EP2718187B1 - Device for reducing structural vibrations of aerofoils - Google Patents

Device for reducing structural vibrations of aerofoils Download PDF

Info

Publication number
EP2718187B1
EP2718187B1 EP12740466.3A EP12740466A EP2718187B1 EP 2718187 B1 EP2718187 B1 EP 2718187B1 EP 12740466 A EP12740466 A EP 12740466A EP 2718187 B1 EP2718187 B1 EP 2718187B1
Authority
EP
European Patent Office
Prior art keywords
wing
force generator
vibration
generator
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12740466.3A
Other languages
German (de)
French (fr)
Other versions
EP2718187A1 (en
Inventor
Stefan Storm
Rudolf Maier
Andreas Wildschek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Publication of EP2718187A1 publication Critical patent/EP2718187A1/en
Application granted granted Critical
Publication of EP2718187B1 publication Critical patent/EP2718187B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/08Stabilising surfaces mounted on, or supported by, wings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass
    • F16F7/1011Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass by electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/001Vibration damping devices
    • B64C2027/004Vibration damping devices using actuators, e.g. active systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/0085Devices for aircraft health monitoring, e.g. monitoring flutter or vibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the invention relates to a wing with a device for reducing structural vibrations.
  • Turbulence in particular stimulates aircraft wings to vibrate, resulting in high dynamic loads and reduced passenger comfort.
  • the damping or compensation of the wing bending vibrations by means of aerodynamic valves is for example off WO 2007-061641 . US 4,479,620 . DE 198 41 632 or EP 1 814 006 known.
  • the fundamental vibration is relatively low frequency (about 1 Hz.)
  • Higher wing flex modes also affect passenger comfort and the range of the flaps is often insufficient to adequately cushion higher modes.
  • a long-lasting dynamic operation of the valves leads to wear of the actuator and thus to increased maintenance.
  • Another disadvantage is that the valve influence on the vibrations is Machiere- and speed-dependent.
  • the present invention seeks to effect an effective damping of the structural vibrations in the wings without the arrangement of flaps to increase the life of the structure or to reduce the structural weight by lighter construction.
  • the publication WO 03/065142 A1 describes a damping device with a sensor and a vibration generator for generating damping vibrations.
  • the publication FR 2 825 769 A1 describes a device with an electric motor with a coil and a magnetic circuit which is attached to a spring.
  • the publication DE 39 35 893 A1 describes a spring-mass system for damping dynamic instabilities of flows around structures.
  • this object is achieved in that at least one force generator acting essentially in the direction of vibration movement is provided in the region of the wing tips.
  • This arrangement has the advantage that such a power generator is much less susceptible to wear than aerodynamic valves and thus effective vibration damping with reduced maintenance and higher efficiency is possible. Furthermore, power generators are effective, especially at higher frequencies.
  • vibration movement direction is understood according to the vertical direction. So the direction of vibration of the wing, which is vertical in conventional horizontal wings but may slightly deviate from the vertical direction in upwardly inclined wings.
  • the force generators are each arranged in the wing winglet. These vertically extending surfaces at the ends of the wing to Improvement of the glide ratio provide a suitable space for power generators.
  • the natural frequency of the force generators is tuned to a selected vibration frequency of the wing, in particular the second symmetrical or antisymmetric wing bending vibration.
  • this vibration can passively attenuate or simultaneously use for vibration damping and energy. No further energy supply is necessary for this, the system is completely self-sufficient.
  • the natural frequency of the force generators is tuned to a mean oscillation frequency of the frequency range of interest.
  • This not only a passive vibration damping for the identical excitation frequency can be achieved, but also for deviating excitation frequencies (typically ⁇ 10%) is a vibration damping by force introduction in a suitable amplitude and phase possible. Outside this range, although the oscillation movement can not be completely minimized, however, a reduction of the oscillation movement can also be achieved here.
  • Higher-harmonic movements can be realized by superimposing higher-harmonic force applications, but without taking advantage of the oscillation overshoot by the passive system.
  • each power generator is designed as a vertically oriented linear motor with movable primary or secondary part. This allows a structurally simple design of the power generator, wherein depending on the expediency of the primary or secondary part movable, so as a runner, may be formed. As a result, necessary components of the power generator are used simultaneously as a vibrating mass, thus keeping the system weight low.
  • the force generator comprises a magnetic or magnetizable rotor, which is vertically oscillatable via at least one stationarily supported spring device and a guide and is surrounded by a stator coil.
  • This training is structurally particularly simple and can be performed in any vertical length.
  • the runner is supported stationary at both ends via a double-bar spring. This training allows for low construction costs at the same time a suspension and guidance of the rotor.
  • the runner on a movement stroke of 20 to 60 cm.
  • a relatively low rotor mass can be used to dampen the typical vibration frequencies in the range of approx. 1-6 Hz.
  • the runner has a mass of 5 to 20 kg.
  • an oscillation stroke suitable for placement in a winglet can be used to dampen the typical vibration frequencies in the range of approximately 1-6 Hz.
  • the power generator is switchable as a power generator, that is possible to generate electrical energy while damping the structural vibrations in the natural frequency range.
  • two or more force generators are provided with different natural frequencies per winglet.
  • different vibration modes can be optimally damped, or a force generator tuned to the fundamental can operate as a current generator and the higher vibration modes are processed by the one or more force generators.
  • the individual power generators can also be made structurally smaller.
  • the force generators comprise moving masses in the form of mobile fluids.
  • This embodiment allows not in accordance with the invention, the installation in wings without winglets and dispenses with the otherwise necessary installation of extra weights as a necessary component of the power generators. Rather, existing masses in the form of tanks, such as fuel tanks, used for this purpose.
  • At least two volume-variable volume elements are arranged in the interior of the fuel tanks, which are arranged at the top or bottom in the fuel tank and have mutually offset by 180 ° oscillating variable volume.
  • This design has the advantage that, apart from the bellows, there are no movable components which have to be stored or guided.
  • the elastic properties of the bellows and the choice of the system which inflates the bellows oscillating the resonance frequency of the bellows system is tuned to the natural frequency of the wing vibration to be controlled.
  • the energy required to inflate and deflate the bellows is minimized.
  • the resonant frequency of the volume-adjustable volume elements is tuned to the natural frequency of the wing vibration to be controlled.
  • a closed cavity is oscillating in the fuel tank movable and whereby the fluid displaced and a shift in the center of gravity of the fluid is achieved.
  • FIG. 1 an aircraft 10 with fuselage 12, tail 14 and two wings 16 is shown, at the ends of each a substantially vertically aligned winglet 18 is arranged.
  • the wings 16 tend to oscillate in the directions denoted by 20 by the vibration axis 22 located in the region of the mounting of the wings 16 on the fuselage 12.
  • FIG. 2 is a schematic side view of a winglet 18 shown, in which a force generator 24a is arranged.
  • This force generator 24a consists essentially of a rotor 26 which is surrounded by a coil 28.
  • At both ends 26 are mounted on the runner double beam springs 30 whose other ends are rigidly fixed to mounting stops 32, which in turn are supported on structural components of the winglet 18.
  • the mounting stops 32 serve both as a stop for the rotor 26 and as a guide suspension for the entire power generator 24a.
  • the two double-bar springs 30 it is achieved that the rotor 26 is guided linearly.
  • the rotor 26 can either put in motion or hold.
  • passively induced power can be derived by utilizing the moving field for power generation.
  • the rotor 26 may either contain a permanent magnet, which simultaneously represents the moving mass or be designed as an electromagnet with an electrically connected coil.
  • a preferred embodiment of the force generator 24a according to the invention has a mass of the rotor 26 of 10 kg. With an excitation of 4000 N and an oscillation frequency of about 4.2 Hz, there is a deflection of the rotor 26 of about 56 cm. In this case, a frequency range of about +/- 10% with relatively small additional forces of about 700 N can be completely damped.
  • the vibration of the wing 16 is detected via sensors, not shown, and fed to a control device, which acts on the coil 28 via an electrical amplifier and controls so that the vibration reduction is maximum. Since current is generated out of phase by the oscillating movement of the rotor 26 in the field of the coil 28, the energy consumption of the force generator 24a is essentially limited to the electrical and mechanical losses and only slightly loads the vehicle electrical system. If the flight speed of the aircraft 10 is changed or the turbulence situation and thus the oscillation frequency of the wing oscillations, this can be taken into account by appropriate control of the coils 28.
  • FIG. 3 is a schematic sectional view through a wing 16 in the region of the wing tip with a non-inventive embodiment of a force generator 24b.
  • a fuel tank 34a which remains constantly filled with fuel during operation and is only used up in exceptional or emergency situations. Its contents, the fuel or the filled fuel tank 34a itself can be used for the power generator.
  • two bellows 36, 38 are arranged in the interior of the fuel tank 34a above and below, which can be filled alternatively via air pressure lines, not shown are.
  • Each having the reference numerals (a), ie 36a, 38a, a first position is shown, in which the upper bellows 36a filled and the lower bellows 38a is empty, so that the center of gravity of the fluid in the fuel tank 34a below the geometric center of the fuel tank 34a lies.
  • Each reference numeral (b), ie 36b, 38b, a second position is shown, in which the upper bellows 36a is empty and the lower bellows 38a is filled, so that the center of gravity of the fluid in the fuel tank 34a is above the geometric center of the fuel tank 34a , Between these two end positions, an oscillation process takes place, which causes the fluid in the fuel tank 34a to oscillate vertically and in this way forms a force generator 24b.
  • FIG. 4 is like FIG. 3 a schematic sectional view of an airfoil 16 in the region of the wing tip with a fuel tank 34b for fuel, which is oscillatory by means of an oscillating device 40 in a direction perpendicular to the wing longitudinal axis and thus forms the non-inventive force generator 24c.
  • FIG. 5 is like FIGS. 3 and 4 a schematic sectional view of an airfoil 16 in the region of the wing tip with a fuel tank 34c for fuel with another non-inventive embodiment of a force generator 24d.
  • the fuel tank 34c itself is fixed but contains inside a fluid-free hollow body 42 which is oscillating over a number of actuators 44 (electromechanical, pneumatic or hydraulic) oscillating. As a result, fuel is displaced and causes a shift in the center of gravity of the fluid.
  • actuators 44 electromechanical, pneumatic or hydraulic

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Vibration Prevention Devices (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

Die Erfindung betrifft einen Tragflügel mit einer Vorrichtung zur Reduzierung von Strukturschwingungen.The invention relates to a wing with a device for reducing structural vibrations.

Vor allem durch Turbulenz werden die Tragflügel von Flugzeugen zu Schwingungen angeregt, die zu hohen dynamischen Lasten und zu einer Reduktion des Passagierkomforts führen. Die Bedämpfung bzw. Kompensation der Flügelbiegeschwingungen mit Hilfe aerodynamischer Klappen ist beispielsweise aus WO 2007-061641 , US 4,479,620 , DE 198 41 632 oder EP 1 814 006 bekannt. Die Grundschwingung ist bei den Flügeln großer Passagier- und Transportflugzeuge relativ niederfrequent (ca. 1 Hz.) und hängt ab von verschiedenen Umständen, insbesondere der Fluggeschwindigkeit. Höhere Flügelbiegemoden beeinflussen auch den Passagierkomfort und die Bandbreite der Klappen reicht oft nicht aus, um höhere Moden ausreichend zu dämpfen. Außerdem führt ein länger dauernder dynamischer Betrieb der Klappen zu Verschleiß der Aktorik und damit zu einem erhöhten Wartungsaufwand. Ein weiterer Nachteil besteht darin, dass der Klappeneinfluss auf die Schwingungen Machzahl- und geschwindigkeitsabhängig ist. Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, eine wirksame Dämpfung der Strukturschwingungen in den Tragflächen ohne die Anordnung von Klappen zu bewirken, um die Lebensdauer der Struktur zu erhöhen oder das Strukturgewicht durch leichtere Bauweise zu reduzieren.Turbulence in particular stimulates aircraft wings to vibrate, resulting in high dynamic loads and reduced passenger comfort. The damping or compensation of the wing bending vibrations by means of aerodynamic valves is for example off WO 2007-061641 . US 4,479,620 . DE 198 41 632 or EP 1 814 006 known. The fundamental vibration is relatively low frequency (about 1 Hz.) In the wings of large passenger and transport aircraft and depends on various circumstances, in particular the airspeed. Higher wing flex modes also affect passenger comfort and the range of the flaps is often insufficient to adequately cushion higher modes. In addition, a long-lasting dynamic operation of the valves leads to wear of the actuator and thus to increased maintenance. Another disadvantage is that the valve influence on the vibrations is Machzahl- and speed-dependent. On this basis, the present invention seeks to effect an effective damping of the structural vibrations in the wings without the arrangement of flaps to increase the life of the structure or to reduce the structural weight by lighter construction.

Die Druckschrift US 2002/066831 A1 beschreibt ein am Äußeren eines Flügels beweglich angebrachtes Flügelspitzenelement. Sie offenbart den Oberbegriff des Anspruchs 1.The publication US 2002/066831 A1 describes a wing tip member movably mounted on the exterior of a wing. It discloses the preamble of claim 1.

Die Druckschrift WO 03/065142 A1 beschreibt eine Dämpfungsvorrichtung mit einem Sensor und einem Schwingungserzeuger zum Erzeugen von dämpfenden Schwingungen.The publication WO 03/065142 A1 describes a damping device with a sensor and a vibration generator for generating damping vibrations.

Die Druckschrift FR 2 825 769 A1 beschreibt eine Vorrichtung mit einem Elektromotor mit einer Spule und einem magnetischen Schaltkreis, welcher an einer Feder befestigt ist.The publication FR 2 825 769 A1 describes a device with an electric motor with a coil and a magnetic circuit which is attached to a spring.

Die Druckschrift US 2005/093302 A1 beschreibt einen Generator welcher Schwingungsenergie in elektrische Energie umwandelt.The publication US 2005/093302 A1 describes a generator that converts vibration energy into electrical energy.

Die Druckschrift US 2006/255206 A1 beschreibt ein Luftfahrzeug mit einem System zur Unterdrückung von lateralen Biegungen welches aerodynamisch während des Fluges initialisiert wird.The publication US 2006/255206 A1 describes an aircraft with a system for suppressing lateral bends which is aerodynamically initialized during flight.

Die Druckschrift DE 39 35 893 A1 beschreibt ein Feder-Masse-System zur Dämpfung dynamischer Instabilitäten von umströmten Strukturen.The publication DE 39 35 893 A1 describes a spring-mass system for damping dynamic instabilities of flows around structures.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass im Bereich der Tragflügelspitzen je mindestens ein im Wesentlichen in Schwingungsbewegungsrichtung wirkender Kraftgenerator vorgesehen ist. Diese Anordnung hat den Vorteil, dass ein solcher Kraftgenerator erheblich weniger verschleißanfällig ist als aerodynamische Klappen und damit eine wirksame Schwingungsdämpfung mit vermindertem Wartungsaufwand und höherer Effektivität möglich ist. Ferner sind Kraftgeneratoren vor allem bei höheren Frequenzen effektiv. Unter "Schwingungsbewegungsrichtung" wird erfindungsgemäß die Vertikalrichtung verstanden. Also die Schwingungsrichtung der Tragflügel, die bei üblichen horizontalen Flügeln vertikal ist aber bei nach oben geneigten Tragflügeln von der Vertikalrichtung geringfügig abweichen kann.According to the invention, this object is achieved in that at least one force generator acting essentially in the direction of vibration movement is provided in the region of the wing tips. This arrangement has the advantage that such a power generator is much less susceptible to wear than aerodynamic valves and thus effective vibration damping with reduced maintenance and higher efficiency is possible. Furthermore, power generators are effective, especially at higher frequencies. Under "vibration movement direction" is understood according to the vertical direction. So the direction of vibration of the wing, which is vertical in conventional horizontal wings but may slightly deviate from the vertical direction in upwardly inclined wings.

Erfindungsgemäß sind die Kraftgeneratoren jeweils in den Tragflügel-Winglet angeordnet. Diese vertikal sich erstreckenden Flächen an den Enden der Tragflügel zur Verbesserung der Gleitzahl stellen einen geeigneten Bauraum für Kraftgeneratoren dar.According to the invention, the force generators are each arranged in the wing winglet. These vertically extending surfaces at the ends of the wing to Improvement of the glide ratio provide a suitable space for power generators.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist die Eigenfrequenz der Kraftgeneratoren abgestimmt auf eine ausgewählte Schwingungsfrequenz der Tragflügel, insbesondere die zweite symmetrische oder antisymmetrische Flügelbiegeschwingung. Somit lässt sich diese Schwingung passiv dämpfen bzw. gleichzeitig zur Schwingungsdämpfung und zur Energiegewinnung nutzen. Hierfür ist keine weitere Energieversorgung notwendig, das System arbeitet vollständig autark.According to an advantageous embodiment of the invention, the natural frequency of the force generators is tuned to a selected vibration frequency of the wing, in particular the second symmetrical or antisymmetric wing bending vibration. Thus, this vibration can passively attenuate or simultaneously use for vibration damping and energy. No further energy supply is necessary for this, the system is completely self-sufficient.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist die Eigenfrequenz der Kraftgeneratoren abgestimmt auf eine mittlere Schwingungsfrequenz des interessierenden Frequenzbereichs. Damit ist nicht nur eine passive Schwingungstilgung für die identische Anregungsfrequenz erzielbar, sondern auch für davon abweichende Anregungsfrequenzen (typisch ±10%) ist eine Schwingungstilgung durch Krafteinleitung in geeigneter Amplitude und Phase möglich. Außerhalb dieses Bereichs kann zwar die Schwingungsbewegung nicht komplett minimiert werden, jedoch ist auch hier eine Reduktion der Schwingungsbewegung erreichbar. Höherharmonische Bewegungen lassen sich durch Überlagerung höherharmonischer Krafteinleitungen realisieren, jedoch ohne Ausnutzung der Schwingungsüberhöhung durch das passive System.According to an advantageous development of the invention, the natural frequency of the force generators is tuned to a mean oscillation frequency of the frequency range of interest. This not only a passive vibration damping for the identical excitation frequency can be achieved, but also for deviating excitation frequencies (typically ± 10%) is a vibration damping by force introduction in a suitable amplitude and phase possible. Outside this range, although the oscillation movement can not be completely minimized, however, a reduction of the oscillation movement can also be achieved here. Higher-harmonic movements can be realized by superimposing higher-harmonic force applications, but without taking advantage of the oscillation overshoot by the passive system.

Gemäß einer vorteilhaften Weiterbildung der Erfindung werden zur Flatterdämpfung Kräfte in geeigneter Amplitude und Phase bei verschiedenen ausgewählten Frequenzen in die Flügelstruktur eingeleitet, um die kritische Flattergeschwindigkeit zu beeinflussen Z. B. durch Verschiebung einer oder mehrerer ausgewählter Eigenfrequenzen. Gemäß einer vorteilhaften Weiterbildung der Erfindung ist jeder Kraftgenerator als vertikal ausgerichteter Linearmotor mit beweglichem Primär- oder Sekundärteil ausgebildet. Dies ermöglicht eine baulich einfache Ausbildung des Kraftgenerators, wobei je nach Zweckmäßigkeit der Primär- oder Sekundärteil beweglich, also als Läufer, ausgebildet sein kann. Dadurch werden notwendige Bestandteile des Kraftgenerators gleichzeitig als schwingende Masse genutzt, um somit das Systemgewicht niedrig zu halten.According to an advantageous development of the invention, forces of suitable amplitude and phase at different selected frequencies are introduced into the wing structure for flutter damping in order to influence the critical flutter speed, for example by shifting one or more selected natural frequencies. According to an advantageous embodiment of the invention, each power generator is designed as a vertically oriented linear motor with movable primary or secondary part. This allows a structurally simple design of the power generator, wherein depending on the expediency of the primary or secondary part movable, so as a runner, may be formed. As a result, necessary components of the power generator are used simultaneously as a vibrating mass, thus keeping the system weight low.

Vorzugsweise umfasst der Kraftgenerator einen magnetischen oder magnetisierbaren Läufer, der über mindestens eine ortsfest abgestützte Federeinrichtung sowie eine Führung vertikal oszillationsfähig ist und von einer Statorspule umgeben ist. Diese Ausbildung ist baulich besonders einfach und lässt sich in beliebiger vertikaler Länge ausführen.Preferably, the force generator comprises a magnetic or magnetizable rotor, which is vertically oscillatable via at least one stationarily supported spring device and a guide and is surrounded by a stator coil. This training is structurally particularly simple and can be performed in any vertical length.

Vorzugsweise ist dabei der Läufer beidendig über je eine Doppel-Balkenfeder ortsfest abgestützt. Diese Ausbildung ermöglicht bei geringem Bauaufwand gleichzeitig eine Federung und Führung des Läufers.Preferably, the runner is supported stationary at both ends via a double-bar spring. This training allows for low construction costs at the same time a suspension and guidance of the rotor.

Vorzugsweise weist der Läufer einen Bewegungshub von 20 bis 60 cm auf. In diesem Bereich lässt sich zur Dämpfung der typischen Schwingungsfrequenzen im Bereich ca. 1 - 6 Hz eine relativ geringe Läufermasse verwenden.Preferably, the runner on a movement stroke of 20 to 60 cm. In this area, a relatively low rotor mass can be used to dampen the typical vibration frequencies in the range of approx. 1-6 Hz.

Vorzugsweise weist der Läufer eine Masse von 5 bis 20 kg auf. In diesem Bereich lässt sich zur Dämpfung der typischen Schwingungsfrequenzen im Bereich ca. 1 - 6 Hz ein zur Anordnung in einem Winglet geeigneter Oszillationshub anwenden.Preferably, the runner has a mass of 5 to 20 kg. In this range, an oscillation stroke suitable for placement in a winglet can be used to dampen the typical vibration frequencies in the range of approximately 1-6 Hz.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist der Kraftgenerator als Stromgenerator schaltbar, also zur Erzeugung von elektrischer Energie bei gleichzeitiger Dämpfung der Strukturschwingungen im Bereich der Eigenfrequenz möglich.According to an advantageous embodiment of the invention, the power generator is switchable as a power generator, that is possible to generate electrical energy while damping the structural vibrations in the natural frequency range.

Gemäß einer vorteilhaften Weiterbildung der Erfindung sind je Winglet zwei oder mehr Kraftgeneratoren mit unterschiedlichen Eigenfrequenzen vorgesehen. So können unterschiedliche Schwingungsmoden optimal gedämpft werden bzw. ein auf die Grundschwingung abgestimmter Kraftgenerator kann als Stromgenerator arbeiten und die höheren Schwingungsmoden werden von dem einen oder den mehreren Kraftgeneratoren bearbeitet. Die einzelnen Kraftgeneratoren können ferner baulich kleiner gefertigt werden.According to an advantageous embodiment of the invention, two or more force generators are provided with different natural frequencies per winglet. Thus, different vibration modes can be optimally damped, or a force generator tuned to the fundamental can operate as a current generator and the higher vibration modes are processed by the one or more force generators. The individual power generators can also be made structurally smaller.

Gemäß einer Weiterbildung der Erfindung umfassen die Kraftgeneratoren bewegte Massen in Form von beweglichen Fluiden.According to one embodiment of the invention, the force generators comprise moving masses in the form of mobile fluids.

Diese Ausführung ermöglicht in nicht erfindungsgemäßer Weise den Einbau in Tragflügel ohne Winglets und verzichtet auf die sonst notwendige Montage von Extragewichten als notwendiger Bestandteil der Kraftgeneratoren. Vielmehr werden vorhandene Massen in Form von Tanks, beispielsweise Treibstofftanks, für diesen Zweck genutzt.This embodiment allows not in accordance with the invention, the installation in wings without winglets and dispenses with the otherwise necessary installation of extra weights as a necessary component of the power generators. Rather, existing masses in the form of tanks, such as fuel tanks, used for this purpose.

Gemäß einer nicht erfindungsgemäßen Weiterbildung dieser Ausbildung sind die Treibstofftanks in oszillierende Bewegung versetzbar. Somit muss praktisch keine zusätzliche Masse in den Außenbereich der Tragflächen vorgesehen werden.According to a non-inventive development of this training, the fuel tanks are displaced in an oscillating motion. Thus, virtually no additional mass must be provided in the outer area of the wings.

Gemäß einer alternativen nicht erfindungsgemäßen Weiterbildung dieser Ausbildung sind im Inneren der Treibstofftanks jeweils mindestens zwei volumen-veränderbare Volumenelemente angeordnet, die oben bzw. unten im Treibstofftank angeordnet sind und zueinander um 180° versetzt oszillierend veränderbare Volumen aufweisen. Diese Ausbildung hat den Vorteil, dass außer den Blasebälgen keine bewegbaren Bauteile vorhanden sind, die gelagert bzw. geführt werden müssen. Durch die Wahl der elastischen Eigenschaften der Blasebälge, und der Wahl des Systems welches die Blasebälge oszillierend aufbläst wird die Resonanzfrequenz des Blasebalgsystems auf die Eigenfrequenz der zu regelnden Flügelschwingung abgestimmt. Durch Ausnutzung der Resonanzüberhöhung des Blasebalgsystems wird der Energieaufwand zum Aufblasen und Auslassen der Blasebälge minimiert.According to an alternative embodiment of this embodiment not according to the invention, at least two volume-variable volume elements are arranged in the interior of the fuel tanks, which are arranged at the top or bottom in the fuel tank and have mutually offset by 180 ° oscillating variable volume. This design has the advantage that, apart from the bellows, there are no movable components which have to be stored or guided. By selecting the elastic properties of the bellows, and the choice of the system which inflates the bellows oscillating the resonance frequency of the bellows system is tuned to the natural frequency of the wing vibration to be controlled. By exploiting the resonant peaking of the bellows system, the energy required to inflate and deflate the bellows is minimized.

Gemäß einer nicht erfindungsgemäßen Weiterbildung dieser Ausbildung ist die Resonanzfrequenz der volumenveränderbaren Volumenelemente auf die Eigenfrequenz der zu regelnden Flügelschwingung abgestimmt. Durch Ausnutzung der Resonanzüberhöhung des Blasebalgsystems wird der Energieaufwand zum Aufblasen und Auslassen der Blasebälge minimiert.According to a non-inventive development of this embodiment, the resonant frequency of the volume-adjustable volume elements is tuned to the natural frequency of the wing vibration to be controlled. By exploiting the resonant peaking of the bellows system, the energy required to inflate and deflate the bellows is minimized.

Gemäß einer nicht erfindungsgemäßen Weiterbildung der Erfindung ist ein geschlossener Hohlraum oszillierend im Treibstofftank bewegbar und wodurch das Fluid verdrängt und eine Schwerpunktverschiebung des Fluids erzielt wird.According to a non-inventive embodiment of the invention, a closed cavity is oscillating in the fuel tank movable and whereby the fluid displaced and a shift in the center of gravity of the fluid is achieved.

Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert. Dabei zeigt:

Figur 1:
eine schematische perspektivische Darstellung eines Flugzeugs mit Winglets;
Figur 2:
eine Seitenansicht mit einem schematisch dargestellten Kraftgenerator;
Figur 3:
eine schematische Schnittdarstellung eines nicht erfindungsgemäßen Tragflügels mit einem Treibstofftank mit Blasebälgen;
Figur 4:
eine schematische Schnittdarstellung eines nicht erfindungsgemäßen Tragflügels mit einem oszillierbaren Treibstofftank;
Figur 5:
eine schematische Schnittdarstellung eines nicht erfindungsgemäßen Tragflügels mit einem oszillierbaren Treibstofftank mit bewegbarem Hohlraum.
The invention will be explained in more detail below with reference to a preferred embodiment with reference to the accompanying drawings. Showing:
FIG. 1:
a schematic perspective view of an aircraft with winglets;
FIG. 2:
a side view with a schematically illustrated power generator;
FIG. 3:
a schematic sectional view of a non-inventive wing with a fuel tank with bellows;
FIG. 4:
a schematic sectional view of a non-inventive wing with an oscillatable fuel tank;
FIG. 5:
a schematic sectional view of a non-inventive wing with an oscillatable fuel tank with movable cavity.

In Figur 1 ist ein Flugzeug 10 mit Rumpf 12, Leitwerk 14 und zwei Tragflügeln 16 dargestellt, an deren Enden je ein im Wesentlichen vertikal ausgerichtetes Winglet 18 angeordnet ist. Im normalen Flugbetrieb aber vor allem bei Turbulenzen neigen die Tragflügel 16 dazu, in den mit 20 bezeichneten Richtungen um die Im Bereich der Befestigung der Tragflügel 16 am Rumpf 12 liegende Schwingungsachse 22 zu schwingen.In FIG. 1 an aircraft 10 with fuselage 12, tail 14 and two wings 16 is shown, at the ends of each a substantially vertically aligned winglet 18 is arranged. In normal flight operations, but especially in turbulence, the wings 16 tend to oscillate in the directions denoted by 20 by the vibration axis 22 located in the region of the mounting of the wings 16 on the fuselage 12.

In Figur 2 ist eine schematische Seitenansicht eines Winglets 18 dargestellt, in der ein Kraftgenerator 24a angeordnet ist. Dieser Kraftgenerator 24a besteht im Wesentlichen aus einem Läufer 26, der von einer Spule 28 umgeben ist. Beidendig sind am Läufer 26 Doppelbalkenfedern 30 befestigt, deren andere Enden an Befestigungsanschlägen 32 starr befestigt sind, die sich wiederum an Strukturbauteilen des Winglets 18 abstützen. Auf diese Weise lässt ich ein lagerloser Motor realisieren, wobei die Befestigungsanschläge 32 sowohl als Anschlag für den Läufer 26 als auch als Führungsaufhängung für den gesamten Kraftgenerator 24a dienen. Durch die beiden Doppelbalkenfedern 30 wird erreicht, dass der Läufer 26 linear geführt ist. Über die Spule 28 lässt sich der Läufer 26 entweder in Bewegung setzen bzw. halten. Alternativ lässt sich passiv durch Ausnutzung des bewegten Feldes induzierten Strom zur Energiegewinnung ableiten. Der Läufer 26 kann entweder einen Permanentmagneten enthalten, der gleichzeitig die bewegte Masse darstellt oder als Elektromagnet mit einer elektrisch beschalteten Spule ausgebildet sein.In FIG. 2 is a schematic side view of a winglet 18 shown, in which a force generator 24a is arranged. This force generator 24a consists essentially of a rotor 26 which is surrounded by a coil 28. At both ends 26 are mounted on the runner double beam springs 30 whose other ends are rigidly fixed to mounting stops 32, which in turn are supported on structural components of the winglet 18. In this way I can realize a bearingless motor, wherein the mounting stops 32 serve both as a stop for the rotor 26 and as a guide suspension for the entire power generator 24a. By the two double-bar springs 30 it is achieved that the rotor 26 is guided linearly. About the coil 28, the rotor 26 can either put in motion or hold. Alternatively, passively induced power can be derived by utilizing the moving field for power generation. The rotor 26 may either contain a permanent magnet, which simultaneously represents the moving mass or be designed as an electromagnet with an electrically connected coil.

Ein bevorzugtes Ausführungsbeispiel des erfindungsgemäßen Kraftgenerators 24a weist eine Masse des Läufers 26 von 10 kg auf. Bei einer Anregung von 4000 N und einer Schwingungsfrequenz von ca. 4,2 Hz. erfolgt eine Auslenkung des Läufers 26 von ca. 56 cm. Dabei kann ein Frequenzbereich von ca. +/-10% mit relativ geringen Zusatzkräften von ca. 700 N vollständig bedämpft werden.A preferred embodiment of the force generator 24a according to the invention has a mass of the rotor 26 of 10 kg. With an excitation of 4000 N and an oscillation frequency of about 4.2 Hz, there is a deflection of the rotor 26 of about 56 cm. In this case, a frequency range of about +/- 10% with relatively small additional forces of about 700 N can be completely damped.

Im Betrieb wird über nicht dargestellte Sensoren die Schwingung der Tragflügel 16 erfasst und einer Regeleinrichtung zugeführt, welche über einen elektrischen Verstärker die Spule 28 beaufschlagt und so ansteuert, dass die Schwingungsreduktion maximal ist. Da durch die oszillierende Bewegung des Läufers 26 im Feld der Spule 28 phasenversetzt Strom erzeugt wird, ist der Energieverbrauch des Kraftgenerators 24a im Wesentlichen beschränkt auf die elektrischen und mechanischen Verluste und belastet das Bordnetz nur geringfügig. Sofern die Fluggeschwindigkeit des Flugzeugs 10 geändert wird oder die Turbulenzsituation und damit die Schwingungsfrequenz der Tragflächenschwingungen, kann das durch entsprechende Ansteuerung der Spulen 28 berücksichtigt werden.In operation, the vibration of the wing 16 is detected via sensors, not shown, and fed to a control device, which acts on the coil 28 via an electrical amplifier and controls so that the vibration reduction is maximum. Since current is generated out of phase by the oscillating movement of the rotor 26 in the field of the coil 28, the energy consumption of the force generator 24a is essentially limited to the electrical and mechanical losses and only slightly loads the vehicle electrical system. If the flight speed of the aircraft 10 is changed or the turbulence situation and thus the oscillation frequency of the wing oscillations, this can be taken into account by appropriate control of the coils 28.

Figur 3 ist eine schematische Schnittdarstellung durch einen Tragflügel 16 im Bereich der Tragflügelspitze mit einer nicht erfindungsgemäßen Ausführung eines Kraftgenerators 24b. Schematisch dargestellt ist ein Treibstofftank 34a, der im Betrieb ständig mit Treibstoff gefüllt bleibt und nur in Ausnahme- oder Notsituationen aufgebraucht wird. Dessen Inhalt, der Treibstoff oder Der gefüllte Treibstofftank 34a selber können für den Kraftgenerator verwendet werden. In der in Figur 3 dargestellten Ausführungsform sind im Inneren des Treibstofftanks 34a oben und unten zwei Blasebalge 36, 38 angeordnet, die über nicht dargestellte Luftdruckleitungen alternativ befüllbar sind. Jeweils mit den Bezugszeichen (a), also 36a, 38a ist eine erste Stellung dargestellt, bei der der obere Blasebalg 36a gefüllt und der untere Blasebalg 38a leer ist, so dass der Schwerpunkt des im Treibstofftank 34a befindlichen Fluides unterhalb der geometrischen Mitte des Treibstofftanks 34a liegt. Jeweils mit Bezugszeichen (b), also 36b, 38b ist eine zweite Stellung dargestellt, bei der der obere Blasebalg 36a leer und der untere Blasebalg 38a gefüllt ist, so dass der Schwerpunkt des im Treibstofftank 34a befindlichen Fluides oberhalb der geometrischen Mitte des Treibstofftanks 34a liegt. Zwischen diesen beiden Endstellungen erfolgt ein Oszillationsvorgang, der das Fluid im Treibstofftank 34a vertikal oszillieren lässt und auf diese Weise einen Kraftgenerator 24b ausbildet. FIG. 3 is a schematic sectional view through a wing 16 in the region of the wing tip with a non-inventive embodiment of a force generator 24b. Schematically illustrated is a fuel tank 34a, which remains constantly filled with fuel during operation and is only used up in exceptional or emergency situations. Its contents, the fuel or the filled fuel tank 34a itself can be used for the power generator. In the in FIG. 3 illustrated embodiment, two bellows 36, 38 are arranged in the interior of the fuel tank 34a above and below, which can be filled alternatively via air pressure lines, not shown are. Each having the reference numerals (a), ie 36a, 38a, a first position is shown, in which the upper bellows 36a filled and the lower bellows 38a is empty, so that the center of gravity of the fluid in the fuel tank 34a below the geometric center of the fuel tank 34a lies. Each reference numeral (b), ie 36b, 38b, a second position is shown, in which the upper bellows 36a is empty and the lower bellows 38a is filled, so that the center of gravity of the fluid in the fuel tank 34a is above the geometric center of the fuel tank 34a , Between these two end positions, an oscillation process takes place, which causes the fluid in the fuel tank 34a to oscillate vertically and in this way forms a force generator 24b.

Figur 4 ist wie Figur 3 eine schematische Schnittdarstellung eines Tragflügels 16 im Bereich der Tragflügelspitze mit einem Treibstofftank 34b für Treibstoff, der mittels einer Oszillationseinrichtung 40 in einer Richtung senkrecht zur Tragflügellängsachse oszillatorisch bewegbar ist und auf diese Weise den nicht erfindungsgemäßen Kraftgenerator 24c ausbildet. FIG. 4 is like FIG. 3 a schematic sectional view of an airfoil 16 in the region of the wing tip with a fuel tank 34b for fuel, which is oscillatory by means of an oscillating device 40 in a direction perpendicular to the wing longitudinal axis and thus forms the non-inventive force generator 24c.

Figur 5 ist wie Figur 3 und 4 eine schematische Schnittdarstellung eines Tragflügels 16 im Bereich der Tragflügelspitze mit einem Treibstofftank 34c für Treibstoff mit einer weiteren nicht erfindungsgemäßen Ausführung eines Kraftgenerators 24d. Der Treibstofftank 34c selber ist fest aber enthält im Inneren einen fluidfreien Hohlkörper 42, der über eine Anzahl Aktuatoren 44 (elektromechanisch, pneumatisch oder hydraulisch) oszillierende bewegbar ist. Dadurch wird Treibstoff verdrängt und eine Schwerpunktverschiebung des Fluids bewirkt. FIG. 5 is like FIGS. 3 and 4 a schematic sectional view of an airfoil 16 in the region of the wing tip with a fuel tank 34c for fuel with another non-inventive embodiment of a force generator 24d. The fuel tank 34c itself is fixed but contains inside a fluid-free hollow body 42 which is oscillating over a number of actuators 44 (electromechanical, pneumatic or hydraulic) oscillating. As a result, fuel is displaced and causes a shift in the center of gravity of the fluid.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Flugzeugplane
1212
Rumpfhull
1414
Leitwerktail
1616
TragflügelHydrofoil
1818
Wingletwinglet
2020
Schwingungsrichtungvibration direction
2222
Schwingungsachseaxis of oscillation
24a-d24a-d
Kraftgeneratorpower generator
2626
Läuferrunner
2828
SpuleKitchen sink
3030
DoppelbalkenfedernDouble beam springs
3232
Befestigungsanschlagfastening stopper
34a, b34a, b
Treibstofftankfuel tank
36a, b36a, b
Blasebalgbellows
38a, b38a, b
Blasebalgbellows
4040
Oszillationseinrichtungoscillation
4242
Hohlkörperhollow body
4444
Aktuatorenactuators

Claims (11)

  1. Wing (16) for an aircraft having a device which is provided on the wing tip and intended for reducing structural vibrations by an oscillating body, characterized in that a winglet (18) having a force generator (24) integrated therein which acts in the vertical direction is arranged on the wing tip.
  2. Wing (16) according to Claim 1, characterized in that the natural frequency of the force generator (24) is tuned to the first or second symmetrical or antisymmetrical flexural wing vibration.
  3. Wing (16) according to Claim 1, characterized in that the natural frequency of the force generator is tuned to an average vibration frequency of the relevant frequency range.
  4. Wing (16) according to Claim 1, characterized in that each force generator (24) is designed as a vertically oriented linear motor having a movable primary or secondary part (26).
  5. Wing (16) according to Claim 4, characterized in that the force generator (24a) comprises a magnetic or magnetizable rotor (26) which is capable of oscillating vertically via at least one spring device (30), which is supported in a positionally fixed manner, and a guide (30) and is surrounded by a stator coil (28).
  6. Wing (16) according to Claim 4, characterized in that the force generator comprises an oscillateable coil and a magnetizable stator.
  7. Wing (16) according to Claim 5, characterized in that the rotor (26) is supported in a positionally fixed manner at both ends with a respective double beam spring (30).
  8. Wing (16) according to one of the preceding claims, characterized in that the force generator (24) can be switched as a current generator.
  9. Wing (16) according to Claim 1, characterized in that two or more force generators (24) having different natural frequencies are provided for each winglet (18).
  10. Wing (16) according to one of Claims 1 to 3, characterized in that the force generator (24) comprises moving masses in the form of movable fluids.
  11. Aeroplane (10) having a wing (16) according to at least one of the preceding claims.
EP12740466.3A 2011-06-10 2012-05-25 Device for reducing structural vibrations of aerofoils Active EP2718187B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011106127A DE102011106127A1 (en) 2011-06-10 2011-06-10 Device for reducing structural vibrations of airfoils
PCT/DE2012/000545 WO2012167769A1 (en) 2011-06-10 2012-05-25 Device for reducing structural vibrations of aerofoils

Publications (2)

Publication Number Publication Date
EP2718187A1 EP2718187A1 (en) 2014-04-16
EP2718187B1 true EP2718187B1 (en) 2019-05-22

Family

ID=46583816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12740466.3A Active EP2718187B1 (en) 2011-06-10 2012-05-25 Device for reducing structural vibrations of aerofoils

Country Status (4)

Country Link
US (1) US9327823B2 (en)
EP (1) EP2718187B1 (en)
DE (1) DE102011106127A1 (en)
WO (1) WO2012167769A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210047995A1 (en) * 2019-08-15 2021-02-18 Marinvent Corporation Airfoil Performance Monitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3935893A1 (en) * 1989-10-27 1991-05-02 Messerschmitt Boelkow Blohm Method of damping dynamic profiles - with damping load characteristics controlled to counteract resonant frequencies

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2361071A (en) * 1942-09-23 1944-10-24 Stevenson Jordan & Harrison In Vibration dampening
US4479620A (en) 1978-07-13 1984-10-30 The Boeing Company Wing load alleviation system using tabbed allerons
US5845236A (en) * 1996-10-16 1998-12-01 Lord Corporation Hybrid active-passive noise and vibration control system for aircraft
DE19841632C2 (en) 1998-09-11 2001-06-07 Daimler Chrysler Ag Method for compensating structural vibrations of an aircraft due to external disturbances
US6394397B1 (en) * 2000-12-06 2002-05-28 The Boeing Company Lifting surface with active variable tip member and method for influencing lifting surface behavior therewith
FR2825769B1 (en) 2001-06-06 2004-08-27 Vibrachoc Sa VIBRATION DAMPING DEVICE
GB0202348D0 (en) * 2002-02-01 2002-03-20 Bae Systems Plc Damping of vibrations
JP2005137071A (en) * 2003-10-29 2005-05-26 Hitachi Ltd Oscillating generator
US20060255206A1 (en) * 2005-04-18 2006-11-16 Jolly Mark R Method and aircraft system for active suppression of aircraft low frequency aerostructure lateral bending modes
US20070114327A1 (en) 2005-11-18 2007-05-24 The Boeing Company Wing load alleviation apparatus and method
EP1814006B1 (en) 2006-01-25 2016-09-21 Airbus Opérations SAS Minimizing dynamic structural loads of an aircraft
WO2008119352A2 (en) * 2007-03-30 2008-10-09 Vestas Wind Systems A/S A wind turbine comprising one or more oscillation dampers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3935893A1 (en) * 1989-10-27 1991-05-02 Messerschmitt Boelkow Blohm Method of damping dynamic profiles - with damping load characteristics controlled to counteract resonant frequencies

Also Published As

Publication number Publication date
DE102011106127A1 (en) 2012-12-13
WO2012167769A1 (en) 2012-12-13
EP2718187A1 (en) 2014-04-16
US20140341737A1 (en) 2014-11-20
US9327823B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
EP2577090B1 (en) Force generator for mounting on a structure
DE3500530C2 (en)
EP2673531B1 (en) Mounting an object on a structure in a vibration-free manner
DE102005060779B4 (en) power generator
EP0310997B1 (en) Electromagnetic support
EP1724191A1 (en) Helicopter with an improved vibration control device
WO2018189245A1 (en) Vibration damping of a wind turbine tower
DE102012004808A1 (en) Device for influencing the vibration transmission between two units
DE102014211949A1 (en) Linear actuator, hydraulic bearing and motor vehicle with such a hydraulic bearing or linear actuator
DE102010060935A1 (en) Active dynamic vibration absorption device for a vehicle
WO2013149758A2 (en) Actuator for damping low-frequency oscillations
WO2009024537A1 (en) System and method for affecting vibration
DE10041807C2 (en) Oscillating force generator and vibration damper using the generator
EP3470702A2 (en) Active adaptive vibration absorber and bearing
DE102010029910A1 (en) Active oscillation damper for motor car, has single spring element units implemented in shape memory alloy of upper and lower spring elements
EP2718187B1 (en) Device for reducing structural vibrations of aerofoils
EP3397423B1 (en) Damping of vibrations of a machine tool
DE102011076476A1 (en) Active vibration absorber
DE02764289T1 (en) ROTOR SYSTEM VIBRATION
DE102011003406A1 (en) Active vibration absorber
DE10039763A1 (en) Vibration damper for vehicles uses plate spring whose stiffness and inherent frequency are changed through applying variable radially acting static force
EP1814209B1 (en) Vibration damping system for stator windings
DE10321436A1 (en) Inertial force generating device, e.g. for vehicle vibration damping systems or sensor applications, has masses that can be set vibrating using a solid-state device so that they apply a force via their sprung support
WO2011026514A1 (en) Device for generating electrical energy from mechanical vibrations and associated method
DE102012208713A1 (en) Carrier for use as active component for vibration compensation of adaptive supporting structures, has carrier elements with flanges and planks, where plank of one carrier element is engaged in plank of another carrier element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEFENCE AND SPACE GMBH

17Q First examination report despatched

Effective date: 20160203

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012014821

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1135803

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190522

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190922

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190823

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190822

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012014821

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190525

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

26N No opposition filed

Effective date: 20200225

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190525

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1135803

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240528

Year of fee payment: 13