EP2725219A1 - Strömungsleiteinrichtung - Google Patents
Strömungsleiteinrichtung Download PDFInfo
- Publication number
- EP2725219A1 EP2725219A1 EP12382412.0A EP12382412A EP2725219A1 EP 2725219 A1 EP2725219 A1 EP 2725219A1 EP 12382412 A EP12382412 A EP 12382412A EP 2725219 A1 EP2725219 A1 EP 2725219A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- elongations
- tubes
- fixing
- bundle
- baffle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/29—Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
- F02M26/32—Liquid-cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
- F28D7/1684—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
- F28D7/1692—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section with particular pattern of flow of the heat exchange media, e.g. change of flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
- F28F2009/222—Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
- F28F2009/226—Transversal partitions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
- F28F2009/222—Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
- F28F2009/228—Oblique partitions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2235/00—Means for filling gaps between elements, e.g. between conduits within casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/08—Fastening; Joining by clamping or clipping
- F28F2275/085—Fastening; Joining by clamping or clipping with snap connection
Definitions
- the present invention is a flow deflector suitable for a heat exchanger of the type consisting of at least one core made up of tubes forming a bundle arranged inside a shell and at least one baffle.
- the deflector according to the invention is an easily manufactured part independent from the construction of the bundle of tubes and of the baffle which allows modifying the coolant fluid or liquid flow path with greater freedom than that achieved by combining internal openings in the baffle or baffles.
- Another object of this invention is the heat exchanger obtained using the deflector for optimising coolant liquid flow path.
- the configuration of heat exchangers for EGR systems usually consists of a bundle of tubes through which the recirculated gas passes and of a shell housing said bundle of tubes.
- a coolant fluid circulates between the bundle of tubes and the shell such that the gas circulating through the tubes transfers heat to the coolant liquid.
- the entry of the coolant liquid occurs at one point of the shell corresponding to an end of the bundle; and the exit at another point of the shell located at the opposite end of the bundle.
- the entry through a point establishes regions of the volume occupied by the coolant liquid which are stagnation regions. Since the speed is zero or very small in stagnation regions, convection is very low and therefore heat dissipation to other areas does not occur. As a result, the temperature is higher in these areas and worse still the materials which are in contact with these stagnation regions suffer greater thermal stresses. As a result of these high stresses in localised sites of the device, the service life of the materials is unfailingly reduced since they withstand a lower number of thermal fatigue cycles.
- a decrease in thermal stress level implies an increase in the number of thermal fatigue cycles withstood by the device without it malfunctioning. This increase in thermal fatigue cycles withstood by the device follows the behaviour similar to that of an exponential function. The decrease in thermal stresses and therefore in thermal fatigue, and the subsequent increase in the exchanger durability is achieved by means of a homogenous temperature distribution especially in the hotter areas.
- flow deflection means are incorporated, for example, for moving the coolant liquid in a zigzag manner and increasing its speed and thus improving heat convection.
- This flow deflection is achieved by means of the shape of the inner openings of the baffles responsible for securing the tubes of the bundle of tubes assuring a specific separation between said tubes.
- the more common configuration of these baffles is that of a perimetric ring-shaped die-cut plate according to the configuration of the perimeter of the bundle of tubes; and, having elongations towards the inside of the comb-shaped perimetric ring. These comb-shaped elongations are intended for being housed between the tubes of the bundle and prevent the passage of the coolant liquid through them.
- baffles If the elongations are short the opening left by these elongations inside the bundle are larger.
- the flow passing through these baffles is forced to follow the path imposed by the position and size of the openings by combining several baffles with different internal openings, the openings defining the ends of these elongations. For example, placement on alternate sides of the internal openings will give rise to a zigzag path.
- Incorporating the baffles to the bundle of tubes allows assuring the distances between tubes. Manufacturing is carried out by die-cutting sheet metal which is welded to this bundle. If the comb-shaped elongations of the baffles are excessively styled the manufacturing complexity increases given that dimensional stability and the tolerances demanded by mass production are more difficult to achieve.
- baffles are arranged essentially perpendicular to the tubes of the bundle of tubes therefore the deflection is not always optimum and the pressure losses are higher than if oblique flow deflections could occur.
- the present invention uses a part intended for being secured, preferably by clipping, in an already existing baffle the configuration of which is not limited by manufacturing demands, by geometry limitations of a part obtained by die-cutting sheet metal, and by limitations of baffle welding.
- the present invention solves the problems identified above by using a part which can be manufactured in plastic, resin or other materials, intended for being installed, preferably by clipping, on a baffle.
- the baffle can be of very simple design since it is no longer required to be responsible for coolant fluid or liquid flow deflection.
- the part according to the invention is a flow deflector suitable for a heat exchanger of the type consisting of at least one core made up of tubes forming a bundle arranged inside a shell and at least one baffle, such that said deflector comprises:
- This main body extends on the edge of said baffle when the deflector is operatively installed on the baffle.
- the direction identified as X-X will correspond both to the transverse direction and to the direction in which the mentioned main body extends.
- the X-X direction is a geometric reference for the remaining components of the deflector of the invention.
- the position and orientation of the plurality of fixing elongations also defines the main plane P containing the X-X direction.
- the fixing elongations are responsible for attaching the deflector to the bundle of tubes.
- the plane P coincides with the main plane of the baffle in this one and the same operating position of the deflector on the baffle.
- the condition of distributing fixing elongations on both sides of plane P results in the operating position with a distribution of such elongations on both sides of the baffle.
- the relative movement between the deflector and the bundle of tubes in the direction perpendicular to the bundle is prevented by resting the main body on the baffle.
- the exit direction is limited by the existence of the shell or, as will be seen in the embodiments, by particular ways of making these fixing elongations which incorporate staggerings to secure the clipping.
- the distribution on both sides of the main plane prevents the relative movement in the direction coinciding with the direction of the tubes of the bundle.
- the way in which the elongations are distributed on both sides of the plane is such that they leave a spacing to allow housing the baffle.
- this spacing is shown in projection in an area which allows accommodating the section of the baffle on which the deflector is fixed by means of the fixing elongations.
- the part of the deflector which intervenes by modifying the coolant fluid flow path is the deflecting extensions.
- the position thereof depends on the particular embodiment. Two particular examples will be shown below, although there can be more; a first example in which the deflecting extensions are located at the end of the fixing elongations giving continuity to such elongations; and a second example in which these deflecting extensions are located on one side of the main plane P linked to the main body by means of a resistant bridge. This second embodiment gives no reason for flow deflection to occur in the position of the baffle.
- these deflecting extensions can adopt degrees of inclination or curvature which would not be possible, or would be very complicated, to impose on one part of the baffle.
- Figure 1 shows a heat exchanger according to the state of the art formed by a core (2) and a shell (3) where coolant liquid flow is directed by means of baffles (2.2) for the purpose of increasing heat convection and therefore exchanger efficiency.
- baffles 2.2
- baffles (2.2) are resistant elements which must be welded to the bundle (2) of tubes (2.1).
- the manufacturing and welding requirements do not have to be compatible with the deflection surface requirements and therefore do not allow defining an optimum flow configuration.
- Figure 2 shows a baffle (2.2) incorporating comb-shaped elongations intended for being housed between the tubes (2.1) of the bundle (2) covering the space defining the separation between the tubes.
- the ends of the comb-shaped elongations are the edges of the internal window through which the passage of the coolant liquid is allowed.
- the passage and path of the coolant liquid can be modified by alternating the areas and positions of these windows but it has the drawbacks already mentioned in the state of the art.
- the present invention uses a part, the deflector (1), intended for being incorporated in a baffle (2.2) where this baffle (2.2) is very simple to manufacture since it does not require thin and long elongations for modifying inner coolant liquid flow.
- Figures 4a, 4b, 4c and 4d are the elevational, profile view of this first example whereas Figures 4c and 4d are two perspective views which allow observing the same part (1) from almost opposite positions for offering visual access to all the details.
- the deflector (1) according to this first embodiment is seen before and after being inserted in its operating position by means of Figures 3a and 3b .
- the deflector (1) is located on the baffle (2.2) such that in this view it is possible to see the protruding edge of the baffle (2.2) on which the deflector (1) will be located.
- the baffle (2.2) has a configuration with short internal elongations such that it does not limit the flow of coolant liquid through it.
- the deflector (1) comprises a main body (1.1) extending along the X-X direction.
- the main body (1.1) is intended to rest on the baffle (2.2) and the elongations (1.2, 1.3) which allow fixing on the baffle (2.2) protrude from the main body.
- Figure 4b shows the main plane P, which in this embodiment coincides with the plane of symmetry, leaving a group of fixing elongations (1.2) on one side and the remaining fixing elongations (1.3) on the other side.
- This same view 4b as well as the perspective view 4d allow observing the spacing of the fixing elongations (1.2, 1.3) with respect to plane P and therefore the separation between both groups of elongations. Said separation gives rise to a housing (H) for the sector of baffle (2.2) resulting in a fixing mode between both elements (1, 2.2).
- each of the fixing elongations (1.2, 1.3) has a deflecting extension (1.2.2, 1.3.2) configured as a continuation of the fixing elongation (1.2, 1.3).
- the deflecting extension (1.2.2, 1.3.2) there is a staggering arranged on the inner side orientated towards the main plane P. This staggering is intended for resting on the end of the elongations of the baffle (2.2) assuring their retention and preventing them from coming out.
- the ends of the deflecting extensions (1.2.2, 1.3.2) of this embodiment are bevelled on the inner side orientated towards the main plane P.
- This bevelling allows the insertion on the baffle (2.2) during assembly facilitating the opening by means of bending the set formed by the deflecting extension (1.2.2, 1.3.2) and the fixing elongation (1.2, 1.3).
- the insertion is completed when the sector of baffle (2.2) which is housed in the housing (H) overcomes the staggerings (1.2.1, 1.3.1) allowing the shape recovery of the set of fixing elongations (1.2, 1.3) together with the deflecting extensions (1.2.2, 1.3.2).
- a material with elastic behaviour in the range of deformations imposed by the thickness of the baffle (2.2) and the different dimensions of the deflector (1) intervening in the insertion has been selected for allowing an easy shape recovery.
- a second embodiment is shown in detail in Figures 5 and 6 .
- the main body (1) extends according to the X-X direction and comprises a channel (1.6) which also extends in the X-X direction intended for housing the outer edge of the baffle (2.2) when the deflector (1) is installed on the baffle (2.2).
- FIG. 5 shows a perspective view of the main plane P passing in the X-X direction and leaving the fixing elongations (1.2, 1.3) on both sides.
- the fixing elongations (1.2, 1.3) are shown in groups of three, and in each group of three, two fixing elongations (1.3) are on one side and the third fixing elongation (1.2) is on the opposite side of the main plane P.
- This third fixing elongation (1.2) is arranged between the other two fixing elongations (1.3) following the X-X direction. Only three fixing elongations (1.2, 1.3) would thus be sufficient for assuring a fixing preventing movements in directions perpendicular to the X-X direction and even rotational movements.
- the bevelling which facilitates the insertion of the deflector (1) in the baffle (2.2) is in the fixing elongations (1.2, 1.3).
- the space between tubes (2.1) is narrower than the space between the bundle (2) of tubes (2.1) and the shell (3).
- the lower flow resistance in this second space means that the entire flow tends to circulate outside the bundle of tubes (2.1).
- the presence of reinforcement (1.5.1) covering the space between the bundle (2) of tubes (2.1) and the shell (3) has the effect of forcing the flow to circulate between the tubes (2.1) increasing the cooling efficiency.
- the deflecting extensions (1.5) have a width slightly less than the space between tubes (2.1) giving rise to a clearance. Although the deflecting extensions (1.5) divert the flow reaching them, the existence of a clearance allows a small part of the flow to pass between the deflecting extension (1.5) and the tube (2.1) preventing stagnation regions which would give rise to points which could easily reach boiling temperature behind the deflecting extension (1.5).
- the deflecting extensions (1.5) elongate by way of ribs until reaching the main body (1.1).
- Figure 8 shows the bundle (2) of tubes (2.1) after having removed the shell (3) with the flow deflector (1) before being inserted on the baffle (2.2).
- the fixing elongations (1.2, 1.3) enter the spaces between tubes (2.1) being located on both sides of the baffle (2.2) by means of the downwards movement thereof (moving downward according to the orientation shown in the figure).
- the deflecting extensions also enter the spaces between the tubes (2.1) reaching the final position which is shown in Figure 8 .
- This figure shows two baffles (2.2); nevertheless, flow deflection does not occur in the position of the baffles (2.2) but in the position where the deflecting extensions (1.5) are located which, as a result of the resistant bridge (1.4), are away from the baffle (2.2).
- Figure 9 shows a section of the heat exchanger according to a plane which is orientated in the direction of the tubes (2.1) of the bundle (2).
- the tubes (2.1) are essentially planar. This section allows observing how the deflecting extensions (1.5) reach approximately the width of one of the two tubes (2.1) giving rise to the total height of the bundle (2) of tubes (2.1). The flow will be diverted so that it will be redirected to the lower tubes (2.1) (also following the orientation shown in the drawing). In this embodiment, the deflecting surfaces are inclined so that the diverted flow has an axial component according to the main axis of the bundle (2) of tubes (2.1). Nevertheless, these extensions can adopt other more complex configurations such as curves imposing a specific configuration to the stream lines.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12382412.0A EP2725219A1 (de) | 2012-10-25 | 2012-10-25 | Strömungsleiteinrichtung |
PCT/EP2013/072336 WO2014064225A1 (en) | 2012-10-25 | 2013-10-24 | Flow deflector |
CN201380056116.0A CN104956060B (zh) | 2012-10-25 | 2013-10-24 | 流动偏转器 |
EP13780173.4A EP2912296B1 (de) | 2012-10-25 | 2013-10-24 | Strömungsleiteinrichtung |
US14/438,501 US20150260466A1 (en) | 2012-10-25 | 2013-10-24 | Flow Deflector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12382412.0A EP2725219A1 (de) | 2012-10-25 | 2012-10-25 | Strömungsleiteinrichtung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2725219A1 true EP2725219A1 (de) | 2014-04-30 |
Family
ID=47358061
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12382412.0A Withdrawn EP2725219A1 (de) | 2012-10-25 | 2012-10-25 | Strömungsleiteinrichtung |
EP13780173.4A Not-in-force EP2912296B1 (de) | 2012-10-25 | 2013-10-24 | Strömungsleiteinrichtung |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13780173.4A Not-in-force EP2912296B1 (de) | 2012-10-25 | 2013-10-24 | Strömungsleiteinrichtung |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150260466A1 (de) |
EP (2) | EP2725219A1 (de) |
CN (1) | CN104956060B (de) |
WO (1) | WO2014064225A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016012621A1 (fr) * | 2014-07-25 | 2016-01-28 | Valeo Termico, S.A. | Échangeur de chaleur muni de déflecteur |
WO2018206108A1 (en) * | 2017-05-11 | 2018-11-15 | Mahle International Gmbh | Heat exchanger, in particular u-flow heat exchanger |
EP3828406A1 (de) * | 2019-11-29 | 2021-06-02 | Borgwarner Emissions Systems Spain, S.L.U. | Wärmetauscheranordnung für agr-systeme |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10508621B2 (en) * | 2012-07-12 | 2019-12-17 | Ge Global Sourcing Llc | Exhaust gas recirculation system and method |
DE102016011254A1 (de) | 2016-09-20 | 2018-03-22 | Modine Manufacturing Company | Bypass-Blockiervorrichtung für Wärmeübertrager |
EP3309381B1 (de) | 2016-10-13 | 2020-03-04 | Mahle International GmbH | Abgasrückführkühler für eine brennkraftmaschine |
DE102017206201A1 (de) | 2016-10-13 | 2018-04-19 | Mahle International Gmbh | Abgasrückführkühler für eine Brennkraftmaschine |
EP3375492B1 (de) | 2017-03-17 | 2020-12-09 | Centre National de la Recherche Scientifique | Polymermembran und verfahren zur herstellung davon |
KR101977894B1 (ko) * | 2017-04-14 | 2019-05-14 | 주식회사 코렌스 | 가스튜브 지지용 배플을 구비하는 이지알 쿨러 |
FR3084408B1 (fr) * | 2018-07-24 | 2021-09-17 | Faurecia Systemes Dechappement | Echangeur de chaleur et procede de fabrication correspondant |
EP3786562B1 (de) * | 2019-08-28 | 2023-03-29 | Valeo Termico S.A. | Abgasrückführungskühler |
CN112361868A (zh) * | 2020-11-13 | 2021-02-12 | 浙江银轮机械股份有限公司 | 导流板及热交换器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2251866A1 (de) * | 1972-10-23 | 1974-04-25 | Balcke Maschbau Ag | Vorrichtung zur halterung und distanzierung von rohren in einem waermetauscher |
JP2000018877A (ja) * | 1998-07-03 | 2000-01-18 | Toyo Radiator Co Ltd | オイルクーラ内蔵ラジエータおよびその製造方法 |
JP2002318095A (ja) * | 2001-04-18 | 2002-10-31 | Furukawa Electric Co Ltd:The | 熱交換器 |
FR2871560A1 (fr) * | 2004-06-10 | 2005-12-16 | Valeo Climatisation Sa | Echangeur de chaleur a collecteur perfectionne en particulier pour fluides a haute pression |
JP2008196319A (ja) * | 2007-02-08 | 2008-08-28 | Tokyo Radiator Mfg Co Ltd | Egrクーラ用熱交換器のチューブ支持構造 |
US20110005708A1 (en) * | 2009-07-10 | 2011-01-13 | Keihin Corporation | Heat exchanger equipped with partitioning members for use in a vehicular air conditioning apparatus |
WO2012115799A1 (en) * | 2011-02-21 | 2012-08-30 | International Engine Intellectual Property Company, Llc | Egr cooler and method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5113928A (en) * | 1989-07-10 | 1992-05-19 | Thermal Transfer Products, Ltd. | Heat exchanger with fluid pressure relief means |
EP0596855A1 (de) * | 1992-11-02 | 1994-05-11 | AVL Gesellschaft für Verbrennungskraftmaschinen und Messtechnik mbH.Prof.Dr.Dr.h.c. Hans List | Brennkraftmaschine mit Abgasturbolader |
EP1096131B1 (de) * | 1999-10-26 | 2001-09-19 | Senior Flexonics Automotive Limited | Abgasrückführungskühler |
US7889830B2 (en) * | 2007-05-08 | 2011-02-15 | Westinghouse Electric Company Llc | Nuclear reactor downcomer flow deflector |
DE102009020306A1 (de) * | 2008-05-12 | 2010-02-11 | Modine Manufacturing Co., Racine | Wärmetauscher und Verfahren zum Zusammenbau |
EP3029407A1 (de) * | 2014-12-02 | 2016-06-08 | Borgwarner Emissions Systems Spain, S.L.U. | Gerilltes prallblech für einen wärmetauscher |
-
2012
- 2012-10-25 EP EP12382412.0A patent/EP2725219A1/de not_active Withdrawn
-
2013
- 2013-10-24 WO PCT/EP2013/072336 patent/WO2014064225A1/en active Application Filing
- 2013-10-24 EP EP13780173.4A patent/EP2912296B1/de not_active Not-in-force
- 2013-10-24 US US14/438,501 patent/US20150260466A1/en not_active Abandoned
- 2013-10-24 CN CN201380056116.0A patent/CN104956060B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2251866A1 (de) * | 1972-10-23 | 1974-04-25 | Balcke Maschbau Ag | Vorrichtung zur halterung und distanzierung von rohren in einem waermetauscher |
JP2000018877A (ja) * | 1998-07-03 | 2000-01-18 | Toyo Radiator Co Ltd | オイルクーラ内蔵ラジエータおよびその製造方法 |
JP2002318095A (ja) * | 2001-04-18 | 2002-10-31 | Furukawa Electric Co Ltd:The | 熱交換器 |
FR2871560A1 (fr) * | 2004-06-10 | 2005-12-16 | Valeo Climatisation Sa | Echangeur de chaleur a collecteur perfectionne en particulier pour fluides a haute pression |
JP2008196319A (ja) * | 2007-02-08 | 2008-08-28 | Tokyo Radiator Mfg Co Ltd | Egrクーラ用熱交換器のチューブ支持構造 |
US20110005708A1 (en) * | 2009-07-10 | 2011-01-13 | Keihin Corporation | Heat exchanger equipped with partitioning members for use in a vehicular air conditioning apparatus |
WO2012115799A1 (en) * | 2011-02-21 | 2012-08-30 | International Engine Intellectual Property Company, Llc | Egr cooler and method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016012621A1 (fr) * | 2014-07-25 | 2016-01-28 | Valeo Termico, S.A. | Échangeur de chaleur muni de déflecteur |
US10126074B2 (en) | 2014-07-25 | 2018-11-13 | Valeo Termico, S.A. | Heat exchanger having a baffle |
WO2018206108A1 (en) * | 2017-05-11 | 2018-11-15 | Mahle International Gmbh | Heat exchanger, in particular u-flow heat exchanger |
EP3828406A1 (de) * | 2019-11-29 | 2021-06-02 | Borgwarner Emissions Systems Spain, S.L.U. | Wärmetauscheranordnung für agr-systeme |
US11131276B2 (en) | 2019-11-29 | 2021-09-28 | Borgwarner Emissions Systems Spain, S.L.U. | Heat exchanger device for EGR systems |
Also Published As
Publication number | Publication date |
---|---|
CN104956060B (zh) | 2017-09-12 |
CN104956060A (zh) | 2015-09-30 |
EP2912296A1 (de) | 2015-09-02 |
EP2912296B1 (de) | 2017-04-19 |
WO2014064225A1 (en) | 2014-05-01 |
US20150260466A1 (en) | 2015-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2912296B1 (de) | Strömungsleiteinrichtung | |
KR101925201B1 (ko) | 열 교환 장치 | |
JP4674602B2 (ja) | 熱交換器 | |
EP2917550B1 (de) | Wärmeaustauscher zum austausch von wärme zwischen fluiden | |
EP1795850A1 (de) | Wärmetauscher | |
CN106066128B (zh) | 热交换装置 | |
EP3029407A1 (de) | Gerilltes prallblech für einen wärmetauscher | |
JP5803768B2 (ja) | 熱交換器用フィンおよび熱交換器 | |
US20120024511A1 (en) | Intercooler | |
WO2017122832A1 (ja) | 偏平チューブ積層型の排気ガス熱交換器 | |
EP2957852B1 (de) | Strömungsdeflektoren | |
CN112368535B (zh) | 热交换器 | |
EP2469211A2 (de) | Wärmetauscher mit mehreren Rohrleitungen | |
US6786276B2 (en) | Heat exchanger tube with optimized plates | |
EP2746561A1 (de) | Leitung für einen Wärmetauscher eines Abgasrückführungssystems eines Verbrennungsmotors | |
US20170058842A1 (en) | Heat exchanger for internal combustion engines | |
EP2764231B1 (de) | Wärmetauscher für gase, insbesondere motorabgase | |
JP6577282B2 (ja) | 熱交換器 | |
KR101694083B1 (ko) | 특히 엔진의 배기 가스용의 가스 열교환기 | |
CN109458279B (zh) | 紧凑型热交换器 | |
CN111255525A (zh) | 燃气涡轮发动机、叶片及其内部冷却结构 | |
CN109154478B (zh) | 用于气体、特别是用于发动机废气的热交换器 | |
CN211782979U (zh) | 翅片及热交换器 | |
KR20240098789A (ko) | 열 교환기 | |
KR20230104366A (ko) | 루우버 표면을 갖는 옵셋 스트립 휜 및 이를 포함하는 열교환기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121025 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20141031 |