EP2721620A1 - Wicklungsanordnung mit spulenwicklungen und einem kühlkanalsystem - Google Patents

Wicklungsanordnung mit spulenwicklungen und einem kühlkanalsystem

Info

Publication number
EP2721620A1
EP2721620A1 EP12737781.0A EP12737781A EP2721620A1 EP 2721620 A1 EP2721620 A1 EP 2721620A1 EP 12737781 A EP12737781 A EP 12737781A EP 2721620 A1 EP2721620 A1 EP 2721620A1
Authority
EP
European Patent Office
Prior art keywords
cooling
channels
winding arrangement
winding
carrier body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12737781.0A
Other languages
English (en)
French (fr)
Other versions
EP2721620B1 (de
Inventor
Jörg FINDEISEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL12737781T priority Critical patent/PL2721620T3/pl
Publication of EP2721620A1 publication Critical patent/EP2721620A1/de
Application granted granted Critical
Publication of EP2721620B1 publication Critical patent/EP2721620B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling

Definitions

  • the invention relates to a winding arrangement with coil windings and a cooling duct system for an electrical apparatus, preferably for an oil-filled throttle or a transformer.
  • the flow of the coolant is forced in such windings either by a pump (OD / OF cooling) or takes place automatically due to the thermally induced density change of the cooling liquid (ON cooling).
  • the cooling liquid heated in the winding increases due to the lower ⁇ specifi c region weight relative to the surrounding liquid amount and is incoming from below cooling liquid ⁇ it sets.
  • Such windings are preferably designed as coil or ticket ⁇ benwicklungen in which the cooling channels are arranged radially to ⁇ .
  • the object is achieved by the features given in claim 1 ⁇ .
  • the winding arrangement comprises at least one coil winding and a cooling channel system for receiving a coolant for cooling the coil winding.
  • the coil windings are wound around an x-axis extending in an x-direction. Between turns of the coil winding cooling channels of the cooling channel system are arranged.
  • the cooling channel ⁇ system is designed such that in a suitable Aus ⁇ direction of the winding arrangement in the earth's gravity field and filling the cooling duct system with the coolant caused by a current flow heating of the coil windings Konvetechnischsströmung the coolant through all the cooling channels of the cooling duct system causes.
  • the term coil windings here not only coil windings in the literal sense, but also disc windings.
  • a flow of the coolant is thus generated solely by its heating by the coil windings. This is achieved by the design of the cooling channel system. This has the advantage that no further Vorrich ⁇ lines to generate a flow of the coolant are required. In particular, no pumps for generating a coolant flow are required.
  • the construction of the winding arrangement with respect to winding arrangements with cooled coil windings known from the prior art is made considerably simpler and less expensive.
  • the operational safety of the winding assembly is increased, since the elimination of separate devices for generating a coolant flow also eliminates the risk of failure of such devices.
  • the design of the cooling channel system for the flow through sämtli ⁇ cher cooling channels of the cooling channel system advantageously avoids local overheating of coil windings and thus reduces the risk of damage and loss of function of the winding assembly by such overheating.
  • the cooling channels are arranged on a carrier body. Further, the cooling passage system at least one of the Trä ⁇ ger stressess arranged storage chamber inside, and each memory ⁇ chamber is connected via connecting ducts with cooling channels.
  • the coolant from the storage ⁇ chambers supplied to the cooling channels or distributed to these and removed from them. This allows a coolant circulation within the cooling channel system, which causes a cooling of the coil windings according to the invention.
  • each cooling channel is arranged on an outer side of the carrier body.
  • the cooling of the coil windings can be advantageously improved by thermal contact of the cooling ducts with the surroundings of the winding arrangement.
  • the cooling of the coil windings can be advantageously improved by thermal contact of the cooling ducts with the surroundings of the winding arrangement.
  • the cooling ducts with the surroundings of the winding arrangement.
  • the other hand might be arranged in simple and efficient manner to the storage chambers inside the carrier body around and connected to these.
  • each storage chamber preferably at least one first connecting channel , which runs at least approximately in the z-direction, and at least one second connecting channel, which extends at least approximately in a y-direction orthogonal to the z-direction and the x-direction, exit ,
  • This geometric arrangement of the outgoing from the storage chambers connecting channels makes it possible advantageously, resulting from heating the coil windings buoyancy to use within the coolant to flow through all the cooling channels of the cooling channel system by the winding arrangement is aligned in the gravitational field with the z-direction in the direction of gravity.
  • all the second connection channels emanating from storage chambers preferably extend at least approximately in the y-direction. This allows a geometrically simple and convenient design of the connecting channels for fürströ ⁇ tion of the cooling channels with the coolant.
  • connection channels connected to the cooling ⁇ channels.
  • the third connection channels advantageously support the distribution of the coolant to the cooling channels, in particular in the x-direction.
  • the cooling channel system comprises at least two storage chambers, and the SpeI ⁇ cherhuntn are arranged along the x-direction one behind the other.
  • the flow of coolant through the cooling channel system is improved by the cooling channel system is advantageously segmented.
  • the outgoing from adjacent storage chambers first and second connection channels are preferably arranged offset from one another.
  • the flows from and to adjacent storage chambers complement one another in an advantageous manner in that cooling ducts, which are supplied less by one storage chamber, are better supplied by an adjacent storage chamber.
  • the carrier body is preferably cylindrical in shape with a cylinder axis extending in the x-direction. This advantageously allows a geometrically simple construction of a winding arrangement according to the invention. Furthermore, the carrier body preferably comprises a plurality of hollow cylinder segments whose cavities each form a storage chamber and are separated from one another by separating disks, wherein the first and second connecting channels extending from the storage chambers are openings in the hollow cylinder walls of the hollow cylinder segments. In this way, in simp ⁇ cher, the above-described particularly preferred Ausges ⁇ taltung the winding arrangement can be realized with a plurality of serially-arranged storage chambers.
  • an inner body is arranged within the carrier body and the storage chambers are separated by separating disks between the carrier body and the inner body.
  • This embodiment also realizes the particularly preferred embodiment of the winding arrangement with a plurality of storage chambers arranged one behind the other.
  • This refinement can be used particularly advantageously, for example as a winding arrangement for transformers, in particular vehicle transformers.
  • a carrier body or inner body for example, electrical barrier arrangements for high voltage insulation are. If high-voltage only a high-voltage barrier is required, as an inner body, for example, advantageously a transformer core can be used.
  • the inner body is for example cylindrical. This is particularly advantageous in connection with a just ⁇ if cylindrical shaped carrier body, since then uniformly shaped storage chambers arise in the spaces between the two bodies.
  • a coil assembly is thus provided ⁇ propose, in the different aligned by combining channels (coolant channels, connecting channels) and otherdemit ⁇ telschreib (storage chambers) each channels with strong Strö ⁇ mung drive (largely vertical channels) and channels with un ⁇ favorable coolant drive (largely horizontal channels) be summarized to a flow channel.
  • FIG. 1 shows a perspective view of a winding arrangement with a cylindrical carrier body
  • FIG. 2 shows a perspective partial view of a winding arrangement with a cylindrical carrier body
  • Carrier body with axial bars Carrier body with axial bars
  • FIG. 4 is a perspective view of a cutting disc and its attachment for dividing a cylindrical cavity in two storage chambers
  • 5 shows a longitudinal section through a winding arrangement with a cylindrical carrier body and three Speieherhuntn
  • 6 shows a cross section through a winding arrangement with a cylindrical carrier body in one
  • Cutting plane through a first storage chamber, 7 shows a cross section through a winding arrangement with a cylindrical carrier body in one
  • FIG 8 is a plan view of a substituted material for a first storage chamber.
  • FIG. 9 shows a plan view of a cylindrical carrier body with three storage chambers unwound in one plane
  • FIG. 10 is a plan view of a unwound in a plane ⁇ th cylindrical support body with four storage chambers
  • FIG. 11 shows a cross section through a winding arrangement with a cylindrical carrier body without third connection channels in a sectional plane through a first storage chamber
  • FIG. 13 shows a cross section through a winding arrangement with a cylindrical carrier body and an inner body in a sectional plane through a first storage chamber
  • FIG. 14 shows a cross section through a winding arrangement with a cylindrical carrier body and an inner body in a sectional plane through a second storage chamber.
  • Figure 1 and Figure 2 show a perspective view and partial representation of a first embodiment of a winding arrangement A according to the invention.
  • the winding arrangement A comprises a coil winding 1, a hollow cylindrical derförmigen carrier body 2 and a cooling channel system, with a cooling oil as a coolant for cooling the coil windings 1 is filled.
  • the coil winding 1 extends helically about a longitudinal axis (Zy ⁇ linderachse) of the support body 2 on the outside thereof.
  • the cooling duct system includes cooling channels 40, each interim ⁇ rule adjacent turns of the coil winding are located 1, a storage chamber 20 which is formed by the cavity inside the carrier body 2, and tantskanä ⁇ le 51, 52, 53, via which the storing chamber 20 is connected to thedeka ⁇ channels 40.
  • First connecting channels 51 and second connecting channels 52 are openings in the hollow cylinder wall of the carrier body 2.
  • the first connecting channels 51 extend at least approximately in a z-direction which is orthogonal to an x-direction which is defined by the longitudinal axis (cylinder axis) of the carrier body 2 becomes.
  • the second connection ⁇ channels 52 extend at least approximately in a y-direction, which is orthogonal to the x-direction and the z-direction.
  • the first and second connecting channels 51, 52 lead from the storage chamber 20 through the hollow cylinder wall of the support body 2 to the third connecting channels 53 duri ⁇ fen on the outer surface of the support body 2 in the x direction.
  • connection channels 53 are mutually abutting on the outer surface of the carrier body 2, in x-
  • the cooling channels 40 connect respectively to a third connecting channel 53 and are spaced through it from the outside ⁇ surface of the carrier body. 2 They run in a yz plane in each case radially from a third connection ⁇ channel 53 to the outside. In the yz plane, the cooling channels 40 are separated from each other by separating strips 4, each resting on an axial strip 3 and extending radially outwardly therefrom between adjacent turns of the coil winding 1.
  • Figure 3 shows a perspective view of the carrier ⁇ body 2 illustrated in Figures 1 and 2 with A winding arrangement is arranged on the carrier body 2 Axialleis- th. 3
  • the winding arrangement A shown in FIGS. 1 to 3 is intended to be oriented in the gravitational force in the gravitational field with the z-direction.
  • Channel system thedeka- is designed so that in such From ⁇ direction heating of the coil winding 1, which is generated by a current flow through the coil 1, a con- vekomsströmung of the cooling oil through all the cooling channels 40 of the cooling channel system causes.
  • the convection flow is generated by a buoyancy, which is caused by the heating of the coil winding 1 in the cooling oil.
  • the arrangement in particular of the first and second connecting channels 51, 52 and their approximate course in the z- or y-direction thereby ensure that all cooling channels 40 are included in the flow of the cooling oil.
  • the second communication passages 52 are preferably not made to run exactly in the y-direction, but slightly different, so that they each allow an upward component of the flow.
  • An embodiment of the shown in the figures 1 to 3 the first embodiment provides, instead of a coil winding 1 ⁇ a plurality of such coil windings 1 before, the Windings, for example, offset from each other or intertwined.
  • inventive winding arrangements A described below with reference to FIGS. 4 to 14.
  • These also have approximately in the z- or y-direction extending first and second connec ⁇ tion channels 51, 52, which allow a convection flow through all the cooling channels 40 when the coil windings 1 are traversed by electric current and the respective winding arrangement A in the earth's gravity field the z-direction is oriented in the direction of gravity.
  • the winding arrangements A of these embodiments also each have a cylindrical carrier body 2.
  • a plurality of storage chambers 21, 22, 23, 24 along the longitudinal axis (cylinder axis) of the carrier body 2 are arranged one behind the other in the interior of the carrier body 2 for further improving the convection flow of the cooling oil.
  • the longitudinal axis of the carrier body 2 defines each ⁇ wells in turn, an x-direction.
  • the y and z directions refer to the x-direction and mutually orthogonal directions.
  • Figure 4 shows a perspective view of a cutting wheel 5 for dividing a cylindrical cavity within a cylindrical support body 2, not shown here in two storage chambers 21, 22.
  • the separating disk 5 is arranged by means of a arranged along the longitudinal axis of the Sukör ⁇ pers 2 mounting rod 6 at a carrying device 7 of the support body 2 attached.
  • the fastening ⁇ rod 6 can be omitted when the blade 5 is connected at its Au ⁇ . . 2
  • FIG. 5 shows a longitudinal section in an xz plane through a second exemplary embodiment of a winding arrangement A.
  • Winding arrangement A has a cylindrical carrier body 2 with three storage chambers 21, 22, 23, which are each formed as a cavity of a hollow cylinder segment within the carrier body 2. Adjacent storage chambers 21, 22, 23 are each separated by a cutting disc 5 from each other.
  • second connecting channels 52 which are each formed as an opening in the hollow cylinder wall of the respec ⁇ gene hollow cylinder segment.
  • first and second connection channels 51, 52 are each connected to a third connection channel 53.
  • ver ⁇ through the third connecting passages 53 in the x-direction on the outer surface of the support body 2 and are provided with outwardly subsequent cooling channels 40 are connected, in which SPU lenwicklept are arranged.
  • the first connection channels 51 and the second connection ⁇ channels 52 adjacent storage chambers 21, 22, 23 are each offset from each other. As a result, the convection flow of the cooling oil is advantageously further improved.
  • FIGS. 6 and 7 each show a cross section in a yz plane through the winding arrangement A shown in FIG. 5, the sectional plane in FIG. 6 passing through a first storage chamber 21 and the sectional plane in FIG. 7 being adjacent through one of the first storage chamber 21 second storage chamber 22 extends. Shown are also the directions of the convection flow of the cooling oil through the first and second connection channels 51, 52 which are arranged offset in the two storage chambers 21, 22 to each other.
  • FIGS. 8 to 10 each show a plan view of a cut-and-cut along an x-direction xy plane unwound cylindrical support body 2 of embodiments of winding arrangements A, which differ by the number of storage chambers 21, 22, 23, 24 and the number and / or distribution of first and second connection channels 51, 52, but otherwise correspond to the embodiment shown in Figures 5 to 7.
  • the position of the separating disks 5 is shown, which separate the storage chambers 21, 22, 23, 24 from one another.
  • the first and second connection channels 51, 52 of adjacent storage chambers 21, 22, 23, 24 are arranged offset from one another.
  • FIGS. 11 and 12 each show a cross section in a yz plane through a winding arrangement A according to a further exemplary embodiment.
  • the winding arrangement A has no third connecting channels 53 up but the first and second connecting channels 51, 52 connected directly to the cooling channels 40 .
  • the winding arrangement A is formed analogously to the embodiments illustrated in FIGS. 5 to 10.
  • it has a plurality of storage chambers 21, 22, 23, 24, wherein the first and second connection channels 51, 52 emanating from adjacent storage chambers 21, 22, 23, 24 are arranged offset relative to one another.
  • Figure 11 shows a cross-section whose sectional plane passing through a first storage chamber ⁇ 21st
  • FIG. 12 shows a cross section whose sectional plane extends through a second storage chamber 22 adjacent to the first storage chamber 21.
  • Figures 13 and 14 show respectively a cross section in egg ⁇ ner yz-plane by a winding arrangement A according to a soft direct embodiment. Like the embodiment illustrated in Figures 11 and 12 also includes exporting this example approximately ⁇ no third connecting channels 53rd
  • the Un ⁇ ter Kunststoff to that shown in Figures 11 and 12 off guiding example consists in the formation of the storage chambers 21, 22, 23, 24.
  • a cylindrical inner body 8 is arranged, the cylinder axis coincides with the cylinder axis of the support body 2.
  • the storage chambers 21, 22, 23, 24 are formed in this embodiment of spaces between the support body 2 and the inner body 8, which are separated from each other by annular cutting discs 5.
  • FIG. 14 shows a cross section whose sectional plane extends through a second storage chamber 22 adjacent to the first storage chamber 21.
  • suitable carrier bodies 2 and / or inner bodies 8 are, for example, electrical barrier arrangements for high-voltage insulation.
  • This exemplary embodiment can be used to particular advantage as a winding arrangement for vehicle ⁇ transformers. If high-voltage technically a high voltage barrier is required, nen redesign 8 of the core of a transport formators be used as an in ⁇ example advantageous.
  • an outer area around the cooling channels 40 and coil windings 1 can likewise be designed as an area of the cooling channel system that can be filled with coolant and connected to the cooling channels 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

Die Erfindung betrifft eine Wicklungsanordnung (A) mit wenigstens einer Spulenwicklung (1) und einem Kühlkanalsystem zur Aufnahme eines Kühlmittels zur Kühlung der Spulenwicklung (1). Zwischen Windungen der Spulenwicklung (1) sind Kühlkanäle (40) des Kühlkanalsystems angeordnet. Das Kühlkanalsystem ist derart ausgebildet, dass bei geeigneter Ausrichtung der Wicklungsanordnung (A) im Erdschwerefeld und Befüllung des Kühlkanalsystems mit dem Kühlmittel eine durch einen Stromfluss erzeugte Erwärmung der Spulenwicklungen (1) eine Konvektionsströmung des Kühlmittels durch sämtliche Kühlkanäle (40) des Kühlkanalsystems bewirkt.

Description

Beschreibung
Wicklungsanordnung mit Spulenwicklungen und einem Kühlkanal- System
Die Erfindung betrifft eine Wicklungsanordnung mit Spulenwicklungen und einem Kühlkanalsystem für einen elektrischen Apparat, vorzugsweise für eine ölgefüllte Drossel oder einen Transformator.
Die Strömung des Kühlmittels wird in solchen Wicklungen entweder durch eine Pumpe erzwungen (OD/OF-Kühlung) oder erfolgt selbständig auf Grund der thermisch bedingten Dichteänderung der Kühlflüssigkeit (ON-Kühlung) . Die in der Wicklung erwärmte Kühlflüssigkeit steigt auf Grund des geringeren spezifi¬ schen Raumgewichts gegenüber der umgebenden Flüssigkeitsmenge auf und wird durch von unten zuströmende Kühlflüssigkeit er¬ setzt .
Solche Wicklungen werden vorzugsweise als Spulen- oder Schei¬ benwicklungen ausgeführt bei denen die Kühlkanäle radial an¬ geordnet sind . In einer Vielzahl von Anwendungsfällen ist es vorteilhaft, solche Wicklungen mit radial angeordneten Kühlkanälen liegend (Wicklungsachse parallel zum Boden) einzusetzen.
Das Problem dabei ist, dass ab einer bestimmten radialen Breite der Wicklung in radial verlaufenden weitgehend horizontal angeordneten Kühlkanälen keine ausreichende natürliche Ölzirkulation mehr sichergestellt werden kann.
Es ist eine Aufgabe der Erfindung, eine verbesserte Wick- lungsanordnung mit Spulenwicklungen und einem Kühlkanalsystem zu deren Kühlung anzugeben. Die Aufgabe wird erfindungsgemäß durch die im Anspruch 1 an¬ gegebenen Merkmale gelöst.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Die erfindungsgemäße Wicklungsanordnung umfasst wenigstens eine Spulenwicklung und ein Kühlkanalsystem zur Aufnahme eines Kühlmittels zur Kühlung der Spulenwicklung. Dabei sind die Spulenwicklungen um eine in einer x-Richtung verlaufende x-Achse gewickelt. Zwischen Windungen der Spulenwicklung sind Kühlkanäle des Kühlkanalsystems angeordnet. Das Kühlkanal¬ system ist derart ausgebildet, dass bei geeigneter Aus¬ richtung der Wicklungsanordnung im Erdschwerefeld und Befül- lung des Kühlkanalsystems mit dem Kühlmittel eine durch einen Stromfluss erzeugte Erwärmung der Spulenwicklungen eine Kon- vektionsströmung des Kühlmittels durch sämtliche Kühlkanäle des Kühlkanalsystems bewirkt. Mit dem Begriff Spulenwicklungen werden hier nicht nur Spulenwicklungen im wörtlichen Sinne bezeichnet, sondern auch Scheibenwicklungen .
Erfindungsgemäß wird eine Strömung des Kühlmittels somit al- lein durch dessen Erwärmung durch die Spulenwicklungen erzeugt. Dies wird durch die Ausbildung des Kühlkanalsystems erreicht. Dies hat den Vorteil, dass keine weiteren Vorrich¬ tungen zur Erzeugung einer Strömung des Kühlmittels erforderlich sind. Insbesondere sind keine Pumpen zur Erzeugung einer Kühlmittelströmung erforderlich.
Dadurch wird die Konstruktion der Wicklungsanordnung gegenüber aus dem Stand der Technik bekannten Wicklungsanordnungen mit gekühlten Spulenwicklungen erheblich verein- facht und verbilligt. Außerdem wird die Betriebs-sicherheit der Wicklungsanordnung erhöht, da der Wegfall von separaten Vorrichtungen zur Erzeugung einer Kühlmittel-Strömung auch die Gefahr eines Ausfalls derartiger Vorrichtungen beseitigt. Die Auslegung des Kühlkanalsystems zur Durchströmung sämtli¬ cher Kühlkanäle des Kühlkanalsystems vermeidet vorteilhaft lokale Überhitzungen von Spulenwicklungen und reduziert somit die Gefahr von Beschädigungen und Funktionseinbußen der Wicklungsanordnung durch derartige Überhitzungen.
In einer bevorzugten Ausgestaltung der Wicklungsanordnung sind die Kühlkanäle an einem Trägerkörper angeordnet. Ferner weist das Kühlkanalsystem wenigstens eine im Inneren des Trä¬ gerkörpers angeordnete Speicherkammer auf und jede Speicher¬ kammer ist über Verbindungskanäle mit Kühlkanälen verbunden.
In den Speicherkammern kann ausreichend Kühlmittel zur Kühlung der Spulenwicklungen zur Verfügung gestellt werden. Über die Verbindungskanäle kann das Kühlmittel aus den Speicher¬ kammern den Kühlkanälen zugeführt bzw. auf diese verteilt und aus ihnen abgeführt werden. Dadurch wird eine Kühlmittelzirkulation innerhalb des Kühlkanalsystems ermöglicht, die eine erfindungsgemäße Kühlung der Spulenwicklungen bewirkt.
Vorzugsweise ist dabei jeder Kühlkanal an einer Außenseite des Trägerkörpers angeordnet. Dadurch kann einerseits die Kühlung der Spulenwicklungen durch einen thermischen Kontakt der Kühlkanäle mit der Umgebung der Wicklungsanordnung vorteilhaft verbessert werden. Andererseits können die Kühlkanä¬ le in einfacher und effizienter Weise um die Speicherkammern im Inneren des Trägerkörpers herum angeordnet und mit diesen verbunden werden.
Von jeder Speicherkammer gehen vorzugsweise wenigstens ein erster Verbindungskanal, der wenigstens näherungsweise in ei¬ ner z-Richtung verläuft, und wenigstens ein zweiter Verbindungskanal, der wenigstens näherungsweise in einer zu der z- Richtung und der x-Richtung orthogonalen y-Richtung verläuft, aus. Diese geometrische Anordnung der von den Speicherkammern ausgehenden Verbindungskanäle ermöglicht es vorteilhaft, den durch Erwärmung der Spulenwicklungen entstehenden Auftrieb innerhalb des Kühlmittels zur Durchströmung sämtlicher Kühlkanäle des Kühlkanalsystems zu nutzen, indem die Wicklungsan¬ ordnung im Erdschwerefeld mit der z-Richtung in Richtung der Schwerkraft ausgerichtet wird.
Dabei verlaufen alle von Speicherkammern ausgehenden zweiten Verbindungskanäle vorzugsweise wenigstens näherungsweise in der y-Richtung. Dies ermöglicht eine geometrisch einfache und zweckmäßige Gestaltung der Verbindungskanäle zur Durchströ¬ mung der Kühlkanäle mit dem Kühlmittel.
In einer bevorzugten Ausgestaltung des Kühlkanalsystems sind dabei erste und zweite Verbindungskanäle über in der
x-Richtung verlaufende dritte Verbindungskanäle mit den Kühl¬ kanälen verbunden. Die dritten Verbindungskanäle unterstützen dabei vorteilhaft die Verteilung des Kühlmittels auf die Kühlkanäle, insbesondere in der x-Richtung.
In einer besonders bevorzugten Ausgestaltung weist das Kühlkanalsystem wenigstens zwei Speicherkammern auf und die Spei¬ cherkammern sind entlang der x-Richtung hintereinander angeordnet. Durch eine Mehrzahl hintereinander angeordneter Speicherkammern wird die Strömung von Kühlmittel durch das Kühlkanalsystem verbessert, indem das Kühlkanalsystem vorteilhaft segmentiert wird.
In dieser Ausgestaltung sind die von benachbarten Speicherkammern ausgehenden ersten und zweiten Verbindungs-kanäle vorzugsweise versetzt zueinander angeordnet. Dadurch ergänzen sich die Strömungen aus und zu benachbarten Speicherkammern vorteilhaft, indem Kühlkanäle, die von einer Speicherkammer weniger versorgt werden, umso besser von einer benachbarten Speicherkammer versorgt werden.
Der Trägerkörper ist vorzugsweise zylinderförmig mit einer in der x-Richtung verlaufenden Zylinderachse ausgebildet. Dies ermöglicht vorteilhaft eine geometrisch einfache Konstruktion einer erfindungsgemäßen Wicklungsanordnung. Ferner umfasst der Trägerkörper vorzugsweise mehrere Hohlzylindersegmente, deren Hohlräume jeweils eine Speicher-kammer bilden und durch Trennscheiben voneinander getrennt sind, wo- bei die von den Speicherkammern ausgehenden ersten und zweiten Verbindungskanäle Öffnungen in den Hohlzylinder-wänden der Hohlzylindersegmente sind. Auf diese Weise kann in einfa¬ cher Weise die oben beschriebene besonders bevorzugte Ausges¬ taltung der Wicklungsanordnung mit mehreren hintereinander angeordneten Speicherkammern realisiert werden.
Alternativ ist innerhalb des Trägerkörpers ein Innenkörper angeordnet und die Speicherkammern sind durch Trennscheiben voneinander getrennte Zwischenräume zwischen dem Trägerkörper und dem Innenkörper. Auch diese Ausgestaltung realisiert die besonders bevorzugte Ausgestaltung der Wicklungsanordnung mit mehreren hintereinander angeordneten Speicherkammern. Diese Ausgestaltung kann insbesondere vorteilhaft, beispielsweise als Wicklungsanordnung für Transformatoren, insbesondere Fahrzeugtransformatoren, verwendet werden. Als Trägerkörper oder Innenkörper eignen sich beispielsweise elektrische Barriereanordnungen zur Hochspannungsisolation. Wenn hochspannungstechnisch nur eine Hochspannungsbarriere erforderlich ist, kann als Innenkörper beispielsweise vorteilhaft ein Transformatorkern genutzt werden.
Der Innenkörper ist dabei beispielsweise zylinderförmig ausgebildet. Dies ist besonders in Verbindung mit einem eben¬ falls zylinderförmig ausgebildeten Trägerkörper vorteilhaft, da dann gleichmäßig geformte Speicherkammern in den Zwischenräumen zwischen beiden Körpern entstehen.
Erfindungsgemäß wird somit eine Wicklungsanordnung vorge¬ schlagen, in der durch Kombination verschieden ausgerichteter Kanäle (Kühlkanäle, Verbindungskanäle) und anderer Kühlmit¬ telräume (Speicherkammern) jeweils Kanäle mit starkem Strö¬ mungsantrieb (weitgehend vertikale Kanäle) und Kanäle mit un¬ günstigem Kühlmittelantrieb (weitgehend horizontale Kanäle) zu einem Strömungskanal zusammengefasst werden. Durch diese Verkettung von Kanälen wird die Strömung des Kühlmittels durch die Wicklungsanordnung vergleichmäßigt und eine übermä¬ ßige Erwärmung von Teilen der Wicklung vermieden, indem ein Stagnieren der Strömung in den weitgehend horizontalen Kanälen vermieden wird.
Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung eines Ausführungsbeispiels, das im Zusammenhang mit einer Zeichnung näher erläutert wird. Dabei zeigen:
FIG 1 eine perspektivische Darstellung einer Wicklungsanordnung mit einem zylinderförmigen Trägerkörper,
FIG 2 eine perspektivische Teildarstellung einer Wicklungsanordnung mit einem zylinderförmigen Trägerkörper,
FIG 3 perspektivische Darstellung eines zylinderför
Trägerkörpers mit Axialleisten,
FIG 4 eine perspektivische Darstellung einer Trennscheibe und deren Befestigung zur Aufteilung eines zylindrischen Hohlraumes in zwei Speicherkammern,
FIG 5 einen Längsschnitt durch eine Wicklungsanordnung mit einem zylinderförmigen Trägerkörper und drei Speieherkammern, FIG 6 einen Querschnitt durch eine Wicklungsanordnung mit einem zylinderförmigen Trägerkörper in einer
Schnittebene durch eine erste Speicherkammer, FIG 7 einen Querschnitt durch eine Wicklungsanordnung mit einem zylinderförmigen Trägerkörper in einer
Schnittebene durch eine zweite Speicherkammer, FIG 8 eine Draufsicht auf einen in eine Ebene abgewickel¬ ten zylinderförmigen Trägerkörper mit zwei Speicherkammern,
FIG 9 eine Draufsicht auf einen in eine Ebene abgewickel- ten zylinderförmigen Trägerkörper mit drei Speicherkammern,
FIG 10 eine Draufsicht auf einen in eine Ebene abgewickel¬ ten zylinderförmigen Trägerkörper mit vier Spei- cherkammern,
FIG 11 einen Querschnitt durch eine Wicklungsanordnung mit einem zylinderförmigen Trägerkörper ohne dritte Verbindungskanäle in einer Schnittebene durch eine erste Speicherkammer,
FIG 12 einen Querschnitt durch eine Wicklungsanordnung mit einem zylinderförmigen Trägerkörper ohne dritte Verbindungskanäle in einer Schnittebene durch eine zweite Speicherkammer,
FIG 13 einen Querschnitt durch eine Wicklungsanordnung mit einem zylinderförmigen Trägerkörper und einem Innenkörper in einer Schnittebene durch eine erste Speicherkammer, und
FIG 14 einen Querschnitt durch eine Wicklungsanordnung mit einem zylinderförmigen Trägerkörper und einem Innenkörper in einer Schnittebene durch eine zweite Speicherkammer.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen. Figur 1 und Figur 2 zeigen eine perspektivische Darstellung bzw. Teildarstellung eines ersten Ausführungsbeispiels einer erfindungsgemäßen Wicklungsanordnung A. Die Wicklungs- anordnung A umfasst eine Spulenwicklung 1, einen hohlzylin- derförmigen Trägerkörper 2 und ein Kühlkanalsystem, das mit einem Kühlöl als Kühlmittel zur Kühlung der Spulenwicklungen 1 befüllt wird. Die Spulenwicklung 1 verläuft helikal um eine Längsachse (Zy¬ linderachse) des Trägerkörpers 2 an dessen Außenseite.
Das Kühlkanalsystem umfasst Kühlkanäle 40, die jeweils zwi¬ schen benachbarten Windungen der Spulenwicklung 1 angeordnet sind, eine Speicherkammer 20, die durch den Hohlraum im Inneren des Trägerkörpers 2 gebildet wird, und Verbindungskanä¬ le 51, 52, 53, über die die Speicherkammer 20 mit den Kühlka¬ nälen 40 verbunden ist. Erste Verbindungskanäle 51 und zweite Verbindungskanäle 52 sind Öffnungen in der Hohlzylinderwand des Trägerkörpers 2. Dabei verlaufen die ersten Verbindungskanäle 51 wenigstens näherungsweise in einer z-Richtung, die orthogonal zu einer x-Richtung ist, welche durch die Längsachse (Zylinderachse) des Trägerkörpers 2 definiert wird. Die zweiten Verbindungs¬ kanäle 52 verlaufen wenigstens näherungsweise in einer y- Richtung, welche orthogonal zu der x-Richtung und der z- Richtung ist. Die ersten und zweiten Verbindungskanäle 51, 52 führen von der Speicherkammer 20 durch die Hohlzylinderwand des Trägerkörpers 2 zu dritten Verbindungskanälen 53, die an der Außenoberfläche des Trägerkörpers 2 in x-Richtung verlau¬ fen .
Die dritten Verbindungskanäle 53 sind voneinander durch an der Außenoberfläche des Trägerkörpers 2 anliegende, in x-
Richtung verlaufende Axialleisten 3 getrennt und regelmäßig über die gesamte Außenoberfläche des Trägerkörpers 2 ver¬ teilt. Die Kühlkanäle 40 schließen sich jeweils an einen dritten Verbindungskanal 53 an und sind durch diesen von der Außen¬ oberfläche des Trägerkörpers 2 beabstandet. Sie verlaufen in einer yz-Ebene jeweils radial von einem dritten Verbindungs¬ kanal 53 nach außen. In der yz-Ebene sind die Kühlkanäle 40 durch Trennungsleisten 4 voneinander getrennt, die jeweils auf einer Axialleiste 3 aufliegen und sich von dieser zwischen benachbarten Windungen der Spulenwicklung 1 radial nach außen erstrecken.
Figur 3 zeigt eine perspektivische Darstellung des Träger¬ körpers 2 der in den Figuren 1 und 2 dargestellten Wicklungsanordnung A mit an dem Trägerkörper 2 angeordneten Axialleis- ten 3.
Die in den Figuren 1 bis 3 dargestellte Wicklungsanordnung A ist dazu vorgesehen, im Erdschwerefeld mit der z-Richtung in Richtung der Schwerkraft ausgerichtet zu werden. Das Kühlka- nalsystem ist so konzipiert, dass bei einer derartigen Aus¬ richtung eine Erwärmung der Spulenwicklung 1, die durch einen Stromfluss durch die Spulenwicklung 1 erzeugt wird, eine Kon- vektionsströmung des Kühlöls durch sämtliche Kühlkanäle 40 des Kühlkanalsystems bewirkt. Die Konvektions-strömung wird dabei durch einen Auftrieb erzeugt, der durch die Erwärmung der Spulenwicklung 1 in dem Kühlöl entsteht. Die Anordnung insbesondere der ersten und zweiten Verbindungskanäle 51, 52 und deren näherungsweiser Verlauf in z- bzw. y-Richtung bewirken dabei, dass alle Kühlkanäle 40 in die Strömung des Kühlöls einbezogen werden. Um eine solche Strömung zu fördern, werden die zweiten Verbindungskanäle 52 vorzugsweise nicht exakt in y-Richtung verlaufend ausgeführt, sondern leicht davon abweichend, so dass sie jeweils eine aufwärts gerichtete Komponente der Strömung zulassen.
Eine Ausgestaltung des in den Figuren 1 bis 3 dargestellten ersten Ausführungsbeispiels sieht anstelle einer Spulen¬ wicklung 1 mehrere derartige Spulenwicklungen 1 vor, deren Windungen beispielsweise gegeneinander versetzt oder miteinander verflochten sind.
Hinsichtlich der Ausgestaltung des Kühlkanalsystems trifft Entsprechendes auch für die im Folgenden anhand der Figuren 4 bis 14 beschriebenen Ausführungsbeispiele erfindungsgemäßer Wicklungsanordnungen A zu. Auch diese weisen näherungsweise in z- bzw. y-Richtung verlaufende erste und zweite Verbin¬ dungskanäle 51, 52 auf, die eine Konvektionsströmung durch sämtliche Kühlkanäle 40 ermöglichen, wenn die Spulenwicklungen 1 von elektrischem Strom durchflössen werden und die jeweilige Wicklungsanordnung A im Erdschwerefeld mit der z- Richtung in Richtung der Schwerkraft ausgerichtet ist. Die Wicklungsanordnungen A dieser Ausführungsbeispiele weisen ebenfalls jeweils einen zylinderförmigen Trägerkörper 2 auf. Sie unterscheiden sich aber von dem ersten Ausführungsbeispiel dadurch, dass im Inneren des Trägerkörpers 2 zur weiteren Verbesserung der Konvektionsströmung des Kühlöls mehrere Speicherkammern 21, 22, 23, 24 entlang der Längsachse (Zylinderachse) des Trägerkörpers 2 hintereinander angeordnet sind. Die Längsachse des Trägerkörpers 2 definiert dabei je¬ weils wiederum eine x-Richtung. Die y- und die z-Richtung bezeichnen zu der x-Richtung und zueinander orthogonale Richtungen .
Figur 4 zeigt eine perspektivische Darstellung einer Trennscheibe 5 zur Aufteilung eines zylindrischen Hohlraumes innerhalb eines hier nicht dargestellten zylindrischen Trägerkörpers 2 in zwei Speicherkammern 21, 22. Die Trenn-scheibe 5 ist dabei mittels einer entlang der Längsachse des Trägerkör¬ pers 2 angeordneten Befestigungsstange 6 an einer Tragevorrichtung 7 des Trägerkörpers 2 befestigt. Die Befestigungs¬ stange 6 kann entfallen, wenn die Trennscheibe 5 an ihrem Au¬ ßenrand mit der Innenoberfläche des Trägerkörpers 2 verbunden ist.
Figur 5 zeigt einen Längsschnitt in einer xz-Ebene durch ein zweites Ausführungsbeispiel einer Wicklungsanordnung A. Die Wicklungsanordnung A weist einen zylinderförmigen Trägerkörper 2 mit drei Speicherkammern 21, 22, 23 auf, die jeweils als ein Hohlraum eines Hohlzylindersegmentes innerhalb des Trägerkörpers 2 ausgebildet sind. Benachbarte Speicher- kammern 21, 22, 23 sind jeweils durch eine Trennscheibe 5 voneinander getrennt.
Von jeder Speicherkammer 21, 22, 23 gehen mehrere wenigstens annähernd in z-Richtung verlaufende erste Verbindungs- kanäle 51 und mehrere wenigstens annähernd in
y-Richtung verlaufende zweite Verbindungskanäle 52 aus, die jeweils als eine Öffnung in der Hohlzylinderwand des jeweili¬ gen Hohlzylindersegmentes ausgebildet sind. Wie im ersten Ausführungsbeispiel sind die ersten und zweiten Verbindungs- kanäle 51, 52 jeweils mit einem dritten Verbindungskanal 53 verbunden. Ebenfalls wie im ersten Ausführungsbeispiel ver¬ laufen die dritten Verbindungs-kanäle 53 in x-Richtung an der Außenoberfläche des Trägerkörpers 2 und sind mit sich nach außen anschließenden Kühlkanälen 40 verbunden, in denen Spu- lenwicklungen 1 angeordnet sind.
Die ersten Verbindungskanäle 51 und die zweiten Verbindungs¬ kanäle 52 benachbarter Speicherkammern 21, 22, 23 sind jeweils versetzt zueinander angeordnet. Dadurch wird die Kon- vektionsströmung des Kühlöls vorteilhaft weiter verbessert.
Die Figuren 6 und 7 zeigen jeweils einen Querschnitt in einer yz-Ebene durch die in Figur 5 dargestellte Wicklungsanord¬ nung A, wobei die Schnittebene in Figur 6 durch eine erste Speicherkammer 21 verläuft und die Schnittebene in Figur 7 durch eine der ersten Speicherkammer 21 benachbarte zweite Speicherkammer 22 verläuft. Dargestellt sind außerdem die Richtungen der Konvektionsströmung des Kühlöls durch die ersten und zweiten Verbindungskanäle 51, 52, die in den beiden Speicherkammern 21, 22 versetzt zueinander angeordnet sind.
Die Figuren 8 bis 10 zeigen jeweils eine Draufsicht auf einen entlang einer x-Richtung aufgeschnittenen und in eine xy-Ebene abgewickelten zylinderförmigen Trägerkörper 2 von Ausführungsbeispielen von Wicklungsanordnungen A, die sich durch die Anzahl von Speicherkammern 21, 22, 23, 24 und die Anzahl und/oder Verteilung von ersten und zweiten Verbin- dungskanälen 51, 52 unterscheiden, im Übrigen aber jeweils dem in den Figuren 5 bis 7 dargestellten Ausführungs-beispiel entsprechen. Dargestellt ist jeweils auch die Lage der Trenn¬ scheiben 5, die die Speicherkammern 21, 22, 23, 24 voneinander trennen. Wie in dem in den Figuren 5 bis 7 gezeigten Aus- führungsbeispiel sind die ersten und zweiten Verbindungskanä¬ le 51, 52 benachbarter Speicherkammern 21, 22, 23, 24 versetzt zueinander angeordnet.
Die Figuren 11 und 12 zeigen jeweils einen Querschnitt in ei- ner yz-Ebene durch eine Wicklungsanordnung A gemäß einem weiteren Ausführungsbeispiel. Dieses Ausführungsbeispiel unter¬ scheidet sich von den in den Figuren 5 bis 10 dargestellten Ausführungsbeispielen im Wesentlichen dadurch, dass die Wicklungsanordnung A keine dritten Verbindungs-kanäle 53 auf- weist, sondern die ersten und zweiten Verbindungskanäle 51, 52 direkt mit den Kühlkanälen 40 verbunden sind. Abgesehen davon ist die Wicklungsanordnung A analog zu den in den Figuren 5 bis 10 dargestellten Ausführungsbeispielen ausgebildet. Insbesondere weist sie mehrere Speicherkammern 21, 22, 23, 24 auf, wobei die von benachbarten Speicherkammern 21, 22, 23, 24 ausgehenden ersten und zweiten Verbindungskanäle 51, 52 versetzt zueinander angeordnet sind. Figur 11 zeigt einen Querschnitt, dessen Schnittebene durch eine erste Speicher¬ kammer 21 verläuft. Figur 12 zeigt einen Querschnitt, dessen Schnittebene durch eine der ersten Speicherkammer 21 benachbarte zweite Speicherkammer 22 verläuft.
Die Figuren 13 und 14 zeigen jeweils einen Querschnitt in ei¬ ner yz-Ebene durch eine Wicklungsanordnung A gemäß einem wei- teren Ausführungsbeispiel. Wie das in den Figuren 11 und 12 dargestellte Ausführungsbeispiel weist auch dieses Ausfüh¬ rungsbeispiel keine dritten Verbindungskanäle 53 auf. Der Un¬ terschied zu dem in den Figuren 11 und 12 dargestellten Aus- führungsbeispiel besteht in der Ausbildung der Speicherkammern 21, 22, 23, 24. Innerhalb des Trägerkörpers 2 ist ein zylinderförmiger Innenkörper 8 angeordnet, dessen Zylinderachse mit der Zylinderachse des Trägerkörpers 2 zusammen- fällt. Die Speicherkammern 21, 22, 23, 24 werden in diesem Ausführungsbeispiel von Zwischenräumen zwischen dem Trägerkörper 2 und dem Innenkörper 8 gebildet, die voneinander durch ringförmige Trennscheiben 5 voneinander getrennt sind. Abgesehen davon ist die Wicklungsanordnung A analog zu dem in den Figuren 11 und 12 dargestellten Ausführungsbeispiel aus¬ gebildet. Figur 13 zeigt einen Querschnitt, dessen Schnitt¬ ebene durch eine erste Speicher-kammer 21 verläuft. Figur 14 zeigt einen Querschnitt, dessen Schnittebene durch eine der ersten Speicherkammer 21 benachbarte zweite Speicherkammer 22 verläuft.
Bei dem in den Figuren 13 und 14 dargestellten Ausführungsbeispiel eignen sich als Trägerkörper 2 und/oder Innenkörper 8 beispielsweise elektrische Barriereanordnungen zur Hochspannungsisolation. Dieses Ausführungsbeispiel kann ins¬ besondere vorteilhaft als Wicklungsanordnung für Fahrzeug¬ transformatoren verwendet werden. Wenn hochspannungstechnisch nur eine Hochspannungsbarriere erforderlich ist, kann als In¬ nenkörper 8 beispielsweise vorteilhaft der Kern eines Trans- formators genutzt werden.
In allen beschriebenen Ausführungsbeispielen kann ein Außenbereich um die Kühlkanäle 40 und Spulenwicklungen 1 herum ebenfalls als mit Kühlmittel befüllbarer und mit den Kühlka- nälen 40 verbundener Bereich des Kühlkanalsystems ausgebildet sein .
Obwohl die Erfindung im Detail durch ein bevorzugtes Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele einge¬ schränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen .

Claims

Patentansprüche
1. Wicklungsanordnung (A) mit wenigstens einer um eine in einer x-Richtung verlaufende x-Achse gewickelte Spulenwick- lung (1) und einem Kühlkanalsystem zur Aufnahme eines Kühlmittels zur Kühlung der Spulenwicklung (1), wobei zwischen Windungen der Spulenwicklung (1) Kühlkanäle (40) des Kühlkanalsystems angeordnet sind und das Kühlkanalsystem derart ausgebildet ist, dass bei geeigneter Ausrichtung der Wick- lungsanordnung (A) im Erdschwerefeld und Befüllung des Kühlkanalsystems mit dem Kühlmittel eine durch einen Stromfluss erzeugte Erwärmung der Spulenwicklung (1) eine Konvektions- strömung des Kühlmittels durch sämtliche Kühlkanäle (40) des Kühlkanalsystems bewirkt.
2. Wicklungsanordnung (A) nach Anspruch 1,
dadurch gekennzeichnet, dass die Kühlkanäle (40) an einem Trägerkörper (2) angeordnet sind, das Kühlkanalsystem wenigstens eine im Inneren des Trägerkörpers (2) angeordnete Spei- cherkammer (20, 21, 22, 23, 24) aufweist und jede Speicherkammer (20, 21, 22, 23, 24) über Verbindungs-kanäle (51, 52, 53) mit Kühlkanälen (40) verbunden ist.
3. Wicklungsanordnung (A) nach Anspruch 2,
dadurch gekennzeichnet, dass jede Spulenwicklung (1) und die Kühlkanäle (40) an einer Außenseite des Trägerkörpers (2) an¬ geordnet sind .
4. Wicklungsanordnung (A) nach Anspruch 2 oder 3,
dadurch gekennzeichnet, dass von jeder Speicherkammer (20,
21, 22, 23, 24) wenigstens ein erster Verbindungskanal (51), der wenigstens näherungsweise in einer zu der x-Richtung or¬ thogonalen z-Richtung verläuft, und wenigstens ein zweiter Verbindungskanal (52), der wenigstens näherungsweise orthogo- nal zu der z-Richtung und der x-Richtung verläuft, ausgehen.
5. Wicklungsanordnung (A) nach Anspruch 4,
dadurch gekennzeichnet, dass erste und zweite Verbindungska- näle (51, 52) über in der x-Richtung verlaufende dritte Ver¬ bindungskanäle (53) mit Kühlkanälen (40) verbunden sind.
6. Wicklungsanordnung (A) nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass das Kühlkanalsystem wenigstens zwei Speicherkammern (20, 21, 22, 23, 24) aufweist und die Speicherkammern (20, 21, 22, 23, 24) entlang der x-Richtung hintereinander angeordnet sind.
7. Wicklungsanordnung (A) nach Anspruch 6,
dadurch gekennzeichnet, dass die von benachbarten Speicherkammern (20, 21, 22, 23, 24) ausgehenden ersten und zweiten Verbindungskanäle (51, 52) versetzt zueinander angeordnet sind .
8. Wicklungsanordnung (A) nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass der Trägerkörper (2) zylinderförmig mit einer in der x-Richtung verlaufenden Zylinderachse ausgebildet ist.
9. Wicklungsanordnung (A) nach Anspruch 8,
dadurch gekennzeichnet, dass der Trägerkörper (2) mehrere Hohlzylindersegmente umfasst, deren Hohlräume jeweils eine Speicherkammer (20, 21, 22, 23, 24) bilden und durch Trenn- Scheiben (5) voneinander getrennt sind, und dass die von den Speicherkammern (20, 21, 22, 23, 24) ausgehenden ersten und zweiten Verbindungskanäle (51, 52) Öffnungen in den Hohlzylinderwänden der Hohlzylindersegmente sind.
10. Wicklungsanordnung (A) nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass innerhalb des Trägerkörpers (2) ein Innenkörper (8) angeordnet ist und die Speicherkammern (20, 21, 22, 23, 24) durch Trennscheiben voneinander getrennte Zwischenräume zwischen dem Trägerkörper (2) und dem Innenkörper (8) sind.
11. Wicklungsanordnung (A) nach Anspruch 10,
dadurch gekennzeichnet, dass der Innenkörper (8) zylinderför- mig ausgebildet ist.
EP12737781.0A 2011-07-22 2012-07-17 Wicklungsanordnung mit spulenwicklungen und einem kühlkanalsystem Active EP2721620B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12737781T PL2721620T3 (pl) 2011-07-22 2012-07-17 Układ uzwojeniowy z uzwojeniami cewkowymi i systemem kanałów chłodzących

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011079648A DE102011079648A1 (de) 2011-07-22 2011-07-22 Wicklungsanordnung mit Spulenwicklungen und einem Kühlkanalsystem
PCT/EP2012/063992 WO2013014031A1 (de) 2011-07-22 2012-07-17 Wicklungsanordnung mit spulenwicklungen und einem kühlkanalsystem

Publications (2)

Publication Number Publication Date
EP2721620A1 true EP2721620A1 (de) 2014-04-23
EP2721620B1 EP2721620B1 (de) 2018-01-31

Family

ID=46548440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12737781.0A Active EP2721620B1 (de) 2011-07-22 2012-07-17 Wicklungsanordnung mit spulenwicklungen und einem kühlkanalsystem

Country Status (4)

Country Link
EP (1) EP2721620B1 (de)
DE (1) DE102011079648A1 (de)
PL (1) PL2721620T3 (de)
WO (1) WO2013014031A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112022005763A2 (pt) * 2019-09-27 2022-06-21 Univ Marquette Enrolamento de estator com arrefecimento integrado

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US694673A (en) * 1901-08-17 1902-03-04 Ferdinand Schwedtmann Transformer.
US834160A (en) * 1905-10-19 1906-10-23 Bullock Electric Mfg Co Transformer.
US873166A (en) * 1906-01-15 1907-12-10 Bullock Electric Mfg Co Transformer.
CH297561A (de) * 1952-02-06 1954-03-31 Oerlikon Maschf Flüssigkeitsgekühlter Transformator.
DE1030449B (de) * 1957-04-27 1958-05-22 Siemens Ag Drosselspule, insbesondere Strombegrenzungs-drosselspule fuer Hochspannungsanlagen
GB937161A (en) * 1958-11-11 1963-09-18 English Electric Co Ltd Improvements in and relating to the liquid cooling of apparatus
DE1138156B (de) * 1960-11-11 1962-10-18 Licentia Gmbh Fluessigkeitsgekuehlte, kernlose Drosselspule mit Scheibenwicklung
US3195085A (en) * 1963-05-29 1965-07-13 Westinghouse Electric Corp Cooling ducts for wound coils
FR1407259A (fr) * 1964-06-19 1965-07-30 Commissariat Energie Atomique Bobine à grand champ magnétique
CH456763A (de) * 1966-02-17 1968-07-31 Vuori Martti Vorrichtung an einem ölgekühlten Transformator, zur Umlenkung des durchlaufenden Öls für eine Strömung durch die Zwischenräume der einzelnen Wicklungsspulen
CS149308B1 (de) * 1969-12-22 1973-07-05
US4000482A (en) * 1974-08-26 1976-12-28 General Electric Company Transformer with improved natural circulation for cooling disc coils
US4028653A (en) * 1976-04-01 1977-06-07 Asea Aktiebolag Electrical equipment having radial cooling channels with means for guiding cooling fluid through the channels
US4245206A (en) * 1977-03-26 1981-01-13 Hitachi, Ltd. Winding structure for static electrical induction apparatus
US4307364A (en) * 1980-05-16 1981-12-22 Westinghouse Electric Corp. Electrical reactor with foil windings
DE4225677A1 (de) * 1992-08-04 1994-03-10 Abb Patent Gmbh Drosselspule für einen Stromrichter
US5296829A (en) * 1992-11-24 1994-03-22 Electric Power Research Institute, Inc. Core-form transformer with liquid coolant flow diversion bands
JPH0997719A (ja) * 1995-09-28 1997-04-08 Makoto Yamamoto トランス構造
JP2002075749A (ja) * 2000-08-29 2002-03-15 Mitsubishi Electric Corp 誘導電器巻線装置
DE10337153A1 (de) * 2003-08-13 2005-03-10 Alstom Verfahren und Vorrichtung zum Wickeln einer Wicklung für einen Transformator oder eine Drosselspule

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013014031A1 *

Also Published As

Publication number Publication date
PL2721620T3 (pl) 2018-07-31
DE102011079648A1 (de) 2013-01-24
EP2721620B1 (de) 2018-01-31
WO2013014031A1 (de) 2013-01-31

Similar Documents

Publication Publication Date Title
DE102013101150A1 (de) Spuleneinheit und Vorrichtung zur induktiven Übertragung elektrischer Energie
DE102010061493A1 (de) Drehende elektrische Maschine mit Kühlmechanismus
DE102012213265A1 (de) Elektromagnetisches Aufhängungssystem
DE102016218741B4 (de) Elektrische Maschine mit verbesserter Kühlung
DE3242018A1 (de) Kuehlvorrichtung fuer eine elektrische rotationsmaschine
DE112010004084T5 (de) Kühlstruktur für einen Stator
EP2569853B1 (de) Rotor für eine dynamoelektrische maschine
DE102013204047A1 (de) Spule und Verfahren zur Herstellung einer Spule
AT521060A1 (de) Stator
DE102018105029A1 (de) Drosselspule
DE2460964A1 (de) Innenlaeufer-elektromotor und verfahren zu seiner herstellung
DE102009016745A1 (de) Statorpaket für eine Magnetschwebebahn
WO2015120914A1 (de) Elektrische maschine mit rahmen und hülle
DE102020109209A1 (de) Leistungserzeugende Komponente einer elektrischen Rotationsmaschine und elektrische Rotationsmaschine
DE2025099C3 (de)
WO2013014031A1 (de) Wicklungsanordnung mit spulenwicklungen und einem kühlkanalsystem
EP3289303B1 (de) Kühlerstation zum anschluss eines flüssigkeitskühlers
WO2022218458A1 (de) Direkter nutkühlung in elektrischen maschinen
EP3378069B1 (de) Spulenträger für eine elektrische spulenanordnung und verfahren zur herstellung einer elektrischen spulenanordnung
DE102015218924A1 (de) Elektrische Maschine mit exakter Positionierung von Rotormagneten
DE2717553C2 (de) Flüssigkeitsgekühlter Transformator
EP3648222A1 (de) Batteriezelle
DE875824C (de) Aus Scheibenspulen aufgebaute oelisolierte Roehrenwicklung fuer Hochspannungstransformatoren
WO2003003544A1 (de) Elektromotormit wärmeleitrohre
DE202012001244U1 (de) Elektrischer Antriebsmotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170831

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 968050

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012100

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012012100

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180717

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180717

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 968050

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120717

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012012100

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220908 AND 20220914

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20221220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230721

Year of fee payment: 12

Ref country code: GB

Payment date: 20230725

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230726

Year of fee payment: 12

Ref country code: FR

Payment date: 20230725

Year of fee payment: 12

Ref country code: DE

Payment date: 20230726

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240725

Year of fee payment: 13