EP2706237B1 - Vacuum pump - Google Patents

Vacuum pump Download PDF

Info

Publication number
EP2706237B1
EP2706237B1 EP13175496.2A EP13175496A EP2706237B1 EP 2706237 B1 EP2706237 B1 EP 2706237B1 EP 13175496 A EP13175496 A EP 13175496A EP 2706237 B1 EP2706237 B1 EP 2706237B1
Authority
EP
European Patent Office
Prior art keywords
rotor
shaft
rotor shaft
pin
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13175496.2A
Other languages
German (de)
French (fr)
Other versions
EP2706237A2 (en
EP2706237A3 (en
Inventor
Robert Watz
Bernhard Tatzber
Herbert Stammler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP2706237A2 publication Critical patent/EP2706237A2/en
Publication of EP2706237A3 publication Critical patent/EP2706237A3/en
Application granted granted Critical
Publication of EP2706237B1 publication Critical patent/EP2706237B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/263Rotors specially for elastic fluids mounting fan or blower rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/266Rotors specially for elastic fluids mounting compressor rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/36Retaining components in desired mutual position by a form fit connection, e.g. by interlocking

Definitions

  • the invention relates to a vacuum pump.
  • a vacuum pump for example a turbomolecular pump with a rotor having pump-active rotating components, and which is arranged on a rotor shaft.
  • These rotating pump-active components face stationary pump-active components, the so-called stator.
  • a rotation of the rotor is according to the prior art ( WO 2012/077411 A1 ) avoided.
  • this prior art it is known to provide a positive connection in which the rotor is to be fastened with a plurality of screws on the end face of the rotor shaft.
  • a rotation of the rotor and thus a release of the rotor is avoided by the shaft.
  • this belonging to the prior art embodiment has the disadvantage that the assembly is relatively complex and that, since several high-quality components are required in the form of screws, the pump is more expensive.
  • JP 2000 205183 A is a vacuum pump with at least one gas inlet opening and at least one gas outlet opening known with a rotor and a rotor shaft, wherein the at least one rotor and the rotor shaft in addition to at least one fastening element has a rotation.
  • This rotation is carried out in the form of a pin or a screw and engages in a bore of the Rotor shaft.
  • This embodiment is disadvantageous, since an imbalance can occur due to the decentrally arranged pin.
  • the technical problem underlying the invention is to provide a vacuum pump in which the disadvantages mentioned do not occur.
  • the vacuum pump according to the invention with at least one gas inlet opening and at least one gas outlet opening, wherein the vacuum pump has at least one rotor shaft, to which at least one rotor with rotating pump-active components facing stationary pump-active components is fastened with at least one fixing element arranged centrally in or on the rotor shaft in the axial direction, in which the at least one rotor and the rotor shaft
  • at least one fastening element having an anti-rotation is characterized in that in a contact surface between the rotor and the rotor shaft in the rotor or in the rotor shaft at least one projection is arranged, which is formed as a plastic deformation in the opposite component causing projection ,
  • the rotation can be constructed and designed in the simplest manner, so that an inexpensive solution for avoiding the rotation of the rotor relative to the rotor shaft and thus a release of the at least one centrally arranged in or on the rotor shaft fastener is avoided.
  • the anti-rotation device is arranged on a centering pin of the rotor.
  • the centering pin is easily accessible anyway for the centrally arranged fastener during assembly, so that the arrangement of the rotation in the centering is useful.
  • the centering pin is arranged on the rotor shaft and engages in a bore of the rotor.
  • centering pin is arranged on the rotor, which then in turn engages in a corresponding recess of the rotor shaft.
  • a projection is arranged, which is formed as a plastic deformation in the opposite part causing projection.
  • a projection may for example be a so-called grain point.
  • This grain point is formed from the material, for example the rotor.
  • Grain point then creates a plastic deformation in the rotor.
  • the rotor and the rotor shaft consist of different materials.
  • the grain point is then introduced into the material, which has the higher strength, ie a higher yield strength R e . In this case, the at least one grain point presses into the softer counter material.
  • Fig. 1 shows a turbomolecular pump.
  • a shaft 232 In a housing part 260, a shaft 232, surrounding a backup bearing 295, a radial bearing coil 291, a radial sensor 293 and a motor coil 261 are arranged.
  • the motor coil 261 cooperates with the motor magnet 262 located on the shaft 232 and secured by a sleeve 263, so that when the motor coil 261 is energized, the shaft 232 is set in rapid rotation.
  • the radial sensor 293 cooperates with the shaft-side radial target target 294.
  • the turbomolecular pump facing the fore-vacuum has a Holweckstator 228, in which run helical channels, which cooperate with the sleeve 227 arranged on the rotor and together form a Holweckcut 226.
  • stator disks 212, 216, 220 and 224 provided with blade rings which are axially spaced by spacer rings 213, 217, 221 and 225 arranged between them.
  • the pump structures formed as rotor blade rings 211, 215, 219 and 223 are immersed.
  • Dormant and rotor-side pump structures interact in pairs.
  • the rotor blade ring 211 together with the stator disk 212 together form the pumping stage 210 facing the chamber and operating in a high vacuum.
  • stator disk 216 and rotor blade ring 215 form the following second pumping stage 214, stator disk 220 and rotor blade ring 219, the third pumping stage 218 and finally stator disk 224 and rotor blade ring 223 the at the transfer pressure to Holweckmaker operating fourth pumping stage 222.
  • the rotor blade rings are each arranged in axially spaced-apart planes 250, 251, 252 and 253, the mounting portion of the rotor sleeve forms the plane 254th
  • the rotor-side pumping structures in the form of the rotor blade rings 219 and 223 are arranged on the first rotor part 201 and form with this a one-piece body.
  • the rotor sleeve 227 is connected to the first rotor part.
  • the first rotor part has a recess 230 in its center. This axially and radially extending from the center cavity takes the backup bearing 295 at least partially.
  • the first rotor part 201 is connected to a fastening element, in the example of a screw 280 with the end face 258 of the rotor shaft 232.
  • the shaft 232 has a recess with which a pin 289 of the first rotor member 201 is engaged, whereby the radial positioning is simplified.
  • the first rotor part 201 according to the embodiment has a support portion 201a. This extends from the first rotor part 201 axially in the direction of high vacuum, ie in the direction away from the shaft 232. On this support portion, a support ring 208 is arranged, with which the rotor blade ring 211 is connected. Another support ring 209 and the rotor blade ring 215 are also connected together.
  • the support rings with rotor blade ring are inexpensive to produce.
  • balancing bores 270 are provided in the balancing weights 271 can be used.
  • balancing weights 273 272 can be arranged in balancing bores.
  • a pin 281 is provided as anti-rotation, which is arranged with one end in the rotor part 201 and with its other end in the shaft 232. Since it radially spaced from the centrally located Screw 280 is disposed, it prevents the rotation of the rotor member 201 relative to the shaft 232.
  • Fig. 2a shows the rotor shaft 232 to which by means of the screw 280, a rotor part 201 is attached.
  • the pin 281 prevents the rotation of the rotor part 201 relative to the rotor shaft 232.
  • FIG. 2b An axial bore 300 is arranged in the centering pin 289. In the shaft 232, a bore 301 is also provided. The pin 281, the in Fig. 2b is not shown, engages with its ends in the holes 300 and 301.
  • the Fig. 3a and 3b show the rotor shaft 232, in turn, the bore 301 is arranged.
  • the centering pin 289 of the rotor 201 has a groove 302 instead of the bore.
  • the pin 281 is arranged with one end in the bore 301 of the rotor shaft 232 and with its other end in the groove 302 of the centering pin 289.
  • the embodiment with the groove 302 has over the embodiment with the bore has the advantage that the groove 302 makes it possible to build a statically determined fit system without adhering to very precise tolerances.
  • the radial centering of the rotor 201 and the rotor shaft 232 is taken over by the centering pin 289. Two additional holes with pin that would need to be aligned would tense this solution depending on the existing tolerances and games and adversely affect.
  • the groove 302 ensures that the pin 281 alone ensures the rotational degree of freedom and does not affect the two radial degrees of freedom which are secured by the centering pin 289.
  • the pin 281 is arranged obliquely radially in a groove 303 of the centering pin 289 of the rotor part 201 and in a radially arranged bore 304 of the shaft 232.
  • the pin 281 is securely fixed by the centrifugal force.
  • the pin 281 is radially spaced outside the region of the centering pin 289 in a bore 305 of the rotor 201.
  • the corresponding counterbore 306 is disposed in the shaft 232.
  • the bore 305 is disposed in the outer abutment surface of the shaft 232 on the rotor 201.
  • the Fig. 6a and 6b show a further embodiment.
  • the pin 281 is inserted radially into the Rotorzentrierzapfen 289 and is thus arranged in the bore 307 of the Zentrierzapfens 289.
  • the other end of the pin 281 engages in a groove 308 of the shaft 232.
  • Fig. 7a and 7b show another embodiment.
  • a friction ring 309 is disposed between the centering pin 289 and an end face 258 of the shaft 232.
  • the screw 280 By the screw 280, the rotor part 200 is pressed with the shaft 232.
  • the friction ring 309 prevents rotation of the rotor part 201 relative to the shaft 232.
  • a grain point 311 is formed on a contact surface 310 of the shaft 232.
  • the grain point 311 rests on a contact surface 312 of the rotor part 201.
  • the shaft 232 is formed of a stronger material than the rotor part 201.
  • the shaft 232 has at its end a geometrical securing 313 projecting in the axial direction, whose counterpart 314 is arranged in the rotor part 201.
  • the axially protruding geometric fuse 313 has two projections 315a, 315b disposed in corresponding recesses 316a, 316b.
  • the centering pin 289 has a radially protruding shaped projection 317 which is disposed in a groove 318 of the rotor shaft 232.
  • a stopper (not shown) is provided in the groove 318 of the rotor shaft 232 so that rotation of the rotor member 201 relative to the shaft 232 is avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

Die Erfindung betrifft eine Vakuumpumpe.The invention relates to a vacuum pump.

Gemäß dem Stand der Technik ( DE 20 2005 019 644 U1 ) ist es bekannt, eine Vakuumpumpe, beispielsweise eine Turbomolekularpumpe mit einem Rotor, der pumpaktive rotierende Bauteile aufweist, und der auf einer Rotorwelle angeordnet ist, zu versehen. Diese rotierenden pumpaktiven Bauteile stehen stehenden pumpaktiven Bauteilen, dem so genannten Stator gegenüber.According to the prior art ( DE 20 2005 019 644 U1 ) It is known to provide a vacuum pump, for example a turbomolecular pump with a rotor having pump-active rotating components, and which is arranged on a rotor shaft. These rotating pump-active components face stationary pump-active components, the so-called stator.

Aus dem genannten Stand der Technik ist es bekannt, den glockenförmigen Rotor mittels einer Schraube mit der Stirnseite der Rotorwelle zu verbinden. Die Welle weist hierzu eine Ausnehmung auf, mit der ein Zapfen des Rotors in Eingriff steht.From the cited prior art, it is known to connect the bell-shaped rotor by means of a screw with the end face of the rotor shaft. The shaft points For this purpose, a recess with which a pin of the rotor is engaged.

Diese zum Stand der Technik gehörende Ausführungsform weist den Nachteil auf, dass der Rotor sich gegenüber der Welle verdrehen kann, da die hier gezeigte Lösung ausschließlich auf einem Reibschluss basiert. Aus diesem Grunde kann eine Verdrehung bei Überlastung eintreten. Dies führt zu einem Lösen der Verbindung, so dass die geforderte Sicherheit der Verschraubung nicht gegeben ist.This embodiment belonging to the prior art has the disadvantage that the rotor can rotate relative to the shaft, since the solution shown here is based exclusively on a frictional connection. For this reason, a twist may occur in case of overload. This leads to a release of the connection, so that the required safety of the screw connection is not given.

Ein Lösen des Rotors im Betrieb führt zu einem Totalschaden der Pumpe.A loosening of the rotor during operation leads to a total damage of the pump.

Ein Verdrehen des Rotors wird gemäß dem Stand der Technik ( WO 2012/077411 A1 ) vermieden. Gemäß diesem Stand der Technik ist es bekannt, eine formschlüssige Verbindung vorzusehen, bei der der Rotor mit mehreren Schrauben an der Stirnseite der Rotorwelle zu befestigen ist. Hierdurch wird ein Verdrehen des Rotors und damit ein Lösen des Rotors von der Welle vermieden. Diese zum Stand der Technik gehörende Ausführungsform weist jedoch den Nachteil auf, dass die Montage relativ aufwändig ist und dass, da mehrere hochwertige Bauteile in Form von Schrauben benötigt werden, die Pumpe verteuert wird.A rotation of the rotor is according to the prior art ( WO 2012/077411 A1 ) avoided. According to this prior art, it is known to provide a positive connection in which the rotor is to be fastened with a plurality of screws on the end face of the rotor shaft. As a result, a rotation of the rotor and thus a release of the rotor is avoided by the shaft. However, this belonging to the prior art embodiment has the disadvantage that the assembly is relatively complex and that, since several high-quality components are required in the form of screws, the pump is more expensive.

Aus dem Stand der Technik ( JP 2000 205183 A ) ist eine Vakuumpumpe mit wenigstens einer Gaseintrittsöffnung und wenigstens einer Gasaustrittsöffnung bekannt mit einem Rotor und einer Rotorwelle, bei der der wenigstens eine Rotor und die Rotorwelle zusätzlich zu wenigstens einem Befestigungselement eine Verdrehsicherung aufweist.From the prior art ( JP 2000 205183 A ) is a vacuum pump with at least one gas inlet opening and at least one gas outlet opening known with a rotor and a rotor shaft, wherein the at least one rotor and the rotor shaft in addition to at least one fastening element has a rotation.

Diese Verdrehsicherung ist in Form eines Stiftes oder einer Schraube ausgeführt und greift in eine Bohrung der Rotorwelle. Diese Ausführungsform ist nachteilig, da durch den dezentral angeordneten Stift eine Unwucht entstehen kann.This rotation is carried out in the form of a pin or a screw and engages in a bore of the Rotor shaft. This embodiment is disadvantageous, since an imbalance can occur due to the decentrally arranged pin.

Weiterhin gehört zum Stand der Technik ( US 2009/0311113 A1 ) eine Vakuumpumpe mit einer Rotorwelle, an der wenigstens ein Rotor angeordnet ist, bei der eine Verdrehsicherung vorgesehen ist, indem Vorsprünge in passgenaue Ausnehmungen eingeführt werden. Bei der Ausbildung dieser Vorsprünge und Ausnehmungen muss sehr genau gearbeitet werden, um ein unerwünschtes Spiel zwischen den Vorsprüngen und den Ausnehmungen zu vermeiden.Furthermore belongs to the state of the art ( US 2009/0311113 A1 ) A vacuum pump with a rotor shaft on which at least one rotor is arranged, in which an anti-rotation is provided by projections are inserted into precise recesses. In the formation of these projections and recesses must be worked very carefully to avoid unwanted play between the projections and the recesses.

Das der Erfindung zugrunde liegende technische Problem besteht darin, eine Vakuumpumpe anzugeben, bei der die genannten Nachteile nicht auftreten.The technical problem underlying the invention is to provide a vacuum pump in which the disadvantages mentioned do not occur.

Dieses technische Problem wird durch eine Vakuumpumpe mit den Merkmalen gemäß Anspruch 1 gelöst.This technical problem is solved by a vacuum pump having the features according to claim 1.

Die erfindungsgemäße Vakuumpumpe mit wenigstens einer Gaseintrittsöffnung und wenigstens einer Gasaustrittsöffnung, wobei die Vakuumpumpe wenigstens eine Rotorwelle aufweist, an der wenigstens ein Rotor mit rotierenden pumpaktiven Bauteilen, welche stehenden pumpaktiven Bauteilen gegenüberstehen, mit wenigstens einem in axialer Richtung zentral in oder an der Rotorwelle angeordneten Befestigungselement befestigt ist, bei der der wenigstens eine Rotor und die Rotorwelle zusätzlich zu dem wenigstens einen Befestigungselement eine Verdrehsicherung aufweisen, zeichnet sich dadurch aus, dass in einer Berührungsfläche zwischen Rotor und Rotorwelle in dem Rotor oder in der Rotorwelle wenigstens ein Vorsprung angeordnet ist, der als ein eine plastische Verformung in dem gegenüberliegenden Bauteil hervorrufender Vorsprung ausgebildet ist.The vacuum pump according to the invention with at least one gas inlet opening and at least one gas outlet opening, wherein the vacuum pump has at least one rotor shaft, to which at least one rotor with rotating pump-active components facing stationary pump-active components is fastened with at least one fixing element arranged centrally in or on the rotor shaft in the axial direction, in which the at least one rotor and the rotor shaft In addition to the at least one fastening element having an anti-rotation, is characterized in that in a contact surface between the rotor and the rotor shaft in the rotor or in the rotor shaft at least one projection is arranged, which is formed as a plastic deformation in the opposite component causing projection ,

Die Verdrehsicherung kann in einfachster Art und Weise konstruiert und ausgebildet sein, so dass eine preiswerte Lösung zur Vermeidung der Drehung des Rotors relativ zu der Rotorwelle und damit ein Lösen des wenigstens einen zentral in oder an der Rotorwelle angeordneten Befestigungselementes vermieden wird.The rotation can be constructed and designed in the simplest manner, so that an inexpensive solution for avoiding the rotation of the rotor relative to the rotor shaft and thus a release of the at least one centrally arranged in or on the rotor shaft fastener is avoided.

Gemäß einer besonders bevorzugten Ausführungsform der Erfindung ist die Verdrehsicherung an einem Zentrierzapfen des Rotors angeordnet. Der Zentrierzapfen ist ohnehin für das zentral angeordnete Befestigungselement bei der Montage gut zugänglich, so dass die Anordnung der Verdrehsicherung in dem Zentrierzapfen sinnvoll ist.According to a particularly preferred embodiment of the invention, the anti-rotation device is arranged on a centering pin of the rotor. The centering pin is easily accessible anyway for the centrally arranged fastener during assembly, so that the arrangement of the rotation in the centering is useful.

Grundsätzlich besteht die Möglichkeit, dass der Zentrierzapfen an der Rotorwelle angeordnet ist und in einer Bohrung des Rotors eingreift.In principle, there is the possibility that the centering pin is arranged on the rotor shaft and engages in a bore of the rotor.

Es besteht auch die Möglichkeit, dass der Zentrierzapfen an dem Rotor angeordnet ist, der dann wiederum in einer entsprechenden Ausnehmung der Rotorwelle eingreift.There is also the possibility that the centering pin is arranged on the rotor, which then in turn engages in a corresponding recess of the rotor shaft.

Grundsätzlich besteht auch die Möglichkeit, dass keinerlei Zapfen an Rotor und Welle angeordnet ist. In diesem Fall kann eine Zentrierung durch ein oder mehrere zentrische oder exzentrische Formelemente wie Passstifte oder kombinierte Form- und Befestigungselemente wie Passschrauben erfolgen.In principle, there is also the possibility that no pin is arranged on the rotor and shaft. In this case, a centering by one or more centric or eccentric form elements such as dowel pins or combined form and fasteners such as fitting screws done.

Gemäß der Erfindung ist vorgesehen, dass in einer Berührungsfläche zwischen Rotor und Rotorwelle in dem Rotor oder in der Rotorwelle wenigstens ein Vorsprung angeordnet ist, der als ein eine plastische Verformung in dem gegenüberliegenden Bauteil hervorrufender Vorsprung ausgebildet ist. Ein derartiger Vorsprung kann beispielsweise ein so genannter Körnerpunkt sein. Dieser Körnerpunkt wird aus dem Material, beispielsweise des Rotors gebildet. Beim Verpressen des Rotors mit der Rotorwelle durch Anziehen des Befestigungselementes, beispielsweise der Befestigungsschraube erzeugt der Körnerpunkt eine plastische Verformung der anliegenden Fläche. Der Körnerpunkt kann in dem Rotor erzeugt werden und erzeugt dann eine Verformung der Rotorwelle. Es ist auch möglich, den Körnerpunkt in der Rotorwelle zu erzeugen. DerAccording to the invention it is provided that in a contact surface between the rotor and the rotor shaft in the rotor or in the rotor shaft at least one projection is arranged, which is formed as a plastic deformation in the opposite part causing projection. Such a projection may for example be a so-called grain point. This grain point is formed from the material, for example the rotor. When pressing the rotor with the rotor shaft by tightening the fastener, such as the fastening screw of the grain point produces a plastic deformation of the adjacent surface. The grain point can be generated in the rotor and then generates a deformation of the rotor shaft. It is also possible to produce the grain point in the rotor shaft. The

Körnerpunkt erzeugt dann eine plastische Verformung in dem Rotor. Bei Ausbildung eines oder mehrerer Körnerpunkte ist es vorteilhaft, wenn der Rotor und die Rotorwelle aus verschiedenen Materialen bestehen. Der Körnerpunkt wird dann in das Material eingebracht, das die höhere Festigkeit aufweist, also eine höhere Streckgrenze Re. In diesem Fall drückt sich der wenigstens eine Körnerpunkt in das weichere Gegenmaterial.Grain point then creates a plastic deformation in the rotor. When forming one or more grain points, it is advantageous if the rotor and the rotor shaft consist of different materials. The grain point is then introduced into the material, which has the higher strength, ie a higher yield strength R e . In this case, the at least one grain point presses into the softer counter material.

Weitere Merkmale und Vorteile der Erfindung ergeben sich anhand der zugehörigen Zeichnung, in der mehrere Ausführungsbeispiele einer Rotor/Rotorwelleverbindung nur beispielhaft dargestellt sind. In der Zeichnung zeigen:

Fig. 1
einen Längsschnitt durch einen Turbomolekularpumpenrotor und den Antriebsbereich einer Turbomolekularpumpe gemäß dem Stand der Technik;
Fig. 2a
einen Längsschnitt durch eine Rotor/Rotorwelleverbindung mit einem Stift;
Fig. 2b
einen Rotor und eine Welle in perspektivischer Ansicht in nicht verbundenem Zustand;
Fig. 3a
einen Längsschnitt durch eine Rotor/Rotorwelleverbindung gemäß einem geänderten Ausführungsbeispiel;
Fig. 3b
einen Rotor und eine Welle in perspektivischer Ansicht in nicht verbundenem Zustand;
Fig. 4a
einen Längsschnitt durch eine Rotor/Rotorwelleverbindung mit schräg radial angeordnetem Stift;
Fig. 4b
einen Rotor und eine Welle in perspektivischer Ansicht in nicht verbundenem Zustand;
Fig. 5a
einen Schnitt durch eine Rotor/Rotorwelleverbindung als geändertes Ausführungsbeispiel;
Fig. 5b
einen Rotor und eine Welle in perspektivischer Ansicht in nicht verbundenem Zustand;
Fig. 6a
einen Schnitt durch eine Rotor/Rotorwelleverbindung mit einem radial angeordneten Stift;
Fig. 6b
einen Rotor und eine Welle in perspektivischer Ansicht in nicht verbundenem Zustand;
Fig. 7a
einen Längsschnitt durch eine Rotor/Rotorwelleverbindung mit einem Reibring;
Fig. 7b
einen Rotor, einen Reibring und eine Rotorwelle in nicht verbundenem Zustand in perspektivischer Ansicht;
Fig. 8a
einen Längsschnitt durch eine Rotor/Rotorwelleverbindung gemäß der Erfindung mit einem Körnerpunkt;
Fig. 8b
einen Rotor und eine Welle der Rotor/ Rotorwelleverbindung der Abbildung 8a in perspektivischer Ansicht in nicht verbundenem Zustand;
Fig. 9a
einen Längsschnitt durch eine Rotor/Rotorwelleverbindung mit einer axial geometrischen Sicherung;
Fig. 9b
einen Rotor und eine Welle in perspektivischer Ansicht in nicht verbundenem Zustand;
Fig. 10a
einen Längsschnitt durch eine Rotor/Rotorwelleverbindung mit einer radial geometrischen Sicherung;
Fig. 10b
einen Rotor und eine Welle in perspektivischer Ansicht in nicht verbundenem Zustand.
Further features and advantages of the invention will become apparent from the accompanying drawings, in which several embodiments of a rotor / rotor shaft connection are shown only by way of example. In the drawing show:
Fig. 1
a longitudinal section through a turbomolecular pump rotor and the drive range of a turbomolecular pump according to the prior art;
Fig. 2a
a longitudinal section through a rotor / rotor shaft connection with a pin;
Fig. 2b
a rotor and a shaft in a perspective view in unconnected state;
Fig. 3a
a longitudinal section through a rotor / rotor shaft connection according to a modified embodiment;
Fig. 3b
a rotor and a shaft in a perspective view in unconnected state;
Fig. 4a
a longitudinal section through a rotor / rotor shaft connection with obliquely radially arranged pin;
Fig. 4b
a rotor and a shaft in a perspective view in unconnected state;
Fig. 5a
a section through a rotor / rotor shaft connection as a modified embodiment;
Fig. 5b
a rotor and a shaft in a perspective view in unconnected state;
Fig. 6a
a section through a rotor / rotor shaft connection with a radially disposed pin;
Fig. 6b
a rotor and a shaft in a perspective view in unconnected state;
Fig. 7a
a longitudinal section through a rotor / rotor shaft connection with a friction ring;
Fig. 7b
a rotor, a friction ring and a rotor shaft in a non-connected state in a perspective view;
Fig. 8a
a longitudinal section through a rotor / rotor shaft connection according to the invention with a grain point;
Fig. 8b
a rotor and a shaft of the rotor / rotor shaft connection of Figure 8a in perspective view in unconnected state;
Fig. 9a
a longitudinal section through a rotor / rotor shaft connection with an axial geometric fuse;
Fig. 9b
a rotor and a shaft in a perspective view in unconnected state;
Fig. 10a
a longitudinal section through a rotor / rotor shaft connection with a radial geometric fuse;
Fig. 10b
a rotor and a shaft in a perspective view in unconnected state.

Fig. 1 zeigt eine Turbomolekularpumpe. In einem Gehäuseteil 260 sind eine Welle 232, umgebend ein Fanglager 295, eine Radiallagerspule 291, ein Radialsensor 293 und eine Motorspule 261 angeordnet. Die Motorspule 261 wirkt mit dem auf der Welle 232 befindlichen und durch eine Hülse 263 gesicherten Motormagneten 262 zusammen, so dass bei Bestromung der Motorspule 261 die Welle 232 in schnelle Drehung versetzt wird. Der Radialsensor 293 wirkt mit dem wellenseitigen Radialsensortarget 294 zusammen. Fig. 1 shows a turbomolecular pump. In a housing part 260, a shaft 232, surrounding a backup bearing 295, a radial bearing coil 291, a radial sensor 293 and a motor coil 261 are arranged. The motor coil 261 cooperates with the motor magnet 262 located on the shaft 232 and secured by a sleeve 263, so that when the motor coil 261 is energized, the shaft 232 is set in rapid rotation. The radial sensor 293 cooperates with the shaft-side radial target target 294.

Als ruhende Pumpstrukturen weist die Turbomolekularpumpe dem Vorvakuum zugewandt einen Holweckstator 228 auf, in welchem schraubenlinienartig Kanäle verlaufen, die mit der am Rotor angeordneten Hülse 227 zusammenwirken und zusammen eine Holweckstufe 226 bilden.As a stationary pump structures, the turbomolecular pump facing the fore-vacuum has a Holweckstator 228, in which run helical channels, which cooperate with the sleeve 227 arranged on the rotor and together form a Holweckstufe 226.

Weitere ruhende Pumpstrukturen sind die mit Schaufelkränzen versehenen Statorscheiben 212, 216, 220 und 224, welche durch zwischen ihnen angeordneten Distanzringen 213, 217, 221 und 225 axial beabstandet sind. In die axialen Zwischenräume zwischen den Statorscheiben 212, 216, 220 und 224 tauchen die als Rotorschaufelkränze 211, 215, 219 und 223 gestalteten Pumpstrukturen ein. Ruhende und rotorseitige Pumpstrukturen wirken paarweise zusammen. Der Rotorschaufelkranz 211 bildet mit der Statorscheibe 212 zusammen die erste der Kammer zugewandte und im Hochvakuum arbeitende Pumpstufe 210. Entsprechend bilden Statorscheibe 216 und Rotorschaufelkranz 215 die nachfolgende zweite Pumpstufe 214, Statorscheibe 220 und Rotorschaufelkranz 219 die dritte Pumpstufe 218 und schließlich Statorscheibe 224 und Rotorschaufelkranz 223 die am Übergabedruck zur Holweckstufe arbeitende vierte Pumpstufe 222. Die Rotorschaufelkränze sind jeweils in voneinander axial beabstandeten Ebenen 250, 251, 252 und 253 angeordnet, der Befestigungsbereich der Rotorhülse bildet die Ebene 254.Further stationary pumping structures are the stator disks 212, 216, 220 and 224 provided with blade rings which are axially spaced by spacer rings 213, 217, 221 and 225 arranged between them. Into the axial spaces between the stator disks 212, 216, 220 and 224, the pump structures formed as rotor blade rings 211, 215, 219 and 223 are immersed. Dormant and rotor-side pump structures interact in pairs. The rotor blade ring 211 together with the stator disk 212 together form the pumping stage 210 facing the chamber and operating in a high vacuum. Accordingly, stator disk 216 and rotor blade ring 215 form the following second pumping stage 214, stator disk 220 and rotor blade ring 219, the third pumping stage 218 and finally stator disk 224 and rotor blade ring 223 the at the transfer pressure to Holweckstufe operating fourth pumping stage 222. The rotor blade rings are each arranged in axially spaced-apart planes 250, 251, 252 and 253, the mounting portion of the rotor sleeve forms the plane 254th

Die rotorseitigen Pumpstrukturen in Form der Rotorschaufelkränze 219 und 223 sind am ersten Rotorteil 201 angeordnet und bilden mit diesem einen einstückigen Körper. Die Rotorhülse 227 ist mit dem ersten Rotorteil verbunden. Das erste Rotorteil weist eine Ausnehmung 230 in ihrem Zentrum auf. Dieser sich axial und radial von der Mitte aus erstreckende Hohlraum nimmt das Fanglager 295 wenigstens teilweise auf.The rotor-side pumping structures in the form of the rotor blade rings 219 and 223 are arranged on the first rotor part 201 and form with this a one-piece body. The rotor sleeve 227 is connected to the first rotor part. The first rotor part has a recess 230 in its center. This axially and radially extending from the center cavity takes the backup bearing 295 at least partially.

Das erste Rotorteil 201 ist mit einem Befestigungselement, im Beispiel einer Schraube 280 mit der Stirnseite 258 der Rotorwelle 232 verbunden. Die Welle 232 weist eine Ausnehmung auf, mit der ein Zapfen 289 des ersten Rotorteiles 201 in Eingriff steht, wodurch die radiale Positionierung vereinfacht wird. Das erste Rotorteil 201 besitzt gemäß dem Ausführungsbeispiel einen Trägerabschnitt 201a. Dieser erstreckt sich vom ersten Rotorteil 201 aus axial in Richtung Hochvakuum, also in die der Welle 232 abgewandten Richtung. Auf diesem Trägerabschnitt ist ein Tragring 208 angeordnet, mit welchem der Rotorschaufelkranz 211 verbunden ist. Ein weiterer Tragring 209 und der Rotorschaufelkranz 215 sind ebenfalls miteinander verbunden. Die Tragringe mit Rotorschaufelkranz sind günstig herstellbar.The first rotor part 201 is connected to a fastening element, in the example of a screw 280 with the end face 258 of the rotor shaft 232. The shaft 232 has a recess with which a pin 289 of the first rotor member 201 is engaged, whereby the radial positioning is simplified. The first rotor part 201 according to the embodiment has a support portion 201a. This extends from the first rotor part 201 axially in the direction of high vacuum, ie in the direction away from the shaft 232. On this support portion, a support ring 208 is arranged, with which the rotor blade ring 211 is connected. Another support ring 209 and the rotor blade ring 215 are also connected together. The support rings with rotor blade ring are inexpensive to produce.

In dem stirnseitigen Trägerabschnitt 201a sind Wuchtbohrungen 270 vorgesehen, in die Wuchtgewichte 271 eingesetzt werden können. In den Rotorschaufelkränzen 219 und 223 können in Wuchtbohrungen 272 Wuchtgewichte 273 angeordnet werden.In the end-side support portion 201a balancing bores 270 are provided in the balancing weights 271 can be used. In the rotor blade rings 219 and 223 balancing weights 273 272 can be arranged in balancing bores.

Um eine Verdrehung des ersten Rotorteiles 201 gegenüber der Welle 232 zu verhindern, ist ein Stift 281 als Verdrehsicherung vorgesehen, der mit einem Ende in dem Rotorteil 201 angeordnet ist und mit seinem anderen Ende in der Welle 232. Da er radial beabstandet von der zentral angeordneten Schraube 280 angeordnet ist, verhindert er das Verdrehen des Rotorteiles 201 gegenüber der Welle 232.In order to prevent a rotation of the first rotor part 201 relative to the shaft 232, a pin 281 is provided as anti-rotation, which is arranged with one end in the rotor part 201 and with its other end in the shaft 232. Since it radially spaced from the centrally located Screw 280 is disposed, it prevents the rotation of the rotor member 201 relative to the shaft 232.

Fig. 2a zeigt die Rotorwelle 232, an der mittels der Schraube 280 ein Rotorteil 201 befestigt ist. Der Stift 281 verhindert das Verdrehen des Rotorteiles 201 gegenüber der Rotorwelle 232. Fig. 2a shows the rotor shaft 232 to which by means of the screw 280, a rotor part 201 is attached. The pin 281 prevents the rotation of the rotor part 201 relative to the rotor shaft 232.

Gemäß der Fig. 2b ist in dem Zentrierzapfen 289 eine axiale Bohrung 300 angeordnet. In der Welle 232 ist ebenfalls eine Bohrung 301 vorgesehen. Der Stift 281, der in Fig. 2b nicht dargestellt ist, greift mit seinen Enden in die Bohrungen 300 und 301.According to the Fig. 2b An axial bore 300 is arranged in the centering pin 289. In the shaft 232, a bore 301 is also provided. The pin 281, the in Fig. 2b is not shown, engages with its ends in the holes 300 and 301.

Die Fig. 3a und 3b zeigen die Rotorwelle 232, in der wiederum die Bohrung 301 angeordnet ist. Der Zentrierzapfen 289 des Rotors 201 weist an Stelle der Bohrung jedoch eine Nut 302 auf. Der Stift 281 ist mit einem Ende in der Bohrung 301 der Rotorwelle 232 und mit seinem anderen Ende in der Nut 302 des Zentrierzapfens 289 angeordnet.The Fig. 3a and 3b show the rotor shaft 232, in turn, the bore 301 is arranged. However, the centering pin 289 of the rotor 201 has a groove 302 instead of the bore. The pin 281 is arranged with one end in the bore 301 of the rotor shaft 232 and with its other end in the groove 302 of the centering pin 289.

Die Ausführung mit der Nut 302 weist gegenüber der Ausführungsform mit der Bohrung den Vorteil auf, dass die Nut 302 es ermöglicht, ohne Einhaltung sehr genauer Toleranzen ein statisch bestimmtes Passungssystem aufzubauen. Die radiale Zentrierung des Rotors 201 und der Rotorwelle 232 wird von dem Zentrierzapfen 289 übernommen. Zwei weitere Bohrungen mit Stift, die fluchten müssten, würden diese Lösung je nach den vorhandenen Toleranzen und Spielen verspannen und negativ beeinflussen.The embodiment with the groove 302 has over the embodiment with the bore has the advantage that the groove 302 makes it possible to build a statically determined fit system without adhering to very precise tolerances. The radial centering of the rotor 201 and the rotor shaft 232 is taken over by the centering pin 289. Two additional holes with pin that would need to be aligned would tense this solution depending on the existing tolerances and games and adversely affect.

Die Nut 302 sorgt dafür, dass der Stift 281 alleine den rotatorischen Freiheitsgrad sichert und die beiden radialen Freiheitsgrade, welche durch den Zentrierzapfen 289 gesichert werden, nicht beeinflusst.The groove 302 ensures that the pin 281 alone ensures the rotational degree of freedom and does not affect the two radial degrees of freedom which are secured by the centering pin 289.

Gemäß den Fig. 4a und 4b ist der Stift 281 schräg radial in einer Nut 303 des Zentrierzapfens 289 des Rotorteiles 201 angeordnet sowie in einer radial angeordneten Bohrung 304 der Welle 232.According to the Fig. 4a and 4b the pin 281 is arranged obliquely radially in a groove 303 of the centering pin 289 of the rotor part 201 and in a radially arranged bore 304 of the shaft 232.

Bei dieser Ausführungsform wird der Stift 281 durch die Fliehkraft sicher fixiert.In this embodiment, the pin 281 is securely fixed by the centrifugal force.

Gemäß den Fig. 5a und 5b ist der Stift 281 in einer Bohrung 305 des Rotors 201 radial beabstandet außerhalb des Bereiches des Zentrierzapfens 289 angeordnet. Die entsprechende Gegenbohrung 306 ist in der Welle 232 angeordnet. Die Bohrung 305 ist in der äußeren Anlagefläche der Welle 232 an dem Rotor 201 angeordnet.According to the Fig. 5a and 5b the pin 281 is radially spaced outside the region of the centering pin 289 in a bore 305 of the rotor 201. The corresponding counterbore 306 is disposed in the shaft 232. The bore 305 is disposed in the outer abutment surface of the shaft 232 on the rotor 201.

Die Fig. 6a und 6b zeigen ein weiteres Ausführungsbeispiel. Der Stift 281 ist radial in den Rotorzentrierzapfen 289 gesteckt und ist damit in der Bohrung 307 des Zentrierzapfens 289 angeordnet. Das andere Ende des Stiftes 281 greift in eine Nut 308 der Welle 232.The Fig. 6a and 6b show a further embodiment. The pin 281 is inserted radially into the Rotorzentrierzapfen 289 and is thus arranged in the bore 307 of the Zentrierzapfens 289. The other end of the pin 281 engages in a groove 308 of the shaft 232.

Die Fig. 7a und 7b zeigen ein anderes Ausführungsbeispiel. Bei diesem Ausführungsbeispiel ist zwischen den Zentrierzapfen 289 und einer Stirnseite 258 der Welle 232 ein Reibring 309 angeordnet. Durch die Schraube 280 wird das Rotorteil 200 mit der Welle 232 verpresst. Der Reibring 309 verhindert ein Verdrehen des Rotorteiles 201 relativ zu der Welle 232.The Fig. 7a and 7b show another embodiment. In this embodiment, a friction ring 309 is disposed between the centering pin 289 and an end face 258 of the shaft 232. By the screw 280, the rotor part 200 is pressed with the shaft 232. The friction ring 309 prevents rotation of the rotor part 201 relative to the shaft 232.

Gemäß dem einzigen Ausführungsbeispiel gemäß der Erfindung; welches in den Fig. 8a und 8b dargestellt ist, ist auf einer Anlagefläche 310 der Welle 232 ein Körnerpunkt 311 gebildet. Der Körnerpunkt 311 liegt auf einer Anlagefläche 312 des Rotorteiles 201 an. Die Welle 232 ist aus einem festeren Material gebildet, als das Rotorteil 201. Beim Verschrauben des Rotorteiles 201 mit der Welle 232 mittels der Schraube 280 tritt durch den Körnerpunkt 311 eine plastische Verformung der Anlagefläche 312 des Rotors 201 auf. Durch die Verzahnung zwischen Körnerpunkt 311 und der plastischen Verformung wird ebenfalls ein Formschluss erzielt, der ein Verdrehen des Rotorteiles 201 relativ zu der Welle 232 verhindert. Es ist auch möglich, mehrere Körnerpunkte 311 vorzusehen.According to the only embodiment according to the invention; which in the Fig. 8a and 8b is shown, a grain point 311 is formed on a contact surface 310 of the shaft 232. The grain point 311 rests on a contact surface 312 of the rotor part 201. The shaft 232 is formed of a stronger material than the rotor part 201. When screwing the rotor part 201 with the shaft 232 by means of the screw 280, a plastic deformation of the contact surface 312 of the rotor 201 occurs through the center point 311. The interlocking between the grain point 311 and the plastic deformation also results in a form fit which prevents the rotor part 201 from rotating relative to the shaft 232. It is also possible to provide a plurality of grain points 311.

Gemäß den Fig. 9a und 9b weist die Welle 232 an ihrem Ende eine in axialer Richtung hervorstehend geformte, geometrische Sicherung 313 auf, deren Gegenstück 314 in dem Rotorteil 201 angeordnet ist. Die in axialer Richtung hervorstehend geformte, geometrische Sicherung 313 weist zwei Erhebungen 315a, 315b auf, die in entsprechende Vertiefungen 316a, 316b angeordnet sind. Durch den Formschluss der Teile 313 und 314 wird eine Verdrehsicherung zwischen dem Rotorteil 201 und der Rotorwelle 232 erreicht.According to the Fig. 9a and 9b For example, the shaft 232 has at its end a geometrical securing 313 projecting in the axial direction, whose counterpart 314 is arranged in the rotor part 201. The axially protruding geometric fuse 313 has two projections 315a, 315b disposed in corresponding recesses 316a, 316b. By the positive connection of the parts 313 and 314, a rotation between the rotor part 201 and the rotor shaft 232 is achieved.

Ein weiteres Ausführungsbeispiel der Erfindung ist in den Fig. 10a und 10b dargestellt. Der Zentrierzapfen 289 weist einen in radialer Richtung hervorstehend geformten Vorsprung 317 auf, der in einer Nut 318 der Rotorwelle 232 angeordnet wird. In der Nut 318 der Rotorwelle 232 ist ein Anschlag (nicht dargestellt) vorgesehen, so dass eine Drehung des Rotorteiles 201 relativ zu der Welle 232 vermieden wird.Another embodiment of the invention is in the 10a and 10b shown. The centering pin 289 has a radially protruding shaped projection 317 which is disposed in a groove 318 of the rotor shaft 232. In the groove 318 of the rotor shaft 232, a stopper (not shown) is provided so that rotation of the rotor member 201 relative to the shaft 232 is avoided.

Es ist möglich, die in den Fig. 1 bis 10 dargestellten Ausführungsformen miteinander zu kombinieren.It is possible that in the Fig. 1 to 10 illustrated embodiments combine with each other.

Bezugszahlenreference numerals

201201
Rotorteilrotor part
201a201
Trägerabschnittsupport section
208208
Tragringsupport ring
209209
Tragringsupport ring
210210
Pumpstufepump stage
211211
RotorschaufelkranzRotor blade ring
212212
Statorscheibestator
213213
Distanzringspacer
214214
Pumpstufepump stage
215215
RotorschaufelkranzRotor blade ring
216216
Statorscheibestator
217217
Distanzringspacer
218218
Pumpstufepump stage
219219
RotorschaufelkranzRotor blade ring
220220
Statorscheibestator
221221
Distanzringspacer
222222
Pumpstufepump stage
223223
RotorschaufelkranzRotor blade ring
224224
Statorscheibestator
225225
Distanzringspacer
226226
HolweckstufeHolweck
227227
Hülseshell
228228
HolweckstatorHolweckstator
230230
Ausnehmungrecess
232232
Rotorwellerotor shaft
250250
Ebenelevel
251251
Ebenelevel
252252
Ebenelevel
254254
Ebenelevel
258258
Stirnseite der Welle 232Face of the shaft 232
260260
Gehäuseteilhousing part
261261
Motorspulemotor coil
262262
Motormagnetmotor magnet
263263
Hülseshell
270270
Wuchtbohrungbalancing hole
271271
Wuchtgewichtbalance weight
272272
Wuchtbohrungbalancing hole
273273
Wuchtgewichtbalance weight
280280
Schraubescrew
281281
Stiftpen
289289
Zapfenspigot
291291
RadiallagerspuleRadial coil
292292
RadiallagertargetRadial bearing target
293293
Radialsensorradial sensor
294294
RadialsensortargetRadial sensor target
295295
HanglagerHang camp
300300
Bohrungdrilling
301301
Bohrungdrilling
302302
Nutgroove
303303
Nutgroove
304304
radiale Bohrungradial bore
305305
Bohrungdrilling
306306
Bohrungdrilling
307307
Bohrungdrilling
308308
Nutgroove
309309
Reibringfriction ring
310310
Anlagefläche StatorInvestment surface stator
311311
Körnerpunktpunch mark
312312
Anlagefläche des Rotorteiles 201Contact surface of the rotor part 201
313313
axial geometrische Sicherungaxial geometric safety
314314
Teil der axial geometrischen SicherungPart of the axial geometric fuse
315a315
Erhebungsurvey
315b315b
Erhebungsurvey
316a316a
Vertiefungdeepening
316b316b
Vertiefungdeepening
317317
Vorsprunghead Start
318318
Nutgroove

Claims (2)

  1. A vacuum pump with at least one gas inlet opening and at least one gas outlet opening, wherein the vacuum pump comprises at least one rotor shaft, to which there is fixed, with at least one fixing element arranged centrally in axial direction in or on the rotor shaft, at least one rotor with rotating pump-active components, which oppose static pump-active components, in which the at least one rotor (201) and the rotor shaft (232), in addition to the at least one fixing element (280) have an arrangement (281; 309; 311; 313, 314; 317, 318) preventing rotation,
    characterised in that there is arranged in a contact surface (310, 312) between rotor (201) and rotor shaft (232) in the rotor (201) or in the rotor shaft (232) a projection (311), which is formed as a projection (311) causing a plastic deformation in the opposing component (201, 232).
  2. A vacuum pump according to claim 1 characterised in that the arrangement (281; 309; 311; 313, 314; 317, 318) preventing rotation is arranged on a centering pin (289) of the rotor (201) or the rotor shaft (232).
EP13175496.2A 2012-09-10 2013-07-08 Vacuum pump Active EP2706237B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012108394.0A DE102012108394A1 (en) 2012-09-10 2012-09-10 vacuum pump

Publications (3)

Publication Number Publication Date
EP2706237A2 EP2706237A2 (en) 2014-03-12
EP2706237A3 EP2706237A3 (en) 2015-07-29
EP2706237B1 true EP2706237B1 (en) 2019-07-10

Family

ID=48747427

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13175496.2A Active EP2706237B1 (en) 2012-09-10 2013-07-08 Vacuum pump

Country Status (4)

Country Link
US (1) US9453514B2 (en)
EP (1) EP2706237B1 (en)
JP (1) JP5706483B2 (en)
DE (1) DE102012108394A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252336B2 (en) * 2014-04-23 2017-12-27 株式会社島津製作所 Vacuum pump
CN104019057B (en) * 2014-05-26 2016-08-24 河南众力空分设备有限公司 A kind of cantilever type impeller and the transmission joint of power transmission shaft
US10557471B2 (en) * 2017-11-16 2020-02-11 L Dean Stansbury Turbomolecular vacuum pump for ionized matter and plasma fields
US10808712B2 (en) * 2018-03-22 2020-10-20 Raytheon Technologies Corporation Interference fit with high friction material
IT201800007964A1 (en) * 2018-08-08 2018-11-08 Agilent Technologies Inc A Delaware Corp Rotary vacuum pump and method for its balancing
GB202018692D0 (en) * 2020-11-27 2021-01-13 Lm Wp Patent Holding As A mechanism for restraining movement of a locking pin

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4447684B2 (en) * 1999-01-13 2010-04-07 株式会社島津製作所 Turbo molecular pump
JP2006194083A (en) * 2003-09-16 2006-07-27 Boc Edwards Kk Fixing structure of rotor shaft and rotor and turbo-molecular pump having the fixing structure
DE202005019644U1 (en) 2005-12-16 2007-04-26 Leybold Vacuum Gmbh Turbo molecular pump, with a main inflow and at least one intermediate inflow, has a floating rotor supported by active magnet radial and radial-axial bearings
GB2435675B (en) * 2006-03-02 2011-02-09 Boc Group Plc Rotor assembly
JP2008286179A (en) * 2007-05-21 2008-11-27 Ebara Corp Turbo type vacuum pump, and semiconductor manufacturing device equipped therewith
CN102762869B (en) 2010-02-16 2016-01-13 株式会社岛津制作所 Vacuum pump
DE102010040288A1 (en) * 2010-09-06 2012-03-08 Siemens Aktiengesellschaft Rotor for radial flow machine, has intermediate element that is arranged between symmetric surface of shaft and impeller
EP2650544B1 (en) 2010-12-10 2020-06-03 Edwards Japan Limited Vacuum pump
JP2012127326A (en) * 2010-12-17 2012-07-05 Shimadzu Corp Vacuum pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20140072408A1 (en) 2014-03-13
JP5706483B2 (en) 2015-04-22
JP2014051969A (en) 2014-03-20
DE102012108394A1 (en) 2014-03-13
EP2706237A2 (en) 2014-03-12
EP2706237A3 (en) 2015-07-29
US9453514B2 (en) 2016-09-27

Similar Documents

Publication Publication Date Title
EP2706237B1 (en) Vacuum pump
DE60311725T2 (en) Arrangement of a compressor impeller
EP0903465B1 (en) Compressor wheel-shaft connection for high speed turbomachinery
DE102005007297B4 (en) Fluid dynamic air bearing system for pivotal mounting of an engine
EP2188534B1 (en) Rotor mounting
EP3030792B1 (en) Impeller for axial fans
DE112005002498T5 (en) Wheel support bearing assembly
EP3018373B1 (en) Vacuum pump
DE2106208C3 (en)
AT15088U1 (en) shaft bearing
EP2875264A1 (en) Arrangement with a gas seal
EP2826958A1 (en) Rotor for a thermal flow engine
DE102020203483A1 (en) Rotor of an electric motor
EP2994645B1 (en) Pump arrangement with magnetic coupling
DE102013211476A1 (en) Bearing system for an electric machine
EP3436704B1 (en) Coolant pump assembly
DE212018000250U1 (en) Rotor for an electric machine
DE112006000321T5 (en) Sealing structure of a turbomolecular pump
EP3043074B1 (en) Assembly for storing the spindle of a vacuum pump
EP3035503A1 (en) Dynamoelectric machine with a brake
EP1234990B1 (en) Split muff coupling for rotatibly connecting shafts
EP1191230B1 (en) Coupling device
DE102010061966B4 (en) Electrical machine
DE102015111049B4 (en) vacuum pump
EP0571834B1 (en) Connecting element for a flow guiding device made up of several components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/32 20060101ALI20150624BHEP

Ipc: F04D 19/04 20060101AFI20150624BHEP

Ipc: F04D 29/26 20060101ALI20150624BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 19/04 20060101AFI20150717BHEP

Ipc: F04D 29/26 20060101ALI20150717BHEP

Ipc: F04D 29/32 20060101ALI20150717BHEP

17P Request for examination filed

Effective date: 20160114

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1153856

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013013126

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190710

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191010

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191010

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191011

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191110

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013013126

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200708

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200708

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1153856

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230612

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230726

Year of fee payment: 11

Ref country code: GB

Payment date: 20230612

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230622

Year of fee payment: 11