: 20161010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120710 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150408 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20200626 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IS Payment date: 20200618 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200729 Year of fee payment: 9 Ref country code: NO Payment date: 20200729 Year of fee payment: 9 Ref country code: GB Payment date: 20200727 Year of fee payment: 9 Ref country code: ES Payment date: 20200803 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200724 Year of fee payment: 9 Ref country code: AT Payment date: 20200619 Year of fee payment: 9 Ref country code: CH Payment date: 20200803 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602012006595 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL Ref country code: NO Ref legal event code: MMEP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 720131 Country of ref document: AT Kind code of ref document: T Effective date: 20210710 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210710 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220201 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210710 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210711 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240725 Year of fee payment: 13 |