EP2701712B1 - Utilisation d'uridine et de désoxyuridine pour traiter les pathologies répondant aux folates - Google Patents

Utilisation d'uridine et de désoxyuridine pour traiter les pathologies répondant aux folates Download PDF

Info

Publication number
EP2701712B1
EP2701712B1 EP12777418.0A EP12777418A EP2701712B1 EP 2701712 B1 EP2701712 B1 EP 2701712B1 EP 12777418 A EP12777418 A EP 12777418A EP 2701712 B1 EP2701712 B1 EP 2701712B1
Authority
EP
European Patent Office
Prior art keywords
deoxyuridine
folate
vitamin
shmt1
day
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12777418.0A
Other languages
German (de)
English (en)
Other versions
EP2701712A4 (fr
EP2701712A1 (fr
Inventor
Patrick J. Stover
Martha S. FIELD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cornell University
Original Assignee
Cornell University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cornell University filed Critical Cornell University
Publication of EP2701712A1 publication Critical patent/EP2701712A1/fr
Publication of EP2701712A4 publication Critical patent/EP2701712A4/fr
Application granted granted Critical
Publication of EP2701712B1 publication Critical patent/EP2701712B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/13Nucleic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to compositions including deoxyuridine and uses of deoxyuridine.
  • Folate-mediated one-carbon metabolism is a metabolic network of interdependent biosynthetic pathways required for the de novo biosynthesis of purines, thymidylate (“dTMP”), and the remethylation of homocysteine to methionine ( FIG. 1 ) ( Barry Shane, Folate Chemistry and Metabolism, in FOLATE IN HEALTH AND DISEASE 1-22 (Lynn B. Bailey ed., Marcel Dekker, Inc. 1995 )).
  • dTMP thymidylate
  • Methionine can be converted to S- adenosylmethionine ("AdoMet”), the major one-carbon donor for cellular methylation reactions including the methylation of DNA, RNA, phospholipids, proteins, and small molecules ( Barry Shane, Folate Chemistry and Metabolism, in FOLATE IN HEALTH AND DISEASE 1-22 (Lynn B. Bailey ed., Marcel Dekker, Inc. 1995 ); Fox et al., "Folate-Mediated One-Carbon Metabolism,” Vitam. Horm. 79:1-44 (2008 )).
  • AdoMet S- adenosylmethionine
  • Altered folate metabolism also influences chromatin methylation patterns, including genome-wide CpG hypomethylation and site-specific hypermethylation, and altered histone methylation, which modify gene expression patterns ( Wainfan et al., "Methyl Groups in Carcinogenesis: Effects on DNA Methylation and Gene Expression," CancerRes. 52(7 Suppl):2071s-2077s (1992 ); Friso et al., "A Common Mutation in the 5,10-Methylenetetrahydrofolate Reductase Gene Affects Genomic DNA Methylation Through an Interaction with Folate Status," Proc. Natl. Acad. Sci. U.S.A. 99(8):5606-5611 (2002 ); Gaudet et al., "Induction of Tumors in Mice by Genomic Hypomethylation," Science 300(5618):489-492 (2003 )).
  • NTDs neural tube defects
  • cardiovascular disease chronic diseases including cardiovascular disease
  • biomarkers that predict disease risk have not been established.
  • NTDs neurodepithelium
  • the neuroepithelium bends and fuses to form the embryonic neural tube through the process of neurulation. Failure of neurulation results in a spectrum of developmental anomalies collectively referred to as neural tube closure defects.
  • Worldwide prevalence of human NTDs ranges from ⁇ 1-30 per 10,000 births ( INTERNATIONAL CLEARINGHOUSE FOR BIRTH DEFECTS MONITORING SYSTEMS, WORLD ATLAS OF BIRTH DEFECTS (World Health Organization, 2d ed. 2003 )).
  • One of the strongest environmental determinants of NTD risk is low maternal folate status ( Kirke et al., "Maternal Plasma Folate and Vitamin B12 are Independent Risk Factors for Neural Tube Defects," Q. J. Med.
  • Low maternal folate status is one of the strongest environmental determinants of neural tube defect risk ( Kirke et al., "Maternal Plasma Folate and Vitamin B12 are Independent Risk Factors for Neural Tube Defects," Q. J. Med. 86(11):703-708 (1993 )) and interacts with specific gene variants to confer NTD risk ( Relton et al., "Low Erythrocyte Folate Status and Polymorphic Variation in Folate-Related Genes are Associated with Risk of Neural Tube Defect Pregnancy," Mol. Genet. Metab.
  • CRC colorectal cancer
  • the present invention is directed to overcoming these and other deficiencies in the art.
  • One aspect of the present invention relates to a pharmaceutical or dietary composition
  • a pharmaceutical or dietary composition comprising deoxyuridine, folate or derivatives thereof ; one or more vitamins, minerals, trace elements, or combinations thereof selected from vitamin A, vitamin C, vitamin D, vitamin E, vitamin K, thiamin, riboflavin, niacin, vitamin B12, vitamin B6, pantothenic acid, biotin, choline, chromium, copper, iodine, molybdenum, selenium, iron, zinc, magnesium, and combinations thereof; and a pharmaceutically or dietetically suitable carrier, wherein the folate or derivatives thereof is present in an amount that is less than 400 ⁇ g.
  • This method includes administering to the subject a dietary supplementing effective amount of deoxyuridine.
  • This method includes selecting a subject having cancer and administering to the selected subject a therapeutically effective amount of uridine, thereby treating the cancer in the selected subject.
  • the present invention establishes that feeding mouse dams dietary uridine during pregnancy increases risk for neural tube defects, and feeding mouse dams dietary deoxyuridine during pregnancy fully prevents neural tube defects.
  • the Examples presented infra demonstrate that dietary uridine and deoxyuridine selectively prevent folate-associated pathologies. Also disclosed is that dietary uridine lowers tumor numbers in mice sensitized to intestinal tumors.
  • OCM one-carbon metabolism
  • dTMP de novo purine and thymidylate
  • Methionine can be adenosylated to form S -adenosylmethionine (AdoMet), a methyl donor for numerous cellular methylation reactions ( FIG. 1 ).
  • the inventor has developed the first model with a genetic disruption in the folate metabolism pathway that results in folic-acid responsive NTDs ( Beaudin et al., "Shmt1 and De Novo Thymidylate Biosynthesis Underlie Folate-Responsive Neural Tube Defects in Mice," Am. J. Clin. Nutr. 93(4):789-798 (2011 )).
  • This gene-diet interaction closely resembles the interactions found in human studies of NTD pathogenesis ( Relton et al., "Low Erythrocyte Folate Status and Polymorphic Variation in Folate-Related Genes are Associated with Risk of Neural Tube Defect Pregnancy," Mol. Genet. Metab.
  • Shmt1 is responsible for generating one-carbon units from the enzymatic cleavage of serine to glycine that are preferentially shunted to thymidylate biosynthesis.
  • Shmt1 -/- and Shmt1 +/- mice are sensitized to folate-responsive NTDs, and demonstrate impaired de novo thymidylate biosynthesis, and therefore provide a means to study gene-nutrient interactions in NTDs ( Beaudin et al., "Shmt1 and De Novo Thymidylate Biosynthesis Underlie Folate-Responsive Neural Tube Defects in Mice," Am. J. Clin. Nutr. 93(4):789-798 (2011 )).
  • one aspect of the present invention relates to a pharmaceutical or dietary composition
  • a pharmaceutical or dietary composition comprising deoxyuridine; folate or derivatives thereof in an amount that is less than 400 ⁇ g; one or more vitamins, minerals, trace elements, or combinations thereof selected from vitamin A, vitamin C, vitamin D, vitamin E, vitamin K, thiamin, riboflavin, niacin, vitamin B12, vitamin B6, pantothenic acid, biotin, choline, chromium, copper, iodine, molybdenum, selenium, iron, zinc, magnesium, and combinations thereof; and a pharmaceutically or dietetically suitable carrier, wherein the folate or derivatives thereof is present in an amount that is less than 400 ⁇ g.
  • the deoxyuridine of the present invention may be provided as a composition with a pharmaceutically or dietetically acceptable carrier.
  • Such dosage forms encompass physiologically acceptable carriers that are inherently non-toxic and non-therapeutic.
  • physiologically acceptable carriers include vegetable proteins, soy proteins, ion exchangers, soft gels, oils, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts, or electrolytes such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, and PEG.
  • Carriers for topical or gel-based forms include polysaccharides such as sodium carboxymethylcellulose or methylcellulose, polyvinylpyrrolidone, polyacrylates, polyoxyethylene-polyoxypropylene-block polymers, PEG, and wood wax alcohols.
  • conventional depot forms are suitably used.
  • Such forms include, for example, microcapsules, nano-capsules, liposomes, plasters, inhalation forms, nose sprays, sublingual tablets, and sustained-release preparations.
  • deoxyuridine may be used to formulate pharmaceuticals, nutraceuticals, botanical drugs, herbal medicines, food additives, functional foods, medical foods, nutrition products, cosmetics, beverages, and the like.
  • the deoxyuridine or composition is part of a nutraceutical composition, pharmaceutical composition, functional food, functional nutrition product, medical food, medical nutrition product, or dietary supplement.
  • the deoxyuridine or compositions of the present invention may be combined with herbal medicines.
  • the deoxyuridine or compositions of the present invention may be formulated as botanical drugs.
  • a botanical drug is a product that consists of vegetable materials, which may include plant materials, algae, macroscopic fungi, or combinations thereof, which is intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease in humans.
  • the botanical drug product may be available as (but not limited to) a solution (e.g., tea), powder, tablet, capsule, elixir, topical, or injection.
  • the deoxyuridine or compositions of the present invention may be formulated as nutraceuticals.
  • Nutraceutical formulations of interest include foods for veterinary or human use, including health food bars, drinks and drink supplements, and the like. These foods are enhanced by the inclusion of a composition of the present invention.
  • the normal diet of a patient may be supplemented by a nutraceutical formulation taken on a regular basis. Such nutraceuticals may or may not contain calories.
  • the term nutraceutical composition as used herein include food product, foodstuff, dietary supplement, nutritional supplement or a supplement composition for a food product or a foodstuff.
  • the deoxyuridine or compositions of the present invention may be formulated as a nutraceutical wherein the nutraceutical is a food product, foodstuff, dietary supplement, nutritional supplement or a supplement composition for a food product or a foodstuff.
  • the term food product refers to any food or feed suitable for consumption by humans or animals.
  • the food product may be a prepared and packaged food (e.g., mayonnaise, salad dressing, bread, or cheese) or an animal feed (e.g., extruded and pelleted animal feed, coarse mixed feed or pet food composition).
  • an animal feed e.g., extruded and pelleted animal feed, coarse mixed feed or pet food composition.
  • foodstuff refers to any substance fit for human or animal consumption.
  • Food products or foodstuffs are for example beverages such as non-alcoholic and alcoholic drinks as well as liquid preparation to be added to drinking water and liquid food
  • non-alcoholic drinks are for instance soft drinks, sport drinks, fruit juices, such as for example orange juice, apple juice and grapefruit juice; lemonades, teas, near-water drinks, milk, milk replacements, and other dairy drinks such as for example yoghurt drinks, and diet drinks.
  • food products or foodstuffs refer to solid or semi-solid foods comprising the deoxyuridine or compositions of the present invention.
  • These forms can include, but are not limited to baked goods such as bars, cakes, cookies, puddings, dairy products, confections, snack foods, or frozen confections or novelties (e.g., ice cream, milk shakes), prepared frozen meals, candy, snack products (e.g., chips), liquid food such as soups, spreads, sauces, salad dressings, prepared meat products, cheese, yogurt and any other fat or oil containing foods, and food ingredients (e.g., wheat flour).
  • the term food products or foodstuffs also includes functional foods and prepared food products, the latter referring to any pre-packaged food approved for human consumption.
  • functional food or functional nutrition product refers to a food or nutrition product that is sold (e.g., in a supermarket or online) without any restrictions.
  • medical food or medical nutrition product refers to a food or nutrition product with is prescribed by a physician.
  • the deoxyuridine or compositions of the present invention may be formulated as dietary supplements.
  • Dietary supplements of the present invention may be delivered in any suitable format.
  • dietary supplements are formulated for oral delivery.
  • the ingredients of the dietary supplement of this invention are contained in acceptable excipients and/or carriers for oral consumption.
  • the carrier may be a liquid, gel, gelcap, capsule, powder, solid tablet (coated or non-coated), tea, or the like.
  • the dietary supplement is preferably in the form of a tablet or capsule.
  • Suitable excipient and/or carriers include maltodextrin, calcium carbonate, dicalcium phosphate, tricalcium phosphate, microcrystalline cellulose, dextrose, rice flour, magnesium stearate, stearic acid, croscarmellose sodium, sodium starch glycolate, crospovidone, sucrose, vegetable gums, lactose, methylcellulose, povidone, carboxymethylcellulose, corn starch, and the like (including mixtures thereof).
  • the various ingredients and the excipient and/or carrier are mixed and formed into the desired form using conventional techniques.
  • the tablet or capsule of the present invention may be coated with an enteric coating that dissolves at a pH of about 6.0 to 7.0.
  • a suitable enteric coating that dissolves in the small intestine but not in the stomach is cellulose acetate phthalate.
  • the dietary supplement is provided as a powder or liquid suitable for adding by the consumer to a food or beverage.
  • the dietary supplement can be administered to an individual in the form of a powder, for instance to be used by mixing into a beverage, or by stirring into a semi-solid food such as a pudding, topping, sauce, puree, cooked cereal, or salad dressing, for instance, or by otherwise adding to a food ( e.g., enclosed in caps of food or beverage containers for release immediately before consumption).
  • the dietary supplement may comprise one or more inert ingredients, especially if it is desirable to limit the number of calories added to the diet by the dietary supplement.
  • the dietary supplement of the present invention may also contain optional ingredients including, for example, herbs, vitamins, minerals, enhancers, colorants, sweeteners, flavorants, inert ingredients, and the like.
  • the present invention provides nutritional supplements (e.g., energy bars or meal replacement bars or beverages) comprising the deoxyuridine or compositions of the present invention.
  • the nutritional supplement may serve as meal or snack replacement and generally provide nutrient calories. However, as noted above, supplements which do not contain calories may also be used.
  • the nutritional supplements provide carbohydrates, proteins, and fats in balanced amounts.
  • the nutritional supplement can further comprise carbohydrate, simple, medium chain length, or polysaccharides, or a combination thereof.
  • a simple sugar can be chosen for desirable organoleptic properties. Uncooked cornstarch is one example of a complex carbohydrate.
  • the nutritional supplement contains, in one embodiment, combinations of sources of carbohydrate of three levels of chain length (simple, medium and complex (e.g., sucrose, maltodextrins, and uncooked cornstarch)).
  • Sources of protein to be incorporated into the nutritional supplement of the invention can be any suitable protein utilized in nutritional formulations and can include whey protein, whey protein concentrate, whey powder, egg, soy flour, soy milk soy protein, soy protein isolate, caseinate (e.g., sodium caseinate, sodium calcium caseinate, calcium caseinate, potassium caseinate), animal and vegetable protein and hydrolysates or mixtures thereof.
  • Soy protein have an almost perfect PDCAA, Protein Digestibility Corrected Amino Acid Score (PDCAAS) and by this criterion soy protein is the nutritional equivalent of meat and eggs for human growth and health. These proteins have high biological value ( i.e., a high proportion of the essential amino acids). See MODERN NUTRITION IN HEALTH AND DISEASE (Lea & Febiger, 8th ed. 1986 ).
  • the nutritional supplement can also contain other ingredients, such as one or a combination of other vitamins, minerals, antioxidants, fiber and other dietary supplements (e.g., protein, amino acids, choline, lecithin, omega-3 fatty acids, and others discussed herein). Selection of one or several of these ingredients is a matter of formulation, design, consumer preference and end-user. The amounts of these ingredients added to the dietary supplements of this invention are readily known to the skilled artisan. In one embodiment, vitamins and/or minerals are added, as described below.
  • other vitamins, minerals, antioxidants, fiber and other dietary supplements e.g., protein, amino acids, choline, lecithin, omega-3 fatty acids, and others discussed herein. Selection of one or several of these ingredients is a matter of formulation, design, consumer preference and end-user.
  • vitamins and/or minerals are added, as described below.
  • the nutritional supplement can be provided in a variety of forms, and by a variety of production methods.
  • the liquid ingredients are cooked; the dry ingredients are added with the liquid ingredients in a mixer and mixed until the dough phase is reached; the dough is put into an extruder, and extruded; the extruded dough is cut into appropriate lengths; and the product is cooled.
  • the bars may contain other nutrients and fillers to enhance taste, in addition to the ingredients specifically listed herein.
  • ingredients can be added to those described herein, for example, fillers, emulsifiers, preservatives, for the processing or manufacture of a nutritional supplement.
  • Flavorings can be in the form of flavored extracts, volatile oils, chocolate flavorings, peanut butter flavoring, cookie crumbs, crisp rice, vanilla or any commercially available flavoring.
  • useful flavoring include, but are not limited to, pure anise extract, imitation banana extract, imitation cherry extract, chocolate extract, pure lemon extract, pure orange extract, pure peppermint extract, imitation pineapple extract, imitation rum extract, imitation strawberry extract, or pure vanilla extract; or volatile oils, such as balm oil, bay oil, bergamot oil, cedarwood oil, walnut oil, cherry oil, cinnamon oil, clove oil, or peppermint oil.
  • Emulsifiers may be added for stability of the formulations.
  • suitable emulsifiers include, but are not limited to, lecithin (e.g., from egg or soy), and/or mono- and di-glycerides.
  • Other emulsifiers are readily apparent to the skilled artisan and selection of suitable emulsifier(s) will depend, in part, upon the formulation and final product.
  • Preservatives may also be added to the formulations to extend product shelf life. For example, preservatives such as potassium sorbate, sodium sorbate, potassium benzoate, sodium benzoate or calcium disodium EDTA are used.
  • the formulations can contain natural or artificial (preferably low calorie) sweeteners, e.g., saccharides, cyclamates, aspartamine, aspartame, acesulfame K, and/or sorbitol.
  • natural or artificial sweeteners e.g., saccharides, cyclamates, aspartamine, aspartame, acesulfame K, and/or sorbitol.
  • artificial sweeteners can be desirable if the nutritional supplement is intended to be consumed by an overweight or obese individual, or an individual with type II diabetes who is prone to hyperglycemia.
  • a multi-vitamin and mineral supplement may be added to the formulations or compositions of the present invention to obtain an adequate amount of an essential nutrient, which is missing in some diets.
  • the multi-vitamin and mineral supplement may also be useful for disease prevention and protection against nutritional losses and deficiencies due to lifestyle patterns.
  • the deoxyuridine or compositions of the present invention may be prepared as pharmaceutical compositions, such as those which may be particularly useful for the treatment or prevention of folate-deficiency related diseases (e.g., folate-deficiency related birth defects).
  • Such compositions comprise deoxyuridine or a pharmaceutically acceptable salt, biologically active metabolite, solvate, hydrate, prodrug, enantiomer or stereoisomer thereof, and a pharmaceutically acceptable carrier and/or excipient.
  • compositions of the present invention may be administered by various means, depending on their intended use, as is well known in the art.
  • compositions of the present invention may be formulated as tablets, capsules, granules, powders or syrups.
  • formulations of the present invention may be administered parenterally as injections (intravenous, intramuscular, or subcutaneous), drop infusion preparations or suppositories.
  • injections intravenous, intramuscular, or subcutaneous
  • drop infusion preparations or suppositories for application by the ophthalmic mucous membrane route
  • compositions of the present invention may be formulated as eye drops or eye ointments.
  • compositions may be prepared by conventional means, and, if desired, the compositions may be mixed with any conventional additive, such as an excipient, a binder, a disintegrating agent, a lubricant, a corrigent, a solubilizing agent, a suspension aid, an emulsifying agent or a coating agent.
  • any conventional additive such as an excipient, a binder, a disintegrating agent, a lubricant, a corrigent, a solubilizing agent, a suspension aid, an emulsifying agent or a coating agent.
  • wetting agents such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants may be present in the formulated agents.
  • the deoxyuridine or composition according to the present invention is administered parenterally. In another embodiment of the present invention, the deoxyuridine or composition according to the present invention is administered orally.
  • the deoxyuridine or composition according to the present invention is in capsule, tablet, granule, or lozenge form.
  • Subject formulations may be suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
  • the amount of composition that may be combined with a carrier material to produce a single dose vary depending upon the subject being treated, and the particular mode of administration.
  • Methods of preparing these formulations include the step of bringing into association compositions of the present invention with the carrier and, optionally, one or more accessory ingredients.
  • the formulations are prepared by uniformly and intimately bringing into association agents with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
  • Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia), each containing a predetermined amount of a subject composition thereof as an active ingredient.
  • Compositions of the present invention may also be administered as a bolus, electuary, or paste.
  • the subject composition is mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acetyl
  • compositions may also comprise buffering agents.
  • Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using excipients such as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
  • a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
  • Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent.
  • Molded tablets may be made by molding in a suitable machine a mixture of the subject composition moistened with an inert liquid diluent. Tablets, and other solid dosage forms, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art.
  • Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
  • the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers
  • Suspensions in addition to the subject composition, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing a subject composition with one or more suitable non-irritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the body cavity and release the active agent.
  • suitable non-irritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the body cavity and release the active agent.
  • Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.
  • Dosage forms for transdermal administration of a subject composition includes powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants.
  • the active component may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required.
  • the ointments, pastes, creams and gels may contain, in addition to a subject composition, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • Powders and sprays may contain, in addition to a subject composition, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
  • Sprays may additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
  • compositions of the present invention may alternatively be administered by aerosol. This is accomplished by preparing an aqueous aerosol, liposomal preparation or solid particles containing the compound.
  • a non-aqueous (e.g., fluorocarbon propellant) suspension could be used.
  • Sonic nebulizers may be used because they minimize exposing the agent to shear, which may result in degradation of the compounds contained in the subject compositions.
  • an aqueous aerosol is made by formulating an aqueous solution or suspension of a subject composition together with conventional pharmaceutically acceptable carriers and stabilizers.
  • the carriers and stabilizers vary with the requirements of the particular subject composition, but typically include non-ionic surfactants (Tweens, Pluronics ® , or polyethylene glycol), innocuous proteins like serum albumin, sorbitan esters, oleic acid, lecithin, amino acids such as glycine, buffers, salts, sugars or sugar alcohols.
  • Aerosols generally are prepared from isotonic solutions.
  • compositions of this invention suitable for parenteral administration comprise a subject composition in combination with one or more pharmaceutically-acceptable sterile isotonic aqueous or non-aqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
  • aqueous and non-aqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
  • polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
  • vegetable oils such as olive oil
  • injectable organic esters such as ethyl oleate.
  • Proper fluidity may be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • compositions are formulated as a tablet, pill capsule, or other appropriate ingestible formulation, to provide a therapeutic dose in 10 ingestible formulations or fewer.
  • a therapeutic dose is provided in 20, 15, 10, 5, 4, 3, or 2 ingestible formulations.
  • compositions of the present invention may be in the form of a dispersible dry powder for pulmonary delivery.
  • Dry powder compositions may be prepared by processes known in the art, such as lyophilization and jet milling, as disclosed in WO 91/16038 and as disclosed in U.S. Patent No. 6,921,527 .
  • the composition of the present invention may be placed within a suitable dosage receptacle in an amount sufficient to provide a subject with a unit dosage treatment.
  • the dosage receptacle may be one that fits within a suitable inhalation device to allow for the aerosolization of the dry powder composition by dispersion into a gas stream to form an aerosol and then capturing the aerosol so produced in a chamber having a mouthpiece attached for subsequent inhalation by a subject in need of treatment.
  • Such a dosage receptacle includes any container enclosing the composition known in the art such as gelatin or plastic capsules with a removable portion that allows a stream of gas (e.g., air) to be directed into the container to disperse the dry powder composition.
  • a stream of gas e.g., air
  • Such containers are exemplified by those shown in U.S. Patent No. 4,227,522 ; U.S. Patent No. 4,192,309 ; and U.S. Patent No. 4,105,027 .
  • a transdermal delivery system, transdermal patch, or patch refer to an adhesive system placed on the skin to deliver a time released dose of a drug(s) by passage from the dosage form through the skin to be available for distribution via the systemic circulation.
  • Transdermal patches are a well-accepted technology used to deliver a wide variety of pharmaceuticals, including, but not limited to, scopolamine for motion sickness, nitroglycerin for treatment of angina pectoris, clonidine for hypertension, estradiol for postmenopausal indications, and nicotine for smoking cessation.
  • Patches suitable for use in the present invention include, but are not limited to, (1) the matrix patch; (2) the reservoir patch; (3) the multi-laminate drug-in-adhesive patch; and (4) the monolithic drug-in-adhesive patch ( TRANSDERMAL AND TOPICAL DRUG DELIVER SYSTEMS (Ghosh et al. eds., 1997 )). These patches are well known in the art and generally available commercially.
  • compositions of the present inventive subject matter may optionally contain folic acid, as well as any other vitamins, minerals, nutritional agents, therapeutic agents and the like.
  • the pharmaceutical or dietary compositions include one or more vitamins, one or more minerals, or combinations thereof.
  • Vitamin A or beta-carotene Vitamin B1 (as Thiamin or Thiamin mononitrate), Vitamin B2 (as Riboflavin), Vitamin B3 (as Niacin), Vitamin B6 (as Pyridoxine or Pyridoxine hydrochloride), Vitamin B9 (Folic Acid), Vitamin B12 (cyanocobalamine), Vitamin H (Biotin), Vitamin C (Ascorbic Acid), Vitamin D, Vitamin E (as d1-Alpha Tocopherol Acetate), Vitamin K, Folacin, Niacinamide, Iron (as Ferrous Fumarate), Phosphorus, Pantothenic Acid (as Calcium Pantothenate), Iodine (as Potassium Iodide), Magnesium (as Magnesium Oxide), Zinc (as Zinc Oxide), Selenium (as Sodium Selenate), Copper (as Cupric Oxide), Manganese (as Manganese Sulfate
  • Such vitamins, minerals and trace elements are commercially available from sources known by those of skill in the art.
  • the dosage forms of the invention may be formulated using any pharmaceutically-acceptable forms of the vitamins and/or minerals described above, including their salts, which are known by those of skill in the art.
  • the pharmaceutical or dietary composition according to the present invention includes one or more vitamins, minerals, trace elements, or combinations thereof selected from the group consisting of Vitamin A, Vitamin C, Vitamin D, Vitamin E, Vitamin K, Thiamin, Riboflavin, Niacin, Folate, Vitamin B12, Vitamin B6, Pantothenic Acid, Biotin, Choline, Chromium, Copper, Iodine, Molybdenum, Selenium, Iron, Zinc, Magnesium, and combinations thereof.
  • Compositions according to the present invention also include folate or derivatives thereof.
  • Folate derivatives include folic acid and derivatives thereof.
  • Derivatives of folic acid include compounds formed from folic acid which may be structurally distinct from folic acid, but which retain the active function of folic acid.
  • Non-limiting examples of such derivatives include salts of folic acid, alkaline salts of folic acid, esters of folic acid, chelates of folic acid and combinations thereof.
  • the folate or derivatives thereof are present in the compositions according to the invention in an amount less than about 400 ⁇ g, for example, less than about 300 ⁇ g, less than about 200 ⁇ g, or less than about 100 ⁇ g of folate or derivatives thereof.
  • the deoxyuridine for use according to the invention may further comprise administering to the subject folate or derivatives thereof in an amount that is less than about 1000 ⁇ g, less than about 400 ⁇ g, less than about 300 ⁇ g, less than about 200 ⁇ g, or less than about 100 ⁇ g.
  • the composition comprises folate or derivatives thereof where the amount of folate or derivatives thereof present is the daily recommended dietary allowance for a particular subject (e.g., woman of childbearing years).
  • the daily recommended dietary allowance for particular nutrients is published by the National Academy of Sciences, Institute of Medicine, Food and Nutrition Board, "Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes,” (2011)).
  • the amount of folic acid in the composition may be in an amount that is less than the daily recommended dietary allowance of folate or derivatives thereof for a particular subject (e.g., woman of childbearing years, pregnant woman, or lactating woman).
  • the amount of folate or derivatives thereof is at least about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% less than that recommended as a daily dietary allowance for a particular individual (e.g., a woman of childbearing age).
  • Effective doses of the deoxyuridine of the present invention vary depending upon many different factors, including type and stage of disease, mode of administration, target site, physiological state of the patient, other medications or therapies administered, and physical state of the patient relative to other medical complications. Treatment dosages need to be titrated to optimize safety and efficacy.
  • compositions of the present invention can be administered in a single dose or multiple doses.
  • the dosage can be determined by methods known in the art and can be dependent, for example, upon the individual's age, sensitivity, tolerance and overall well-being.
  • the dosage forms of the present invention may involve the administration of a composition according to the present invention in a single dose during a 24 hour period of time, a double dose during a 24 hour period of time, or more than two doses during a 24 hour period of time, or fractional doses to be taken during a 24 hour period of time.
  • the double or multiple doses may be taken simultaneously or at different times during the 24 hour period.
  • compositions according to the present invention are formulated for the dosage form to combine various forms of release, which include, without limitation, immediate release, extended release, pulse release, variable release, controlled release, timed release, sustained release, delayed release, long acting, and combinations thereof.
  • immediate release, extended release, pulse release, variable release, controlled release, timed release, sustained release, delayed release, long acting characteristics and combinations thereof is performed using well known procedures and techniques available to the ordinary artisan.
  • the dose in a range from about 0.5mg/kg body weight per day to about 200 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 150 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 100 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 95 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 90 mg/kg body weight per day.
  • the dose is in a range from about 0.5mg/kg body weight per day to about 85 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 80 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 75 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 70 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 65 mg/kg body weight per day.
  • the dose is in a range from about 0.5mg/kg body weight per day to about 60 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 55 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 50 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 45 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 40 mg/kg body weight per day.
  • the dose is in a range from about 0.5mg/kg body weight per day to about 35 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 30 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 25 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 20 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 15 mg/kg body weight per day.
  • the dose is in a range from about 0.5mg/kg body weight per day to about 10 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 5 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 4 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 3 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 2 mg/kg body weight per day. In another embodiment, the dose is in a range from about 0.5mg/kg body weight per day to about 1 mg/kg body weight per day.
  • the dose is or is at least about 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, or 200 mg/kg body weight per day.
  • the therapeutic dose may be between about 10 mg/day and 15,000 mg/day, between about 100 mg/day and 2,500 mg/day, or between 250 mg to about 1,000 mg/day. In other embodiments, other ranges may be used, including, for example, 50-250 mg/day, 250-500 mg/day, and 500-750 mg/day.
  • the amount of the compound required for prophylactic treatment referred to as a prophylactically-effective dosage, is generally the same as described for effective dose.
  • the effective dose is between about 50 mg/day to about 150 mg/day. In certain embodiments, the therapeutic dose is between about 10 mg/day and about 20 mg/day. In certain embodiments, the therapeutic dose is between about 20 mg/day and about 30 mg/day. In certain embodiments, the therapeutic dose is between about 30 mg/day and about 40 mg/day. In certain embodiments, the therapeutic dose is between about 40 mg/day and about 50 mg/day. In certain embodiments, the therapeutic dose is between about 50 mg/day and about 60 mg/day. In certain embodiments, the therapeutic dose is between about 60 mg/day and about 70 mg/day. In certain embodiments, the therapeutic dose is between about 70 mg/day and about 80 mg/day.
  • the therapeutic dose is between about 80 mg/day and about 90 mg/day. In certain embodiments, the therapeutic dose is between about 90 mg/day and about 100 mg/day. In certain embodiments, the therapeutic dose is between about 100 mg/day and about 110 mg/day. In certain embodiments, the therapeutic dose is between about 110 mg/day and about 120 mg/day. In certain embodiments, the therapeutic dose is between about 120 mg/day and about 130 mg/day. In certain embodiments, the therapeutic dose is between about 130 mg/day and about 140 mg/day. In certain embodiments, the therapeutic dose is between about 140 mg/day and about 150 mg/day. In certain embodiments, the therapeutic dose is between about 150 mg/day and about 160 mg/day.
  • the therapeutic dose is between about 160 mg/day and about 170 mg/day. In certain embodiments, the therapeutic dose is between about 170 mg/day and about 180 mg/day. In certain embodiments, the therapeutic dose is between about 180 mg/day and about 190 mg/day. In certain embodiments, the therapeutic dose is between about 190 mg/day and about 200 mg/day. In certain embodiments, the therapeutic dose is between about 200 mg/day and about 250 mg/day. In certain embodiments, the therapeutic dose is between about 250 mg/day and about 300 mg/day. In certain embodiments, the therapeutic dose is between about 300 mg/day and about 350mg/day. In certain embodiments, the therapeutic dose is between about 350 mg/day and about 400 mg/day.
  • the therapeutic dose is between about 400 mg/day and about 450 mg/day. In certain embodiments, the therapeutic dose is between about 450 mg/day and about 500 mg/day. In certain embodiments, the therapeutic dose is between about 500 mg/day and about 550 mg/day. In certain embodiments, the therapeutic dose is between about 550 mg/day and about 600 mg/day. In certain embodiments, the therapeutic dose is between about 600 mg/day and about 650 mg/day. In certain embodiments, the therapeutic dose is between about 650 mg/day and about 700 mg/day. In certain embodiments, the therapeutic dose is between about 700 mg/day and about 750 mg/day. In certain embodiments, the therapeutic dose is between about 750 mg/day and about 800 mg/day.
  • the therapeutic dose is between about 800 mg/day and about 850 mg/day. In certain embodiments, the therapeutic dose is between about 850 mg/day and about 900 mg/day. In certain embodiments, the therapeutic dose is between about 900 mg/day and about 950 mg/day. In certain embodiments, the therapeutic dose is between about 950 mg/day and about 1000 mg/day. In certain embodiments, the therapeutic dose is between about 1000 mg/day and about 1050 mg/day. In certain embodiments, the therapeutic dose is between about 1050 mg/day and about 1100 mg/day. In certain embodiments, the therapeutic dose is between about 1100 mg/day and about 1150 mg/day. In certain embodiments, the therapeutic dose is between about 1150 mg/day and about 1200 mg/day.
  • the therapeutic dose is between about 1200 mg/day and about 1250 mg/day. In certain embodiments, the therapeutic dose is between about 1250 mg/day and about 1300 mg/day. In certain embodiments, the therapeutic dose is between about 1300 mg/day and about 1350 mg/day. In certain embodiments, the therapeutic dose is between about 1350 mg/day and about 1400 mg/day. In certain embodiments, the therapeutic dose is between about 1400 mg/day and about 1450 mg/day. In certain embodiments, the therapeutic dose is between about 1450 mg/day and about 1500 mg/day.
  • An effective dose or amount, and any possible affects on the timing of administration of the formulation may need to be identified for any particular composition of the present invention. This may be accomplished by routine experiment, using one or more groups of animals, or in human trials if appropriate.
  • the effectiveness of any subject composition and method of treating may be assessed by administering the composition and assessing the effect of the administration by measuring one or more applicable indices, and comparing the post-treatment values of these indices to the values of the same indices prior to treatment.
  • Another aspect of the present invention relates to deoxyuridine for use in preventing or reducing the risk of development of a neural tube defect in a fetus carried by a subject, wherein the subject is a woman of childbearing age.
  • Suitable compositions, dosages, formulations, modes of administration, etc., are described above.
  • Neural tube defects include anencephaly, encephaloceles, hydranencephaly, iniencephaly, schizencephaly, spina bifida, lipomyelomeningocele, lipomeningocele, and tethered cord.
  • the woman is a woman of childbearing age that is attempting to become pregnant.
  • a woman of childbearing age that is attempting to become pregnant includes, for example, women using assisted reproductive technology (e.g., in vitro fertilization (IVF)), women monitoring fertility, and women generally attempting to conceive a child.
  • deoxyuridine or a composition comprising deoxyuridine is administered in conjunction with a fertility agent (e.g., FSH, GnRh, Clomiphene citrate, or HMG).
  • a fertility agent e.g., FSH, GnRh, Clomiphene citrate, or HMG
  • the subject is a woman who is at risk for developing a fetus with folate-deficiency related birth defects.
  • a woman may be at risk for developing a fetus with folate-deficiency related birth defects due to low consumption of folate, obesity, and/or diabetes.
  • This also includes, for example, a woman who has developed a fetus with folate-deficiency related birth defects in the past.
  • uridine is shown to increase the incidence of folate-deficiency related birth defects.
  • the use of deoxyuridine according to the invention may further include decreasing the level of uridine in the diet of the subject. For example, this includes reducing the amount of uridine consumed by the subject. This includes, for example, eliminating dietary sources of uridine (e.g., tomatoes, beer, broccoli, and organ meats, as well as supplements, drugs, or other sources of uridine.).
  • uridine e.g., tomatoes, beer, broccoli, and organ meats, as well as supplements, drugs, or other sources of uridine.
  • Kits including the deoxyuridine and compositions according to the present invention are also contemplated.
  • the kit may include one or more doses of deoxyuridine or a composition comprising deoxyuridine according to the present invention, an ovulation monitoring component, and a set of instructions for timing and utilization of the deoxyuridine and/or compositions according to the present invention together with timing intercourse to maximize fertility potential.
  • the monitoring component may include, for example, a monitor of salivary electrolytes, basal body temperature, or luteinizing hormone (LH), to predict and determine when ovulation will/has occurred.
  • the ovulation monitoring component may include a basal body temperature chart for cataloging the typical menstrual cycle for the female.
  • the method may be a method for treating cancer in a subject. This method includes selecting a subject having cancer and administering to the selected subject a therapeutically effective amount of uridine, thereby treating the cancer in the selected subject.
  • Cancer treated in this way may include intestinal tumors.
  • the cancer may be colorectal cancer.
  • the cancer may be a tumor in the colon.
  • treating refers to a reduction in cancer disease state or condition as compared to the disease state or condition without or before administering the compound or composition according to the present invention.
  • Such treatment can be, but is not limited to, the complete ablation of the disease, condition, or the symptoms of the disease or condition.
  • a disclosed method for treating cancer is considered to be a treatment if there is a reduction in one or more symptoms of the disease (e.g., tumor size) in a subject with the disease when compared to native levels in the same subject or control subjects.
  • the reduction can be a 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100%, or any amount of reduction in between as compared to native or control levels.
  • treatment can refer to any reduction in the progression of a disease or cancer.
  • methods of reducing the effects of a cancer is considered to be a treatment if there is a reduction in the tumor growth rate relative to a control subject or tumor growth rates in the same subject prior to the treatment.
  • the reduction can be a 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100%, or any amount of reduction in between as compared to native or control levels.
  • the method may be a method of preventing cancer in a subject.
  • the method includes selecting a subject at risk for developing cancer and administering to the selected subject a therapeutically effective amount of uridine, thereby preventing cancer in the selected subject. Types of cancer preventable by this method are described above.
  • Those at risk for developing intestinal cancer include, for example, subjects having one or more risk factors for developing intestinal cancer.
  • Risk factors for developing intestinal cancers include, for example, a personal history of colorectal cancer or polyps; inflammatory intestinal conditions (e.g., Chronic inflammatory diseases of the colon, such as ulcerative colitis and Crohn's disease); inherited syndromes that increase cancer risk (genetic syndromes such as familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer); family history of intestinal cancers (e.g., colon cancer and colon polyps); diabetes; obesity; smoking; heavy use of alcohol; and radiation therapy for cancer.
  • inflammatory intestinal conditions e.g., Chronic inflammatory diseases of the colon, such as ulcerative colitis and Crohn's disease
  • inherited syndromes that increase cancer risk genetic syndromes such as familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer
  • family history of intestinal cancers e.g., colon cancer and colon polyps
  • the subject of the disclosed methods may be a mammal.
  • the subject may be a human.
  • the subject may be a rodent.
  • the subject may be a laboratory animal.
  • the subject may be a male.
  • the subject may be a female.
  • the subject may be any other type of subject known in the art.
  • the selected subject may not be a woman of childbearing age.
  • the subject may not be a woman of childbearing age who is attempting to become pregnant.
  • Uridine includes uridine, an acyl derivative thereof, or a uridine phosphate.
  • uridine phosphate is a uridine-5'-monophosphate (UMP), uridine-5'-diphosphate (UDP), uridine-5'-triphosphate (UTP), or is a salt of said UMP, UDP, or UTP.
  • UMP uridine-5'-monophosphate
  • UDP uridine-5'-diphosphate
  • UTP uridine-5'-triphosphate
  • Uridine administered to the selected subject may be formulated as a composition in the manner described above.
  • suitable compositions, formulations, dosages, modes of administration, etc. are described above.
  • Other pharmaceutical and dietary compositions including uridine are known and may also be used (e.g., U.S. Patent Application Publication Nos. 2009/0105189 to Wurtman et al. and 2010/0222296 to Renshaw ).
  • One or more vitamins, minerals, trace elements, or combinations thereof may also be administered.
  • the one or more vitamins, minerals, trace elements, or combinations thereof can be selected from the group consisting of Vitamin A, Vitamin C, Vitamin D, Vitamin E, Vitamin K, Thiamin, Riboflavin, Niacin, Folate, Vitamin B12, Vitamin B6, Pantothenic Acid, Biotin, Choline, Chromium, Copper, Iodine, Molybdenum, Selenium, Iron, Zinc, Magnesium, and combinations thereof.
  • the uridine may be administered as part of a composition selected from the group consisting of a nutraceutical composition, pharmaceutical composition, functional food, functional nutrition product, medical food, medical nutrition product, or dietary supplement.
  • the administering may be parenteral.
  • the administering may be oral.
  • the uridine may be administered in capsule, tablet, granule, or lozenge form.
  • Administering uridine can be used alone or in conjunction with other cancer therapies (e.g., chemotherapeutic agents, radiation, surgery, or combinations thereof). Accordingly, a therapeutically effective amount of uridine may be administered in conjunction with a cancer therapy.
  • cancer therapies e.g., chemotherapeutic agents, radiation, surgery, or combinations thereof.
  • a therapeutically effective amount of uridine may be administered in conjunction with a cancer therapy.
  • the cancer therapy may be a chemotherapeutic.
  • the chemotherapeutic may be selected from the group consisting of alkylating agents, antimetabolites, anthracyclines, antitumor antibiotics, platinum-based chemotherapeutics, and plant alkaloids.
  • chemotherapeutics or chemotherapy include cisplatin, dacarbazine (DTIC), dactinomycin, mechlorethamine (nitrogen mustard), streptozocin, cyclophosphamide, carmustine (BCNU), lomustine (CCNU), doxorubicin (adriamycin), daunorubicin, procarbazine, mitomycin, cytarabine, etoposide, methotrexate, 5-fluorouracil, vinblastine, vincristine, bleomycin, paclitaxel (taxol), docetaxel (taxotere), aldesleukin, asparaginase, busulfan, carboplatin, cladribine, dacarbazine, floxuridine, fludarabine, hydroxyurea, ifosfamide, interferon alpha, leuprolide, magastrol, melphalan, mercaptopurine, oxalop
  • the cancer therapy may be radiation.
  • the source of radiation can be either external or internal to the patient being treated.
  • the therapy is known as external beam radiation therapy (EBRT).
  • EBRT external beam radiation therapy
  • BT brachytherapy
  • the cancer therapy may be surgery.
  • the therapeutically effective amount of uridine and the cancer therapy may be administered simultaneously.
  • the therapeutically effective amount of uridine may be administered prior to the cancer therapy.
  • the therapeutically effective amount of uridine may be administered following the cancer therapy.
  • Example 19 does not fall within the scope of the present invention.
  • Shmt1 +/- , Shmt1 +/+ , and Shmt1 -/- mice were generated from Shmt1 +/- breeding pairs maintained as a heterozygote breeding colonies.
  • Shmt1 +/+ and Shmt1 -/- female mice were then crossed to Shmt1 +/- male mice for timed mating experiments, as described below.
  • mice were maintained on a 12-hour light/dark cycle in a temperature-controlled room.
  • female mice were randomly assigned at weaning to experimental AIN93G diets containing folic acid (C) or AIN93G lacking folic acid (FD) ( FIG. 2 ) and including 0.6% uridine (Rudolph FB & Van Buren CT (1993)), 0.2% thymidine ( Iwasa et al., "The Well-Balanced Nucleoside-Nucleotide Mixture 'OG-VI' for Special Medical Purposes," Nutrition 13(4):361-364 (1997 )), or 0.1% 2'-Deoxyuridine supplementation (Dyets, Bethlehem, PA).
  • C AIN-93G as control
  • FD Folate Deficient
  • C+U C+ supplemented with 0.6% uridine
  • C+T C+ supplemented with 0.2% thymidine
  • C+dU C+ supplemented with 0.1% 2'-Deoxyuridine
  • FD+U FD+ supplemented with 0.6% uridine
  • FD+T FD+ supplemented with 0.2% thymidine
  • FD+dU FD+ supplemented with 0.1% 2'-Deoxyuridine
  • mice dams were maintained on diet from weaning throughout the breeding period and for the duration of gestation, until killed.
  • Virgin female mice aged 70-120 days were housed overnight with males. The following morning, females were examined for the presence of a vaginal plug. Nine o'clock a.m. the day of the plug appearance was designated as gestational day 0.5 (E0.5).
  • Pregnant females were sacrificed by cervical dislocation at E11.5 and blood was collected by cardiac puncture. Gravid uteri were removed and all implants and resorption sites were recorded.
  • Embryos were examined for presence of NTDs and measured for crown-rump length. All yolk sacs were collected for subsequent genotyping.
  • Embryos were extracted at E11.5 and rapidly frozen in liquid nitrogen followed by storage at -80°C for biochemical analyses. Embryos examined for morphological abnormalities were derived at E11.5, and fixed in 10% neutral buffered formalin.
  • Genotyping for the sex was performed using established protocols ( Clapcote et al., "Simplex PCR Assay for Sex Determination in Mice," Biotechniques 38(5):702, 704, 706 (2005 ); Machado et al., "Diabetic Embryopathy in C57BL/6J Mice. Altered Fetal Sex Ratio and Impact of the Splotch Allele," Diabetes 50(5): 1193-1199 (2001 ); McClive et al., “Rapid DNA Extraction and PCR-Sexing of Mouse Embryos," Mol. Reprod. Dev. 60(2):225-226 (2001 )).
  • Total protein was extracted and quantified from frozen tissue. Western blot analyses were performed in at least in triplicate using 15-30 ⁇ g of protein extracted from individual maternal livers and embryos. Total soluble protein were separated by 4-12% Bis-Tris gradient SDS-polyacrylamide electrophoresis and transferred to a nitrocellulose membrane.
  • the primary antibodies were diluted in blocking buffer for fluorescent western blotting (Rockland, PA) as follows: monoclonal rabbit anti-mouse thymidylate synthase (TYMS) (Cell signaling, 1:1000), monoclonal mouse anti-rabbit TK1 (Abcam, 1:500), polyclonal rabbit anti-mouse Pax3 (Abcam 1:500), polyclonal sheep anti-mouse SHMT1 (1:20,000) ( Liu et al., "Lack of Catalytic Activity of a Murine mRNA Cytoplasmic Serine Hydroxymethyltransferase Splice Variant: Evidence against Alternative Splicing as a Regulatory Mechanism," Biochemistry 40(16):4932-4939 (2001 )), monoclonal anti-mouse p-p53 (Cell signaling, 1:1,000), rabbit monoclonal to HPRT (Acbam, 1:10,000), rabbit polyclonal anti-RRMI (Thermo Scientific, 1:1,000), M
  • Appropriate secondary antibodies were applied: an IRDye800/700-labeled donkey anti-mouse IgG, IRDye800/700-labeled donkey anti-rabbit IgG and IRDye800-labeled donkey anti-sheep IgG secondary antibodies (all in 1:20,000).
  • DNA was extracted from 25-50 mg of liver tissue using DNeasy Tissue and Blood Kit (Qiagen), including an incubation with RNase A (Sigma) and Rnase T1 (Ambion) for 30 min at 37°C. 10 ⁇ g of DNA was treated with 1U of uracil DNA glycosylase (Epicentre) for one hour at 37°C. Immediately following incubation, 10 pg of [15N2]Uracil (Cambridge Isotopes) was added to each sample as an internal standard and the sample was dried completely in a desiccators.
  • 50 ⁇ l of plasma was diluted with an equal volume of 50mM Ammonium Acetate pH5.6 and spiked with 10 ⁇ M 5-fluoruridine as an internal standard.
  • the diluted plasma was clarified using an Amicon Ultra centrifugal filter with a MWCO of 3,000 Kd and centrifuged at 16,000RPM for 30 minutes.
  • Buffer A consisted of 100mM Ammonium Acetate pH 5.6 and buffer B was 100mM Ammonium Acetate and 20% methanol.
  • the nucleotides were eluded with a linear gradient from 1-to 30minutes starting with 0% Buffer B to 75% at 30min, followed by a linear gradient from 30 to 35 min decreasing from 75% to 0% Buffer B.
  • Uridine, Deoxyuridine, and Thymidine levels were quantified by using a Shimadzu Diode array Detector with a starting wavelength of 240 and ending at 300nm and analyzed using a five point standard curve for each analyte and the internal standard.
  • Blood glucose levels from non-fasted female mice was recorded on 11.5-12.5 th day of gestation. Blood samples were obtained from the tail of each mouse. The tip of the tail was cleaned with spirit before being cut with a sharp blade and 10-20 ⁇ L of blood collected. The blood glucose levels were measured using an OneTouch ® UltraMini ® glucose meter (LifeScan, Inc.) and OneTouch ® Ultra ® Blue Test Strips (LifeScan, Inc.). One glucose measurement required approximately 3 ⁇ L of blood. Glucose measurements were taken in duplicate and averaged. The statistical analysis was performed by using analysis of variance (ANOVA) for the comparison of data between different experimental groups.
  • ANOVA analysis of variance
  • Shmt1 genotype was determined for Shmt1 +/+ and Shmt1 -/- mice.
  • Shmt1 +/+ and Shmt1 -/- mice weaned to the C+T and C+dU diets, but not C+U diets, exhibited significantly higher levels of plasma folate compared to Shmt1 +/+ mice fed the control diet ( P ⁇ 0.05; FIG. 5 ).
  • mice fed uridine supplemented diets exhibited higher blood glucose levels (P ⁇ 0.05). Blood glucose was elevated in both genotypes in dams fed C+U and FD+U diets. Interestingly, dams fed on dU supplemented diets had similar blood glucose levels (Table 4; FIG. 5 ).
  • uracil is not a biomarker for NTDs in liver DNA.
  • Shmt1 -/- mice fed on FD tended to have increased uracil incorporation in DNA relative Shmt1 +/+ mice C diet.
  • Example 13 Deoxyduridine Supplementation Prevents NTDs in Response to Maternal Folate Deficiency in Mice with Shmt1 Disruption
  • cytoplasmic serine hydroxymethyltransferase acts as a metabolic switch that regulates the partitioning of one-carbon units between the dTMP and methionine biosynthetic pathways ( FIG. 1 ) ( Herbig et al., "Cytoplasmic Serine Hydroxymethyltransferase Mediates Competition Between Folate-Dependent Deoxyribonucleotide and S-Adenosylmethionine Biosyntheses," J. Biol. Chem. 277(41):38381-38389 (2002 )).
  • Folate-activated one-carbons can be derived in the cytoplasm from formate through the Mthfdl gene product or from serine through SHMT1 to support methionine and thymidylate biosynthesis ( FIG. 1 ).
  • Thymidylate synthesis can occur in both the cytoplasm and nucleus ( Woeller et al., "Evidence for Small Ubiquitin-Like Modifier-Dependent Nuclear Import of the Thymidylate Biosynthesis Pathway," J. Biol. Chem. 282(24):17623-17631 (2007 )).
  • SHMT1 When expressed, SHMT1 preferentially partitions methylenetetrahydrofolate (methyleneTHF) into the dTMP synthesis pathway through the small ubiquitin-like modifier (SUMO)-mediated compartmentalization of the dTMP biosynthetic pathway components in the nucleus during S-phase ( Herbig et al., "Cytoplasmic Serine Hydroxymethyltransferase Mediates Competition Between Folate-Dependent Deoxyribonucleotide and S-Adenosylmethionine Biosyntheses," J. Biol. Chem.
  • SHMT1 tightly binds and sequesters 5-methylTHF making it unavailable for the methionine cycle, inhibiting AdoMet synthesis and reducing the cellular methylation potential ( Herbig et al., "Cytoplasmic Serine Hydroxymethyltransferase Mediates Competition Between Folate-Dependent Deoxyribonucleotide and S-Adenosylmethionine Biosyntheses," J. Biol. Chem. 277(41):38381-38389 (2002 )).
  • folates function as enzyme cofactors that carry and chemically activate one-carbons for a network of anabolic pathways collectively known as one-carbon metabolism.
  • OCM is essential for de novo purine and thymidylate (dTMP) biosynthesis, and for the remethylation of homocysteine to methionine.
  • Methionine can be adenosylated to form S -adenosylmethionine (AdoMet), a methyl donor for numerous cellular methylation reactions ( FIG. 1 ).
  • the splotch mutant ( Pax3 Sp ) has demonstrated impairments in OCM.
  • NTDs in the splotch mutant can be rescued with supplemental dietary folic acid or thymidine, indicating that folic acid prevents NTDs by rescuing de novo thymidylate synthesis in this mouse model ( Wlodarczyk et al., "Spontaneous Neural Tube Defects in Splotch Mice Supplemented with Selected Micronutrients," Toxicol. Appl. Pharmacol. (2005 ); Fleming et al., "Embryonic Folate Metabolism and Mouse Neural Tube Defects," Science 280(5372):2107-2109 (1998 )).
  • Embryonic serine hydroxymethyltransferase 1 (encoded by Shmt1 ) disruptions also caused folate-responsive NTDs in mice.
  • Shmt1 is responsible for generating one-carbon units from the enzymatic cleavage of serine to glycine that are preferentially shunted to thymidylate biosynthesis.
  • Shmt1 -/- and Shmt1 +/- mice are sensitized to folate-responsive NTDs, and demonstrate impaired de novo thymidylate biosynthesis, and therefore provide a means to study gene-nutrient interactions in NTDs ( Beaudin et al., "Shmt1 and De Novo Thymidylate Biosynthesis Underlie Folate-Responsive Neural Tube Defects in Mice," Am. J. Clin. Nutr. 93(4):789-798 (2011 )).
  • Shmt1 is not essential in mice due to functional redundancy provided by Shmt2 expression ( MacFarlane et al., "Cytoplasmic Serine Hydroxymethyltransferase Regulates the Metabolic Partitioning of Methylenetetrahydrofolate but is Not Essential in Mice," J. Biol. Chem. 283(38):25846-25853 (2008 )).
  • the mechanisms whereby disruption of de novo thymidylate biosynthesis causes NTDs in the Shmt1 mouse model is not known.
  • NTDs neural tube closure defects
  • Shmt1 serine hydroxymethyltransferase 1
  • dietary nucleosides (0.6% uridine, 0.2% thymidine and 0.1% 2'-deoxyuridine) to modify NTD risk in Shmt1 -/- dams fed a folate-deficient AIN93G diet was examined. It was hypothesized that dietary thymidine would prevent NTDs if a lack of cellular thymidylate was causing NTDs, whereas dietary uridine and/or deoxyuridine would increase NTD incidence if the accumulation of these nucleosides/nucleotides caused NTDs in the Shmt1 -/- mouse model.
  • mice SHMT1 null mice were generated as previously described ( MacFarlane et al., "Cytoplasmic Serine Hydroxymethyltransferase Regulates the Metabolic Partitioning of Methylenetetrahydrofolate but is Not Essential in Mice," J. Biol. Chem. 283(38):25846-25853 (2008 )) and backcrossed a minimum of 10 generations onto the C57BL/6J strain.
  • Mice were genotyped using the forward primer 5'-GACACTGTTCACATCCCTC-3' (SEQ ID NO:1) and the reverse primer 5'-CAAAACATTCGGGAGCCTC-3' (SEQ ID NO:2).
  • the forward primer corresponds to an intron 6 sequence located 5' to a loxP site and exon 7 and the reverse primer corresponds to an intron 7 sequence located downstream of a 3' loxP site
  • MacFarlane et al. "Cytoplasmic Serine Hydroxymethyltransferase Regulates the Metabolic Partitioning of Methylenetetrahydrofolate but is Not Essential in Mice," J. Biol. Chem. 283(38):25846-25853 (2008 )
  • Genotyping of Apc min / + mice was performed using the following primers recommended by The Jackson Laboratory protocol: wild-type forward primer 5'-GCCATCCCTTCACGTTAG-3' (SEQ ID NO:3), Min forward primer 5'-TTCTGAGAAAGACAGAAGTTA-3' (SEQ ID NO:4), and a common reverse primer 5'-TTCCACTTTGGCATAAGGC-3' (SEQ ID NO:5).
  • Shmt1 -/+ mice were mated to Apc min /+ mice. Double heterozygous offspring were intercrossed to achieve Apc min /+ Shmt1 +/+ , Apc min /+ Shmt1 -/+ or Apc min /+ Shmt1 -/- mice.
  • mice were randomly weaned onto either a control (AIN-93G; Dyets, Inc.) diet supplemented with 0.1% deoxyuridine, or a modified AIN-93G diet lacking folic acid, a modified AIN-93G diet lacking folic acid supplemented with 0.1% deoxyuridine, a modified AIN-93G diet lacking folic acid supplemented with 0.2% thymidine,or a modified AIN-93G diet lacking folic acid supplemented with 0.6% uridine (Dyets, Inc.) at 3 weeks of age.
  • the control diet contained 2 mg/kg folic acid
  • the folatedeficient diet contained 0 mg/kg folic acid.
  • Mice were maintained on the diet for 5 weeks ( Apc +/+ ) or 11 weeks ( Apc min /+ ).
  • the small intestine and colon were removed, flushed with cold PBS, opened longitudinally, and laid flat lumen side up for examination using a dissecting microscope as previously described ( Chiu et al., "Sulindac Causes Rapid Regression of Preexisting Tumors in Min/+ Mice Independent of Prostaglandin Biosynthesis," Cancer Res. 57:4267-73 (1997 )).
  • Tumors were counted according to intestinal location (small intestine or colon) and their diameter measured by a pathologist-trained investigator who was blinded to the genotype of the intestinal specimen.
  • Tumor load is a function of tumor number and area and was calculated as the total tumor area per mouse.
  • Lactobacillus casei microbiological assay Herbig et al., "Cytoplasmic Serine Hydroxymethyltransferase Mediates Competition Between Folate-Dependent Deoxyribonucleotide and S-Adenosylmethionine Biosyntheses," J. Biol. Chem. 277(41):38381-38389 (2002 )). Protein concentration was quantified ( Bensadoun et al., "Assay of Proteins in the Presence of Interfering Materials," Anal. Biochem. 70:241-50 (1976 )).
  • Uracil content in hepatic nuclear DNA was determined by gas chromatography/mass spectrometry as previously described ( MacFarlane et al., "Cytoplasmic Serine Hydroxymethyltransferase Regulates the Metabolic Partitioning of Methylenetetrahydrofolate but is Not Essential in Mice," J. Biol. Chem. 283(38):25846-25853 (2008 )).
  • Uracil content in liver nuclear DNA has been shown to correlate with uracil content in colonic nuclear DNA in Shmt1 - /+ mice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Claims (14)

  1. Désoxyuridine destinée à être utilisée dans la prévention ou la réduction du risque de développement d'un défaut du tube neural chez un foetus porté par un sujet, ledit sujet étant une femme en âge de procréer.
  2. Composition pharmaceutique ou diététique comprenant :
    de la désoxyuridine ;
    du folate ou des dérivés de celui-ci ;
    un(e) ou plusieurs vitamines, minéraux, éléments à l'état de traces, ou combinaisons de ceux-ci choisis parmi la vitamine A, la vitamine C, la vitamine D, la vitamine E, la vitamine K, la thiamine, la riboflavine, la niacine, la vitamine B12, la vitamine B6, l'acide pantothénique, la biotine, la choline, le chrome, le cuivre, l'iode, le molybdène, le sélénium, le fer, le zinc, le magnésium, et des combinaisons de ceux-ci ; et
    un véhicule pharmaceutiquement ou diététiquement acceptable,
    ledit folate ou lesdits dérivés de celui-ci étant présents en une quantité qui est inférieure à 400 µg.
  3. Désoxyuridine destinée à être utilisée selon la revendication 1, ou composition pharmaceutique ou diététique selon la revendication 2, ladite désoxyuridine étant administrée en tant qu'élément, ou la composition faisant partie, d'une composition nutraceutique, d'une composition pharmaceutique, d'un aliment fonctionnel, d'un produit nutritionnel fonctionnel, d'un aliment médical, d'un produit nutritionnel médical ou d'un supplément alimentaire.
  4. Désoxyuridine destinée à être utilisée selon la revendication 1, ladite utilisation comprenant en outre l'administration :
    d'un(e) ou plusieurs vitamines, minéraux, éléments à l'état de traces, ou combinaisons de ceux-ci.
  5. Désoxyuridine destinée à être utilisée selon la revendication 4, lesdit(e)s un(e) ou plusieurs vitamines, minéraux, éléments à l'état de traces, ou combinaisons de ceux-ci étant choisis parmi la vitamine A, la vitamine C, la vitamine D, la vitamine E, la vitamine K, la thiamine, la riboflavine, la niacine, le folate, la vitamine B12, la vitamine B6, l'acide pantothénique, la biotine, la choline, le chrome, le cuivre, l'iode, le molybdène, le sélénium, le fer, le zinc, le magnésium, et des combinaisons de ceux-ci.
  6. Désoxyuridine destinée à être utilisée selon la revendication 1, ladite utilisation comprenant en outre l'administration au sujet :
    de folate ou de dérivés de celui-ci présents en une quantité inférieure à environ 1000 µg, inférieure à environ 400 µg, inférieure à environ 300 µg, inférieure à environ 200 µg ou inférieure à environ 100 µg.
  7. Désoxyuridine destinée à être utilisée selon la revendication 1, ou composition pharmaceutique ou diététique selon la revendication 2, ladite utilisation comprenant en outre ou ladite composition comprenant en outre l'administration au sujet :
    de folate ou de dérivés de celui-ci en une quantité au moins environ 50 % inférieure à celle recommandée en tant qu'apport nutritionnel quotidien pour une femme en âge de procréer.
  8. Désoxyuridine destinée à être utilisée selon la revendication 1, ou composition pharmaceutique ou diététique selon la revendication 2, ladite désoxyuridine étant administrée, ou la composition se présentant, sous forme de capsule, de comprimé, de granule ou de pastille.
  9. Désoxyuridine destinée à être utilisée selon la revendication 1, ledit sujet étant un humain.
  10. Désoxyuridine destinée à être utilisée selon la revendication 1, ledit sujet étant une femme enceinte ou allaitante.
  11. Désoxyuridine destinée à être utilisée selon la revendication 1, ladite femme étant une femme en âge de procréer qui essaye de tomber enceinte.
  12. Désoxyuridine destinée à être utilisée selon la revendication 1, ladite prévention ou réduction du risque de développement d'un défaut du tube neural se faisant par administration parentérale ou orale.
  13. Désoxyuridine destinée à être utilisée selon la revendication 1, ladite utilisation ne comprenant pas l'administration de folate ou de dérivés de celui-ci.
  14. Composition pharmaceutique ou diététique selon la revendication 2 destinée à être utilisée dans la prévention ou la réduction du risque de développement d'un défaut du tube neural chez un foetus porté par un sujet.
EP12777418.0A 2011-04-25 2012-04-25 Utilisation d'uridine et de désoxyuridine pour traiter les pathologies répondant aux folates Not-in-force EP2701712B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161478669P 2011-04-25 2011-04-25
US201161515356P 2011-08-05 2011-08-05
PCT/US2012/034963 WO2012148998A1 (fr) 2011-04-25 2012-04-25 Utilisation d'uridine et de désoxyuridine pour traiter les pathologies répondant aux folates

Publications (3)

Publication Number Publication Date
EP2701712A1 EP2701712A1 (fr) 2014-03-05
EP2701712A4 EP2701712A4 (fr) 2015-05-27
EP2701712B1 true EP2701712B1 (fr) 2017-06-21

Family

ID=47072721

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12777418.0A Not-in-force EP2701712B1 (fr) 2011-04-25 2012-04-25 Utilisation d'uridine et de désoxyuridine pour traiter les pathologies répondant aux folates

Country Status (4)

Country Link
US (1) US9579337B2 (fr)
EP (1) EP2701712B1 (fr)
CN (1) CN103619340B (fr)
WO (1) WO2012148998A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201211135D0 (en) * 2012-06-22 2012-08-08 Ucl Business Plc Treatment
EP3497216B1 (fr) * 2016-08-15 2022-10-19 F. Hoffmann-La Roche AG Procédé d'isolement d'acides nucléiques pour des lectures de séquençage longues
WO2020180424A1 (fr) 2019-03-04 2020-09-10 Iocurrents, Inc. Compression et communication de données à l'aide d'un apprentissage automatique

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1521000A (en) 1975-06-13 1978-08-09 Syntex Puerto Rico Inc Inhalation device
US4192309A (en) 1978-09-05 1980-03-11 Syntex Puerto Rico, Inc. Inhalation device with capsule opener
US4227522A (en) 1978-09-05 1980-10-14 Syntex Puerto Rico, Inc. Inhalation device
JPS5735516A (en) * 1980-08-11 1982-02-26 Yamasa Shoyu Co Ltd Agent for increasing radiosensitivity or agent for increasing effect of substance having activity similar to radiation
JPH05963A (ja) 1990-04-13 1993-01-08 Toray Ind Inc ポリペプチド類組成物
US6335434B1 (en) 1998-06-16 2002-01-01 Isis Pharmaceuticals, Inc., Nucleosidic and non-nucleosidic folate conjugates
US6582728B1 (en) 1992-07-08 2003-06-24 Inhale Therapeutic Systems, Inc. Spray drying of macromolecules to produce inhaleable dry powders
US8518882B2 (en) 1998-07-31 2013-08-27 Massachusetts Institute Of Technology Methods and compositions for ameliorating or inhibiting decline in memory or intelligence or improving same
WO2005023021A1 (fr) * 2003-09-02 2005-03-17 Bbk Bio Corporation Denree alimentaire dietetique
EP1765075A4 (fr) 2004-06-10 2010-11-10 Mclean Hospital Corp Pyrimidines, notamment de l'uridine, utilisees dans des traitements sur des patients atteints de troubles bipolaires
US20070114476A1 (en) * 2005-11-04 2007-05-24 Williams Christopher P Low radiocarbon nucleotide and amino acid dietary supplements
EP2049147A2 (fr) * 2006-07-06 2009-04-22 Apogenix GmbH Mutéines d'il-4 humaines combinees avec des chemo-therapeutiques ou des pro-apoptotiques dans le traitement du cancer
CN101019880A (zh) * 2007-03-13 2007-08-22 西安交通大学 一种肝靶向氟尿苷纳米粉针剂及其制备方法
WO2009002146A1 (fr) * 2007-06-26 2008-12-31 N.V. Nutricia Procédé pour supporter des activités de la vie quotidienne

Also Published As

Publication number Publication date
US20140080784A1 (en) 2014-03-20
EP2701712A4 (fr) 2015-05-27
CN103619340A (zh) 2014-03-05
CN103619340B (zh) 2016-08-17
WO2012148998A1 (fr) 2012-11-01
EP2701712A1 (fr) 2014-03-05
US9579337B2 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
JP7061077B2 (ja) ニコチンアミドリボシド、ニコチン酸リボシド、ニコチンアミドモノヌクレオチド、およびニコチノイル化合物誘導体の、乳児用粉ミルクへの使用
EP3110507B1 (fr) Compositions et procédés permettant la réduction ou la prévention de stéatose hépatique
EP1748705B1 (fr) Utilisation de $g(b)-cryptoxanthine
EP2869717B1 (fr) Prévention d'une réaction à l'alcool avec des compléments diététiques
CN105899223A (zh) 转移性前列腺癌的治疗
CN102264222B (zh) 抗病毒补剂
KR20140021598A (ko) 조성물, 및 당대사 개선제, 및 당대사 개선방법
KR20220070477A (ko) 고페닐알라닌혈증 치료 방법
EP2701712B1 (fr) Utilisation d'uridine et de désoxyuridine pour traiter les pathologies répondant aux folates
EP4084782A1 (fr) Composition pour le traitement de l'infertilité masculine
EP3057603A1 (fr) Combinaisons de nutriments pour avoir une incidence sur un processus de vieillissement
WO2024015453A1 (fr) Méthodes pour augmenter la biodisponibilité d'agents médicinaux nucléosidiques
US20230123277A1 (en) Compositions comprising 2'-deoxycytidine analogs and use thereof for the treatment of sickle cell disease and thalassemia
CA3236051A1 (fr) Compositions comprenant des analogues de la 2'-desoxycytidine et utilisation associee pour le traitement de la drepanocytose, de la thalassemie et de cancers
US9895328B2 (en) Calcium formate as a supplement to prevent neural tube defects
US20190298721A1 (en) Stable pro-vitamin derivative compounds, pharmaceutical and dietary compositions, and methods of their use
KR102460275B1 (ko) D-리보-2-헥술로스를 유효성분으로 포함하는 사코페니아 예방, 개선 또는 치료용 조성물
EP4209215A1 (fr) Traitement de gm2 gangliosidosis
US20240139122A1 (en) Composition for preventing, alleviating or treating sarcopenia, containing d-ribo-2-hexulose as active ingredient
WO2022094916A1 (fr) Procédé d'amélioration de l'activité de nicotinamide phosphoribosyltransférase, et composition associée
WO2024123738A1 (fr) Compositions et méthodes de traitement de maladies sensibles à la coadministration akg-vitamine b
JP5973108B2 (ja) グリコーゲンシンターゼキナーゼ3β抑制物質を有効成分として含む卵巣顆粒細胞腫瘍の予防または治療用の薬学的組成物および健康機能性食品の組成物
Şahin et al. Methionine Restricted Diet; Clinical Application
CA3218320A1 (fr) Compositions comprenant des melanges de composes et leurs utilisations
Fangmann In Vivo evaluation of novel topical niacin nutriceuticals for improving gut microbiota and metabolic health

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: A61P 35/00 20060101ALI20141114BHEP

Ipc: A61K 31/7072 20060101AFI20141114BHEP

RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150430

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 31/7072 20060101AFI20150423BHEP

Ipc: A61P 35/00 20060101ALI20150423BHEP

17Q First examination report despatched

Effective date: 20160504

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 902333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012033743

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170922

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 902333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171021

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012033743

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

26N No opposition filed

Effective date: 20180322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180427

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180425

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180427

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012033743

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190425

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621