EP2704821A1 - Reacteur solide / gaz caloporteur comprenant des diffuseurs de gaz a risques d'obturation reduits - Google Patents

Reacteur solide / gaz caloporteur comprenant des diffuseurs de gaz a risques d'obturation reduits

Info

Publication number
EP2704821A1
EP2704821A1 EP12717301.1A EP12717301A EP2704821A1 EP 2704821 A1 EP2704821 A1 EP 2704821A1 EP 12717301 A EP12717301 A EP 12717301A EP 2704821 A1 EP2704821 A1 EP 2704821A1
Authority
EP
European Patent Office
Prior art keywords
gas
reactor
solid
diffusers
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12717301.1A
Other languages
German (de)
English (en)
Inventor
Joël WYTTENBACH
Philippe Papillon
Gwennyn TANGUY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2704821A1 publication Critical patent/EP2704821A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00707Fouling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/0084Stationary elements inside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00911Sparger-type feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2458Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2469Feeding means
    • B01J2219/247Feeding means for the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2481Catalysts in granular from between plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2492Assembling means
    • B01J2219/2496Means for assembling modules together, e.g. casings, holders, fluidic connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid

Definitions

  • the invention relates to the field of solid / heat transfer gas reactors, in which there is provided a chemical or physical reaction between a solid and a gas, such as a thermochemical reaction or a physical adsorption / desorption reaction.
  • a chemical or physical reaction between a solid and a gas, such as a thermochemical reaction or a physical adsorption / desorption reaction.
  • the gas from an external circuit serves as coolant, the heat exchange then operating by convection during the endothermic / exothermic reaction.
  • Such a reactor is generally charged with a solid reagent, taking the form of a pure granular or composite bed, resting on a horizontal grid.
  • a reactor and heat transfer gas stream is applied to pass through the bed of reactive solid, with a downward vertical direction. The gas then diffuses downwards within the granular bed, thanks to the porosity of the grains.
  • reactors of the prior art stacked modules have a design that remains perfectible.
  • the subject of the invention is a solid reactor / heat transfer gas according to claim 1.
  • the invention is first of all remarkable in that it provides a design dedicated to an ascending irrigation of the reactive solid by the heat transfer gas. This first aspect leads to a significant decrease in the risk of clogging of these diffusers.
  • the favorable direction of the gas flow indeed decreases the migration of the reactive solid towards the diffusers.
  • the design of the reactor module according to the invention improves its operation, and strongly decreases or even completely eliminates the maintenance requirements of the diffusers.
  • each diffuser takes the form of a cylindrical stud of which at least a portion of the lateral surface, and preferably the entirety thereof, constitutes said gas diffusion portion.
  • the diffusion of the coolant gas is then carried out in all planes parallel to the axis of the stud. It may be a cylindrical stud of square section, rectangular, circular, triangular, etc.
  • each module comprises a double wall between which the gas is intended to circulate before entering through said diffusers, the latter projecting upwards from the upper wall of said double wall.
  • the space defined between the two walls of the double wall makes it possible to feed homogeneously all the diffusers communicating with this space.
  • This double wall preferably oriented horizontally, that is to say orthogonally to the vertical diffusers, preferably forms a double bottom of the module.
  • the double wall could be placed at the top of the module, and thus constitute the bottom of a housing cavity defined by another module placed above it.
  • each module comprises a lateral channel for distributing the gas, as well as a lateral channel for collecting the gas.
  • the integration of these channels advantageously provides a very compact design.
  • said diffusers are provided with a density of 75 to 150 diffusers / m 2 .
  • This high density allows the gas leaving the diffusers to cross the solid reagent very homogeneously, which promotes heat and mass exchanges between the solid and gaseous reactants.
  • the counterproductive phenomenon of spontaneous creation of preferential channels within the solid reagent is strongly limited by this homogeneous distribution of the gas through the diffusers, preferentially distributed in the horizontal section.
  • the module is made from three sheets folded and fixed together, and using the diffusers. This provides a great ease of manufacture of the module.
  • the solid reactor / heat transfer gas comprising a plurality of modules stacked in the vertical direction.
  • any two modules and directly consecutive stacking define a housing cavity provided to receive a solid reagent intended to be carried at least partially by said diffusers arranged in this cavity.
  • the proposed design achieves a very high reactive solid density within the reactor.
  • the housing cavity defined by this module is open upwards, and thus easily allows the volume changes of the solid reagent placed in this compartment. cavity.
  • the module design is therefore quite suitable for supporting both reciprocal chemical / physical reactions.
  • said lateral gas distribution channels of the stacked modules together form a vertical distributor supplying gas to each of the spaces defined between the two walls of the double walls, and said lateral gas collection channels of the stacked modules together form a collecting vertical collector. the gas from each of said housing cavities.
  • the reactor then has a particularly compact appearance.
  • the reactor comprises means for feeding the gas into the reactor, as well as means for evacuating the gas outside the reactor. Due to the coolant function filled by the gas, it is brought and extracted by an external circuit, and therefore does not circulate in a closed circuit within the reactor.
  • the invention also relates to a solid reaction method / heat transfer gas implemented using a reactor as mentioned above.
  • solid reactants are placed in each of said housing cavities, and the coolant reactor gas is introduced into the distributor using said gas supply means.
  • said gas enters the reactor manifold before being removed from the latter by said gas evacuation means.
  • the solid reactants are pure, unstructured granular reagents.
  • pure granular reagent is meant a reagent having no structuring agent or catalyst.
  • the use of these pure reagents is allowed because of the architecture of the cavity of the module, thereby increasing the energy density of the complete reactor.
  • the reagent solid layer with a first layer of reactive solid of a first nature in contact with the surface of the double bottom, and a second layer arranged on the first layer, of a second solid.
  • reagent different from the first may consist of pure reagents, and the second layer of structured composite reagents.
  • Figure 1 shows a perspective view of a solid reactor / heat transfer gas module according to a preferred embodiment of the present invention
  • FIGS. 4a and 4b are examples of diffusers equipping the module shown in the preceding figures.
  • Figure 5 is an exploded view showing the various folded sheets constituting the module
  • FIG. 6 represents an exploded perspective view of a reactor comprising a plurality of modules such as that shown in the preceding figures;
  • Figure 7 is another perspective view of a half of the reactor, cut along a median vertical plane
  • Figure 8 is a sectional view of the reactor of the previous figure taken along the plane VIII.
  • FIGS. 1 to 3 there is shown a module for a solid reactor / heat transfer gas, according to a preferred embodiment of the invention.
  • This module of parallelepipedal overall shape, comprises firstly a double wall 2 forming a double bottom of the module.
  • the two walls 2a, 2b are parallel, spaced apart from each other so as to define therebetween a free space 4.
  • the walls 2a, 2b intended to be arranged horizontally when the module is within a reactor, are surrounded by a frame 6 along the outline of the double bottom 2. It thus has a square or rectangular shape, and extends vertically from the double bottom 2. More specifically, three of the four walls of the frame 6 s' extend from the bottom wall 2b by marrying the upper wall 2a, while the fourth wall extends only from the upper wall 2a.
  • the space 4 defined by the double bottom 2 is closed at three lateral faces, only the fourth lateral face remaining open so as to define an inlet 8 through which gas can penetrate within the space 4.
  • the second wall opposite the fourth wall mentioned above and extending from the upper wall 2a has a lower height than the other three walls of the frame 6. As will be detailed below, this allows to define an outlet 11 through which gas can escape from the housing cavity 10, defined by the frame 6 and the double bottom 2.
  • the module 1 further comprises a lateral gas distribution channel 12, defined in part by said fourth wall of the frame 6. This channel 12, of generally rectangular shape, has a length substantially identical to that of the fourth wall.
  • the module comprises a lateral gas collection channel 14, defined in part by said second wall of the frame 6. This channel 14, also of generally rectangular shape, has a length substantially identical to that of the second wall.
  • the reactor module also comprises a plurality of diffusers 20 arranged in the housing cavity 10, and protruding vertically from the upper wall 2a of the double bottom.
  • these diffusers 20 may be fixed in orifices 22 made through the upper wall 2a, as can be seen in FIGS. 2 and 3.
  • a seal may be provided between the orifices and the diffusers they receive.
  • a weld or a solder may also be envisaged, simultaneously ensuring the assembly of the diffusers 20. Nevertheless, when the seal solution is retained, the fixing of the diffusers is achieved only by their tight fit in their respective orifices 22 .
  • the diffusers 20 each take the form of a cylindrical stud of circular section, of which the vertically oriented cylindrical side wall constitutes a gas diffusion portion 24, and whose upper end is closed by a horizontal portion 26 of solid reactor support.
  • This portion 26, in the form of horizontal disk, is in fact provided to support the solid reagent intended to be housed in the cavity 10, as will be detailed below.
  • FIG. 4a shows a first example of a diffuser 20 whose vertically oriented cylindrical lateral wall, constituting the gas diffusion portion 24, takes the form of a self-supporting grid.
  • this portion 24 is a filtering wire cloth with a metallic support structure. It offers an excellent compromise between the fineness of filtration and the pressure drops.
  • diffusers are open at their low end to communicate with the space 4 defined by the double bottom 2.
  • These diffusers 20 are distributed uniformly, for example in rows and columns, with a density of the order of 75 to 150 points / m 2 .
  • the filtration pitch of these diffusers is for example of the order of 50 to 100 ⁇ , while their diameter is preferably between 5 and 40 mm.
  • they may have a substantially identical height. This height can be between 5 and 45 mm, with a solid reagent height of the order of 50 mm.
  • the height of the space 4 of the double bottom 2 is of the order of 5 to 30 mm. This dimension therefore also corresponds to the height of the inlet 8, and also preferentially to the height of the outlet 11.
  • the two walls 2a, 2b have a thickness of the order of 0.3 to 3 mm, and are made of stainless steel, for example 316L stainless steel, or are made of thermoformed polymer.
  • the walls defining the frame 6 and the outer contour of the channels 12, 14 may also be made of these materials, possibly being equipped with stiffeners, such as ribs, to improve the mechanical strength of the module.
  • the length of the module 1, in the direction including the channels 12, 14, may be about 1200 mm, for a width of 800 mm and a height of 60 to 120 mm to receive a reactive solid of 50 mm in height.
  • the width of the channels 12, 14 is in turn of the order of 40 mm, and their length substantially identical to the width of the module, as has been mentioned above.
  • a solid reactor 100 / heat transfer gas formed using a plurality of modules 1 stacked one above the other, in the vertical direction. This is for example four stacked modules 1, covered by a closure member 102 for the arrival and the output of the reactor / heat transfer gas.
  • each cavity 10 receives a solid reagent 104, for example parallelepiped , of complementary shape to that of its cavity.
  • This reagent 104 in the form of a pure granular bed, rests on the upper ends 26 of the diffusers 20, and matches each of the four walls of the frame 6 delimiting the cavity 10.
  • the reagent can also be penetrated by the diffusers 20, until possibly also be carried partly by the upper surface 2a of the double bottom 2.
  • the distributor 112 therefore travels vertically, in a sealed manner, over substantially the entire length of the reactor, by communicating with the gas inlet 8 giving access to the spaces 4 provided in the double bottoms 2.
  • the gas collection channels 14 of the stacked modules together form a vertical gas manifold 114, extended upwards by an outlet orifice 120 provided on the head piece 102, the same orifice 120 being connected to means 122 discharge of the gas out of the reactor 100, belonging to the external circuit.
  • the collector 114 thus travels vertically, in a sealed manner, over substantially the entire length of the reactor, by communicating with the gas outlets 11.
  • the reactive solids 104 are thus arranged in the cavities 10, with a height adapted to not close off the gas outlets 11.
  • These solids in the form of pure granular beds, can be made in the following materials: Strontium bromide SrBr 2 , sodium metasilicate Na 2 SiC> 3, ammonium Alum NH 4 Al (SO 4 ) 2, potassium Alum KA 1 (SO 4) 2, or any other reactive solid deemed to be favorable for solid thermochemical / heat transfer gas reactions.
  • the typical value of the density of this reactive solid is of the order of 70 kg / m 2 .
  • the reactor can be equipped with different solids depending on the stages, or within the same floor.
  • the gas supply means 118 allow the introduction of the reactor / heat transfer gas into the reactor, via the inlet orifice 116 which then leads this gas to the distributor 112. This It then feeds each of the spaces 4 of the double bottoms 2 via the gas inlets 8.
  • the gas then penetrates through the diffusers 20 and then passes through the solids 104 thanks to the porosity of the agglomerated grains. It is during this passage through the solids that the chemical / physical reactions occur, allowing the gas, for example moist air at atmospheric pressure, to be reheated or cooled.
  • the heat transfer gas leaving the solids 104 then joins the manifold 114 via the outlets 11, and then is discharged by the means 122 through the outlet orifice 120.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Réacteur solide / gaz caloporteur comprenant des modules (1) empilés, caractérisé en ce que chaque module comprend des diffuseurs (20) présentant chacun une portion supérieure de support du réactif solide et une portion de diffusion du gaz, située sous la portion supérieure de support, et comprenant également un canal latéral de distribution du gaz (12), et un canal latéral de collecte du gaz (14). Chaque module comprend une double paroi (2) entre lesquelles le gaz circule avant de pénétrer lesdits diffuseurs. Deux modules directement consécutifs de l'empilement définissent une cavité de logement recevant un réactif solide porté au moins partiellement par lesdits diffuseurs agencés dans cette cavité, lesdits canaux latéraux de distribution du gaz (12) des modules empilés formant ensemble un distributeur vertical (112) alimentant en gaz chacun des espaces définis entre les doubles parois (2), et en ce que lesdits canaux latéraux de collecte du gaz (14) des modules empilés forment ensemble un collecteur vertical (114) collectant le gaz en provenance de chacune desdites cavités de logement.

Description

REACTEUR SOLIDE / GAZ CALOPORTEUR COMPRENANT DES DIFFUSEURS DE GAZ A RISQUES D'OBTURATION REDUITS
DESCRIPTION
L' invention se rapporte au domaine des réacteurs solide / gaz caloporteur, au sein desquels il est prévu une réaction chimique ou physique entre un solide et un gaz, comme par exemple une réaction thermochimique ou encore une réaction physique d' adsorption / de désorption. Dans ce type de réacteurs, le gaz provenant d'un circuit externe sert de caloporteur, l'échange thermique s' opérant alors par convection lors de la réaction endothermique / exothermique .
Un tel réacteur est généralement chargé d'un réactif solide, prenant la forme d'un lit granulaire pur ou composite, reposant sur une grille horizontale. Un flux de gaz réacteur et caloporteur est appliqué de manière à traverser le lit de solide réactif, avec une direction verticale descendante. Le gaz se diffuse alors vers le bas au sein du lit granulaire, grâce à la porosité des grains.
Néanmoins, cette configuration est sujette à l'encrassement de la grille, qui, à terme, peut conduire à l'obturation intégrale des sections de passage du gaz caloporteur. Cela s'explique par le fait que lors du fonctionnement du réacteur, le solide réacteur gonfle puis se rétracte lors des deux réactions réciproques. La répétition de ces changements de volume engendre des risques de fragmentation des grains, qui, en raison du flux de gaz vertical descendant, sont alors entraînés vers la grille qu'ils colmatent progressivement. Un tel colmatage est bien évidemment à proscrire, étant donné qu'il peut nuire au bon fonctionnement du réacteur.
Par ailleurs, les réacteurs de l'art antérieur à modules empilés présentent une conception qui reste perfectible.
Pour répondre à ces problèmes, l'invention a pour objet un réacteur solide / gaz caloporteur selon la revendication 1.
L'invention est tout d'abord remarquable en ce qu'elle prévoit une conception dédiée à une irrigation ascendante du solide réactif par le gaz caloporteur. Ce premier aspect conduit à une diminution importante du risque de colmatage de ces diffuseurs. Le sens favorable du flux de gaz diminue en effet la migration du solide réactif en direction des diffuseurs .
Par conséquent, la conception du module de réacteur selon l'invention améliore son fonctionnement, et diminue fortement, voire supprime entièrement les besoins en maintenance des diffuseurs.
Pour diminuer encore davantage les risques d'obturation des diffuseurs, il est fait en sorte qu'en projection verticale sur un plan horizontal, ladite portion de support supérieure du solide recouvre entièrement ladite portion de diffusion du gaz. Par exemple, chaque diffuseur prend la forme d'un plot cylindrique dont au moins une partie de la surface latérale, et de préférence l'intégralité de celle-ci, constitue ladite portion de diffusion du gaz. Ainsi, la diffusion du gaz caloporteur s'effectue alors dans tous les plans parallèles à l'axe du plot. Il peut s'agir d'un plot cylindrique de section carrée, rectangulaire, circulaire, triangulaire, etc.
Selon l'invention, chaque module comprend une double paroi entre lesquelles le gaz est destiné à circuler avant de pénétrer à travers lesdits diffuseurs, ces derniers faisant saillie vers le haut à partir de la paroi supérieure de ladite double paroi . L'espace défini entre les deux parois de la double paroi permet d'alimenter de manière homogène l'ensemble des diffuseurs communiquant avec cet espace.
Cette double paroi, orientée de préférence horizontalement, c'est-à-dire orthogonalement aux diffuseurs verticaux, forme de préférence un double fond du module. Dans une configuration alternative, la double paroi pourrait être placée en tête du module, et constituer ainsi le fond d'une cavité de logement définie par un autre module placé au-dessus de lui.
Selon l'invention, chaque module comprend un canal latéral de distribution du gaz, ainsi qu'un canal latéral de collecte du gaz. L'intégration de ces canaux procure avantageusement une conception très compacte .
De préférence, lesdits diffuseurs sont prévus avec une densité de 75 à 150 diffuseurs/m2. Cette densité importante permet au gaz sortant des diffuseurs de traverser le solide réactif de façon très homogène, ce qui favorise les échanges thermique et massique entre les réactifs solide et gazeux. Le phénomène contre-productif de création spontanée de canaux préférentiels au sein du réactif solide est fortement limité par cette distribution homogène du gaz à travers les diffuseurs, préférentiellement répartis dans la section horizontale.
De préférence, le module est réalisé à partir de trois tôles pliées et fixées entre elles, ainsi qu'à l'aide des diffuseurs. Cela procure une grande facilité de fabrication du module.
Toujours selon l'invention, le réacteur solide / gaz caloporteur comprenant une pluralité de modules empilés selon la direction verticale.
La modularité du réacteur permet de faciliter sa fabrication et son installation. De plus, son dimensionnement peut être aisément adapté aux besoins rencontrés, en ajustant le nombre de modules à empiler, ces étages étant de préférence tous identiques. De plus, deux modules quelconques et directement consécutifs de l'empilement définissent une cavité de logement prévue pour recevoir un réactif solide destiné à être porté au moins partiellement par lesdits diffuseurs agencés dans cette cavité. Afin de faciliter les variations de volume du solide réactif, il est préférentiellement prévu de laisser un volume mort non rempli entre la partie supérieure du lit du réactif solide d'un module, et la surface du double fond du module immédiatement supérieur. De fait, la cavité de chaque module n'est que partiellement remplie de réactif solide.
La conception proposée permet d' obtenir une densité de solide réactif très élevée au sein du réacteur. De plus, lorsque les modules sont fermés vers le bas par la double paroi et ouvert vers le haut, la cavité de logement définie par ce module est donc ouverte vers le haut, et permet ainsi aisément les changements de volume du réactif solide placé dans cette cavité. La conception du module se révèle par conséquent tout à fait adaptée pour supporter les deux réactions chimiques / physiques réciproques.
En outre, lesdits canaux latéraux de distribution du gaz des modules empilés forment ensemble un distributeur vertical alimentant en gaz chacun des espaces définis entre les deux parois des doubles parois, et lesdits canaux latéraux de collecte du gaz des modules empilés forment ensemble un collecteur vertical collectant le gaz en provenance de chacune desdites cavités de logement. Le réacteur présente alors un aspect particulièrement compact.
De préférence, le réacteur comporte des moyens d'amenée du gaz dans le réacteur, ainsi que des moyens d'évacuation du gaz en dehors du réacteur. Du fait de la fonction de caloporteur remplie par le gaz, celui-ci est amené et extrait par un circuit externe, et ne circule donc pas en circuit fermé au sein du réacteur .
L'invention a aussi pour objet un procédé de réaction solide / gaz caloporteur mis en œuvre à l'aide d'un réacteur tel que mentionné ci-dessus. Dans ce procédé, des réactifs solides sont placés dans chacune desdites cavités de logement, et le gaz réacteur caloporteur est introduit dans le distributeur à l'aide desdits moyens d'amenée du gaz. De plus, après le passage de ce gaz à travers les solides réactifs, ledit gaz pénètre dans le collecteur du réacteur avant d'être évacué de ce dernier par lesdits moyens d'évacuation du gaz.
De préférence, les réactifs solides sont des réactifs granulaires purs, non-structurés . Par réactif granulaire pur, on entend un réactif ne comportant pas d'agent structurant ni de catalyseur. Dans l'invention, l'utilisation de ces réactifs purs est autorisée du fait de l'architecture de la cavité du module, permettant ainsi d'accroître la densité énergétique du réacteur complet.
Enfin, avec la présente invention, il est possible d'agencer des réactifs solides de natures différentes dans lesdites cavités de logement du réacteur. Alternativement, il est possible, au sein d'une même cavité, d'introduire un mélange de solides réactifs .
En particulier, il est possible d' organiser la couche de solide réactif avec une première couche de solide réactif d'une première nature au contact de la surface du double fond, et une seconde couche agencée sur la première couche, d'un second solide réactif différent du premier. Par exemple, la première couche peut être constituée de réactifs purs, et la seconde couche de réactifs composites structurés. D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.
Cette description sera faite au regard des dessins annexés parmi lesquels ;
la figure 1 représente une vue en perspective d'un module de réacteur solide / gaz caloporteur selon une mode de réalisation préféré de la présente invention ;
- les figures 2 et 3 sont des vues en coupe du module de la figure précédente, prises respectivement selon les plans II et III ;
- les figures 4a et 4b sont des exemples de diffuseurs équipant le module montré sur les figures précédentes ;
la figure 5 est une vue éclatée représentant les différentes tôles pliées constitutives du module ;
- la figure 6 représente une vue éclatée en perspective d'un réacteur comprenant une pluralité de modules tel que celui montré sur les figures précédentes ;
la figure 7 est une autre vue en perspective d'une moitié du réacteur, découpé selon un plan vertical médian ;
la figure 8 est une vue en coupe du réacteur de la figure précédente, prise selon le plan VIII ; et
- la figure 9 est une vue similaire à celle de la figure 7, avec le réacteur équipé des réactifs solides . En référence aux figures 1 à 3, il est représenté un module pour réacteur solide / gaz caloporteur, selon un mode de réalisation préféré de 1 ' invention .
Ce module 1, de forme globale parallélépipédique, comporte tout d'abord une double paroi 2 formant un double fond du module. Les deux parois 2a, 2b sont parallèles, espacées l'une de l'autre de manière à définir entre celles-ci un espace libre 4. Les parois 2a, 2b, destinées à être agencées horizontalement lorsque le module se trouve au sein d'un réacteur, sont entourées par un cadre 6 suivant le contour du double fond 2. Il présente donc une forme carrée ou rectangulaire, et s'étend verticalement à partir du double fond 2. Plus précisément, trois des quatre murets du cadre 6 s'étendent à partir de la paroi inférieure 2b en épousant la paroi supérieure 2a, tandis que le quatrième muret ne s'étend qu'à partir de la paroi supérieure 2a. Ainsi, l'espace 4 défini par le double fond 2 est fermé au niveau de trois faces latérales, seule la quatrième face latérale restant ouverte de manière à définir une entrée 8 à travers laquelle du gaz peut pénétrer au sein de l'espace 4.
De plus, le second muret opposé au quatrième muret mentionné ci-dessus et s' étendant à partir de la paroi supérieure 2a, présente une hauteur inférieure à celle des trois autres murets du cadre 6. Comme cela sera détaillé ci-après, cela permet de définir une sortie 11 à travers laquelle du gaz peut s'échapper de la cavité de logement 10, définie par le cadre 6 et le double fond 2. Le module 1 comporte par ailleurs un canal latéral de distribution de gaz 12, défini en partie par ledit quatrième muret du cadre 6. Ce canal 12, de forme globalement rectangulaire, présente une longueur sensiblement identique à celle de ce quatrième muret. De même, le module comprend un canal latéral de collecte du gaz 14, défini en partie par ledit second muret du cadre 6. Ce canal 14, également de forme globalement rectangulaire, présente une longueur sensiblement identique à celle de ce second muret.
Ces deux canaux 12, 14, entièrement traversants selon la direction verticale, sont donc agencés de manière opposée, de part et d'autre du double fond 2.
Le module de réacteur comprend aussi une pluralité de diffuseurs 20 agencés dans la cavité de logement 10, et faisant saillie verticalement à partir de la paroi supérieure 2a du double fond. A titre d'exemple indicatif, ces diffuseurs 20 peuvent être fixés dans des orifices 22 pratiqués à travers la paroi supérieure 2a, comme cela est visible sur les figures 2 et 3. Un joint d'étanchéité peut être prévu entre les orifices et les diffuseurs qu'ils reçoivent. Alternativement, une soudure ou une brasure peuvent également être envisagées, assurant simultanément l'assemblage des diffuseurs 20. Néanmoins, lorsque la solution à joint d'étanchéité est retenue, la fixation des diffuseurs se réalise uniquement par leur ajustement serré dans leurs orifices respectifs 22.
Ici, les diffuseurs 20 prennent chacun la forme d'un plot cylindrique de section circulaire, dont la paroi latérale cylindrique orientée verticalement constitue une portion de diffusion de gaz 24, et dont l'extrémité supérieure est obturée par une portion horizontale 26 de support de solide réacteur. Cette portion 26, en forme de disque horizontal, est en effet prévu pour supporter le réactif solide destiné à être logé dans la cavité 10, comme cela sera détaillé ci- après .
La figure 4a montre un premier exemple de diffuseur 20 dont la paroi latérale cylindrique orientée verticalement, constituant la portion de diffusion de gaz 24, prend la forme d'un grillage autoporteur. Dans l'autre exemple montré sur la figure 4b, cette portion 24 est une toile métallique filtrante avec une structure porteuse métallique. Elle offre un excellent compromis entre la finesse de filtration et les pertes de charge.
Néanmoins, d'autres conceptions de diffuseurs peuvent être retenues par l'homme du métier, sans sortir du cadre de l'invention. Dans tous les cas, ces diffuseurs sont ouverts à leur extrémité basse pour communiquer avec l'espace 4 défini par le double fond 2.
Ces diffuseurs 20 sont répartis de manière uniforme, par exemple en lignes et colonnes, avec une densité de l'ordre de 75 à 150 points/m2. Le pas de filtration de ces diffuseurs est par exemple de l'ordre de 50 à 100 μιτι, tandis que leur diamètre est préférentiellement compris entre 5 et 40 mm. Par exemple, ils peuvent présenter une hauteur sensiblement identique. Cette hauteur peut être comprise entre 5 et 45 mm, avec une hauteur de réactif solide de l'ordre de 50 mm.
Toujours pour ce qui concerne le dimensionnement , la hauteur de l'espace 4 du double fond 2 est de l'ordre de 5 à 30 mm. Cette dimension correspond donc également à la hauteur de l'entrée 8, et aussi préférentiellement à la hauteur de la sortie 11.
Les deux parois 2a, 2b ont une épaisseur de l'ordre de 0,3 à 3 mm, et sont réalisées en acier inoxydable, par exemple en inox 316L, ou bien sont réalisées en polymère thermoformé. Les murets définissant le cadre 6 ainsi que le contour extérieur des canaux 12, 14 peuvent également être réalisés dans ces matériaux, en étant éventuellement équipés de raidisseurs, comme des nervures, pour améliorer la tenue mécanique du module.
La longueur du module 1, dans le sens incluant les canaux 12, 14, peut être d'environ 1200 mm, pour une largeur de 800 mm et une hauteur de 60 à 120 mm permettant de recevoir un solide réactif de 50 mm de hauteur. La largeur des canaux 12, 14 est quant à elle de l'ordre de 40 mm, et leur longueur sensiblement identique à la largeur du module, comme cela a été évoqué ci-dessus.
En référence à la figure 5, il est montré trois tôles pliées 50a, 50b, 50c permettant, lorsqu'elles sont assemblées, de constituer la structure du module 1, seuls les diffuseurs 20 devant ensuite être implantés sur la paroi supérieure 2a du double fond 2. En référence à présent aux figures 6 à 9,
11 est représenté un réacteur 100 solide / gaz caloporteur, formé à l'aide d'une pluralité de modules 1 empilés les uns au-dessus des autre, selon la direction verticale. Il s'agit par exemple de quatre modules 1 empilés, recouverts par une pièce de fermeture 102 permettant l'arrivée et la sortie du gaz réacteur / caloporteur.
Lorsque les modules 1 sont empilés, la cavité 10 de chaque module est fermée vers le haut par le double fond 2 du module directement supérieur. Les murets formant les cadres 6 des deux modules concernés ferment donc de façon étanche cette cavité 10, qui reste uniquement ouverte au niveau de la sortie de gaz 11 située entre les deux cadres 6. Chaque cavité 10 reçoit un réactif solide 104, par exemple parallélépipédique, de forme complémentaire de celle de sa cavité. Ce réactif 104, en forme de lit granulaire pur, repose sur les extrémités supérieures 26 des diffuseurs 20, et épouse chacun des quatre murets du cadre 6 délimitant la cavité 10. Le réactif peut également être pénétré par les diffuseurs 20, jusqu'à éventuellement être également porté en partie par la surface supérieure 2a du double fond 2.
En outre, les canaux de distribution de gaz
12 des modules empilés forment ensemble un distributeur de gaz vertical 112, alimenté en gaz par un orifice d'entrée 116 prévu sur la pièce de tête 102, ce même orifice 116 étant raccordé à des moyens 118 d'amenée du gaz dans le réacteur 100, appartenant à un circuit externe. Le distributeur 112 chemine donc verticalement, de manière étanche, sur sensiblement toute la longueur du réacteur, en communiquant avec les entrée de gaz 8 donnant accès aux espaces 4 prévus dans les doubles fonds 2.
De manière analogue, les canaux de collecte de gaz 14 des modules empilés forment ensemble un collecteur de gaz vertical 114, prolongé vers le haut par un orifice de sortie 120 prévu sur la pièce de tête 102, ce même orifice 120 étant raccordé à des moyens 122 d'évacuation du gaz hors du réacteur 100, appartenant au circuit externe. Le collecteur 114 chemine donc verticalement, de manière étanche, sur sensiblement toute la longueur du réacteur, en communiquant avec les sorties de gaz 11.
En fonctionnement, les solides réactifs 104 sont donc agencés dans les cavités 10, avec une hauteur adaptée pour ne pas obturer les sorties de gaz 11. Ces solides, en forme de lits granulaires purs, peuvent être réalisés dans les matériaux suivants : Bromure de Strontium SrBr2, Métasilicate de sodium Na2SiC>3, Alun d'ammonium NH4A1(S04)2, Alun de potassium KA1(S04)2, ou tout autre solide réactif réputé favorable pour les réactions thermochimiques solide / gaz caloporteur. La valeur typique de la densité de ce solide réactif est de l'ordre de 70 kg/m2. A cet égard, il est noté que le réacteur peut être équipé de solides différents en fonction des étages, ou au sein d'un même étage.
Ensuite, les moyens d'amenée du gaz 118 permettent l'introduction du gaz réacteur / caloporteur dans le réacteur, via l'orifice d'entrée 116 qui conduit ensuite ce gaz vers le distributeur 112. Celui- ci alimente alors chacun des espaces 4 des doubles fonds 2, via les entrées de gaz 8. Le gaz pénètre ensuite à travers les diffuseurs 20, puis traverse les solides 104 grâce à la porosité des grains agglomérés. C'est lors de ce passage à travers les solides que les réactions chimiques / physiques se produisent, en permettant au gaz, par exemple de l'air humide à pression atmosphérique, d'être réchauffé ou refroidi. Le gaz caloporteur sortant des solides 104 rejoint ensuite le collecteur 114 via les sorties 11, pour ensuite être évacué par les moyens 122, via l'orifice de sortie 120.
Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à l'invention qui vient d'être décrite, uniquement à titre d'exemples non limitatifs.

Claims

REVENDICATIONS
1. Réacteur solide / gaz caloporteur (100) comprenant une pluralité de modules (1) empilés selon une direction verticale, caractérisé en ce que chaque module (1) comprend une pluralité de diffuseurs (22) présentant chacun une portion supérieure (26) de support du réactif solide (104), ainsi qu'une portion (24) de diffusion du gaz réacteur / caloporteur, située sous la portion supérieure de support, et comprenant également un canal latéral de distribution du gaz (12), ainsi qu'un canal latéral de collecte du gaz (14), chaque module comprenant en outre une double paroi (2) entre lesquelles le gaz est destiné à circuler avant de pénétrer à travers lesdits diffuseurs (20), ces derniers faisant saillie vers le haut à partir de la paroi supérieure (2a) de ladite double paroi (2), et en ce que deux modules (1) quelconques et directement consécutifs de l'empilement définissent une cavité de logement (10) prévue pour recevoir un réactif solide (104) destiné à être porté au moins partiellement par lesdits diffuseurs (20) agencés dans cette cavité, lesdits canaux latéraux de distribution du gaz (12) des modules empilés formant ensemble un distributeur vertical (112) alimentant en gaz chacun des espaces (4) définis entre les deux parois (2a, 2b) des doubles parois (2), et en ce que lesdits canaux latéraux de collecte du gaz (14) des modules empilés forment ensemble un collecteur vertical (114) collectant le gaz en provenance de chacune desdites cavités de logement (10) .
2. Réacteur selon la revendication 1, caractérisé en ce qu'en projection verticale sur un plan horizontal, ladite portion de support supérieure du solide (26) recouvre entièrement ladite portion de diffusion du gaz (24) .
3. Réacteur selon la revendication 1 ou la revendication 2, caractérisé en ce que chaque diffuseur (20) prend la forme d'un plot cylindrique dont au moins une partie de la surface latérale constitue ladite portion de diffusion du gaz (24) .
4. Module selon l'une quelconque des revendications précédentes, caractérisé en ce que sur chaque module (1), lesdits diffuseurs (20) sont prévus avec une densité de 75 à 150 diffuseurs/m2.
5. Réacteur selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque module (1) est réalisé à partir de trois tôles pliées et fixées entre elles, ainsi qu'à l'aide des diffuseurs (20) .
6. Réacteur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte des moyens (118) d'amenée du gaz dans le réacteur, ainsi que des moyens (122) d'évacuation du gaz en dehors du réacteur.
7. Procédé de réaction solide / gaz caloporteur mis en œuvre à l'aide d'un réacteur (100) selon la revendication 6, caractérisé en ce que des réactifs solides (104) sont placés dans chacune desdites cavités de logement (10), en ce que le gaz réacteur caloporteur est introduit dans le distributeur (112) à l'aide desdits moyens d'amenée du gaz (118), et en ce qu'après le passage de ce gaz à travers les solides réactifs (104), ledit gaz pénètre dans le collecteur (114) du réacteur avant d'être évacué de ce dernier par lesdits moyens d'évacuation du gaz (122) .
8. Procédé selon la revendication 7, caractérisé en ce que les réactifs solides (104) sont des réactifs granulaires purs, non-structurés .
9. Procédé selon la revendication 7 ou la revendication 8, caractérisé en ce que des réactifs solides (104) de natures différentes sont agencés dans lesdites cavités de logement (10) du réacteur.
EP12717301.1A 2011-05-03 2012-04-27 Reacteur solide / gaz caloporteur comprenant des diffuseurs de gaz a risques d'obturation reduits Withdrawn EP2704821A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153781A FR2974739B1 (fr) 2011-05-03 2011-05-03 Module de reacteur solide / gaz caloporteur comprenant des diffuseurs de gaz a risques d'obturation reduits
PCT/EP2012/057732 WO2012150185A1 (fr) 2011-05-03 2012-04-27 Reacteur solide / gaz caloporteur comprenant des diffuseurs de gaz a risques d'obturation reduits

Publications (1)

Publication Number Publication Date
EP2704821A1 true EP2704821A1 (fr) 2014-03-12

Family

ID=46017872

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12717301.1A Withdrawn EP2704821A1 (fr) 2011-05-03 2012-04-27 Reacteur solide / gaz caloporteur comprenant des diffuseurs de gaz a risques d'obturation reduits

Country Status (4)

Country Link
US (1) US9433910B2 (fr)
EP (1) EP2704821A1 (fr)
FR (1) FR2974739B1 (fr)
WO (1) WO2012150185A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995062B1 (fr) * 2012-09-04 2014-10-03 Commissariat Energie Atomique Procedes de stockage et de liberation d'energie thermique, reacteur associe et application au stockage intersaisonnier de chaleur solaire
CN106606997B (zh) * 2015-10-23 2020-03-24 中国石油化工股份有限公司 上流式分配器和上流式反应器
KR101953348B1 (ko) 2016-02-16 2019-02-28 주식회사 엘지화학 에어로겔 시트의 제조장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2204447A (en) * 1938-07-16 1940-06-11 Houdry Process Corp Heat exchange apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB346967A (en) * 1929-12-05 1931-04-23 Cie Int Fab Essences & Petrole Apparatus for the treatment of gases or mixtures of gases and vapours in the presence of catalytic or purifying agents and for the reactivation of such agents
US2276340A (en) * 1939-01-25 1942-03-17 Houdry Process Corp Catalytic reactor
US2961304A (en) * 1959-03-09 1960-11-22 Shell Oil Co Apparatus and method for contacting fluids and solids
US3592613A (en) * 1968-12-30 1971-07-13 Universal Oil Prod Co Apparatus for fluid distribution in a fluid-solids contacting chamber
GB1511004A (en) * 1975-04-29 1978-05-17 Atlantic Richfield Co Method and apparatus for removing impurities from a fluid stream
JPS5932178B2 (ja) * 1981-11-06 1984-08-07 永岡金網株式会社 多孔管内包式スクリ−ン筒
DE3829215A1 (de) * 1988-08-29 1990-03-08 Uhde Gmbh Reaktor zur durchfuehrung katalytischer gasreaktionen mit einem druckfesten mantel und je einem kugelboden am stirnseitigen aussenrand
DE29912559U1 (de) * 1999-07-17 1999-09-16 Metallgesellschaft AG, 60325 Frankfurt Vorrichtung zum Feinreinigen fermentativ erzeugter organischer Säuren
DE10044526A1 (de) * 2000-09-04 2002-04-04 Mannesmann Ag Mikrostrukturreaktor und Verfahren zur Durchführung chemischer Reaktionen
EP1345685A1 (fr) 2000-12-22 2003-09-24 Uop Llc Agencement simplifie de reacteur de canaux a plateaux
JP2003287386A (ja) * 2002-03-27 2003-10-10 Calsonic Kansei Corp 触媒付き熱交換器
JP4454949B2 (ja) * 2003-03-25 2010-04-21 本田技研工業株式会社 熱電変換装置
CN101909737B (zh) * 2007-11-12 2013-11-06 霍斯特·格罗霍夫斯基 具有平行地操作的松散材料床层的流体处理设备以及用于操作这样的设备的方法
FR2934037B1 (fr) 2008-07-16 2014-09-05 Commissariat Energie Atomique Aide au chargement d'une chaudiere a combustible solide couplee a un systeme d'accumulation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2204447A (en) * 1938-07-16 1940-06-11 Houdry Process Corp Heat exchange apparatus

Also Published As

Publication number Publication date
US9433910B2 (en) 2016-09-06
FR2974739A1 (fr) 2012-11-09
FR2974739B1 (fr) 2016-03-11
WO2012150185A1 (fr) 2012-11-08
US20140050658A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
BE1004033A3 (fr) Dispositif modulaire de distribution, destine a la distribution d'un courant de gaz, de preference dans un reacteur catalytique.
EP0199611B1 (fr) Pile à combustible à élément de séparation
EP2326458B1 (fr) Procédé de fabrication d'un système d'échangeur de chaleur, de préférence du type échangeur/réacteur
FR3030680A1 (fr) Reservoir de stockage d'hydrogene a hydrures metalliques offrant un chargement en hydrogene ameliore
EP2704821A1 (fr) Reacteur solide / gaz caloporteur comprenant des diffuseurs de gaz a risques d'obturation reduits
EP3662222B1 (fr) Echangeur de chaleur comprenant un element de distribution a canaux multiples
FR2564251A1 (fr) Perfectionnements aux structures des piles a combustible
WO2016156764A1 (fr) Panneau solaire photovoltaïque et thermique
WO2006048514A1 (fr) Module de chromatographie empilable et colonne de chromatographie comprenant une pile de tels modules
EP3482866B1 (fr) Procédé utilisant un laser pour le soudage entre deux matériaux métalliques ou pour le frittage de poudre(s), application à la réalisation de plaques bipolaires pour piles pemfc
FR2564250A1 (fr) Ameliorations aux structures des piles a combustible
WO2015097538A1 (fr) Convertisseur d'ammoniac comportant une paroi tubulaire interne
WO2009004186A2 (fr) Enceinte contenant un lit granulaire et une distribution d'une phase gazeuse et d'une phase liquide circulant en un écoulement ascendant dans cette enceinte.
WO2006072686A1 (fr) Dispositif d'echange de chaleur entre deux fluides comportant des couches de mousse metallique
WO1992008941A1 (fr) Echangeur thermique a conduits a plaques
EP3821166A1 (fr) Réservoir de stockage d'hydrogène comportant une pluralité d'éléments de séparation de type parapluie
EP1108459A1 (fr) Installation de perméation
EP4089358B1 (fr) Echangeur de chaleur comprenant au moins un filtre à particules dans un ou plusieurs de ses passages
EP3195392A1 (fr) Plaque de guidage d'ecoulement d'un fluide pour reacteur electrochimique et ensemble comportant cette plaque
EP4033194A1 (fr) Échangeur de chaleur comprenant au moins un filtre à particules, procédé d assemblage d'un tel échangeur
CA1340259C (fr) Procede et appareil pour effectuer sous pression des reactions chimiques dans une zone reactionnelle multi-etagee avec conditionnements thermiques intermediaires exterieurs
EP1763100B1 (fr) Micropile à combustible avec une membrane renforcée par un élément d'ancrage et procédé de fabrication d'une micropile à combustible
FR3136684A1 (fr) Réacteur catalytique à lit fixe en phase liquide
FR3029429A1 (fr) Reacteur a lit radial permettant de mettre en œuvre de faible quantite de catalyseur
EP4419244A1 (fr) Réacteur tubulaire à lit fixe avec élément filtrant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WYTTENBACH, JOEL

Inventor name: PAPILLON, PHILIPPE

Inventor name: TANGUY, GWENNYN

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170629

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180110